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M-fivebranes wrapped on supersymmetric cycles
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We construct supergravity solutions dual to the twisted field theories arising when M-theory fivebranes wrap
general supersymmetric cycles. The solutions are constructed in maximalD57 gauged supergravity and then
uplifted to D511. Our analysis covers Ka¨hler, special Lagrangian and exceptional calibrated cycles. The
metrics on the cycles are Einstein, but do not necessarily have constant curvature. We find many new examples
of AdS/CFT duality, corresponding to the IR superconformal fixed points of the twisted field theories.
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I. INTRODUCTION

The supergravity duals of the twisted field theories aris
on branes wrapping supersymmetric cycles@1# have recently
been investigated in@2–5# ~for related solutions see@6–10#!.
The cases that have been considered include fivebranes
D3-branes wrapping holomorphic curves@2,3#, and five-
branes@4# and D3-branes@5# wrapping associative three
cycles. Here we will extend these investigations by analyz
M-fivebranes wrapping all other supersymmetric cycles. T
new cases covered here are Ka¨hler four-cycles, special La
grangian three-, four-, and five-cycles, co-associative fo
cycles and Cayley four-cycles.

As in previous work it will be convenient to first constru
the solutions inD57 gauged supergravity and then uplift
obtain theD511 solutions. Rather than working with differ
ent truncated versions of gauged supergravity we w
present a unified treatment by working directly with t
maximal SO(5) gauged supergravity of@11#. We then em-
ploy the results of@12,13# to uplift to D511. This approach
has the virtue of highlighting the universal aspects of
various supergravity solutions.

An ingredient in the supergravity solutions will be a me
ric on the supersymmetric cycleSd . This metric is required
to be Einstein, satisfyingRi j 5 lgi j , where, factoring out the
overall scale ofSd , we havel 50,61. The metric on the
special Lagrangian cycles will be further restricted to ha
constant curvature. For the exceptional four-cycles we
pose that the metrics are half-conformally flat; i.e., the W
tensor is self-dual. For the Ka¨hler cycles it is sufficient tha
the metric is Ka¨hler-Einstein. Settingl 521, for all cases
except for Kähler four-cycles in Calabi-Yau three-folds, w
find explicit solutions of the form AdS72d3Sd . These so-
lutions are the gravity duals of the superconformal theo
arising on the wrapped brane. For the single case of SL
five-cycles we also find an exact solution withl 51 of the
form AdS23S5.

We begin in Sec. II by analyzing the general aspects
the Bogomol’nyi-Prasad-Sommerfield~BPS! equations aris-
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ing from D57 gauged supergravity. This is followed i
Secs. III–V with a discussion of the BPS equations for t
different cases as well as a presentation of the AdS72d
3Sd solutions and the formulas to uplift toD511. Section
VI contains some numerical analysis of the BPS equati
where we demonstrate the flows whenl 521 from an AdS7
type regions to the AdS72d3Sd solutions. We also analyze
the BPS equations and the singularities of the general fl
with l 561. Section VII briefly concludes.

II. MAXIMAL DÄ7 GAUGED SUPERGRAVITY

The Lagrangian for the bosonic fields of maximal gaug
supergravity inD57 is given by@11#

2L5eFR1
1

2
m2~T222Ti j T

i j !2Pm i j P
m i j

2
1

2
~PA

iPB
jFmn

AB!22m2~P21
i
ASmnr,A!2G

26mdABSA`FB1A3eABCDEd
AGSG`FBC`FDE

1
1

8m
~2V5@B#2V3@B# !. ~2.1!

Here A,B51, . . . ,5 denote indices of theSO(5)g gauge
group, whilei , j 51, . . . ,5 denote indices of theSO(5)c lo-
cal composite gauge group, which are raised and lowe
with d i j andd i j . The 14 scalar fieldsPA

i are given by the
coset SL(5,R)/SO(5)c and transform as a5 under both
SO(5)g ~from the left! and SO(5)c ~from the right!. The
scalar kinetic term,Pm i j , and theSO(5)c composite gauge
field, Qm i j , are defined as the symmetric and antisymme
parts of (P21) i

A(dA
B]m1gBm,A

B)PB
kdk j , respectively.

Here BAB are theSO(5)g gauge fields with field strength
FAB5dACFC

B , and note that the gauge coupling constan
given by g52m. The four-form field strengthFA for the
three-form SA is the covariant derivative FA5dSA
1gBA

BSB . The potential terms for the scalar fields are e
pressed in terms ofTi j 5P21

i
AP21

j
BdAB with T5d i j Ti j .

Finally, V3@B# andV5@B# are Chern-Simons forms for th
gauge fieldsB that will not play a role in this paper.

The supersymmetry transformations of the fermions
given by
©2001 The American Physical Society01-1
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dcm5¹me1
1

20
mTgme

2
1

40
~gm

nr28dm
ngr!G i j ePA

iPB
jFnr

AB

1
m

10A3
S gm

nrs2
9

2
dm

ngrsDG ieP21
i
ASnrs,A

dl i5
1

2
gmG jePm i j 1

1

2
mS Ti j 2

1

5
Td i j DG je

1
1

16
gmnS GklG i2

1

5
G iGklD ePA

kPB
lFmn

AB

1
m

20A3
gmnr~G i

j24d i
j !eP21

j
ASmnr,A . ~2.2!

