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Supersymmetric Randall-Sundrum scenario
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We present the supersymmetric version of the minimal Randall-Sundrum model with two opposite tension
branes.
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I. INTRODUCTION

The two-brane Randall-Sundrum scenario@1# provides an
appealing way to generate the electroweak gauge hiera
as a consequence of spacetime geometry. The basic idea
start with five dimensional anti–de Sitter~AdS! space, take
the region between two slices parallel to the AdS horiz
and add a 3-brane along each slice. By tuning the br
tensions, the resulting configuration can be made sta
against gravitational collapse.

In this model, the ratio of the weak to the Planck scale
determined by the distance between the two branes. The
tance is fixed by the expectation value of a modulus fie
called the radion. The usual hierarchy problem now appe
in a new guise: What fixes the radion vacuum expecta
valve ~VEV!, and what protects the VEV against large rad
tive corrections?

In a recent paper, Goldberger and Wise@2# proposed a
way to stabilize the radion using five dimensional bulk m
ter. Supersymmetry provides another possibility. In this
per we will take some first steps in that direction, and sh
how to supersymmetrize the minimal Randall-Sundrum s
nario.

In what follows we will use coordinates in which the fiv
dimensional background metric takes the following form:

ds25e22s(f)hmndxmdxn1r 2df2. ~1!

The coordinatex55rf parametrizes an orbifoldS1/Z2,
where the circleS1 has radiusr and the orbifold identifica-
tion is f↔2f. For fixed f, the coordinatesxm (m
50,1,2,3) span flat Minkowski space, with metrichmn
5diag(21,1,1,1). We choose to work on the orbifold co
ering space, so we take2p,f<p.

For the gravitational part of our action, we follow Randa
and Sundrum and take the action to be the sum of bulk p
brane pieces,

S5Sbulk1Sbrane. ~2!

The bulk action is that of pure five dimensional AdS gravi
while Sbranearises from the presence of two opposite tens
branes.

The gravitational bulk action is given by
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Sbulk5
L

k2E d5xeF2
1

2
R16L2G , ~3!

wherek is related to the four dimensional Planck consta
e5deteM

A, andeM
A is the five dimensional fu¨nfbein.1 In this

expression,L is the bulk cosmological constant andR is the
five dimensional Ricci scalar,

R5eA
MeB

NRMN
AB. ~4!

The Riemann curvatureRMN
AB is built from the spin connec-

tion according to the following conventions:

RMN
AB5]MvN

AB2]NvM
AB2vM

ACvNC
B1vN

ACvMC
B.
~5!

The brane action serves as a source for the bulk grav
tional fields. It arises from the 3-branes located at the o
fold pointsf50,p. For the case at hand, the brane action
simply

Sbrane526
L2

rk2E d5xê@d~f!2d~f2p!#, ~6!

whereê5detem
a, and theem

a are the components of the fiv
dimensional fu¨nfbein, restricted to the appropriate brane.

From this action it is not hard to show that the metric~1!,
with

s~f!5rLufu, ~7!

is a solution to the five dimensional Einstein equations,

RMN2
1

2
gMNR526gMNL216gmndM

mdN
n S L

r D S ê

e
D

3@d~f!2d~f2p!#. ~8!

1We adopt the convention that capital letters run over the
$0,1,2,3,5% and lower-case letters run from 0 to 3. Tangent spa
indices are taken from the beginning of the alphabet; coordin
indices are from the middle. We follow the conventions of@3#.
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Away from the branes, the bulk metric is just that of fiv
dimensional AdS space, with cosmological constantL. On
the branes, the four dimensional metric is flat. As shown
@1#, the effective theory of the gravitational zero modes
just ordinary four dimensional Einstein gravity, with a va
ishing cosmological constant. The effective four dimensio
squared Planck mass iskeff

225k22(12e22prL).

II. SUPERSYMMETRIC BULK

In what follows we will supersymmetrize the action~2!.
We start with the bulk action~3!. Its supersymmetric exten
sion can be found from the five dimensional supersymme
AdS action@4#

Sbulk5LE d5xeF2
1

2k2 R1 ieMNOPQC̄MSNODPCQ

2
1

4
FMNFMN23LC̄MSMNCN16

L2

k2

2 ikA3

2

1

2
FMNC̄MCN2k

1

6A6
eMNOPQFMNFOPBQ

1 ikA3

2

1

4
eMNOPQFMNC̄OGPCQ

2kLA3

2
eMNOPQC̄MSNOCPBQ

1four-Fermi termsG , ~9!

