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M-fivebranes wrapped on supersymmetric cycles
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We construct supergravity solutions dual to the twisted field theories arising when M-theory fivebranes wrap
general supersymmetric cycles. The solutions are constructed in meRimalgauged supergravity and then
uplifted to D=11. Our analysis covers IKéer, special Lagrangian and exceptional calibrated cycles. The
metrics on the cycles are Einstein, but do not necessarily have constant curvature. We find many new examples
of AdS/CFT duality, corresponding to the IR superconformal fixed points of the twisted field theories.
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[. INTRODUCTION ing from D=7 gauged supergravity. This is followed in
Secs. llI-V with a discussion of the BPS equations for the

The supergravity duals of the twisted field theories arisingdifferent cases as well as a presentation of the ,A¢S
on branes wrapping supersymmetric cydléshave recently X2 4 solutions and the formulas to uplift @ =11. Section
been investigated if2—5] (for related solutions sd&—10]). VI contains some numerical analysis of the BPS equations
The cases that have been considered include fivebranes anwfiere we demonstrate the flows when—1 from an Ad$
D3-branes wrapping holomorphic curvég,3], and five- type regions to the AdS 4x 24 solutions. We also analyze
branes[4] and D3-braneg5] wrapping associative three- the BPS equations and the singularities of the general flows
cycles. Here we will extend these investigations by analyzingVith I =*1. Section VII briefly concludes.

M-fivebranes wrapping all other supersymmetric cycles. The

new cases covered here aréhia four-cycles, special La- Il. MAXIMAL D=7 GAUGED SUPERGRAVITY

grangian three-, four-, and five-cycles, co-associative four-
cycles and Cayley four-cycles.

As in previous work it will be convenient to first construct
the solutions irD =7 gauged supergravity and then uplift to 1., . .
obtain theD = 11 solutions. Rather than working with differ- ~ 2£=€ R+ 5mi(T*=2T;; T) =P ;P!
ent truncated versions of gauged supergravity we will
present a unified treatment by working directly with the
maximal SO(5) gauged supergravity ¢fL1]. We then em-
ploy the results 0f12,13 to uplift to D=11. This approach

The Lagrangian for the bosonic fields of maximal gauged
supergravity inD=7 is given by[11]

1 o
- E(HAIHBJ F,ALE)Z— mz(H_liAS;LVp,A)Z

has the virtue of highlighting the universal aspects of the —6m&*BSy,/\Fg+ \3eapcped” Se/\FBCAFPE
various supergravity solutions. 1
An ingredient in the supergravity solutions will be a met- + %(295[5]—93[3])- 2.1

ric on the supersymmetric cycke,. This metric is required
to be Einstein, satisfyin&;; =1g;; , where, factoring out the o
overall scale ofS 4, we havel=0,+1. The metric on the Heére A,B=1,...,5denote indices of th&S(S), gauge
special Lagrangian cycles will be further restricted to havedroup, whilei,j=1,...,5denote indices of th& (5). lo-
constant curvature. For the exceptional four-cycles we im€@ composite gauge group, which are raised and lowered
pose that the metrics are half-conformally flat; i.e., the WeylWith 6’ and ;. The 14 scalar field$l,' are given by the
tensor is self-dual. For the léer cycles it is sufficient that c0S€t SL(5,R)/SX(S). and transform as & under both
the metric is Kaler-Einstein. Setting=—1, for all cases S(5)g (from the lefy and SX(5). (from the righy. The
except for Kaler four-cycles in Calabi-Yau three-folds, we Scalar kinetic termP ;; , and theSQ(S). composite gauge
find explicit solutions of the form AdS 4x 4. These so- field, Q,; , are diflned as the symmetric and antlsymmetrlc
lutions are the gravity duals of the superconformal theorie®arts of (17%)"(5,°d,+9B, A®)I15"5;, respectively.
arising on the wrapped brane. For the single case of SLAGere B"® are theSQ(5), gauge fields with field strength
five-cycles we also find an exact solution witk 1 of the F"®=8"°F.?, and note that the gauge coupling constant is
form AdS,x S°. given by g=2m. The four-form field strengtt~, for the
We begin in Sec. Il by analyzing the general aspects ofhree-form S, is the covariant derivativeF,=dS,
the Bogomol'nyi-Prasad-Sommerfie{lBPS equations aris- +gBABSg. The potential terms for the scalar fields are ex-
pressed in terms of;=I1" 1A~ %B5,p with T=46"T;; .
Finally, Q5[B] and Q5[ B] are Chern-Simons forms for the

*Email address: j.p.gauntlett@gmw.ac.uk gauge fieldB that will not play a role in this paper.
"Email address: n.kim@qgmw.ac.uk The supersymmetry transformations of the fermions are
*Email address: d.j.waldram@gmw.ac.uk given by
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1 brane is embedded on a cydg within a supersymmetric
oY, =V e+ Z—OmTME manifold M. This decomposition corresponds to dividing the
directions transverse to the brane iptalirections withinM
1 " v i ieAB and g directions perpendicular tM. In keeping with this
- 4_0(7% =86, y")Tijell N 1Ig'F, decomposition, the solutions that we consider will have a
single scalar field excited. More precisely we have

m 9 . .
+ m( ¥, EaﬂVyP“)F'eH‘liASVW‘A I,/ =diage®™, ... e e P ... e P) (25
where we have followed byq entries. Note that this implies
that the composite gauge field is then determined by the
gauge fields vi@Q""=2mB'".
1 1 For the SLAG five-cycle and most of the four-cycle cases
+ Eyﬂy(rklri_ grirm) eHAkHB'FﬁE ;[26 three-formSis non-vanishing. Th& equation of motion