Here gm are theD57 gamma matrices, whileG i are those
for SO(5)c . Note thatG il i50. Sincee is a spinor under
SO(5)c , the derivative¹me has both a spin and anSO(5)c
connection:

¹me5S ]m1
1

4
vm

abgab1
1

4
Qm i j G

i j D e. ~2.3!

In order to construct dual supersymmetric solutions co
sponding to branes wrapping various supersymmetric cyc
we consider a metric ansatz of the form

ds25e2 f@dj21dr2#1e2g~ds̄d
2!. ~2.4!

Here ds̄d
2 is the metric on the supersymmetricd-cycle, Sd .

We will usea,b to denote tangent space indices onSd . The
coordinatesj i , i 50, . . . ,52d span the unwrapped part o
the brane withdj2[h i j dj idj j5ds2(R1,52d). The functions
f andg depend on the radial coordinater only.

The solutions we are interested in have an asympt
region withe2 f'e2g'1/r 2, for small r, corresponding to an
AdS7-type region with the slices of constantr given by
R1,52d3Sd , rather thanR1,5. This asymptotic region is in-
terpreted as specifying the UV behavior of the field theo
corresponding to the wrapped fivebrane. The behavior of
solution in the interior then specifies the IR behavior. In
but one case we find an exact solution of our BPS equat
with g constant and e2 f'1/r 2 corresponding to an
AdS(72d)3Sd solution. These solutions are the supergrav
duals of the superconformal theories arising on the wrap
fivebrane. We will also numerically exhibit flows from th
UV AdS7 region to the AdS(72d)3Sd IR fixed point.

TheSO(5) gauge fields for the supergravity solutions a
specified by the spin connection of the metric onSd corre-
sponding to the fact that the theory on the M-fivebrane
twisted. In general, we will decompose theSO(5) symmetry
into SO(p)3SO(q) with p1q55, and excite the gaug
fields in theSO(p) subgroup. We will denote these dire
tions bym,n51, . . . ,p. The precise form in each case w
be given below. Geometrically, in 11 dimensions, the fiv
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brane is embedded on a cycleSd within a supersymmetric
manifoldM. This decomposition corresponds to dividing th
directions transverse to the brane intop directions withinM
and q directions perpendicular toM. In keeping with this
decomposition, the solutions that we consider will have
single scalar field excited. More precisely we have

PA
i5diag~eql, . . . ,eql,e2pl, . . . ,e2pl! ~2.5!

where we havep followed byq entries. Note that this implies
that the composite gauge fieldQ is then determined by the
gauge fields viaQi j 52mBi j .

For the SLAG five-cycle and most of the four-cycle cas
the three-formS is non-vanishing. TheS equation of motion
is

m2dACP21
i
CP21

i
BSB

52m* FA1
1

4A3
eABCDE* ~FBC`FDE! ~2.6!

and we note that our solutions will have vanishing four-fo
field strengthFA .

By substituting this kind of ansatz into the supersymme
variations~2.2! and imposing appropriate projections on t
spinor parameters we will then deduce the BPS equations
the derivation one finds that it is necessary to twist the ga
connection by the spin connection, so that

~v̄bcgbc12mBmnGmn!e50 ~2.7!

wherev̄bc is the spin connection one-form of the cycle. E
sentially, this is in order to set to zero in Eq.~2.2! the cova-
riant derivative~2.3! in the cycle directions. After imposing
the projections one we are led to identify the appropriat
part of the spin connection of the cycle with the appropri
SO(5) gauge fields. In other words, the twisting is dictat
by the projections defining the preserved supersymmetry

In all cases one finds that, in order to satisfy the B
equations, one has the conditions

gbGmnFab
mne5

R̄

dm
e22ggae,

gabGnFab
mne5

R̄

pm
e22gGme, ~2.8!

whereR̄ is a constant. Using the relation~2.7! it is easy to
show, from the first condition, that the metric on the cycle
necessarily Einstein:

R̄ab5 l ḡab ~2.9!

and so the constantR̄ in Eq. ~2.8! is precisely the Ricci scala
R̄5 ld. Given the factor ofe2g in Eq. ~2.4!, we can rescale
ḡab so thatl 50,61. Recall that ford.3 the Einstein con-
dition implies that the Riemann tensor can be written as
1-2
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R̄abcd5C̄abcd1
2l

d21
ḡa[cḡd]b ~2.10!

whereC̄ is the Weyl tensor. For the examples studied pre
ously, the cycles have been two or three dimensional
hence the Einstein condition implies constant curvature,
the Riemann tensor is given by Eq.~2.10! with C̄50. For the
four- and five-cycles it is only necessary that the part of
spin connection involved in the gauging have constant c
vature. We will return to this point and it will be useful t
refer the Einstein equations which we record here:

Rmn5PmPn1~PPF !mr~PPF !n
r

13m2~P21S!mrs~P21S!n
rs2

1

10
gmn

3@m2~T222Ti j T
i j !1~PPF !214m2~P21S!2#

~2.11!

where contractions overSO(5)c , SO(5)g and spacetime in-
dices are implicit.

