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Quantum correlation functions and the classical limit

Charis Anastopoulos*
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 29 November 2000; published 24 May 2001!

We study the transition from the full quantum mechanical description of physical systems to an approximate
classical stochastic one. Our main tool is the identification of the closed-time-path~CTP! generating functional
of Schwinger and Keldysh with the decoherence functional of the consistent histories approach. Given a degree
of coarse graining in which interferences are negligible, we can explicitly write a generating functional for the
effective stochastic process in terms of the CTP generating functional. This construction gives particularly
simple results for Gaussian processes. The formalism is applied to simple quantum systems, quantum Brown-
ian motion, and quantum fields in curved spacetime. Perturbation theory is also explained. We conclude with
a discussion on the problem of the back-reaction of quantum fields in spacetime geometry.
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I. CLASSICAL VS. QUANTUM PROBABILITY

A. Introduction

The emergence of classical behavior in quantum syst
is a very important question on the foundations of quant
theory. An explanation of how the classical world emerge
absolutely essential for any scheme that has ambitions t
beyond the operational description of the Copenha
interpretation. In recent years the program of decohere
has provided some insight into how this transition is effec
and suggested branches of physics where relevant phe
ena are important, such as quantum optics and mesosc
physics.

From another perspective, the issue of classicalizatio
of significance in cosmology. We want to know how th
perceived classical world is obtained from an underlying
scription that is of a~presumably! quantum nature. In the
early universe, processes are assumed to be governe
quantum field theory, but later a classical hydrodynam
description suffices to capture all relevant physics. The sa
question is asked for quantum gravity; only now the focus
on the emergence of classical spacetime rather than on
matter fields. At a more technical level one is interested
know when the semiclassical gravity approximation~cou-
pling classical metric variables to quantum fields! is valid.

In all such discussions, the first step is to establish wha
meant by classical behavior. The notion of classicality can
defined in different ways, according to the context. For
stance, the absence of interferences in a given basis: in o
words an approximate diagonalization of the density ma
@1–3#, determinism or approximate determinism or som
form of predictability@4–6#, the validity of a hydrodynamic
or thermodynamic description for a many-body syst
@5,7,8#, and the existence of exact or approximate supe
lection rules@9#.

Whatever the definition of classicality might be, there is
consensus about how it appears.Coarse-grainingis neces-
sary. Since the underlying theory is assumed to be quan
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theory ~which is by definition nonclassical!, one can get a
different behavior only by examining a truncated version
the theory. The intuitive picture for emergent classicality
that of a random phase approximation; the coarser the
scription of the system, the more the interference phase
cels out when averaged within the coarse-grained observa
The general question is then, which types of coarse-grain
can regularly lead to classical behavior.

In this paper, we take the attitude that a system exhi
classical behavior if it admits an approximate description
terms of classical probability theory. Since we are interes
in systems changing in time, we ask thatthe evolution of
coarse-grained observables is described by probabi
theory, in other words, that it should be modeled by asto-
chastic process.

Quantum processes have an important difference fr
stochastic processes, their correlation functions are com
valued rather than real valued. This is equivalent to the f
that quantum mechanical evolution cannot be described b
probability measure. In this paper, we focus on how class
correlation functions can be constructed from the quant
mechanical ones through coarse-graining, thus providing
effective stochastic description for a quantum system. A p
of the relevant material has appeared previously in@10#. This
presentation is simultaneously an elaboration and a simp
cation of the mathematical constructions performed in t
reference with an eye to possible applications.

We shall then apply this formalism in various cases. W
will show that in Gaussian systems, the classical limit
mostly determined by thereal part of the quantum two-point
function. We shall verify this in a number of example
simple harmonic oscillators, the Caldeira-Leggett model
quantum Brownian motion, and scalar fields in curved spa
time. We shall then discuss the perturbation expansion fr
which we shall infer that a perturbation expansion of t
quantum theory does not imply a perturbation expansion
the corresponding stochastic one. We conclude with a
cussion of the validity of the semiclassical approximation
quantum gravity. This is a topic which our formalism is pa
ticularly adequate to address.

The first step is, however, a brief summary of classi
probability theory.
ss:
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B. Classical probability

In classical probability one assumes that at a single m
ment of time the possible elementary alternatives lie in
spaceV, thesample space. Observables are functions onV,
and are usually calledrandom variables.

The outcome of any measurement can be phrased
statement that the system is found in a given subsetC of V.
Hence, the set of certain well-behaved~measurable! subsets
of V is identified with the set of all coarse-grained altern
tives of the system. To each subsetC, there corresponds a
observablexC(x), the characteristic function of the setC. It
is defined asxC(x)51 if xPC andxC(x)50 otherwise. It is
customary to denote the characteristic function ofV as 1 and
of the empty set as 0.

Note that if an observablef takes valuesf i in subsetsCi
of V, we have that

f ~x!5(
i

f ixCi
~x!. ~1.1!

A stateis intuitively thought of as a preparation of a syste
Mathematically it is represented by a measure onV, i.e., a
map that to each alternativeC it assigns its probabilityp(C).
It has to satisfy the following properties:

~i! for all subsetsC of V, 0<p(C)<1.
~ii ! p(0)50; p(1)51.
~iii ! for all disjoint subsetsC and D of v, p(CøD)
5p(C)1p(D).

Because of~1.1! one can definep( f )5( i f i p(Ci); p( f )
is then clearly the mean value off. The usual notation for the
mean value isf̄ ; however the expressionp( f ) is used when
we want to stress the state with respect to which the m
value is taken. WhenV is a subset ofRn, the probability
measures are defined in terms of a probability distributi
i.e., a positive function onV, which we shall~abusingly!
denote asp(x),

p~ f !5E dx p~x! f ~x!. ~1.2!

There also exists the notion ofconditional probability.
Assume that in an ensemble described by a probability
tribution p(x), we measure whether the property correspo
ing to the setC is satisfied. The subensemble of all syste
that have been found to satisfy this property is then descr
by the probability distributionp(x)xC(x)/p(C).

Assume now that we have prepared a system in a stap
and we want to perform a series of measurements of an
servable f (x)5( i f ixCi

(x) at time t1 and of g(x)

5( jgjxD j
(x) at time t2.t1. For simplicity, we shall ignore

any self-dynamics of the physical systems as it evolves fr
t1 to t2. We can consider a number of measurement sit
tions, labeled byi and j, corresponding to an arrangeme
where the filterCi is placed at timet1 and the filterD j at
time t2. From a series of measurements one will establish
number of systems in the ensemble that pass both filters
12502
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hence identify the probabilityp( i ,t1 ; j ,t2), that Ci has been
found true at timet1 and then Dj at time t2

p~ i ,t1 ; j ,t2!5E dxp~x!xD j
~x!xCi

~x!. ~1.3!

Performing this experiment for all different choices ofi and
j, we can construct thestatistical correlation function

^ f t1
gt2

&5(
i j

f igj p~ i ,t1 ; j ,t2!5p~BA!. ~1.4!

By BA we mean the product of the observablesB and A;
hencep(BA) stands for*dx p(x)B(x)A(x).

In general, the system may have intrinsic dynamics. T
is implemented by a mapt t1 ,t2

that takes the statep(x) at

time t1 to the statet t1 ,t2
@p#(x) at timet2 in such a way as to

preserve normalization and positivity. The correlation fun
tion then reads

^ f t1
gt2

&5E dxg~x!t t1 ,t2
@ f p#~x!. ~1.5!