5>\-=1 “T'leP --+Em T--—ET5~ Ie
i 2')’ miT o i g i

m?Sacll ™ T PSg

+ 200 Yy —4s)ell™42S,,, A (2.2
i =—m+F +ie *(FBCAFPE) (2.6
Here y* are theD =7 gamma matrices, whil€' are those A ABCDE :

. ; _ _ 43
for SO(5).. Note thatI''\;=0. Sincee is a spinor under
SQ(5)c, the derivativeV e has both a spin and &O(5):  and we note that our solutions will have vanishing four-form

connection: field strengthF .
By substituting this kind of ansatz into the supersymmetry
V,e=|a,+ }wabyab+ }Qﬂijrij c. 2.3 va_riations(2.2) and impo_sing appropriate projections on the
4+ 4 spinor parameters we will then deduce the BPS equations. In

) ) the derivation one finds that it is necessary to twist the gauge
In order to construct dual supersymmetric solutions corregonnection by the spin connection, so that

sponding to branes wrapping various supersymmetric cycles,
we consider a metric ansatz of the form (;bcycheranrmn)e:O 2.7)

_ n2frq g2 2 29 _
ds?=e?[d&?+dr?]+e (d%). 24 wherewP® is the spin connection one-form of the cycle. Es-

sentially, this is in order to set to zero in E&.2) the cova-
riant derivative(2.3) in the cycle directions. After imposing
the projections ore we are led to identify the appropriate

Here dgf, is the metric on the supersymmetdecycle, .
We will usea,b to denote tangent space indicesXp. The

coordinatest’, ':29 e ?’_‘Jj sp:zn tr;%ljnwrapped part of nart of the spin connection of the cycle with the appropriate
the brane withdé”= 7;d£'d¢’=ds*(R™>"7). The functions  55) gauge fields. In other words, the twisting is dictated
fandg depend on the radial coordinatenly. by the projections defining the preserved supersymmetry.

The s_olutions we are interested in have an.asymptotic In all cases one finds that, in order to satisfy the BPS
region withe?'~e?9~1/r2, for smallr, corresponding to an equations, one has the conditions

AdS;-type region with the slices of constantgiven by

RI57dx 3, rather thanRS. This asymptotic region is in- R
terpreted as specifying the UV behavior of the field theory YT Fobe=—e 2y,¢,
corresponding to the wrapped fivebrane. The behavior of the dm

solution in the interior then specifies the IR behavior. In all
but one case we find an exact solution of our BPS equations
with g constant ande?’~1/r? corresponding to an
AdS7_ )X 24 solution. These solutions are the supergravity

duals of the superconformal theories arising on the wrappeghqreR is a constant. Using the relatid@.7) it is easy to

fivebrane. We will also numerically exhibit flows from the ghqy rom the first condition, that the metric on the cycle is
UV AdS; region to the Adg_q X2 IR fixed point. necessarily Einstein:

The SO(5) gauge fields for the supergravity solutions are
specified by the spin connection of the metric bg corre-
sponding to the fact that the theory on the M-fivebrane is
twisted. In general, we will decompose t8€(5) symmetry — , i .
into SO(p) X SO(q) with p+q=5, and excite the gauge @d so the constai in Eq.(2.8) is precisely the Ricci scalar
fields in theSO(p) subgroup. We will denote these direc- R=1d. Given the factor o in Eq. (2.4), we can rescale
tions bym,n=1, ... p. The precise form in each case will g,, so thatl=0,=1. Recall that ford>3 the Einstein con-
be given below. Geometrically, in 11 dimensions, the five-dition implies that the Riemann tensor can be written as

R
yabFnF?bne=ﬁe_ngme, (2.9

Rab=10ap (2.9
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_ 2l — A. SLAG three-cycles

Rabed=Caveat g—79alcTao (210 The supersymmetry preserved by a fivebrane wrapping a
SLAG three-cycle corresponds t8=2 supersymmetry in

whereC is the Weyl tensor. For the examples studied previ-D=3. Indeed after decoupling gravity and considering
ously, the cycles have been two or three dimensional angcales much smaller than the inverse size of the cycle we
hence the Einstein condition implies constant curvature, i.eobtain anN=2 supersymmetric field theory in=3.
the Riemann tensor is given by E@.10 with C=0. For the The ansatz for the supergravity BPS solutions is given as
four- and five-cycles it is only necessary that the part of thdollows. The metric is given by2.4) with d=3 where the
spin connection involved in the gauging have constant curMetric on the three-cycle is Einstein type. In three dimen-
vature. We will return to this point and it will be useful to SIons this implies that it has constant curvature. The scalars

refer the Einstein equations which we record here: are given by Eq(2.9 with p=3, q=2:

RMV: PﬂPV-F(HHF)ILp(HHF) o HAi:(eZ)\’e2)\’e2)\’e—3)\,e—3)\). (33)

1 The only non-vanishing gauge fields are taken tdBg for
+3mA(I171S) ,,,(I171S) P7— 109k a,b=1,2,3, and these gener8€X(3)C SO(5). Theprojec-
tions then imply the twistind3.2). The three-form equation
X[m?(T2=2T;; T') + (III1F) 2+ 4m?(111S)?] of motion (2.6) is solved by setting,=0.
The resulting BPS equations are given by
(2.11
where contractions ove8O(5)., SO(5)4 and spacetime in- e ffr=— m[3e—4x+2eex]+ 3—|e4"‘29
dices are implicit. 10 20m
IIl. SPECIAL LAGRANGIAN CYCLES e—fgr _ %[3674"4—266}‘]— 27_|e4)\—2g
Let us first consider fivebranes wrapping special Lagrang-
ian (SLAG) 3-, 4- and 5-cycles in Calabi-Yau 3-, 4- and m |
5-folds, respectively. The dimensiop of the transverse e \N'=—[eP—e" M+ —eP 2 (3.9
space to the fivebrane within the Calabi-Yau manifold is the S 10m

same as the dimension of the cyde Thus both the ho- o
lonomy group and the structure group of the normal bundldt should_ be notgd thgt in this example and for all the cases to
of SLAG d-cycles areSO(d). The appropriate twisting for be considered in this paper, the presgrved supersymmetry
such wrappings is obtained by simply identifying the wholeParameters are mdepepdgnt pf all coordlngtes except for their
of the SO(d) spin connection with a8 O(d) part of theR radial depen_dence wh_|ch is simply deterrfr}|2ned&ay. In a}ll
symmetry via the splitting O(5)— SO(d) X SO(5—d). cases, one fmds the 5|r_n_ple dependenee_ €o Whereeg is

This twisting can be seen explicitly by considering the constant. Since the Killing spinors are mdependem of the
supersymmetry preserved by fivebranes wrapping thgoordinates on the cyclg we can take arbitrary quotients of
d-cycles. The relevant projections =11 were written € cycle, while preserving supersymmetry.
down, for example, in Sec. 4.2 ¢14]. In the language of When the curvature of the three-cycle is negative-1,

gauged supergravity we thus impoge tangent framg corresponding to a possible quotient of hyperbolic three-
space, these equations admit a solution of the form ,AdS

Ye=¢ X Hs. Specifically we have

,yabez_l—*abe (3_1) elOAIZ

wherea,b=1, ... d label the directions on the cycle. The @8\
first condition, which is present in all cases, projects the su- e¥= P
persymmetry onto a definite helicity on the fivebrane. The
second conditions describe the twisting, implying that, to N
satisfy the general conditiof2.7) that arises in deriving the el 3.5
BPS equations, one simply sets ' '

®ap=2MBy, (3.2 In fact this solution was first constructed [ih5]. Here we
can interpret it as the dual supergravity solution correspond-
where B, generateSO(p) CSO(5) and we set all other ing to the superconformal field theory arising when an
gauge fields to zero. Similarly using the projections in theM-fivebrane wraps a SLAG three-cycld;, or a quotient
condition (2.8) one can see explicitly that the metric on the thereof. We will analyze the BPS equations numerically in
cycle is indeed Einstein type E(R.9). Sec. IV. We will see there that there are solutions with an
Let us now discuss each case further in turn. AdS; region for smallr describing the UV physics of the
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wrapped brane, which flow to largecorresponding to the IR from the scalar equation of motigriTo get a consistent so-

physics. We will exhibit a specific flow to the superconfor- |ytion, we will require that the conformal tens@k,,.qin the

mal fixed point(3.5). decomposition(2.10 vanish, in which case no problematic
Using the results of11,12 we can uplift solutions to the terms appear. Given the Einstein condition, this is equivalent

BPS equations to give supersymmetric solution®ir11.  to assuming constant curvature, smow depends only on

The metric is given by the curvaturd of the cycle, and is given by=32%/3.

The resulting BPS equations then have the form

1 o
dsi;=A"2dsi+ A MDY DY +e N dYidY]

m I 12
(3.6 e ffr=— R)[4e*2”+e8*]+ %ezxfzg_ o e~ 4\ —4g
where ,
—fr m —2N 1 A8\ 8l 2\—2g | —4N—4g
DY2=dYa+2mBPYP e 'g'=—qgl4e THeT - pneT U gt
A~ 6/5_ e—4)\YaYa+ eG)\YiYi (37) m |2
—fy 7 8\ —2\ 2\—2 —4N—4
. e 'N=—[e—e + —et 0+ e 9,
wherea=1,2,3,i=4,5 and {?,Y") are constrained coordi- 5[ ! 10m 3om*

nates onS* satisfying Y2Y2+Y'Y'=1. The expression for (3.11

the four-form can be found ifil1,12]. ,
112 If we take the cycle to have constant negative curvatlre,

=—1, we find that the BPS equations admit the Ad$I*

B. SLAG four-cycles .
solution

A fivebrane wrapping a SLAG four-cycle gives rise to
(1,1) supersymmetry ilD=2. The metric is given by Eqg. 3