III. SPECIAL LAGRANGIAN CYCLES

Let us first consider fivebranes wrapping special Lagra
ian ~SLAG! 3-, 4- and 5-cycles in Calabi-Yau 3-, 4- an
5-folds, respectively. The dimensionp of the transverse
space to the fivebrane within the Calabi-Yau manifold is
same as the dimension of the cycled. Thus both the ho-
lonomy group and the structure group of the normal bun
of SLAG d-cycles areSO(d). The appropriate twisting for
such wrappings is obtained by simply identifying the who
of the SO(d) spin connection with anSO(d) part of theR
symmetry via the splittingSO(5)→SO(d)3SO(52d).

This twisting can be seen explicitly by considering t
supersymmetry preserved by fivebranes wrapping
d-cycles. The relevant projections inD511 were written
down, for example, in Sec. 4.2 of@14#. In the language of
gauged supergravity we thus impose~in tangent frame!

g re5e

gabe52Gabe ~3.1!

wherea,b51, . . . ,d label the directions on the cycle. Th
first condition, which is present in all cases, projects the
persymmetry onto a definite helicity on the fivebrane. T
second conditions describe the twisting, implying that,
satisfy the general condition~2.7! that arises in deriving the
BPS equations, one simply sets

v̄ab52mBab ~3.2!

where Bab generateSO(p),SO(5) and we set all othe
gauge fields to zero. Similarly using the projections in t
condition ~2.8! one can see explicitly that the metric on th
cycle is indeed Einstein type Eq.~2.9!.

Let us now discuss each case further in turn.
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A. SLAG three-cycles

The supersymmetry preserved by a fivebrane wrappin
SLAG three-cycle corresponds toN52 supersymmetry in
D53. Indeed after decoupling gravity and consideri
scales much smaller than the inverse size of the cycle
obtain anN52 supersymmetric field theory inD53.

The ansatz for the supergravity BPS solutions is given
follows. The metric is given by~2.4! with d53 where the
metric on the three-cycle is Einstein type. In three dime
sions this implies that it has constant curvature. The sca
are given by Eq.~2.5! with p53, q52:

PA
i5~e2l,e2l,e2l,e23l,e23l!. ~3.3!

The only non-vanishing gauge fields are taken to beBab, for
a,b51,2,3, and these generateSO(3),SO(5). Theprojec-
tions then imply the twisting~3.2!. The three-form equation
of motion ~2.6! is solved by settingSA50.

The resulting BPS equations are given by

e2 f f 852
m

10
@3e24l12e6l#1

3l

20m
e4l22g

e2 fg852
m

10
@3e24l12e6l#2

7l

20m
e4l22g

e2 fl85
m

5
@e6l2e24l#1

l

10m
e4l22g. ~3.4!

It should be noted that in this example and for all the case
be considered in this paper, the preserved supersymm
parameters are independent of all coordinates except for
radial dependence which is simply determined bydc r . In all
cases, one finds the simple dependencee5ef /2e0 wheree0 is
constant. Since the Killing spinors are independent of
coordinates on the cycle we can take arbitrary quotients
the cycle, while preserving supersymmetry.

When the curvature of the three-cycle is negative,l 521,
corresponding to a possible quotient of hyperbolic thr
space, these equations admit a solution of the form A4
3H3. Specifically we have

e10l52

e2g5
e8l

2m2

ef5
e4l

m

1

r
. ~3.5!

In fact this solution was first constructed in@15#. Here we
can interpret it as the dual supergravity solution correspo
ing to the superconformal field theory arising when
M-fivebrane wraps a SLAG three-cycleH3, or a quotient
thereof. We will analyze the BPS equations numerically
Sec. IV. We will see there that there are solutions with
AdS7 region for smallr describing the UV physics of the
1-3
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wrapped brane, which flow to larger corresponding to the IR
physics. We will exhibit a specific flow to the superconfo
mal fixed point~3.5!.

Using the results of@11,12# we can uplift solutions to the
BPS equations to give supersymmetric solutions inD511.
The metric is given by

ds11
2 5D22/5ds7

21
1

m2 D4/5@e4lDYaDYa1e26ldYidYi #

~3.6!

where

DYa5dYa12mBabYb

D2 6/55e24lYaYa1e6lYiYi ~3.7!

wherea51,2,3, i 54,5 and (Ya,Yi) are constrained coordi
nates onS4 satisfying YaYa1YiYi51. The expression for
the four-form can be found in@11,12#.

B. SLAG four-cycles

A fivebrane wrapping a SLAG four-cycle gives rise
(1,1) supersymmetry inD52. The metric is given by Eq
~2.4! with p54, q51 and an Einstein metric on the cycl
From Eq.~2.5! the scalars are now given by

PA
i5~el,el,el,el,e24l!. ~3.8!

The only non-vanishing gauge fields are taken to beBab, for
a,b51, . . . ,4, andthese generateSO(4),SO(5). Thepro-
jections then imply the twisting~3.2!.

A new feature for this case is that it is now necessary
switch on the three-formS. We let

S552
ce28l24g

64A3m4
e0`e1`er ~3.9!

where

c54m2e4gea1a2a3a4
eb1b2b3b4Fb1b2

a1a2Fb3b4

a3a4

5ea1a2a3a4eb1b2b3b4R̄a1a2b1b2
R̄a3a4b3b4

~3.10!

where in the second line we have used the relation~3.2!
between the gauge fieldBab and the spin connectionv̄ab . If
c is constant then the four-formF5 vanishes and theSequa-
tion of motion ~2.6! is satisfied.