Here f p stands for the state obtained from the multiplicati
of the functionf (x) with the probability distributionp(x).

When we want to study properties of the system at m
than one moment of time, we need to introduce a sam
space forhistories. If we denote byT the set of all possible
time instants, we can identify the space of historiesVT as a
suitable subset of3 tPTV t , whereV t is a copy of the sys-
tem’s sample space labeled by a moment of timet. The ele-
ments ofVT arepaths t→xt and will be denoted asx(•).

A history observable is a function onVT. Given a func-
tion f on V, we can define a family of history observablesFt
as

Ft@x~• !#5 f „x~ t !…. ~1.6!

The state is represented by a probability measureP on
VT. It contains information about both the initial conditio
and the dynamics; for any functionF on VT it gives its mean
valueP(F) or simply F̄. We can, abusingly, write it in terms
of a probability distribution onVT

P~F !5E Dx~• !P@x~• !#F@x~• !#. ~1.7!

The correlation functionŝ f t1
gt2

& can then be written as

P(Ft1
Gt2

) in terms of the functionsFt andGt defined by Eq.
~1.6!. The information of the correlation functions of a sing
observablef is contained in the generating functional

Zf@J~• !#5 (
n50

`
i n

n! E dt1 . . . dtn^ f t1
. . . f tn

&J~ t1! . . . J~ tn!

5E Dx~• !P@x~• !#expS i E dtFt@x~• !#J~ t ! D ,

~1.8!
4-2
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QUANTUM CORRELATION FUNCTIONS AND THE . . . PHYSICAL REVIEW D 63 125024
in terms of a function of timeJ(t), commonly referred to as
the ‘‘source.’’

The generating functional is essentially the Fourier tra
form of the probability measures. The definition can be
tended for families of observablesf i . Since correlation func-
tions can be operationally determined, it is possible,
principle, to determine the probability measure with arbitra
accuracy.

C. Quantum correlations

In the previous section we gave a summary of class
probability theory, thus establishing our notation, and id
tified the operational meaning of correlation functions
classical probability.

The corresponding structures for a single moment of ti
are well known in standard quantum theory. Elementary
ternatives are rays on a complex Hilbert spaceH, observ-
ables are self-adjoint operators onH, a general property cor
responds to a projection operator, and a state to a den
matrix.

Let us now consider an ensemble of quantum syste
prepared in a state described by a density matrixr̂ and try to
operationally construct the correlation function of two o
servablesÂ5(ai P̂i and B̂5( jbj Q̂j at timest1 and t2.t1,
respectively. HereP̂i refers to an exhaustive (( i P̂i51) and
exclusive (P̂i P̂j5 P̂id i j ) set of projectors, and so doesQ̂j .

Let the Hamiltonian of the system beĤ and r̂0 the state
of the system at timet50. Then a series of measuremen
will enable us to identify the probability thatP̂i is found true
and then Q̂j is found true. According to the rules of quantu
theory this will be

p~ i ,t1 ; j ,t2!5Tr@Q̂je
2 iĤ (t22t1)P̂ie

2 iĤ t1r̂0eiĤ t1P̂ie
iĤ (t22t1)#

5Tr„Q̂j~ t2!P̂i~ t1!r̂0P̂i~ t1!…, ~1.9!

where we used the Heisenberg picture notation for opera
Â(t)5eiĤ tÂe2 iĤ t. If we now vary over all possible values o
i and j, we can construct thestatistical correlation function
betweenÂ and B̂

^Ât1
B̂t2

&S5(
i j

aibj p~ i .t1 ; j ,t2!. ~1.10!

But this correlation function isnot what one usually calls
a correlation function in quantum theory. This name is u
ally employed for the expectation of a product of operato

^Ât1
B̂t2

&Q5Tr„rÂ~ t1!B̂~ t2!…5(
i j

aibj Tr„r P̂i~ t1!Q̂j~ t2!….

~1.11!

This is a complex-valued object in contrast to Eq.~1.10! that
was constructed using probabilities of events and can onl
real valued. Then, what does the quantum mechanical co
lation correspond to? Clearly it is unlike classical corre
tions. The fact that it is complex-valued suggests that it
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something to do with quantum mechanical quantities such
interference phases. This remark turns out to be accurat
@11# a scheme was described in terms of which the quan
mechanical correlation functions can be operationally m
sured. It proceeds essentially by measuring interfere
phases between different states. It is a measurement pr
dure similar to ones used for the Aharonov-Bohm effect
the Berry phase@12#. This is natural in a sense, since th
Berry phase is the irreducible element for which quant
theory necessitates the use of complex numbers@13#. How-
ever, in the present paper we are interested in the clas
limit rather than the full structure of quantum theory and w
shall not pursue this topic. The interested reader is referre
@11#.

We now want to check the possibility that the quantu
and the statistical correlation functions coincide. An eas
discernible case is when@Â(t1),B̂(t2)#50, i.e., when the
measured observables commute. More generally, it can
verified that a necessary and sufficient condition is

Re Tr„Q̂j~ t2!P̂i~ t1!r P̂i 8~ t1!…50, ~1.12!

for all i , j and i 8Þ i . In this case the following property is
satisfied:

(
i

p~ i ,t i ; j ,t2!5Tr„rQ̂j~ t2!…5p~ j ,t2! ~1.13!

for all j. This implies that the probabilities assigned to the
of all possible histories satisfy the additivity condition. The
therefore, define a classical probability measure. It is evid
that in this case the quantum and the statistical correla
functions coincide.

This condition for classicality is exactly the one upo
which the formalism of consistent histories is based. T
formalism is an indispensable part of our analysis and
therefore proceed to examine it next.

II. QUANTUM PROCESSES

A. Consistent histories

The consistent histories approach to quantum theory
developed by Griffiths@14#, Omnés @4#, Gell-Mann, and
Hartle @15,5,6#. The basic object is ahistory, which corre-
sponds to properties of the physical system at succes
instants of time. A discrete-time historya will then corre-
spond to a stringP̂t1

,P̂t2
, . . . ,P̂tn

of projectors, each labeled
by an instant of time. From them, one can construct the c
operator

Ĉa5Û†~ t1!P̂t1
Û~ t1! . . . Û†~ tn!P̂tn

Û~ tn!, ~2.1!

whereÛ(s)5e2 iĤ s is the time-evolution operator. The prob
ability for the realization of this history is

p~a!5Tr~Ĉa
† r̂0Ĉa!, ~2.2!
4-3
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wherer̂0 is the density matrix describing the system at tim
t50.

But this expression does not define a probability meas
in the space of all histories, because the Kolmogorov ad
tivity condition cannot be satisfied; ifa andb are exclusive
histories, anda~b denotes their conjunction as propos
tions, then it is not true that

p~a~b!5p~a!1p~b!. ~2.3!

The histories formulation of quantum mechanics does n
therefore, enjoy the status of a genuine probability theor

However, an additive probability measureis definable,
when we restrict it to particular sets of histories. These
called consistent sets. They are more conveniently define
through the introduction of a new object, the decohere
functional. This is a complex-valued function of a pair
histories given by

d~a,b!5Tr~Ĉb
† r̂0Ĉa!. ~2.4!

A set of exclusive and exhaustive alternatives is called c
sistent if for all pairs of different historiesa andb we have

Red~a,b!50. ~2.5!