(2.4) with p=4, g=1 and an Einstein metric on the cycle. €
From Eq.(2.5 the scalars are now given by
Iy =(e et et et e ™). (3.9 020 e

The only non-vanishing gauge fields are taken t@Bg for

a,b=1,...,4, andhese generat8 O(4)C SO(5). Thepro- 1

jections then imply the twisting3.2). ef= . (3.12
A new feature for this case is that it is now necessary to mr

switch on the three-forns. We let ) o ] ]
The uplifted metric inD=11 is now given by

—8\—4g
ce
0 1 r
=———e"N\e"/\e 3.9 1
> 64y/3m* 59 dsi;=A"%dsi+ S AY e DYDY +e N dY3dY?]

where (3.13

— Am2ad bibybsb, @182 -a3a. where

c=4m°e™e, aa,0,6 1723 4Fbib§F zbi
— — DY2=dY3+2mB?PYP
= 6a1a2a3a4Eb1b2b3b4Rala2blb2Ra3a4b3b4 (3.10

— 6/5_ o—2\yaya 8\ \v/5v5
. . . = +
where in the second line we have used the relati®.2) A e TYIY ey

(3.19
between the gauge fieB,,, and the spin connection,, . If
c is constant then the four-forf; vanishes and th8equa-  wherea=1,2,3,4 withY2Y2+Y®Y®=5. The expression for

tion of motion (2.6) is satisfied. the four-form can be found ifl1,17.
In addition one must also satisfy the Einstein and scalar
equations of motion. Our assumption that the metri&grs C. SLAG five-cycles

Einstein type implies thaR,;, is proportional tog,, in the
Einstein equation$2.11). The ansatz for the scalars and the
three-forms imply that all terms in the right-hand side of Eq.
(2.11 are proportional ta,, with the possible exception of
the terms quadratic in the field strength of the gauge-field
Since, by Eq(3.2), FabCd is proportional toR,,¢Y, to ensure
that Einstein’s equations are satisfied we must constrain the a'=6, (3.19
Riemann tensor o.4. (An equivalent constraint, requiring

that no off-diagonal scalar fields iH,' are excited, arises All five three-forms are now active and we have

A fivebrane wrapping a SLAG five-cycle preserves just
one supersymmetry. After decoupling gravity, at low ener-
gies we get a quantum mechanical modeDir 1. For this
cased=p=>5 and all of theSOQ(5) gauge fields are active,
S“but our ansatz2.5 implies that all of the scalars to zero:
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ce
S,=— e?\e'A\e? 3.1
2= oaam (3.16
where, given the identificatio(8.2) of gauge and spin con-
nections,
96 49 [a a. aszayl
c= gm e"F 4 a, "112F 5 0,70 (3.17
24 a asa,
= ERala a1 2R S (3.18

To satisfy theS, equation of motion, we require to be

PHYSICAL REVIEW 68 126001

IV. KA HLER FOUR-CYCLES

The spin connection of a Kéer-cycle is aU(2)~U(1)
X SU(2) connection. The appropriate twisting for a five-
brane wrapping a Kaer cycle is to identify theJ(1) sub-
group of this spin connection with d(1) subgroup of the
SO(5) R symmetry. Which subgroup depends on whether
the four-cycle is inside a Calabi-Yau three-fold or a Calabi-
Yau four-fold. We now consider each case in turn.

A. Kahler four-cycles in Calabi-Yau three-folds

In the case that the four-cycle is in a Calabi-Yau three-
fold, corresponding to (4,0) supersymmetryDn=2, there
are two transverse directions to the five-brane within the

constant. As for the four-cycle, this condition and the Ein-three-fold, sop=2. Equivalently the normal bundle has

stein’s equation$2.11) are satisfied if we se€=0 and take

the five-cycle to have constant curvature, in which case w

havec=6I2.
The BPS equations are given by

hr m, L 9|2 ag
€T am® T 3m®
m | 312
—fyr— _ __ _ _ A—29 —4g
e’ 'g 5 4m +32n . (3.19
If we setl=—1, we find the Ad$Xx Hg solution
3
29—
€T am
;31 32
€= Imr (320

On the other hand if we sét=1 we find the Ad$X S°
solution

(3.21)
11
€= am

SO(2)=U(1) structure group and hence the appropriate
édentification is such that we splEO(5)—SO(2) X SO(3)
and identify theU(1) part of the spin connection with
SQO(2).

We let B? generate thisSO(2) and set all other gauge
fields to zero. The relevant projections on the supersymmetry
parameters can be written

Ye=¢€

Yy 2e= y34e=T1% 4.1
in a basis where the non-vanishing components of the
Kahler-form on the four-cycle aré;,=J;,=1. We then find

that Eq.(2.7) implies that

1
812: _ mwab‘]ab

4.2
wherea,b=1, ... ,4 anchence the field strength is given by
the prOJecnon of the Riemann tensor onto the Ricci-form

R ab= 2 RabchC
4.3

Since we havep=2,g=3, given Eq.(2.5), the scalar fields
are taken to be

HAi:(e3)\’e3)\,672)\’e72)\’672)\) (44)

The general solution fo the BPS equations is presented ignd we can set the 3-for@to zero.