In addition one must also satisfy the Einstein and sca
equations of motion. Our assumption that the metric onSd is
Einstein type implies thatR̄ab is proportional toḡab in the
Einstein equations~2.11!. The ansatz for the scalars and t
three-forms imply that all terms in the right-hand side of E
~2.11! are proportional togab with the possible exception o
the terms quadratic in the field strength of the gauge-fie
Since, by Eq.~3.2!, Fab

cd is proportional toR̄ab
cd, to ensure

that Einstein’s equations are satisfied we must constrain
Riemann tensor onSd . ~An equivalent constraint, requiring
that no off-diagonal scalar fields inPA

i are excited, arises
12600
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from the scalar equation of motion.! To get a consistent so
lution, we will require that the conformal tensorC̄abcd in the
decomposition~2.10! vanish, in which case no problemat
terms appear. Given the Einstein condition, this is equiva
to assuming constant curvature, soc now depends only on
the curvaturel of the cycle, and is given byc532l 2/3.

The resulting BPS equations then have the form

e2 f f 852
m

10
@4e22l1e8l#1

l

5m
e2l22g2

l 2

10m3 e24l24g

e2 fg852
m

10
@4e22l1e8l#2

3l

10m
e2l22g1

l 2

15m3 e24l24g

e2 fl85
m

5
@e8l2e22l#1

l

10m
e2l22g1

l 2

30m3 e24l24g.

~3.11!

If we take the cycle to have constant negative curvaturl
521, we find that the BPS equations admit the AdS33H4

solution

e10l5
3

2

e2g5
e26l

m2

ef5
e2l

m

1

r
. ~3.12!

The uplifted metric inD511 is now given by

ds11
2 5D22/5ds7

21
1

m2 D4/5@e2lDYaDYa1e28ldY5dY5#

~3.13!

where

DYa5dYa12mBabYb

D2 6/55e22lYaYa1e8lY5Y5

~3.14!

wherea51,2,3,4 withYaYa1Y5Y555. The expression for
the four-form can be found in@11,12#.

C. SLAG five-cycles

A fivebrane wrapping a SLAG five-cycle preserves ju
one supersymmetry. After decoupling gravity, at low en
gies we get a quantum mechanical model inD51. For this
cased5p55 and all of theSO(5) gauge fields are active
but our ansatz~2.5! implies that all of the scalars to zero:

PA
i5dA

i . ~3.15!

All five three-forms are now active and we have
1-4
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Sa52
ce24g

64A3m4
e0`er`ea ~3.16!

where, given the identification~3.2! of gauge and spin con
nections,

c5
96

5
m2e4gFa1a2

[a1a2Fa3a4

a3a4] ~3.17!

5
24

5
R̄a1a2

[a1a2R̄a3a4

a3a4] . ~3.18!

To satisfy theSA equation of motion, we requirec to be
constant. As for the four-cycle, this condition and the E
stein’s equations~2.11! are satisfied if we setC̄50 and take
the five-cycle to have constant curvature, in which case
havec56l 2.

The BPS equations are given by

e2 f f 852
m

2
1

l

4m
e22g2

9l 2

32m3 e24g

e2 fg852
m

2
2

l

4m
e22g1

3l 2

32m3 e24g. ~3.19!

If we set l 521, we find the AdS23H5 solution

e2g5
3

4m2

ef5
3

4m

1

r
. ~3.20!

On the other hand if we setl 51 we find the AdS23S5

solution

e2g5
1

4m2

~3.21!

ef5
1

4m

1

r
.

The general solution fo the BPS equations is presente
Sec. VI D. Since the scalars are set to zero, the upliftedD
511 metric takes the simple form

ds11
2 5ds7

21
1

m2 DYaDYa ~3.22!

where

DYa5dYa12mBabYb ~3.23!

with YaYa51. The expression for the four-form can b
found in @11,12#.
12600
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IV. KÄ HLER FOUR-CYCLES

The spin connection of a Ka¨hler-cycle is aU(2)'U(1)
3SU(2) connection. The appropriate twisting for a fiv
brane wrapping a Ka¨hler cycle is to identify theU(1) sub-
group of this spin connection with aU(1) subgroup of the
SO(5) R symmetry. Which subgroup depends on wheth
the four-cycle is inside a Calabi-Yau three-fold or a Cala
Yau four-fold. We now consider each case in turn.

A. Kähler four-cycles in Calabi-Yau three-folds

In the case that the four-cycle is in a Calabi-Yau thre
fold, corresponding to (4,0) supersymmetry inD52, there
are two transverse directions to the five-brane within
three-fold, sop52. Equivalently the normal bundle ha
SO(2)5U(1) structure group and hence the appropri
identification is such that we splitSO(5)→SO(2)3SO(3)
and identify theU(1) part of the spin connection with
SO(2).

We let B12 generate thisSO(2) and set all other gaug
fields to zero. The relevant projections on the supersymm
parameters can be written

g re5e

g12e5g34e5G12e ~4.1!

in a basis where the non-vanishing components of
Kähler-form on the four-cycle areJ125J3451. We then find
that Eq.~2.7! implies that

B1252
1

4m
v̄abJ

ab ~4.2!

wherea,b51, . . . ,4 andhence the field strength is given b
the projection of the Riemann tensor onto the Ricci-fo
R̄ab[

1
2 R̄abcdJ

cd:

F1252
1

2m
R̄. ~4.3!