where thee tensor is defined to have tangent-space indic
ande0123551. This action contains the physical fields ass
ciated with the supergravity multiplet in five dimensions: t
fünfbeineM

A, the gravitinoCM , and a vector fieldBM . The
covariant derivativeDMCN5]MCN1 1

2 SABvMABCN and
the matrixSAB5 1

4 (GAGB2GBGA).
This action is invariant under the following supersymm

try transformations:

deM
A5 ik~h̄GACM2c̄MGAh!

dBM52 iA3

2
~ h̄cM2c̄Mh!

dcM5
2

k
DMh1 i

L

k
GMh2 iA6LBMh

2A2

3S GNFNM

2
1

4
eMNOPQFNOSPQDh

1three-Fermi terms. ~10!
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Since we work in the orbifold covering space, the spaceti
manifold has no boundary, and we can freely integrate
parts. We use the 1.5 order formalism, so the spin connec
obeys its own equation of motion and does not need to
varied.

For the case at hand, we must define the action of
orbifold symmetry on the AdS fields. We start by writing th
five dimensional spinors in a four dimensional langua
where

CM→S cMa
1

c̄2M
ȧ D ~11!

and

Ga→S 0 saȧ
a

s̄aȧa 0
D G5→S 2 i 0

0 i D . ~12!

The fieldscM
i ~for i 51,2) are two-component Weyl spinor

in the notation of@3#. We then definecM
651/A2(cM

1 6cM
2 ),

and likewise forh6.
In terms of these fields, the bulk supersymmetry transf

mations can be written in the following form:

deM
a5 ik~h1sac̄M

11h2sac̄M
2 !1H.c.

deM
5̂5k~h1cM

22h2cM
1 !1H.c.

dBM52 iA3

2
~h1cM

22h2cM
1 !1H.c.

dcm
65

2

k
Dmh67

i

k
vma5̂sah̄76 i

L

k
em

asah̄6

1em5̂

L

k
h72 iA6LBmh7

2A2

3S 7ea
NFNmsah̄72 ie5̂

NFNmh6

2
1

4
eABCdeem

AeBNeCOFNOsdeh6

6
i

4
eabcdem

aebNecOFNOsdh̄7D
dc5

65
2

k
D5h67

i

k
v5a5̂sah̄71e55̂

L

k
h7

6 ie5
a
L

k
sah̄62 iA6LB5h7

1A2

3S 7ea
nF5nsah̄72 ie5̂

nF5nh6

1
1

4
eABCdee5

AeBNeCOFNOsdeh6

6
i

4
eabcde5

aebNecOFNOsdh̄7D . ~13!
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In these expressions, all fields depend on the five dim
sional coordinates. The symbol 5ˆ denotes the fifth tangen
space index, and all covariant derivatives contain the s
connectionvMab . Here and hereafter, we ignore all thre
and four-Fermi terms.

From these transformations it is not hard to find a con
tent set ofZ2 parity assignments under the orbifold transfo
mationf→2f. The assignments must leave the action a
transformation laws invariant under theZ2 symmetry. We
assign even parity to

em
a, e55̂ , B5 , cm

1 , c5
2 , h1

and odd parity to

e5
a, em

5̂, Bm , cm
2 , c5

1 , h2.

The bulk supergravity action is invariant underN51 su-
persymmetry in five dimensions. The branes break all
one four dimensional supersymmetry. To find its form,
shall study the supersymmetry transformations in the o
fold background, wheree55̂51, em

a5e2s(f)dm
a , and all

other fields equal zero. This configuration satisfies the gr
tational equations of motion whens(f)5rLufu. Note that
this background is consistent with the orbifold symmetry

In the orbifold background, the supersymmetry variatio
of the bosonic fields are obviously zero. The variations of
fermions are a little trickier. In this background, the sp
connection evaluates to

vmAMSAM5sgn~f!LGmG 5̂, ~14!

with all other components zero. The supersymmetry va
tions of the fermions reduce to the following form:

dcm
65

2

k
]mh67 i sgn~f!

L

k
smh̄76 i

L

k
smh̄6

dc5
65

2

k
]5h61

L

k
h7. ~15!

The unbroken supersymmetries are found by setting th
variations to zero. The resulting Killing equations can th
be solved for the Killing spinorsh6. The solution that re-
duces to a flat-space supersymmetry in four dimension
simply

h15
1

A2
e2s(f)/2h~x!, h25

1

A2
e2s(f)/2sgn~f!h~x!,

~16!
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where sgn(f) is the step function,2 which evaluates to
(21,0,1), depending on the sign off. In this expression, the
spinorh contains four Grassmann components and is a fu
tion of x0, . . . ,x3, but notx5. We shall see that it describe
the one unbroken supersymmetry of the Randall-Sund
scenario.