In that case one can use Eq.~2.2! to assign a probability
measure to this set. The consistent histories interpreta
then proceeds by postulating that any prediction or retro
tion we can make using probabilitiesmust always make ref
erence to a given consistent set. This leads to counter
intuitive situations of getting mutually incompatibl
predictions, when reasoning within different consistent s
The predictions of this theory are therefore contextual, bu
any case, this is a general feature of all realist interpretat
of quantum theory.

Except for trivial cases, it is only coarse-grained obse
ables that satisfy an exact~or approximate! consistency con-
dition. This means that the histories are constructed ou
projectorsP̂, whose trace is much larger than unity.

B. The closed-time-path generating functional

We saw that in quantum theories probabilities and sta
tical correlations are contained in the decoherence functio
in fact, in its diagonal elements. We shall now show that
same is true for the quantum correlation functions.

Recall that in the decoherence functional projectors e
in a time-ordered series. This suggests that it would be be
to use time-ordered correlation functions. LetÂa denote a
family of commuting operators. Then the time-ordered tw
point correlation function is defined as

G2,0~a1 ,t1 ;a2 ,t2!5u~ t22t1!Tr@ r̂0Âa1~ t1!Âa2~ t2!#

1u~ t12t2!Tr@ r̂0Âa2~ t2!Âa1~ t1!#.

~2.6!

Here we have denoted byu(t) the step function.
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One can similarly define time-orderedn-point functions,
or anti-time-ordered

G0,2~a1 ,t1 ;a2 ,t2!5u~ t12t2!Tr@ r̂0Âa1~ t1!Âa2~ t2!#

1u~ t22t1!Tr@ r̂0Âa2~ t2!Âa1~ t1!#.

~2.7!

In general, one can definemixedcorrelation functionsGr ,s,
with r time-ordered ands anti-time-ordered entries, as fo
instance,

G2,1~a1 ,t1 ;a2 ,t2ub1 ,t18!

5u~ t22t1!Tr@Âb1~ t18!r̂0Âa1~ t1!Âa2~ t2!#

1u~ t12t2!Tr@Âb1~ t18!r̂0Âa2~ t2!Âa1~ t1!#.

~2.8!

These correlation functions are generated by the closed-t
path~CTP! generating functional associated to the familyAa,

ZA@J1 ,J2#5 (
n,m50

`
i n~2 i !m

n!m! E dt1 . . . dtndt18 . . . dtm8 ,

Gn,m~a1 ,t1 ; . . . an ,tnub1 ,t18 ; . . . ;bm ,tm8 !, ~2.9!

J
1

a1~ t1! . . . J
1

an~ tn!J2

b1~ t18! . . . J
2

bm~ tm8 !.

Here J1
a and J2

a are functions of time that play the role o
sources similar to the ones in Eq.~1.8! for the classical sto-
chastic processes.

The name closed time arose, because in the original c
ception~by Schwinger@16# and Keldysh@17#! the time path
one follows is from some initial timet50 to t→`, thus
covering all time-ordered points and then back from infin
to 0 covering the anti-time-ordered points. The total tim
path is in effect closed.

Conversely the correlation functions can be read fromZA

GA
n,mS a1 ,t1 ; . . . ;an ,tnub1 ,t18 ; . . . ;bm ,tm8 )

5~2 i !ni m
dn

dJ
1

a1~ t1!•••dJ
1

an~ tn!

dm

dJ
2

b1~ t1!•••dJ
2

bm~ tm!

3Z@J1 ,J2#U
J15J250

. ~2.10!

C. Relation between the functionals

Clearly there must be a relation between the decohere
functional and the CTP one. One can see in the correla
functions if we assume a single operatorÂ5( iai P̂i and con-
sider a pair of histories

a~ i 1 ,t1 ; . . . ;i n ,tn!5$P̂i 1
,t1 ; . . . ;P̂i n

,tn%
4-4
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and

b~ i 1 ,t18 ; . . . ;i n ,tm8 !5$P̂j 1
,t18 ; . . . ;P̂j m

,tm%.

Then one can easily verify that

GA
n,m~ t1 , . . . ,tn ;t18 , . . . ,tm8 !

5 (
i 1 . . . i n

(
j 1 . . . j m

ai 1
. . . ai n

bj 1
. . . bj m

3d@a~ i 1 ,t1 ; . . . ;i n ,tn!,b~ j 1 ,t1 ; . . . ;j m ,tm!#.

~2.11!

The straightforward relation is nonetheless not possibl
show in an elementary fashion. One needs to consider co
lation functions at all timest and this necessitates a descr
tion in terms of histories that can have temporal support o
the whole of the real line or at least a continuous subset o
This can be achieved in the framework of continuous-ti
histories @18–21#. However, this requires a significant up
grading of the formalism of quantum mechanical histori
The key idea is to represent histories by projectors on a
sor product of Hilbert spaceŝ tPTHt @22# in analogy to the
construction of the history sample space classically. A s
able Hilbert space~not a genuine tensor product! can be con-
structed@18# for the case thatT is a continuous set and th
decoherence functional can be defined as a bilinear, Her
ian functional on this space. It can then be shown that a
functional it is essentially a double ‘‘Fourier transform’’ o
the CTP generating functional.

This proof is to be found in@10# and is elementary if one
follows the logic of the construction. Here we shall restr
ourselves to a convenient statement of this result.

Let us assume that we have a family of commuting s
adjoint operatorsÂi . Their spectrum is then a subsetV of
some vector spaceRn. Any operator that commutes withÂi

is in one-to-one correspondence to functionsf (x) with x

PV and can be written asf (Â). Like the classical case w
can construct a space of historiesVT as a suitable subset o
3 tPTV t . Subsets ofVT are histories of the quantum me
chanical observablesÂi .

The decoherence functional is then a map that to each
of subsetsC andC8 of VT it assigns a complex number i
such a fashion that the following properties are satisfi
@6,23#:

~i! d(C8,C)5d* (C,C8), Hermiticity,
~ii ! d(0,C)50, null triviality,
~iii ! d(1,1)51, normalization,
~iv! d(CøC8,D)5d(C,D)1d(C8,D) for disjointC and

C8, additivity.

Such a decoherence functional can be constructed as a
tinuum limit of the discrete-time expressions~2.2!. Because
of the additivity condition, one canformally write the deco-
herence functional as an integral overVT3VT,
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d~C,D !5E Dx~• !Dx8~• !D@x~• !ux8~• !#

3xC@x~• !#xD@x8~• !#, ~2.12!

in terms of a functionD:VT3VT that plays the role of an
integration kernel. This is in complete analogy to the s
chastic probability measureP@x(•)# of Eq. ~1.7!.

One can viewD@x(•)ux8(•)# as the decoherence func
tional between a pair of fine-grained historiesx(•) and x8
(•), only that such histories cannot be represented by pro
tors on a Hilbert space. For example, if these histories w
defined on the configuration space for the time inter
@ t i ,t f #, one could write the standard expression@6#

D@x~• !ux8~• !#5r0@x~ t i !,x8~ t i !#d@x~ t f !,x8~ t f !#

3eiS[x(•)] 2 iS[x8(•)] , ~2.13!

in terms of the matrix elements of the initial density matr
r0, the standard configuration space action, and a delta fu
tion for the final-time points of the paths.

If ZA@J1 ,J2# is the CTP generating functional associat
to Âi we have

ZA@J1 ,J2#5E Dx~• !Dx8~• !ei *dtJ1
a (t)xa(t)e2 i *dtJ2

a (t)x8a(t)

3D@x~• !ux8~• !#. ~2.14!