Since we havep52,q53, given Eq.~2.5!, the scalar fields
are taken to be

PA
i5~e3l,e3l,e22l,e22l,e22l! ~4.4!

and we can set the 3-formS to zero.
The derivation of the BPS equations again implies that

metric on the Ka¨hler cycle is Einstein. Note that we the
haveR̄ab5 lJab . In this case, no other constraint is plac
on the cycle. One might expect that, as in the SLAG ca
there is a condition coming from the Einstein equations. F
SLAG cycles, the conformal part of the curvature~2.10! was
required to vanish. However, since here the gauge fields
pend only on theU(1) part of the curvature on the cycle, an
this has a vanishing conformal tensor, the stress-energy
sor is necessarily proportional togab and no such condition
arises.

We obtain the BPS equations
1-5
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e2 f f 852
m

10
@2e26l13e4l#1

l

5m
e6l22g

e2 fg852
m

10
@2e26l13e4l#2

3l

10m
e6l22g

e2 fl85
m

5
@e4l2e26l#1

l

5m
e6l22g. ~4.5!

To look for an AdS33S4 fixed point we setg85l850, but
find that we are driven tol→`. As for all cases we will
numerically investigate these equations in Sec. VI.

The uplifted metric inD511 is now given by

ds11
2 5D2 2/5ds7

21
1

m2 D4/5@e6lDYaDYa1e24ldYidYi #

~4.6!

where

DYa5dYa12mBabYb

D2 6/55e26lYaYa1e4lYiYi ~4.7!

where a51,2, i 53,4,5 with YaYa1YiYi55. The expres-
sion for the four-form can be found in@11,12#.

B. Kähler four-cycles in Calabi-Yau four-folds

When the Ka¨hler four-cycle is in a Calabi-Yau four-fold
corresponding to~2,0! supersymmetry inD52, there are
now four directions transverse to the fivebrane within
four-fold, so p54. Equivalently, the normal bundle ha
U(2),SO(4) structure group. In this case the appropria
identification of theU(1) part of theU(2) spin connection is
to breakSO(5)→SO(4)→U(2) and then identify theU(1)
part of the spin connection with theU(1) in U(2)'U(1)
3SU(2).

Consequently we take only theU(1),U(2) gauge fields
to be non-vanishing: equivalently we takeB125B34 with all
other components vanishing. We have the projections

g re5e,

g12e5g34e5G12e5G34e ~4.8!

corresponding to the obvious non-vanishing component
the Kähler form.

We then find

B121B3452
1

4m
v̄abJ

ab ~4.9!

wherea,b51, . . . ,4, andhence

F121F3452
1

2m
R̄. ~4.10!
12600
e

e

of

In this case, sincep54, q51, the ansatz for the scalars is a
in the SLAG four-cycle case~3.8!. The ansatz for the 3-form
is again as for the SLAG four-cycle case~3.9! but now with

c54m2e4gea1a2a3a4
eb1b2b3b4Fb1b2

a1a2Fb3b4

a3a4

516l 2 ~4.11!

where in the second line we have substituted forFab
cd in terms

of Rab . As in the previous Ka¨hler case, we do not need t
impose any additional constraints on the Ka¨hler-Einstein
metric on the four-cycle.

The resulting BPS equations then have the form

e2 f f 852
m

10
@4e22l1e8l#1

l

5m
e2l22g2

3l 2

20m3 e24l24g

e2 fg852
m

10
@4e22l1e8l#2

3l

10m
e2l22g1

l 2

10m3 e24l24g

e2 fl85
m

5
@e8l2e22l#1

l

10m
e2l22g1

l 2

20m3 e24l24g.

~4.12!

If we take the cycle to have constant negative curvatu
l 521, we find the AdS33S4 solution

e10l5
4

3

e2g5
e26l

m2

ef5
e2l

m

1

r
. ~4.13!

Note that the form of the uplifted metric inD511 is the
same as for the SLAG four-cycles~3.13!,~3.14!.

V. EXCEPTIONAL CYCLES

There are three exceptional calibrations: the associa
three-cycles and the co-associative four-cycles in manifo
of G2-holonomy and the Cayley four-cycles in manifolds
Spin(7) holonomy. The supergravity duals of fivebran
wrapping associative three-cycles was considered in@4# and
here we will analyze the remaining two cases.

A. Co-associative four-cycles

In this case the four-cycle has anSO(4)'SU(2)L
3SU(2)R spin connection. Sincep53, we split theR sym-
metrySO(5)→SO(3)3SO(2) and the appropriate twisting
is obtained by identifyingSU(2)L with SO(3). This twist
leads to~2,0! supersymmetry inD52.
1-6
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A discussion of the appropriate projections can be fou
in Sec. 4.3 of@14#. Here we write these as

g re5e

gab
1 e50

G23e5g12
2 e, G31e5g13

2 e, G12e5g14
2 e ~5.1!

where the pluses and minuses refer to self-dual and anti-
dual parts, respectively, anda,b51, . . . ,4. The SO(3)
gauge fields are generated byBmn, m,n51,2,3, and we se
all other gauge fields to zero. From Eq.~2.7! we deduce

v̄21252mB23

v̄21352mB31

v̄21452mB12. ~5.2!