Sec. VI D. Since the scalars are set to zero, the uplied

=11 metric takes the simple form

ds?,= ds$+ ,DY2DY? (3.22

where

DY2=dY?+2mB2PbyP (3.23

The derivation of the BPS equations again implies that the
metric on the Kaler cycle is Einstein. Note that we then

haveR,,=1J,p. In this case, no other constraint is placed
on the cycle. One might expect that, as in the SLAG case,
there is a condition coming from the Einstein equations. For
SLAG cycles, the conformal part of the curvatgel0 was
required to vanish. However, since here the gauge fields de-
pend only on théJ(1) part of the curvature on the cycle, and
this has a vanishing conformal tensor, the stress-energy ten-
sor is necessarily proportional tn,,, and no such condition

with Y2Y®=1. The expression for the four-form can be arises.

found in[11,12.

We obtain the BPS equations

126001-5
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m I
—fer_ — 6\ 4N 6\ —2g
e 'f 10[Ze +3e ]+5me

m 3l
—fr— -6\ AN _ 6\ —2g
e 'g 10[2e +3e™] 1 e

m I

—fy 7 N -6\ 6N —2

e 'N=—[eM—e M+ =
5[ ] 5m

(4.9

To look for an Ad$X %, fixed point we seg’=\"=0, but
find that we are driven ta.—o. As for all cases we will
numerically investigate these equations in Sec. VI.

PHYSICAL REVIEW D 63 126001

In this case, sincp=4, q=1, the ansatz for the scalars is as
in the SLAG four-cycle cas€.8). The ansatz for the 3-form
is again as for the SLAG four-cycle caé29) but now with

— 2 49 bibybzby@182 2384
c=4me €aja,a52,€ Fblszb3b4

=162 (4.1
where in the second line we have substitutedgft in terms
of Rap- As in the previous Kaler case, we do not need to
impose any additional constraints on the hika-Einstein
metric on the four-cycle.

The resulting BPS equations then have the form

The uplifted metric inD=11 is now given by

efff/:_m[4efzx+e8>\]+l_ezxfzg_ 31 e~ —4g
1 o 10 5m 20m?*
dsf=A" #%dsi+ 5 A e DY DY +e dYdY']
(4.6) m 3l 12
—fr— -2\ 8\7_ Y 2\-2g, _ -4\ —4g
e 'g 10[4e +e°] 10me +10m3e
where
DY2=dYa+2mBaPY®P Mmoo 1P
— [— A - 204 A= 4N—4g
N N 5[e e ]+10me +20mge .
A~ B=g Bhyayay giyly (4.7) (412

If we take the cycle to have constant negative curvature,

wherea=1,2, i=3,4,5 with Y2Y2+ Y'Y =5. The expres- : :
P I=—1, we find the Ad§Xx 2, solution

sion for the four-form can be found ii1,12.

B. Kahler four-cycles in Calabi-Yau four-folds elon L_"

When the Kaler four-cycle is in a Calabi-Yau four-fold, 3
corresponding ta2,00 supersymmetry irD=2, there are
now four directions transverse to the fivebrane within the e 6\
four-fold, so p=4. Equivalently, the normal bundle has e%= 2
U(2)CSO(4) structure group. In this case the appropriate m
identification of theJ (1) part of theU(2) spin connection is
to breakSQ(5)—SQO(4)— U(2) and then identify th&J (1) ‘ e 1
part of the spin connection with theg(1) in U(2)~U(1) &= (4.13

XSU(2).

Consequently we take only thé(1)CU(2) gauge fields
to be non-vanishing: equivalently we taB&?= B34 with all
other components vanishing. We have the projections

Note that the form of the uplifted metric iD=11 is the
same as for the SLAG four-cyclé8.13,(3.14).

r =
YeTe V. EXCEPTIONAL CYCLES

Y=y Hle=T12e=T%¢ (4.9 There are three exceptional calibrations: the associative

three-cycles and the co-associative four-cycles in manifolds

corresponding to the obvious non-vanishing components off G,-holonomy and the Cayley four-cycles in manifolds of

the Kanler form. Spin(7) holonomy. The supergravity duals of fivebranes
We then find wrapping associative three-cycles was considerddjirmnd

here we will analyze the remaining two cases.

BI2) ¥~ T g g 4.9
Am - ab ) A. Co-associative four-cycles
In this case the four-cycle has aB8Q(4)~SU(2),.
wherea,b=1, ... ,4, anchence X SU(2)g spin connection. Sincp= 3, we split theR sym-
L metry SO(5)—SO(3) X SO(2) and the appropriate twisting
12, £34_ _ T is obtained by identifyingSU(2), with SOQ(3). This twist
PR ZmR' (4.10 leads to(2,0) supersymmetry ib=2.
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A discussion of the appropriate projections can be foundsO(5)—SO(4)~SU(2), XSU(2); and the appropriate
in Sec. 4.3 of 14]. Here we write these as twisting is obtained by identifyingsU(2), with SU(2), .
. This twist leads tq1,0) supersymmetry i =2.
ye—e Again an explicit discussion of the projections can be
found in Sec. 4.3 of14]. Here we will use
Yan€=0 :
Y €e=€
I'ZBe=ye, Ile=ypne, TIM'Ze=yge (5.0 .
Yab€= I‘;’b6= 0
where the pluses and minuses refer to self-dual and anti-self-

dual parts, respectively, and,b=1,...,4. The SQ(3) I' b= — Yape- (5.5
gauge fields are generated BY'", m,n=1,2,3, and we set
all other gauge fields to zero. From EG.7) we deduce The SU(2), gauge fields are generated B2 a,b
_ =1,...,4, and we set albther gauge fields to zero. From
o ?=-mB® Eq. (2.7 we deduce
0 B=—mB3 o =2mB (5.6)
» Y%= _mB2 (5.2 Sincep=4, q=1, the scalar field ansatz is the same as the