It is not hard to check that the spinors~16! are a solution
to the Killing equations, for constanth, except for delta-
function singularities at the orbifold pointsf50,p. These
singularities are very important. They motivate us to chan
the c5

2 supersymmetry transformation so that the spin
~16! are Killing spinors everywhere. We take

dc5
25

2

k
D5h21

i

k
v5a5̂sah̄11e55̂

L

k
h12 ie5

a
L

k
sah̄2

2 iA6LB5h11A2

3S ea
nF5nsah̄12 ie5̂

nF5nh2

1
1

4
eABCdee5

AeBNeCOFNOsdeh2

2
i

4
eabcde5

aebNecOFNOsdh̄1D
2

4

rk
@d~f!2d~f2p!#h1. ~17!

In the orbifold background, this reduces to

dc5
25

2

k
]5h21

L

k
h12

4

rk
@d~f!2d~f2p!#h1.

~18!

The spinors~16! satisfy the modified Killing equations, fo
constanth, even at the orbifold pointsf50,p. Furthermore,
the supersymmetry transformations still close into theN51
supersymmetry algebra.

III. SUPERSYMMETRIC BRANE

In the previous section, we changed the gravitino sup
symmetry transformations so that the Killing spinors sati
the Killing equations at every point inf. Because of this, the
bulk action is no longer invariant under the supersymme
transformations~17!. In this section we will find a brane

2The distribution sgn(f) obeys the following properties:

E
2e

e

df sgn~f!50, E
2e

e

df sgn2~f!52e,

when integrated against smooth functions, and

E
2e

e

df sgn~f!d~f!50, E
2e

e

df sgn2~f!d~f!5
1

3
,

when integrated againstd(f). The last relation ensures that

E
2e

e

df
d

df
sgn3~f!52.

We thank Jan Conrad for a discussion on this point.
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action whose variation precisely cancels that of the bulk.
We first compute the variation of the bulk action. Com

paring Eq.~13! with Eq. ~17!, we see that the bulk variatio
vanishes except on the branes. Therefore, to compute
variation, we need to project the bulk fields onto the bran
For even fields, this is easy: The brane fields are just the b
fields evaluated at the appropriate value off. For odd fields,
the situation is more subtle: The brane fields must obey ju
conditions across the delta function singularities and th
conditions are determined by the brane action.

In what follows we will present the brane action an
verify that it restores the supersymmetry of the bulk-plu
brane system. We assert that the brane action is simply

Sbrane5
L

rk2E d5xê~23L12k2cm
1smncn

1!

3@d~f!2d~f2p!#1H.c. ~19!

where the fieldsem
a and cm

1 are projections of the corre
sponding five dimensional fields.

Given this brane action, it is easy to compute the ju
conditions. From the equations of motion forem

a and cm
1 ,

we find

@vma5#562Lema , @cm
2#562cm

1 , ~20!

where the square brackets denote the discontinuity acros
singularity, and the6 applies to the brane atf50 andp,
respectively. A consistent solution is given by

vma55sgn~f!Lema , cm
25sgn~f!cm

1 , ~21!

in the neighborhood of the branes. All other odd fields van
on the branes.

Now that we have the solutions to the jump condition
we are free to compute the variation of the bulk action.
small calculation gives

dSbulk5
L

rkE d5xee5̂5
†„8h1smnDmcn

12 ikA6F 5̂mh1cm
1

16iL~12sgn2~f!!h1smc̄m
1
…@d~f!2d~f2p!#‡

1H.c. ~22!

whereh1 is the spinor~16!. In what follows we will show
that the variation of the brane action precisely cancels
term.

The supersymmetry variation of the brane action is
hard to find. The supersymmetry transformations are thos
the bulk fields, as projected on the branes, subject to
jump conditions~20!. From Eqs.~13! and~21!, we compute

dem
a5 ik~11sgn2~f!!h1sac̄m

11H.c.
12502
he
s.
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p
e

-

p
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dcm
15

2

k
Dmh11 i

L

k
~12sgn2~f!!em

asah̄1

1 iA2

3
F 5̂mh11 iA2

3
F 5̂nsmnh

1. ~23!

As above,h1 is given by Eq.~16!. In all fields, the coordi-
natef is evaluated atf50 or p, depending on the location
of the brane. Substituting Eq.~23! into Eq. ~19!, we find

dSbrane52
L

rkE d5xê†„8h1smnDmcn
12 ikA6F 5̂mh1cm

1

112iLsgn2~f!h1smc̄m
1
…@d~f!2d~f2p!#‡

1H.c. ~24!