Givenp53, q52, the scalar ansatz is the same as for
SLAG three-cycles~3.3! and the three-formS can be set to
zero. The condition~2.8! again implies that the metric on th
cycle is Einstein. In order to ensure that Einstein’s equati
are solved we note that since, unlike the SLAG case, only
anti-self-dual part of the spin connection on the cycle ent
it is only necessary to setC̄250 in Eq. ~2.10!. In other
words we take the associative four-cycle to have a con
mally half-flat Einstein metric. The only compact exampl
with l 51 areS4 or CP2 and for l 50 we have flat space o
K3.

The BPS equations are now

e2 f f 852
m

10
@3e24l12e6l#1

l

5m
e4l22g

e2 fg852
m

10
@3e24l12e6l#2

3l

10m
e4l22g

e2 fl85
m

5
@e6l2e24l#1

2l

15m
e4l22g. ~5.3!

Settingl 521 we find an AdS33S4 solution

e10l53

e2g5
e8l

3m2

ef5
2e4l

3m

1

r
. ~5.4!

The uplifted solutions inD511 have the same structur
as the SLAG three-cycles~3.6!,~3.7!.

B. Cayley four-cycles

The four-cycle has anSO(4)'SU(2)L3SU(2)R spin
connection. Given nowp54, we split the R symmetry
12600
d

lf-

e

s
e

s,

r-

SO(5)→SO(4)'SU(2)L83SU(2)R8 and the appropriate
twisting is obtained by identifyingSU(2)L with SU(2)L8 .
This twist leads to~1,0! supersymmetry inD52.

Again an explicit discussion of the projections can
found in Sec. 4.3 of@14#. Here we will use

g re5e

gab
1 e5Gab

1 e50

Gab
2 e52gab

2 e. ~5.5!

The SU(2)L8 gauge fields are generated byB2ab, a,b
51, . . . ,4, and we set allother gauge fields to zero. From
Eq. ~2.7! we deduce

v̄2ab52mB2ab. ~5.6!

Sincep54, q51, the scalar field ansatz is the same as
SLAG four-cycles and the Ka¨hler four-cycles in Calabi-Yau
four-folds ~3.8!. The three-formS also has the same form
~3.9!, though, now,

c54m2e4gea1a2a3a4
eb1b2b3b4Fb1b2

a1a2Fb3b4

a3a4

54R̄abcd
2 R̄2abcd. ~5.7!

As before, ifc is constant, then theS equation of motion is
satisfied. As in the co-associative case, this condition is
isfied as are the Einstein equations if we take the cycle to
conformally half-flat by settingC̄250 in Eq. ~2.10!. We
then getc516l 2/3.

The BPS equations then read

e2 f f 852
m

10
@4e22l1e8l#1

l

5m
e2l22g2

l 2

20m3 e24l24g

e2 fg852
m

10
@4e22l1e8l#2

3l

10m
e2l22g1

l 2

30m3 e24l24g

e2 fl85
m

5
@e8l2e22l#1

l

10m
e2l22g1

l 2

60m3 e24l24g.

~5.8!

If we set l 521, we find the following AdS33S4 solu-
tion:

e10l5
12

7

e2g5
e26l

m2

ef5
e2l

m

1

r
. ~5.9!

The structure of the uplifted metric inD511 follows the
SLAG four-cycle case and is given by Eqs.~3.13! and~3.14!.
1-7
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VI. ANALYZING THE BPS EQUATIONS

To further analyze the BPS equations it is useful to gro
them via the co-dimension of the cycle.

A. Co-dimension 2

The only co-dimension two-cycle that we have been c
sidering is the Ka¨hler four-cycle in a Calabi-Yau 3-fold. Le
us introduce the new variables

a25e2ge212l

eh5ef 26l. ~6.1!

The BPS equations are then somewhat simpler:

e2hh852
m

2
@3e10l22#2

l

ma2

e2h
a8

a
52

m

2
@3e10l22#2

3l

2ma2

FIG. 1. Behavior of the orbits for co-dimension 2 withl 521.
The AdS7-type UV region is whenF and x are both large. The
singularity, IR~GS!, in the IR region is of the good type.

FIG. 2. Behavior of the orbits for co-dimension 2 withl 51.
IR~GS! and IR~BS! indicate the good and bad singularities in the
region, respectively.
12600
p

-

e2hl85
m

5
@e10l21#1

l

5ma2 . ~6.2!

The analysis is further simplified by introducingx5a2 and
F5x2/3e10l, giving the ordinary differential equation~ODE!

dF

dx
5

2m2F

@3m2~3Fx1/322x!19l #
. ~6.3!

Typical flows in the (F,x) plane for the case ofl 521 and
l 51 are plotted in Figs. 1 and 2, respectively.

When both F and x are large we getF'x2/3(1
22l /m2x). Using a as a radial variable, we find that thi
gives rise to the asymptotic behavior

ds25
4

m2a2 da21a2~dj21ds̄4
2!

e10l512
2l

m2a2 . ~6.4!