In other words, viewed as a bi-functional over the functio
on VT, the decoherence functional is identical to the C
generating functional. The only difference is on the type
functions upon which they take values—the first on char
teristic functions and the second on complex-valued fu
tions of unit norm. In fact, Eq.~2.12! amounts to

Gn,m~a1 ,t1 ; . . . ;an ,tnub1 ,t1 ; . . . ;bm ,tm!

5E E Dx~• !Dx8~• !xa1~ t1! . . . xan~ tn!x8b1~ t18!

3x8bm~ tm!D@x~• !ux8~• !#. ~2.15!

Hence there exists the following correspondence betw
classical and quantum probability.

Quantum → Classical

Probabilities d~C,C8! → p~C!,

Correlations Z@J1 ,J2# → Zcl@J#.

The probability measure is a real-valued functional on fu
tions ofVT, while the decoherence functional is a Hermitia
bilinear functional on the functions ofVT. In a given system,
one goes fromd to p when the decoherence condition~2.5! is
satisfied, while in both cases one goes from probabilities
correlations through a Fourier transform.

What we will next show is how to effect the transitio
from the CTP generating functional to a stochastic proc
for the coarse-grained variables. Working at the level of
4-5
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correlation functions makes the construction of stocha
differential equations easier than working at the level
probabilities.

III. FROM QUANTUM TO CLASSICAL

A. The basic choice for coarse-graining

In order to study the transition from quantum to classic
we need to choose the variables on which we shall conc
trate. This amounts to a choice of a familyÂi of intercom-
muting operators. Now, amaximalfamily of intercommuting
operators generically contains full information about the e
lution of the quantum system.~Possible exceptions to thi
rule are trivial cases, as, for instance, when the Hamilton
and the initial density matrix commutes with allÂi).

One can implement a coarse-graining procedure eve
this stage. It suffices to take forÂi a nonmaximal family of
operators. This is the case, for instance, in quantum Bro
ian motion models. If we assume that the total system c
sists of a large number of harmonic oscillators, a maxim
family of intercommuting operators consists of the positi
operators of all particles. When we choose to focus o
single one of them, we effectively coarse grain by treat
the remaining degrees of freedom as an environment. Th
the type of coarse-graining associated with the studies
environment-induced decoherence.

However, this type of coarse-graining does not suffi
One has usually to consider smeared values of the rele
observables. This is effected by considering projecto
which are sufficiently smeared overV. We shall takeV to
be Rs so its points will be vectorsxa.

In general, it is difficult to work with characteristic func
tions, so we will work withsmeared characteristic functions.
If we denote byuxu their Euclidean distance, then a goo
choice for the projector is the function

f x̄~x!5expS 2
1

2s2
ux2 x̄u2D . ~3.1!

This Gaussian is not a sharp projector; it is strongly pea
in a sphere of lengths around the pointx̄; hence it is a good
approximation to a true projector for not very large values
s.

We can construct discrete-time histories, consisting
projectorsf x̄t i

centered aroundx̄t i
, at each timet i . One such

history can be viewed as a discretized approximation t
coarse-grained history in continuous time, centered arou
path t→ x̄(t).

We now consider two such discretized histories, cente
at the same time pointst i , each corresponding to a differen
pathx̄(•) andx̄8(•). Let us denote them bya x̄(•) anda x̄8(•) .
If we expect our system to exhibit classical behavior, th
the off-diagonal elements of the decoherence functional
fall rapidly whenever d25uux̄(•)2 x̄8(•)uu2ª( i ux̄t i

2 x̄8(t i)u2 is much larger thanN3s2. ~HereN is the number
of time steps!. Typically one has
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d„a x̄(•) ,a x̄8(•)…5O~e2d2/Ns2
!, ~3.2!

or some other type of rapid falloff. For pure initial states, th
behavior is expected,whens2 is much larger than the un-
certainties of the initial state and the Hamiltonian evolutio
preserves this property@24#. In this case, the diagonal ele
ments are close to defining probabilities for coarse-grai
histories centered aroundx̄(•) and with a spreads at each
moment of time.

Now, we want to find a probability distribution that woul
give these values for the probabilities of these histories
single-time projector is centered in a volume ofV of size

E dx fx̄~x!5~2ps2!r /2. ~3.3!

A probability distribution on the space of~discretized! paths
that reproduces these expressions for probabilities of th
coarse-grained sets is

p@ x̄~• !#5
1

~2ps2!rn/2
d~a x̄(•) ,a x̄(•)!, ~3.4!

wheren is the number of time steps assumed.~Dividing by
the volume turns the probabilities of events into a densit!

One can use Eq.~2.12! to write

d„a x̄(•) ,a x̄(•)…5E Dx~• !Dx8~• !

3expS 2
1

2s2
uux~• !2 x̄~• !uu2

2
1

2s2
uux8~• !2 x̄~• !uu2D D@x~• !ux8~• !#.

~3.5!

Note that our expressions are still defined with respec
discrete time.

From Eq.~2.14! we see that the kernelD can be obtained
from the inverse Fourier transform of the CTP generat
functional. This yields

p@ x̄~• !#5E DJ1~• !DJ2~• !

3e21/4p(J1•J11J2•J2)2 i /A2p x̄•(J12J2)

3Z@J1 /~A2ps!,J2 /~A2ps!#. ~3.6!

There is now no multiplicative term that depends on t
number of time steps. Hence, one can safely go to the c
tinuum limit from this expression. We have denoted asJ•x
5( iJ(t i)x(t i) and at the continuum limit this expressio
will become an integral.

To get the generating functional for the classical corre
tion functions one Fourier transforms the probability me
sure to get~we now drop the index that refers to our choi
of variables for the correlation functions!
4-6
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Z̃cl@J#5e2s2/8J•JE dR~• !e21/2pR•R

3ZF R

A2ps
1

J

2
,

R

A2ps
2

J

2G , ~3.7!

with R5 1
2 (J11J2) andJ5J12J2 .

This generating functional needs to be normalized to un
by assuming thatZ̃cl@0#51. The normalization condition is
not kept because we have employed approximate chara
istic functions. Had we used a sharp characteristic funct
the construction would automatically guarantee normali
tion. Now there is a deviation from unity of the order ofs2.

The expression~3.7! can be simplified. Assume that w
have a classical stochastic process for the variablesx(•) with
a generating functionalZ0@J#. Let us follow the same proce
dure for coarse-graining as before, using the approxim
projectors ~3.1!. The coarse-grained generating function
would be

Z̃cl@J#5e2(s2/2)J•JZ0@J#. ~3.8!

This means that we can consider the generating functio
in Eq. ~3.7! as coming from coarse-graining a classical s
chastic process with twice the degree of coarse-graining
the one from quantum theory. One can then drop the t
outside the integral in~3.7! as coming from coarse-grainin
of an underlying stochastic process given by

Zcl@J#5E dR~• !e21/2pR•RZF R

A2ps
1

J

2
,

R

A2ps
2

J

2G .

~3.9!

This equation gives the stochastic correlation functions
the classical limit of the quantum system described by
CTP generating functionalZ@J1 ,Z2#. It should be always
kept in mind that this processgives reliable results only on
scales much larger thans2.

We should now pause for a minute and examine the
sumptions we used in order to arrive here.

First, one should ask what is the meaning of the param
s. Is it arbitrary or not? In principle it is not. It is the degre
of coarse-graining that is necessary in order that the fal
~2.5! of the off-diagonal elements of the decoherence fu
tional is manifested. It therefore has to be much larger t
the natural scale associated with microscopic proces
however, it ought to be small compared to macrosco
scales.