The variation of the brane action, Eq.~24!, cancels the varia-
tion of the bulk action, Eq.~22!, becausee5e55̂ê and
sgn2(f)51/3 when integrated against a delta function. Th
proves that the full bulk-plus-brane Randall-Sundrum act
is invariant under the four dimensional supersymmetry
rametrized by the Killing spinorh in Eq. ~16!.

IV. MINIMAL EFFECTIVE ACTION

We will now derive the effective four dimensional actio
for the supergravity zero modes. We will see that it is no
ing but the usual on-shell four dimensional flat-space sup
gravity action.

The zero modes of the four dimensional theory must s
isfy the massless equations of motion in four dimensio
For the vierbein, the zero mode was given by Randall a
Sundrum@1#:

eM
A5S 1 0

0 e2s(f)ēm
a~x!

D , ~25!

wheres(f)5rLufu and the vierbeinēm
a is a function of

x0, . . . ,x3, but notx5. The five dimensional Einstein equa
tions, with brane sources, reduce to the usual four dim
sional source-free Einstein equations for the vierbeinēm

a.
The gravitino zero modes can be found in a similar wa

One starts with the five dimensional gravitino equations
motion,

]5cm
11

3

2
Lcm

22sgn~f!Lcm
150

]5cm
21

3

2
Lcm

12sgn~f!Lcm
25

2

r
@d~f!2d~f2p!#cm

1 ,

~26!

and assumes the following ansatz:

cm
15

1

A2
S keff

k De2s(f)/2cm~x!,
5-4
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cm
25

1

A2
S keff

k De2s(f)/2sgn~f!cm~x!. ~27!

Substituting Eq.~27! into Eq. ~26!, one recovers the usua
four dimensional equations of motion for the gravitino fie
cm .

In what follows, we will derive the effective four dimen
sional action for the supergravity zero mode fields. We s
by setting all other fields to zero. This truncation is cons
tent with the supersymmetry transformations~10!. We then
substitute the zero-mode expressions into the supersym
ric bulk-plus-brane action and integrate over the coordin
x5. We use the fact that

R5e2sR̄120L2216
L

r
@d~f!2d~f2p!# ~28!

and

vmABS
AB5sgn~f!LGmG 5̂1v̄mabs

ab ~29!

to find

Seff5E d4xēF2
1

2keff
2

R̄1emnpqc̄ms̄nDpcqG , ~30!

up to four-Fermi terms. This is nothing but the on-shell a
tion for flat-spaceN51 supergravity in four dimensions.

The supersymmetry transformation laws can be found
similar way. We start with the supersymmetry transform
tion parametersh1 andh2 as above, in Eq.~16!. We then
substitute the zero mode expressions into the supersymm
transformations~10!. All x5 dependent terms cancel, leavin

dem
a5 ikeffhsac̄m1H.c.,

dcm5
2

keff
Dmh. ~31!

These are nothing but the transformations ofN51 super-
gravity in four dimensions~up to three-Fermi terms!, with an
12502
rt
-

et-
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-

a
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effective four dimensional squared Planck mass,keff
22

5k22(12e22prL).

V. SUMMARY AND OUTLOOK

In this paper we supersymmetrized the minimal Rand
Sundrum scenario. We found the supersymmetric bulk-p
brane action in five dimensions, as well as the correspond
supersymmetry transformations. We solved for the Killi
spinor that describes the unbrokenN51 supersymmetry of
the four dimensional effective theory. We derived the sup
gravitational zero modes, and showed that the low ene
effective theory reduces to ordinaryN51 supergravity in
four dimensions.

This work represents a first step towards a deeper un
standing of supersymmetry in the context of warped comp
tifications. To study stability, one would like, of course,
include the radion multiplet, which reduces toN51 matter
in four dimensions. For phenomenology, one would also l
to add supersymmetric matter on the branes and in the b
Work along all these lines is in progress.

Note added.On the same day this paper was submitted
the archive, a similar paper was posted by Gherghetta
Pomarol@5#. This paper used anx5-dependent bulk gravitino
mass to supersymmetrize the two-brane Randall-Sund
scenario. The resulting construction can be interpreted a
truncation of a more fundamental theory with matter in t
bulk. We did not take this approach because our goal wa
supersymmetrize the purely gravitational case. For more
the difficulties of constructing brane-like solutions in matte
coupled five dimensional supergravity, see@6# and @7#.
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