This is precisely what we expect for the wrapp
M-fivebrane. The scalars vanish and the metric has the f
of AdS7 except that the slices of constanta have R1,5 re-
placed with R1,13S4, where S4 is the four-cycle with a
Kähler-Einstein metric. Note that the next to leading ord
behavior of the scalar field corresponds to the insertion of
boundary operatorO4 of conformal dimensionD54, which
is dual to an operator constructed from the scalar fields in
M-fivebrane theory.

The IR behavior of the wrapped M-fivebrane is obtain
by analyzing the asymptotic behavior of the flows. This ca
is the exception in that there is not a flow to an IR Ad3
3S4 fixed point whenl 521. In fact, as one can see from
Fig. 1, the flows end up in a region of smallF and largex.
This limit can be analyzed explicitly. One findsF'1/x1/3

with e10l'1/x tending to zero. The asymptotic metric is si
gular and given by

ds25
1

m2a22/5
da21a22/5~dj21ds̄d

2!. ~6.5!

It is straightforward to demonstrate that the~00! component
of the uplifted D511 metric ~4.6! is bounded as we ap
proach the singularity and hence this is a ‘‘good’’ singular
by the criteria of@2#.

For l 51, one still has the AdS7-type region at largeF and
x, but now the flows are different. As can be seen in Fig.
there are three possibilities. One can flow to the smallF and
largex region and one obtains the asymptotic behavior~6.5!
with a good singularity. A good singularity is also found fo
the special orbit withF50 andx53l /2m2. There are also
flows to F constant andx50 which give rise to bad singu
larities.

Finally, it is probably worth noting that we can in fac
integrate Eq.~6.3! to explicitly realize the behavior discusse
above. In the original variables one gets the general rela
1-8
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2
2l 2

m4 ln~m2e2g22l1 l !1
2l

m2 e2g22l2e4g24l1e4g16l5C

~6.6!

for some constantC.

B. Co-dimension 3

There are two examples with co-dimension 3: the SLA
three-cycles and the co-associative four-cycles. In this ca
is useful to introduce the new variables

a25e2ge28l

eh5ef 24l. ~6.7!

The BPS equations are then given by

e2hh852
m

2
@2e10l21#2

g

ma2

e2h
a8

a
52

m

2
@2e10l21#2

b

ma2

FIG. 3. Behavior of the orbits for co-dimension 3 withl 521.
Note the flow from the AdS7-type region whenF,x are large to the
IR fixed point and the flows to the good and bad singularities in
IR, IR~GS! and IR~BS!, respectively.

FIG. 4. Behavior of the orbits for co-dimension 3 withl 51.
12600
it

e2hl85
m

5
@e10l21#1

a

2ma2 ~6.8!

where (a,b,g)5( l /5,3l /4,l /4) for the SLAG three-cycles
and (4l /15,5l /6,l /3) for the associative four-cycles. We ne
definex5a2 andF5xe10l and obtain the ODE

dF

dx
5

F@m2x25a12b#

x@m2~2F2x!12b#
. ~6.9!

The typical behavior ofF(x) is illustrated in Fig. 3 forl 5
21 and Fig. 4 forl 51. The region where bothx andF large
corresponds to the AdS7-type region describing the UV be
havior of the wrapped brane. We haveF'x25a/m2 and
usinga as a radial variable we obtain the asymptotic beh
ior

ds25
4

m2a2 da21a2~dj21ds̄d
2!

e10l512
5a

m2a2 . ~6.10!

Again we see that the operatorO4 is switched on.
For l 521 we can flow from the UV region to the AdS

3Sd fixed point that was given in Eqs.~3.5! and~5.4! for the
SLAG three-cycles and co-associative cycles, respectiv
There are also flows exhibited in Fig. 3 which flow to sm
F for large x. These behave likeF'1/x with e10l'1/x2

tending to zero. The asymptotic metric is given by

ds25
4

m2a26/5
da21a26/5~dj21ds̄d

2!. ~6.11!

It is straightforward to demonstrate that these are good
gularities. There are also flows from the AdS7 region to large
F and smallx. They haveF'@(2b25a)/2m2# ln x and give

e

FIG. 5. Behavior of the orbits for co-dimension 4 withl 521.
Note the flow from the AdS7-type region whenF,x are large to the
IR fixed point and the flows to the good and bad singularities in
IR, IR~GS! and IR~BS!, respectively.
1-9
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rise to bad singularities. Similarly the flow from the AdS3
fixed point to smallF and x haveF'x(2b25a)/2b and give
bad singularities.

Whenl 51 the flows from the UV to the IR are illustrate
in Fig. 4. The flows to smallF and largex give rise to the
asymptotic behavior~6.11! and hence have good singular
ties. The singularities for the flows to smallF andx are the
same as forl 521 and hence are bad.

C. Co-dimension 4

There are three examples with co-dimension 4: SLA
four-cycles, Ka¨hler four-cycles in Calabi-Yau four-folds an
Cayley four-cycles. It is now convenient to introduce t
new variables

a25e2ge24l

eh5ef 22l. ~6.12!

The BPS equations are then given by

e2hh852
m

2
e10l2

b

2e10la4

e2h
a8

a
52

m

2
e10l2

a

2a2

e2hl85
m

5
@e10l21#1

a

10a2 1
b

10e10la4
~6.13!

where a5 l /m and b5 l 2/3m3, l 2/2m3 and l 2/6m3 for the
SLAG, Kähler and Cayley four-cycles, respectively.