In principle,s can be determined from a full study of th
decoherence functional. Usually a measure of coa
graining is the trace of the corresponding positive opera
However, we have considered here only commuting v
ables with a continuous spectrum, and the trace of the op
tors corresponding to Eq.~3.7! is infinite. This is related to
the fact that there is no defaultuniversalscale by which to
judge whethers is large. This problem is remedied by co
sidering phase space coarse-grainings as we shall see sh
In this case the natural scale is\51 and one can say tha
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s2@1 in order to have consistency of histories. It shou
nonetheless be much smaller than a macroscopic scal
which we observe phenomena.

More precisely, the stochastic approximation~3.9! is ac-
curate within an order of (l mic /s)2, wherel mic is the micro-
scopic scale that is determined by the dynamics or the in
state. However, there is also an error proportional
(s/Lmac)

2, whereLmac is the macroscopic scale ofobserva-
tion, i.e., the scale of accuracy we are interested in hav
This is due to the use of the Gaussian approximation for
projectors. Overall we have an error of the order of

c1~ l mic /s!21c2~s/Lmac!
2, ~3.10!

where c1 and c2 are constants of the order of unity. It i
therefore evident that a separation of scales is necessa
the stochastic description is to make any sense.

Second, the general logic of this construction is to ident
a stochastic process that adequately describes the evol
of the classicalized coarse-grained observables. There
subtle difference from the consistent histories scheme in
we do not seek to construct consistent sets for the system
hence make statements about individual quantum syste
Our approach is more operational. Given that quant
theory is a model that provides the statistical behavior
physical systems, we ask to construct a different mo
based on probability theory that describes some regime
the same physical system. For this purpose we utilize
consistency condition in order to identify the validity of ou
approximation. Then, we build the probability distributio
from the diagonal elements of the decoherence functiona

B. Phase space coarse-grainings

One does not have to restrict to the correlation functio
of a family of commuting operators in order to construct t
CTP generating functional. By considering correlation fun
tions in both position and momentum, it is possible to ge
eralize the definition~2.9!. Indeed in this equation it is no
necessary to assume that the operatorsÂa are commuting.
We assumed commutativity because we wanted a descrip
in terms of paths on the common spectrum of these op
tors.

However, in any Hilbert space that carries a represen
tion of the canonical commutation relations

@ q̂i ,p̂ j #5 id i j , ~3.11!

it is possible to assign a function on the phase spaceG
5$(qi ,pi)% for each operator by means of the Wigner tran
form

Â→FA~q,p!5E djdxe2 iqj2 ipxTr~Âeiq̂j1 i p̂x!:

5Tr„ÂD̂~q,p!…. ~3.12!

An important property of this transform is that it preserv
the trace
4-7
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Tr Â5E dqdpFA~q,p!. ~3.13!

However, the Wigner transform does not preserve multi
cation of operators. The defining conditionP̂25 P̂ for pro-
jectors is therefore not preserved and a projector is map
into some general positive function, rather than a charac
istic function of a subset ofG.

Since any operator can be represented by a function oV,
histories would be represented by functions on a spaceGT

which will be a suitable subspace of3 tPTG t . In Ref. @10# it
was shown that a decoherence functional can be constru
as an Hermitian bilinear functional on the space of functio
on GT. It is related to the CTP generating functional b
means of a Fourier transform.

All the formulas in the previous paragraph can then
reinterpreted to fit the phase space context by allowing
variablesx to denote bothq and p. ~The dimension ofG is
clearly even.! The main difference is that the Gaussian fun
tion f x̄ corresponds to an operatorF̂ with a finite trace. By
virtue of Eqs.~2.1! and ~2.13!

Tr F̂5~2ps2!r /2. ~3.14!

The parameters has units of action and is an absolute me
sure of the degree of coarse-graining on phase space.
sistency occurs whenevers2@\, where\ provides the natu-
ral length scale on phase space. In fact, in the study of a l
class of closed quantum systems, Omne´s has showed@25#
that the off-diagonal elements of the decoherence functio
are of the order of (\/s) r /4, wherer 52k is the dimension of
G. Hence, even if\/s;1028 there is a substantial degree
decoherence to justify the use of classical probability ands
is still sufficiently smallcompared to some external macr
scopic scales to justify the use of the Gaussian approxi
tion for the projector. From a macroscopic perspective
would be sufficient to consider the leading order ins2 of the
correlation functions.

The study of phase space histories is more intricate
cause one has to choose proper units for position and
mentum by which to write a Euclidean norm in the coar
grained projector~2.1!. For classicality it is not only
necessary to have a large value ofs, but thechoice of units
has to be preserved by the dynamical evolution@25,26#. This
is a nontrivial condition that largely depends on the syste
Hamiltonian. For this we shall prefer to employ configur
tion space coarse-grainings.

Whenever we have a representation of the canonical c
mutation relations we can define the coherent states

uz&5uxj&5eiq̂j1 i p̂xu0&, ~3.15!

where u0& is a fiducial vector, often taken to be the lowe
energy eigenstate. The important point is that one can as
to a large class of density matricesr̂ a function f r(x,j) ~its
P symbol! defined by

r̂5E dxdj f ~x,j!uxj&^xju. ~3.16!
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If one then denotes byZx0j0
@J1 ,J2# the CTP generating

functional corresponding to an initial state given byux0j0&
then the CTP generating functional for the same system b
different initial stater̂

Z@J1 ,J2#5E dx0dj0f r~x0 ,j0!Zx0j0
@J1 ,J2#,

~3.17!

and a similar equation would hold for the classical lim
provided that the degree of coarse-graining necessary for
coherence is determined by the study of the stater̂ rather
than the coherent states.

C. Gaussian processes

Let us now consider a quantum system described b
Gaussian CTP generating functional. Its most general fo
would be

Z@J1 ,J2#5expF2
i

2
J1•L•J11

i

2
J2•L̄•J21 iJ1•K•J2

1 i ~J12J2!•XG . ~3.18!

Here we have denoted byL kernels of the formLab(t,t8)
by

J•L•J85E dtdt8Ja~ t !Lab~ t,t8!Jb~ t8!

and the bar denotes complex conjugation.X denotes the one
point functionG105G01 and

iL ab~ t,t8!5G2,0~a,t;b,t8!2X~a,t !X~b,t8!, ~3.19!

iK ab~ t,t8!5G1,1~a,tub,t8!1G1,1~b,t8ua,t !

22X~a,t !X~b,t8!. ~3.20!

We can writeL5L12 iL 2 and K5K12 iK 2 in terms of
the real-valued kernelsL1 ,L2 ,K1 ,K2. The Hermiticity con-
dition on the CTP generating functional would then entai

L1
T5L1 , L2

T5L2 , ~3.21!

K150, K252L2 . ~3.22!

Evaluating the integral~3.7! yields

Zcl@J#5e2J•J•J1 iJ•X, ~3.23!

where

J5L21
1

4s2
L1•L1 . ~3.24!

It is worth noticing that whenever the termL2 is domi-
nant, the classical two-point function is independent of
4-8
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coarse-graining scale and equal to the real part of the q
tum two-point function. However, this simplification can o
cur only in Gaussian systems.

IV. EXAMPLES

A. Harmonic oscillators

For a single harmonic oscillator with frequencyv and
massm in a thermal state, we have for the configurati
space correlation functions

L1~ t,t8!52
1

2mv
sinvut2t8u, ~4.1!