SLAG four-cycles and the Kaer four-cycles in Calabi-Yau
Givenp=3, q=2, the scalar ansatz is the same as for thdour-folds (3.8). The three-formS also has the same form
SLAG three-cycleg3.3) and the three-fornS can be set to (3.9, though, now,
zero. The conditiori2.8) again implies that the metric on the

D N . — A2t bbbz, 2182832
cycle is Einstein. In order to ensure that Einstein’s equations c=4me™e, a,0,0,6 12 1 zFbgbj

are solved we note that since, unlike the SLAG case, only the

anti-self-dual part of the spin connection on the cycle enters, =4R QR 2P (5.7)

it is only necessary to s€€™ =0 in Eqg. (2.10. In other

words we take the associative four-cycle to have a conforAs before, ifc is constant, then th8 equation of motion is
mally half-flat Einstein metric. The only compact examplessatisfied. As in the co-associative case, this condition is sat-
with |=1 areS* or CP? and forl =0 we have flat space or isfied as are the Einstein equations if we take the cycle to be

K3. conformally half-flat by settingC~=0 in Eq. (2.10. We
The BPS equations are now then getc=161%/3.
m | The BPS equations then read
—fer— —4\ 6\ AN—2
e 'f'=——[3e""+2e"M]+ —e* 0 2
10 om LU N\ l_ 2\ -2g_ ! —4n—4g
) e 'f'= 10[4e +e ]+5me 20m3e
m
effgrz__[3e74)x+2e6)\]_ e4)\72g 3| |2
10 10m e—fgr:_m[4e—2)\+88)\]_ e2)\—2g+ e—4)\—4g
10 10m 30m3
m
e \'= g[eﬁ”—e‘4"]+ —15me4*‘29. (5.3 0 2
e /= g[ea3>\_e;2>\]_F 10memﬁzg+ 60m3e74)\74g'
Settingl = —1 we find an Ad§Xx 2, solution (5.9
elO)‘:3 . .
If we setl=—1, we find the following Ad$x X, solu-
o tion:
e
e?0= 2 12
3m eloh— =%
. 2e™1 54
e_3mr' (5.9 . e 6
er= 2
The uplifted solutions irD =11 have the same structure
as the SLAG three-cycle$.6),(3.7). o2\ 1
ef= F F (59)

B. Cayley four-cycles

The four-cycle has ar8Q(4)~SU(2) XSU(2)g spin The structure of the uplifted metric iD= 11 follows the
connection. Given nowp=4, we split theR symmetry  SLAG four-cycle case and is given by E¢3.13 and(3.14).
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Fx —hy 7 _ m 100 |

5! UV (AdS) e N =glem -1+ —. (6.2

4l The analysis is further simplified by introducing=a? and
F=x%%1% giving the ordinary differential equatiogt©DE)

s dF 2m2F 63

2 IR (GS) dx  [3m?(3Fx¥3—2x)+9l] '

] Typical flows in the F,x) plane for the case df=—1 and
=1 are plotted in Figs. 1 and 2, respectively.

When both F and x are large we getF~x?3(1
> 4 6 P 10 12 —2I/m?x). Using a as a radial variable, we find that this

gives rise to the asymptotic behavior
FIG. 1. Behavior of the orbits for co-dimension 2 witlk —1.

The AdS-type UV region is wherF and x are both large. The 4
singularity, IRGS), in the IR region is of the good type. ds’= I,nzazda2Jr a?(d&?+ds))
VI. ANALYZING THE BPS EQUATIONS ol
10\ _
To further analyze the BPS equations it is useful to group e =1- m2a2- 6.4

them via the co-dimension of the cycle.
This is precisely what we expect for the wrapped
A. Co-dimension 2 M-fivebrane. The scalars vanish and the metric has the form
of AdS; except that the slices of constaathave R re-
placed withR¥1x3,, where3, is the four-cycle with a
Kahler-Einstein metric. Note that the next to leading order
behavior of the scalar field corresponds to the insertion of the

The only co-dimension two-cycle that we have been con
sidering is the Khler four-cycle in a Calabi-Yau 3-fold. Let
us introduce the new variables

a’=g2% 12 boundary operato®, of conformal dimensiodA =4, which
is dual to an operator constructed from the scalar fields in the
eh=gf 6\ (6.1) M-fivebrane theory.