We next definex5a2 andF5x2e10l and obtain the ODE

dF

dx
5

F~a12mx!2bx

mF1ax
. ~6.14!

The typical behavior ofF(x) is illustrated in Fig. 5 forl 5
21 and Fig. 6 forl 51. The region ofx andF large corre-
sponds to the AdS7-type region describing the UV behavio
of the wrapped brane. We haveF'x22(a/m)x. Usinga as
a radial variable we obtain the asymptotic behavior

ds25
4

m2a2 da21a2~dj21ds̄d
2!

e10l512
a

ma2 . ~6.15!

The asymptotic behavior of the scalar again indicates thaO4
is switched on.

For l 521 we can flow from the UV region to the AdS
3S4 fixed points that were given in Eqs.~3.12!, ~4.13! and
~5.9! for the SLAG, Kähler and Cayley four-cycles, respe
tively. There are also flows exhibited in Fig. 5 which flow
F5b/2m for largex. We then havee10l'(b/2m)/x2 tend-
ing to zero. Again it is straightforward to demonstrate th
12600
t

these are good singularities. There are also flows from
AdS7 region to constantF and smallx. The asymptotic met-
rics have bad singularities.

The behavior of the flows forl 51 is illustrated in Fig. 6.
The flows from the UV region end up withF constant when
x50 and have bad singularities.

We conclude this subsection by determining the cen
charges of the two dimensional conformal field theories a
ing at the fixed points of the flows by generalizing the arg
ment of @2#. We use

c5
3RAdS3

2G3
~6.16!

and relate the three-dimensional Newton’s constantG3 to the
eleven-dimensional Newton’s constant as in@2#. To do this
we work with units where the radius of AdS7 in the AdS7
3S4 solution is one by settingm52. We then find

c5
8N3

p2 ef 014gVol~S̄ ! ~6.17!

where Vol~S̄! is the volume of the four-cycle andef[ef 0/r
at the fixed point. From Eqs.~3.12!, ~4.13!, ~5.4!, and ~5.9!
we getef 014g51/48, 3/128, 1/48, and 7/384 for the SLAG
Kähler ~in four-folds!, co-associative, and Cayley fou
cycles, respectively.

D. Co-dimension 5

The SLAG five-cycle is the only co-dimension 5 case.
is rather different than the other cases in that the scalars
all set to zero. To solve the BPS equations~3.19! we first
introduce a new radial variabler via

dr

dr
5e2 f . ~6.18!

We then find the general solution is given by

ds252e2 fdt21e22 fdr21r2ds̄5
2 ~6.19!

with

FIG. 6. Behavior of the orbits for co-dimension 4 withl 51.
1-10
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e2 f5
m2

4r6S r22
l

4m2D 2S r21
3l

4m2D 2

~6.20!

which flows forl 521 or l 51 to the conformal fixed points
given in Eqs.~3.20! or ~3.21!, respectively.

VII. DISCUSSION

We have presented a large class of supergravity solut
that are dual to the twisted theories arising on M-fivebra
wrapping general supersymmetric cycles. An Einstein me
on the cycle is an ingredient in the construction: for t
SLAG cycles it must have constant curvature, for the Ka¨hler
cycles it must be Ka¨hler-Einstein, and for the co-associativ
and Cayley four-cycles it must be conformally half-flat.

The solutions have an asymptotic AdS7-type region that
describes the UV physics. When the curvature of the E
stein metric on the cycles is negative,l 521, in all but one
case—Ka¨hler four-cycles in Calabi-Yau three-folds—there
a flow to an IR fixed point of the form AdS72d3Sd . These
fixed points are dual to the superconformal field theor
arising on the M-fivebrane and thus provide new example
AdS/CFT duality. For positive curvature,l 51, we only
found such a fixed point for SLAG five-spheres. We a
exhibited flows to other IR limits and determined wheth
the resulting singularities were of a good or bad type acco
ing to the criteria of@2#. It will be interesting to study all of
the IR physics in more detail. When the cycle is Ricci-fl
l 50, the cycle can either be flat or for Ka¨hler, co-
eld
,’

ys

12600
ns
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s
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associative, or for Cayley four-cycles it can also be K3@if we
relax compactness it could be any four manifold withSU(2)
holonomy#. In this case the gauge fields are zero and ther
no twisting and so we simply have a fivebrane wrappingT4

or K3, whose supergravity solutions are well known.
The solutions that have been constructed here and

@2,4,5# have the minimal gauge fields active consistent w
the required twisting. It would be interesting to generali
our solutions to include more general gauge fields wh
correspond to cycles with the most general normal bund
Note, for example, that this would distinguish fivebran
wrapping four-cycles in eight-manifolds withSp(2) ho-
lonomy from those withSU(4). It would also be interesting
to try and find solutions that relax the Einstein condition. It
possible that such generalizations will involve activati
more than a single scalar field. Another direction to pursu
to construct supergravity solutions corresponding to hav
both fivebranes and membranes involved. For example
might be possible to construct supergravity solutions ana
gous to the configurations that were investigated from
M-fivebrane world-volume point of view in@16,17#.
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