L2~ t,t8!5
1

2mv
coth~bv/2!cosv~ t2t8!, ~4.2!

and Eq.~3.24! givesJ(t,t8).
One should recall that the smearing scales is determined

by the condition~2.5! on the falloff of the diagonal element
of the decoherence functional. Heres2 should be much
larger than (2mv)21, the position uncertainty of the groun
state. This can be verified by direct evaluation, but it is ma
plausible by the following observation: a thermal state ha
positiveP symbol, and hence its quantum behavior is ide
tical to the one of the coherent states, which in a Gaus
system is identical with that of the vacuum.

The term L1•L1 is proportional to (s2mv)21, hence
comparatively small. In particular, at high temperaturebv
!1 the L2 term is dominant, the correlation function iss
independent and one recovers the classical result.

Let us recall that this system does not describe a harm
oscillator in contact with a heat bath; it describes aclosed
system, evolving unitarily and prepared in a thermal st
~whatever that might mean!. Physically more relevant is th
case of an oscillator undergoing quantum Brownian moti
to be taken up later.

But we shall first examine the case where the system
initially prepared in a squeezed state. A squeezed stateur ,f&
is the zero eigenstate of the operator

b̂5coshr /2â1sinhr /2eifâ†, ~4.3!

where r>0. The correlation functionL1 is identical to the
one for the vacuum case, while

L2~ t,t8!5
1

2mv
@coshr cosv~ t2t8!

1sinhr cosv~ t1t82f!#. ~4.4!

Clearly it is necessary that

s2@~coshr /2mv! ~4.5!

in order to have decoherence. In that case theL1
2 term is

again negligible. For values ofr at the order of unity, it is not
different from the vacuum case, but for larger the degree of
coarse-graining necessary for classicality might become
12502
n-

e
a
-
n

ic

e

,

is

o

large to allow us to obtain any useful information. This
what is meant when we say that squeezed states are h
nonclassical states.

B. Quantum Brownian motion

We shall study here the Caldeira-Leggett model@27–29#,
i.e., a single harmonic oscillator of massM and frequencyv
coupled linearly to a bath of harmonic oscillators in a th
mal state. More precisely the system is defined by the Ham
tonian

Ĥ5
p̂2

2M
1

1

2
Mv2x̂21 x̂(

i
ci q̂i1(

i
S p̂i

2

2mi
1

1

2
miv i

2q̂i
2D .

~4.6!

From the Heisenberg equations of motion we get

M
d2

dt2
x̂1Mv2x̂252(

i
ci q̂i , ~4.7!

d2

dt2
q̂i1v i

2q̂i
252

ci

mi
x̂. ~4.8!

The second equation has a solution

q̂i~ t !5q̂0i cosv i t1
p̂0i

miv i
sinv i

2
ci

miv i
E

0

t

dssinv i~s2s8!x̂~s!, ~4.9!

which when substituted into Eq.~4.7! yields

d2

dt2
x̂1v2x̂2

2

ME
0

t

dsh~ t2s!x̂~s!52
1

M (
i

ci q̂i~ t !.

~4.10!

Here

h~s!5(
i

ci
2

2miv i
sinv is ~4.11!

is known as thedissipation kernel. Let us denote byu(t) the
solution of the homogeneous equation corresponding to
~4.10! with the initial conditionsu(0)51 and u̇(0)50. It
can be identified as the inverse Laplace transform of
function

ũ~s!5
1

s21v222/M h̃~s!
, ~4.12!

where h̃ is the Laplace transform of the dissipation kern
We can then write the solution of Eq.~4.10! as
4-9
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x̂~ t !5 x̂0u~ t !1
p̂0

M
u̇~ t !2

1

M (
i

ciF q̂0iE
0

t

dsu~ t2s!cosv is

1
p̂0i

miv i
E

0

t

dsu~ t2s!sinv isG . ~4.13!

Now we assume that the initial state of the system is fac
izable to a thermal state at temperatureT5b21 for the en-
vironment and a density matrixr 0̂ for the distinguished os
cillator. In this case, we can easily see that the expecta
value

x~ t !5Tr@ r̂0x̂~ t !#5x0u~ t !1
p0

M
u̇~ t !, ~4.14!

is a solution of the dissipative equations of motion, while t
two-point function reads

Tr@ r̂0x̂~ t !x̂~ t8!#5~Dx0!2u~ t !u~ t8!1
~Dp0!2

M2
u̇~ t !u̇~ t8!

1
Cpq

M
@u~ t !u̇~ t8!1u~ t8!u̇~ t !#

1
i

2M
@u~ t !u̇~ t8!2u~ t8!u̇~ t !#

1
1

M2 F E
0

t

dsE
0

t8
ds8u~s!n~s2s8!u~s8!

1 i E
0

t

dsE
0

t8
ds8u~s!h~s2s8!u~s8!G .

~4.15!

HereDx0 ,Dp0, andCpq are the uncertainties and correlatio
between position and momenta att50. Also,

n~s!5(
i

ci
2

2miv i
coth

bv i

2
cosv is, ~4.16!

is known as thenoise kernel.
From this equation, it is easy to determine the kernelL

and K. If we write the last line in Eq.~4.15! as (1/M2)
3@N(t,t8)1 iH (t,t8)#, we have

L1~ t,t8!5u~ t2t8!F 1

M
@u~ t !u̇~ t8!2u~ t8!u̇~ t !#

1
1

M2
H~ t,t8!G1u~ t82t !F 1

M
@u~ t8!u̇~ t !

2u~ t !u̇~ t8!#1
1

M2
H~ t8,t !G ~4.17!
12502
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e

L2~ t,t8!5~Dx0!2u~ t !u~ t8!1
~Dp0!2

M2
u̇~ t !u̇~ t8!

1
Cpq

M
@u~ t !u̇~ t8!1u~ t8!u̇~ t !#

1
1

M2
N~ t,t8!. ~4.18!

Now we want to derive the stochastic limit to which the
quantum correlation functions correspond. We shall use
~3.24!. Note, however, that the necessary degree of coa
graining in order to achieve decoherence must be in a ph
space region much larger than the one occupied by the in
state. Hence we take the coarse-graining scale to be m
larger than the uncertainties and correlations of the ini
state. This allows us to drop all terms butN(t,t8) in Eq.
~4.15!. The semiclassical equations are then largely indep
dent of the details of the initial state.

To see this in more detail we need to specify a giv
distribution of modes and couplings in the environment. T
information is encoded in the spectral density

I ~k!5(
i

ci
2

2miv i
d~k2v i !. ~4.19!

If the spectral density is specified, then we can fully det
mine the noise and dissipation kernels as

h~s!5E dkI~k!sinks, ~4.20!

n~s!5E dkI~k!cothS bk

2 D cosks. ~4.21!

A large class of physically interesting choices for spect
density are

I ~k!5 H 2Mg

p
kS k

Q D s21

, k<L,

0 k.L,

~4.22!

whereL is a high-frequency cutoff. The exponents deter-
mines the infrared behavior of the bath. Fors51 the envi-
ronment is called ohmic, fors,1 subohmic, and fors.1
supraohmic.

High temperature

For high temperaturebL!1, theL2 term is proportional
to b21 and dominates the classical correlation function. T
classical stochastic process will then beindependentof the
precise choice of coarse-graining. The two point function
x will then be

J~ t,t8!5
1

M2E0

t

dsu~ t2s!E
0

t8
ds8u~ t82s8!n~s2s8!.