The IR behavior of the wrapped M-fivebrane is obtained
by analyzing the asymptotic behavior of the flows. This case
is the exception in that there is not a flow to an IR AdS

m | X2, fixed point whenl=—1. In fact, as one can see from
e "h'=- §[3em—2]— — Fig. 1, the flows end up in a region of smé&lland largex.
ma This limit can be analyzed explicitly. One finds~ 1/x**®
with e!®~ 1/x tending to zero. The asymptotic metric is sin-

The BPS equations are then somewhat simpler:

a’ m 3l -
-h% a1 o7 gular and given by
€ 3 2[3e 2] 2ma’
1
— 2 —2/5 2
dsz_m2a22,5da +a 2(de+dsd). (6.5
UV (AdS7)

It is straightforward to demonstrate that tt@®) component
of the uplifted D=11 metric (4.6) is bounded as we ap-
proach the singularity and hence this is a “good” singularity
by the criteria off 2].

Forl=1, one still has the AdStype region at larg& and
X, but now the flows are different. As can be seen in Fig. 2,
there are three possibilities. One can flow to the sfalhd
largex region and one obtains the asymptotic beha(§ob)
with a good singularity. A good singularity is also found for

IR(GS)

/
// IR(GS) the special orbit withF=0 andx=3I/2m?. There are also
' : : ' : ' — X flows to F constant anck=0 which give rise to bad singu-
25 5 7.5 10 12.5 15 17.5 .
larities.
FIG. 2. Behavior of the orbits for co-dimension 2 wikk 1. Finally, it is probably worth noting that we can in fact
IR(GS) and IRBS) indicate the good and bad singularities in the IR integrate Eq(6.3) to explicitly realize the behavior discussed
region, respectively. above. In the original variables one gets the general relation
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F(x) Fx
; i R ®S) ey, 40! UV (AdS7)
\ (AdS7)
\ e
0.8 \\ v 30t
\ /// IR (BS)
0.6 \\ 7
~ /s
AdSxZ 20
0.4 S T~
/4 ——— IR(GS)
yo— T 10 ~—
0.2 _
\Adssg:4 IR (GS)
BS ol T T e
X X
0.2 0.4 0.6 0.8 1 1.2 2 4 6 8 10
FIG. 3. Behavior of the orbits for co-dimension 3 wits — 1. FIG. 5. Behavior of the orbits for co-dimension 4 wite —1.

Note the flow from the Adgtype region wherk,x are large to the  Note the flow from the Adgtype region wherF,x are large to the
IR fixed point and the flows to the good and bad singularities in theR fixed point and the flows to the good and bad singularities in the

IR, IR(GS and IRBS), respectively. IR, IR(GS and IRBS), respectively.
- ﬂzIn(m 202972 4 ) + 2—lezg‘”—e“g“‘“re‘“”m:C e \'= m[ 10 _ (6.8)
m* m? 5 2ma’ '
(6.6)

f tane where (@,8,y)=(1/5,31/4]/4) for the SLAG three-cycles
or some constant. and (4/15,9/6,1/3) for the associative four-cycles. We next

definex=a? andF=xe'® and obtain the ODE
B. Co-dimension 3

There are two examples with co-dimension 3: the SLAG dF B F[m?x—5a+ 28] 6.0
three-cycles and the co-associative four-cycles. In this case it dx  x[m%(2F—x)+28]" (6.9
is useful to introduce the new variables

22— g20g— 8\ The typical behavior of-(x) is illustrated in Fig. 3 forl =

—1 and Fig. 4 fol = 1. The region where bothandF large
corresponds to the AgSype region describing the UV be-
havior of the wrapped brane. We hafe=x—5a/m? and
usinga as a radial variable we obtain the asymptotic behav-

h

eh=ef "%, (6.7

The BPS equations are then given by

ior
m Y
—hpr — 10)\
e "h'=——-[2e"~-1]-— 4
2 ma’ ds?= mzazda2+a2(d§2+d?d)
pa m B
e hEZ—E[Z e'®—1]- e S5a
elfh=1- 5. (6.10
m’a
Fx
UV (AdS7) Again we see that the operatéy, is switched on.
’ Forl=—1 we can flow from the UV region to the AdS

X 2,4 fixed point that was given in Eq3.5) and(5.4) for the
SLAG three-cycles and co-associative cycles, respectively.
There are also flows exhibited in Fig. 3 which flow to small
F for large x. These behave liké&~1/x with e'®~1/x?
tending to zero. The asymptotic metric is given by

IR (GS)

ds?= 4 ———da’+a ¥(d&+ds)). (6.11)

R@BS 2,26/
1 // m?2a?26/5
e
P p . s x It is straightforward to demonstrate that these are good sin-
gularities. There are also flows from the Ad®gion to large
FIG. 4. Behavior of the orbits for co-dimension 3 witk 1. F and smallx. They haveF ~[ (28— 5a)/2m?]In x and give
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rise to bad singularities. Similarly the flow from the AdS F®
fixed point to smallF and x have F~x(2£~59/28 gnd give 8
bad singularities.

Whenl =1 the flows from the UV to the IR are illustrated

UV (AdS;)

in Fig. 4. The flows to smalF and largex give rise to the 67
asymptotic behaviof6.11) and hence have good singulari-
ties. The singularities for the flows to sméllandx are the
same as fot=—1 and hence are bad. 47

C. Co-dimension 4 P

There are three examples with co-dimension 4: SLAG
four-cycles, Kaler four-cycles in Calabi-Yau four-folds and
Cayley four-cycles. It is now convenient to introduce the
new variables

IR (BS)

1 2 3 4 5 6 7 8
9 2q.—an FIG. 6. Behavior of the orbits for co-dimension 4 witk 1.
a‘=e%
these are good singularities. There are also flows from the
AdS; region to constanE and smallx. The asymptotic met-
rics have bad singularities.