~4.23!
4-10
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But this is the correlation function for the solution of th
classical stochastic differential equation

M
d2

dt2
x~ t !1Mv2x~ t !2E

0

t

dsh~ t2s!x~s!5 f ~ t !,

~4.24!

where f (t) is a Gaussian process with two-point function

^ f ~ t ! f ~ t8!&5h~ t2t8!. ~4.25!

The noise kernel then gives the correlation function for
external noise perturbing the classical dissipative equat
of motion. This justifies its name and recovers results s
gested by the path integral techniques@28#, or explicitly
proved only in particular regimes@6,24#. Note however, that
this is true only when the L2 term in Eq. (3.24) dominates, a
in the case of high temperatures. In the previous paragraph
is by necessity that theL1

2 term is small. Here it is not the
case, becauseL1 also contains a contribution from the env
ronment degrees of freedom that might give a substan
contribution in certain regimes. In the general case theL1

2

term might be of importance, something that implies that
stochastic limit will not be given by such a simple express
in terms of an external force guided by the noise kernel.

C. Scalar field

Consider now the case of a free, massive scalar field
vacuum. The correlation functions read

L1~x,t;x8,t8!52E d3k

~2p!3

1

2vk
e2 ik"x sinvkut2t8u,

~4.26!

L2~x,t;x8,t8!52E d3k

~2p!3

1

2vk
e2 ik"x cosvk~ t2t8!.

~4.27!

Sincevk>m, coarse-grainings withs2m2@1 for each mode
will manifest a suppression of the interferences. As in
harmonic oscillator theL1

2 term will be negligible and theL2

will provide the classical correlation function.
For a massless field, there is no natural coarse-grain

scale for all modes. One needs to take larger values ofs to
adequately deal with the infrared modes. Configuration sp
coarse-graining is clearly bad in such a case. The ana
has to be performed in phase space and provides the s
results as themÞ0 case@30#.

Consider now the case of a free scalar field in a gen
globally hyperbolic spacetime. The reader is referred to
standard treatments of Birrell and Davies@31# and Wald
@32#. Let us by t denote the time coordinate in a spaceli
foliation, by x the spatial coordinates, and let us use a c
lective indexa to label the modes. The Heisenberg-pictu
field will read then

f̂~x,t !5(
a

@ âaua~x,t !1âa
† ūa~x,t !#, ~4.28!
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where ua(x,t) are some complex-valued solutions to t
Klein-Gordon equation and

@ âa ,âb
† #5dab . ~4.29!

Let us assume that the system is found in a Gaussian
uV&, which is annihilated by the operatorâa . The action of
â† on uV& produces all states of the Fock space. It is easy
compute

^Vuf̂~x,t !f̂~x8,t8!uV&5(
a

ūa~x8,t8!ua~x,t !.

~4.30!

Let us now consider a particular instantt50 as reference
time in which the mode functionsua

0(x)5ua(x,t) form an
orthonormal basis

E dxua
0~x!ub

0~x!5dab , ~4.31!

E dxūa
0~x!ub

0~x!50. ~4.32!

Here, we wrote asdx the volume element of the push-backe
spacetime metric in the spacelike surfacet50. Any scalar
function on a instant of time can be decomposed in mod

ua~x,t !5Aab~ t !ub
0~x!1Bab~ t !ūb

0~x!. ~4.33!

The matricesA and B are the Bogoliubov coefficients an
satisfy the matrix identity

A†A2B†B51, ~4.34!

which essentially means that time evolution is given~classi-
cally! by a symplectic transformation. The correlation fun
tion ~4.30! reads then

^Vuf̂~x,t !f̂~x8,t8!uV&

5ū0~x8!A†~ t8!A~ t !u0~x!1u0~x8!B†~ t8!B~ t !ū0~x!

1ū0~x8!A†~ t8!B~ t !ū0~x!1u0~x8!B†~ t8!A~ t !u0~x!,

~4.35!

where a matrix notation has been employed.
This gives for the kernels

L1~ t,x;t8,x8!522u~ t2t8!Im ū0~x8!@A†~ t8!A~ t !

2B†~ t8!B~ t !#u0~x!22u~ t82t !Im ū0~x!

3@A†~ t !A~ t8!2B†~ t !B~ t8!#u0~x8! ~4.36!

L2~ t,x;t8,x8!52 Reū0~x8!@A†~ t8!A~ t !

1B†~ t8!B~ t !#u0~x!

12 Reū0~x8!A†~ t8!B~ t !ū0~x!. ~4.37!
4-11
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The Bogoliubov transformation is a generalization of t
squeezing transformation we studied earlier. For a sin
mode we had to coarse-grain in regions of configurat
space much larger than the uncertainty. It is similar in t
case. We can coarse-grain each mode separately at a
s2. From Eq.~4.35! we can read the uncertainty for eac
mode ~defined using the mode functionsua

0). This will be
equal to

~Dfa!25@A†A1B†B#aa~ t !1@A†B1B†A#aa~ t !.
~4.38!

The first term is always larger in norm than the seco
due to Schwarz inequality. The degree of coarse-grainin
each mode must be much larger than (A†A1B†B)aa(t) for
all t. To have a uniform coarse-graining scale for all mode
is necessary thats2 has to be much larger than the norm
the matrix

uuA†A1B†Buu~ t !5uu2A†A21uu~ t !,2uuAuu2~ t !.
~4.39!

The matrixA has a finite norm by virtue of the Bogoliubo
identity ~4.34!. Now, in order to have a meaningful coars
graining procedure it is necessary that the norms of the
goliubov matrices be bounded in time. Hence one can wri
sufficient condition for the possibility of a coarse-grainin
scales2 valid for all modes,

s2@suptuuA~ t !uu2. ~4.40!

We can then employ Eq.~3.24! to identify the correlation
function for the classicalized field. Due to Eq.~4.40! the L1

2

term will in general be smaller, as in the case of the squee
system, hence the distribution~4.37! gives the correlation
function of the classical stochastic process.

D. Perturbative expansion

So far we have considered only the case of Gaussian
cesses. We shall now study the case of nonquadratic sys
through the use of perturbation theory. Let us byZ0@J1 ,J2#
denote a CTP generating functional that can be exa
evaluated, e.g., a Gaussian. In general, a perturbative ex
sion aroundZ0 will be of the form

Z@J1 ,J2#5expS iF F i
d

dJ1
,2 i

d

dJ2
G DZ0@J1 ,J2#,

~4.41!

in terms of a functionalF@x(•),x8(•)#, which depends on
some coupling constant. In the case that the CTP genera
functional depends on configuration space variables,
Hamiltonian is of the formĤ01V( x̂), and the initial state is
the vacuum, we have

Z@J1 ,J2#5expS i E dtVF i
d

dJ1~ t !G
2 iVF2 i

d

dJ2~ t !G DZ0@J1 ,J2#. ~4.42!
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SubstitutingJ65R/(A2ps)6J/2 in Eqs.~4.42! yields for
the classical generating functional

Zcl@J#5E dR~• !e2(1/2p)R•R

3expH i E dtS VF i

2

d

dJ~ t !
1 iAp/2s

d

dR~ t !G
2VF i

2

d

dJ~ t !
1 iAp/2s

d

dR~ t !G D J
3Z0F R

A2ps
1

J

2
,

R

A2ps
2

J

2G . ~4.43!