The behavior of the flows fdr=1 is illustrated in Fig. 6.
The flows from the UV region end up with constant when

h:

eh=el "2\, (6.12

The BPS equations are then given by

e hh'=— Telox_ _B x=0 and have bad singularities.
2et00a4 We conclude this subsection by determining the central
charges of the two dimensional conformal field theories aris-
7ha’ om o« ing at the fixed points of the flows by generalizing the argu-
€ FT 2% T2 ment of[2]. We use
3Rads,
Cpe, M a B C=——— 6.1
N g[emx_ 11+ o2t Tt (6.13 2G, (6.16

93 123 _— and relate the three-dimensional Newton’s cons@&jto the
where a=I/m and g=17/3m®, 19/2m* and |°/6m" for the  g|eyen-dimensional Newton’s constant ag2i To do this

SLAG, Kahler and Cayley four-cycles, respectively. we work with units where the radius of Ad$n the AdS
We next definex=a? andF =x“e'™ and obtain the ODE  » 5* solution is one by settingi=2. We then find

dF  F(a+2mx) —Bx 8N3 —
X mFrax (6.14 c=—z efo™49yo|(3) (6.17
The typical behavior of-(x) is illustrated in Fig. 5 fol = where VO@ is the volume of the four-cycle anef =efo/r

—1 and Fig. 6 forl=1. The region ofk andF large corre-  at the fixed point. From Eq$3.12), (4.13), (5.4), and(5.9)
sponds to the Adstype region describing the UV behavior we getefo™49=1/48, 3/128, 1/48, and 7/384 for the SLAG,
of the wrapped brane. We haffe=x”—(a/m)x. Usingaas  Kahler (in four-folds), co-associative, and Cayley four-

a radial variable we obtain the asymptotic behavior cycles, respectively.
d2= mjazda2+a2(d§2+d§§) D. Co-dimension 5

The SLAG five-cycle is the only co-dimension 5 case. It
o is rather different than the other cases in that the scalars are
elfh=1- —;. (6.15  all set to zero. To solve the BPS equatidsl9 we first

ma introduce a new radial variabje via
The asymptotic behavior of the scalar again indicates@hat dp .
is switched on. m=e . (6.18
Forl=—1 we can flow from the UV region to the AdS

(5.9 for the SLAG, Kdler and Cayley four-cycles, respec-

tively. There are also flows exhibited in Fig. 5 which flow to ds?= —e?fdt?+ e_Zfdp2+p2d_352 (6.19
F=p/2m for large x. We then havee!®~ (8/2m)/x? tend-
ing to zero. Again it is straightforward to demonstrate thatwith
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m? | \2 3] \?2 associative, or for Cayley four-cycles it can also be[K38ve
e”Zm( PZ—W) (szrW) (6.20  relax compactness it could be any four manifold vétbi(2)
holonomyj. In this case the gauge fields are zero and there is
which flows forl=—1 orl=1 to the conformal fixed points no twisting and so we simply have a fivebrane wrappitig
given in Eqgs.(3.20 or (3.21), respectively. or K3, whose supergravity solutions are well known.
The solutions that have been constructed here and in
VII. DISCUSSION [2,4,5 have the minimal gauge fields active consistent with

the required twisting. It would be interesting to generalize

We have presented a large class of supergravity solutiongyr solutions to include more general gauge fields which
that are dual to the twisted theories ariSing on M-ﬁvebrane%orrespond to Cyc|es with the most genera| normal bundles.
wrapping general supersymmetric cycles. An Einstein metrigote, for example, that this would distinguish fivebranes
on the cycle _is an ingredient in the construction: for thewrapping four-cycles in eight-manifolds wit§p(2) ho-
SLAG cycles it must have constant curvature, for thééa  |onomy from those wittSU(4). It would also be interesting
cycles it must be Kaler-Einstein, and for the co-associative tg try and find solutions that relax the Einstein condition. It is
and Cayley four-cycles it must be conformally half-flat. possible that such generalizations will involve activating

The solutions have an asymptotic Ad§pe region that  more than a single scalar field. Another direction to pursue is
describes the UV physics. When the curvature of the Eintg construct supergravity solutions corresponding to having
stein metric on the cycles is negatives —1, in all but one  poth fivebranes and membranes involved. For example, it
case—Kaler four-cycles in Calabi-Yau three-folds—there is might be possible to construct supergravity solutions analo-
a flow to an IR fixed point of the form AdS 4x%4. These  gous to the configurations that were investigated from the

fixed points are dual to the superconformal field theoriesu-fivebrane world-volume point of view ifil6,17.
arising on the M-fivebrane and thus provide new examples of

AdS/CFT duality. For positive curvaturd=1, we only

found such a fixed point for SLAG five-spheres. We also ACKNOWLEDGMENTS

exhibited flows to other IR limits and determined whether
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