If we assume that the length scale by which the poten
varies is much larger thans we can keep the lower orde
term in s in the exponential to get

Zcl@J#5E dR~• !e2(1/2p)R•R

3expS 2E dtAp/2sV8F i

2

d

dJ~ t !G d

dR~ t ! DZ0@R,J#

.Z0
cl@J#2E dt

1

2A2p
sV8F i

2

d

dJ~ t !G
3E dR~ t !R~ t !e2(1/4p)R•RZ0@R,J#, ~4.44!

whereZ0@J# is defined fromZ0@J1 ,J2# via Eq. ~3.9! and
we wrote for brevityZ0@R,J#5Z0@R/A2ps1J/2,R/A2ps
2J/2#.

The above expression is the leading order ins of the
generating functional and is valid onlywhen the potential V
is assumed to vary in macroscopic scales.

Note that as we see from Eq.~4.44!, a perturbation expan
sion of the quantum theory doesnot generically amount to a
perturbative expansion in the corresponding classical lim
These results are of relevance for the study of perturba
theory in quantum Brownian motion@33,34#.

V. CONCLUDING REMARKS

Let us now summarize our results. We first showed t
the quantum mechanical correlation functions do not co
spond to the statistical properties of a physical system
hence do not correspond to a classical stochastic proc
Then we explained the relation of Schwinger and Keldys
CTP generating functional to the decoherence functiona
the consistent histories approach to quantum theory. T
enabled us to use the decoherence condition for historie
order to develop a procedure of going from a quantum p
cess to a stochastic process that corresponds to a given
gree of coarse-graining for a class of observables. The
result was Eq.~3.9! that gives the relation between the cla
sical generating functional and the CTP generating fu
tional. But we should keep in mind that any results of t
4-12



at
c

th
e
w
d
iti

th
i
s
m

ys
it
s

ni

cl
b

te
y
te
a
s
r
te

f a
ly
to
to
rc
it
o

.
r
n
as
ite

u
a
n

xi
l
ti

.
se
no

, in
on-
ode.
t all
e-

ase.
we

as-

-
tions
es
ss-
ean
e-
try

ce.

the
s
s-

nc-
at

-

a-
,
ten-

ela-
ion.
um
sor
ns
the
s
s

ck-
y a

QUANTUM CORRELATION FUNCTIONS AND THE . . . PHYSICAL REVIEW D 63 125024
stochastic description that give some detailed structure
scales smaller thans are unreliable.

We then proceeded to study examples. We showed th
Gaussian processes the classical limit is a Gaussian pro
with a correlation function given by thereal part of the
quantum two-point function plus a term that depends on
coarse-graining scale. The second term is negligible in g
eral, but this is not necessary in the case of quantum Bro
ian motion at low temperatures, because then it largely
pends on the properties of the bath rather than the in
condition of the distinguished system.

Now, what is the use of these results? The answer is
a stochastic description might be more amenable to our
tuition than a quantum one. For instance, given a stocha
process, one can simulate the evolution of individual syste
and identify typical behaviors. This is something thatcannot
be donein quantum theory. We have no~uncontroversial!
way to describe the random evolution of an individual s
tem’s observables, while in classical probability we can wr
equations of the Langevin type. In this sense, the stocha
approximation captures an aspect of the quantum mecha
randomness that might be manifested on macroscopic
even intermediate scales. Hence for the Brownian parti
the knowledge of the noise due to the environment might
sufficient for certain applications.

Substituting the full quantum behavior for an approxima
description in terms of the Langevin equation is necessar
cases where the quantum system acts as a driving force
for another classical one. This is the case, for instance, of
detector coupled to a quantum field. While one often use
quantum description for a detector, this is clearly inapprop
ate for realistic systems; a detector is a macroscopic sys
and the description of its effective behavior in terms o
simple Schro¨dinger equation is an idealization that is hard
justified from first principles. On the other hand, a detec
can be treated as a classical system—e.g., with respect
center of mass—that is coupled to a stochastic driving fo
that arises from the fluctuation of the quantum system, w
which it is coupled. In this case the stochastic description
a quantum system is not only convenient, but necessary

The situation is similar in the case of quantum field theo
in curved spacetime as far as the issue of back-reactio
concerned. The quantum field acts as a source for the cl
cal gravitational field via its stress-energy tensor. One wr
then the semiclassical gravity equation

Gmn5k^Tmn&. ~5.1!

There is an underlying assumption in any use of this eq
tion. As it stands it is nonsensical; on the left hand side is
observable for an individual system and on the right ha
side an ensemble average. What is implied is that~i! the
behavior of the quantum field is in some regime appro
mately deterministic and~ii ! the corresponding classica
value of the stress energy tensor is equal to the expecta
value over the field’s state.

Of course these two assumptions need to be verified
order for the quantum field to behave classically, coar
graining is necessary. Even with coarse-graining it is
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necessary that the system will classicalize. For instance
the one dimensional case, time evolution might cause a c
tinuous increase of the squeeze parameter in a given m
In this case no fixed degree of coarse-graining is good a
times and there is very little we can do with a classical d
scription. Let us assume, however, that this is not the c
According to our earlier analysis, this would mean that
can choose a coarse-graining scale satisfying Eq.~4.40!.
Then, one might expect that the system will exhibit stoch
tic behavior for at least some of its properties.

In order for assumption~i! to be valid, the stochastic pro
cess for the stress-energy tensor should have small devia
from its mean. This is rarely true, as in simple spacetim
one can show that the quantum fluctuations of the stre
energy tensor are of the same order of magnitude as its m
value @35#. This leads to the point that the semiclassical d
scription of back reaction of quantum fields onto geome
ought to have a stochastic component@36–42#.

This is where our results in Sec. IV C are of relevan
First, we argued that the condition~4.40! is sufficient to ob-
tain classicality; then we showed that it is essentially
real part of the two-point function of the fields that give
the two-point function at the classical limit. Now the stres
energy tensor is a quadratic functional of the fields

Tmn~x!5 1
2 ¹mf~x!¹nf~x!2 1

2 gmnf~x!

3~2¹r¹r1m2!f~x!. ~5.2!

Its expectation value can be read from the two-point fu
tion via point splitting and renormalization. This means th
we can define

^Tmn~x!&5 lim
x8→x

1
2 @1/2~¹x

m¹x8
n

1¹x
m¹x8

n
!21/2@gmn~x!

1gmn~x8!#~¹x
r¹x8r1m2!D2~x,x8!. ~5.3!

Now, the imaginary point of the two-point function van
ishes ast→t8 as can be easily checked by Eq.~4.35!. Since
this part is antisymmetric the symmetrization of the deriv
tives in the definition~5.3! implies that it vanishes. Hence
thequantum mechanical expectation of the stress-energy
sor equals the classical stochastic expectation. However, as
we said before, one needs to take the higher order corr
tions into account in order to have a consistent back react
In this case, the naive prescription of using the quant
mechanical correlation functions of the stress-energy ten
breaks down. The correct higher order correlation functio
for the stress-energy tensor ought to be constructed from
classical correlations~4.37!. Clearly, the stochastic proces
for the stress-energy tensor isnot Gaussian, even though it i
obtained from the Gaussian process for the fieldf.

The general conclusion in this description is that the ba
reaction of quantum fields to geometry can be described b
stochastic differential equation of the type
4-13
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Gmn5kTmn@f#, ~5.4!

whereTmn is a random variable, a functional of the clas
calized fieldf(•) that is defined by a Gaussian stochas
process with a generating functional given by Eq.~4.37!.
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This result is conditional upon~4.40! holding that defines the
possibility of having a robust coarse-graining.
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