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We study the transition from the full quantum mechanical description of physical systems to an approximate
classical stochastic one. Our main tool is the identification of the closed-tim&@&aE generating functional
of Schwinger and Keldysh with the decoherence functional of the consistent histories approach. Given a degree
of coarse graining in which interferences are negligible, we can explicitly write a generating functional for the
effective stochastic process in terms of the CTP generating functional. This construction gives particularly
simple results for Gaussian processes. The formalism is applied to simple quantum systems, quantum Brown-
ian motion, and quantum fields in curved spacetime. Perturbation theory is also explained. We conclude with
a discussion on the problem of the back-reaction of quantum fields in spacetime geometry.
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I. CLASSICAL VS. QUANTUM PROBABILITY theory (which is by definition nonclassicalone can get a
different behavior only by examining a truncated version of
the theory. The intuitive picture for emergent classicality is

The emergence of classical behavior in quantum systemgat of a random phase approximation; the coarser the de-
is a very important question on the foundations of quantumycription of the system, the more the interference phase can-
theory. An explanation of how the classical world emerges igels out when averaged within the coarse-grained observable.
absolutely essential for any scheme that has ambitions to gphe general question is then, which types of coarse-graining
beyond the operational description of the Copenhagegan regularly lead to classical behavior.
interpretation. In recent years the program of decoherence In this paper, we take the attitude that a system exhibits
has provided some insight into how this transition is effectectlassical behavior if it admits an approximate description in
and suggested branches of physics where relevant phenomerms of classical probability theory. Since we are interested
ena are important, such as quantum optics and mesoscopit systems changing in time, we ask thhe evolution of
physics. coarse-grained observables is described by probability

From another perspective, the issue of classicalization igheory, in other words, that it should be modeled byta-
of significance in cosmology. We want to know how the chastic process
perceived classical world is obtained from an underlying de- Quantum processes have an important difference from
scription that is of a(presumably quantum nature. In the stochastic processes, their correlation functions are complex
early universe, processes are assumed to be governed bglued rather than real valued. This is equivalent to the fact
quantum field theory, but later a classical hydrodynamicghat quantum mechanical evolution cannot be described by a
description suffices to capture all relevant physics. The samprobability measure. In this paper, we focus on how classical
question is asked for quantum gravity; only now the focus iscorrelation functions can be constructed from the guantum
on the emergence of classical spacetime rather than on theechanical ones through coarse-graining, thus providing an
matter fields. At a more technical level one is interested taeffective stochastic description for a quantum system. A part
know when the semiclassical gravity approximati@ou-  of the relevant material has appeared previousl0j. This
pling classical metric variables to quantum figlds valid. presentation is simultaneously an elaboration and a simplifi-

In all such discussions, the first step is to establish what igation of the mathematical constructions performed in this
meant by classical behavior. The notion of classicality can beeference with an eye to possible applications.
defined in different ways, according to the context. For in- We shall then apply this formalism in various cases. We
stance, the absence of interferences in a given basis: in otheiill show that in Gaussian systems, the classical limit is
words an approximate diagonalization of the density matrixnostly determined by theeal part of the quantum two-point
[1-3], determinism or approximate determinism or somefunction. We shall verify this in a number of examples:
form of predictability[4—6], the validity of a hydrodynamic simple harmonic oscillators, the Caldeira-Leggett model of
or thermodynamic description for a many-body systemquantum Brownian motion, and scalar fields in curved space-
[5,7,8, and the existence of exact or approximate superseime. We shall then discuss the perturbation expansion from
lection rules[9]. which we shall infer that a perturbation expansion of the

Whatever the definition of classicality might be, there is aquantum theory does not imply a perturbation expansion for
consensus about how it appea@arse-grainingis neces- the corresponding stochastic one. We conclude with a dis-
sary. Since the underlying theory is assumed to be quanturmussion of the validity of the semiclassical approximation in

guantum gravity. This is a topic which our formalism is par-
ticularly adequate to address.
*Email address: charis@physics.umd.edu; present email address: The first step is, however, a brief summary of classical
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B. Classical probability hence identify the probabilitp(i,t;;j,t,), thatC, has been

In classical probability one assumes that at a single mofound true at timet; and then D at timet,
ment of time the possible elementary alternatives lie in a
space(}, thesample spaceObservables are functions 6h, p(i,ty; ,tz)zf dxp(X) xp.(X) xc.(X). 1.3
and are usually callechkndom variables ! '

The outcome of any measurement can be phrased as
statement that the system is found in a given suiset ().
Hence, the set of certain well-behavedeasurablesubsets
of ) is identified with the set of all coarse-grained alterna-
tives of the system. To each subsgtthere corresponds an <ftlgt2)zz figjp(i,t1;),t;)=p(BA). (1.9
observabley-(x), the characteristic function of the sét It 4
is defined agc(x) =1 if xe C andyc(x) =0 otherwise. It is
customary to denote the characteristic functiotfads 1 and
of the empty set as 0.

Note that if an observabletakes valued; in subsetsC;
of (1, we have that

F%rforming this experiment for all different choicesiaind
j, we can construct thstatistical correlation function

By BA we mean the product of the observabBsand A,
hencep(BA) stands forfdx p(x)B(x)A(X).

In general, the system may have intrinsic dynamics. This
is implemented by a map, , that takes the statp(x) at
timet, to the statertl,tz[p](x) at timet, in such a way as to
preserve normalization and positivity. The correlation func-

f(x)=2 fixc,(X). @D fion then reads
A stateis iptuitivgly thought of as a preparation of a system. <ft19t2>: f ng(X)Ttl,tz[fp](X)- (1.5
Mathematically it is represented by a measure(bni.e., a

map that to each alternati&it assigns its probabilityp(C).

It has to satisfy the following properties: Herefp stands for the state obtained from the multiplication

of the functionf(x) with the probability distributiorp(x).

(i) for all subset<C of Q, 0<p(C)=<1. When we want to st_udy properties of Fhe system at more
(i) p(0)=0; p(1)=1. than one moment of time, we need to introduce a §ample
(iii) for all disjoint subsetsC and D of w, p(CUD)  SPace forhistories If we denote byT the set of all possible
=p(C)+p(D). time instants, we can identify the space of histofiESas a

suitable subset ok, 1, where(}, is a copy of the sys-

Because of1.1) one can defing(f)=3f;p(C); p(f) tem’s sample space labeled by a moment of timEhe ele-
is then clearly the mean value bfThe usual notation for the ments ofQT arepaths t-x, and will be denoted as(-).
mean value i§; however the expressiop(f) is used when A history observable is a function ‘,ﬂT- Given a func-
we want to stress the state with respect to which the meafion f on (2, we can define a family of history observables
value is taken. Wherf) is a subset oR", the probability &S
measures are defined in terms of a probability distribution,
i.e., a positive function orf), which we shall(abusingly
denote a(x),

Fx(-)]=F(x(1)). (1.9

The state is represented by a probability meadtren
Q7. It contains information about both the initial condition
p(f)= J dx p(x)f(x). (1.2) and the dynamics; for any functidghon QT it gives its mean
valueP(F) or simplyF. We can, abusingly, write it in terms

_ye . . . T
There also exists the notion abnditional probability of a probability distribution orf}

Assume that in an ensemble described by a probability dis-

tribution p(x), we measure whether the property correspond- P(F)= f Dx(-)P[x(-)]F[x(-)]. 1.7

ing to the selC is satisfied. The subensemble of all systems

that have been found to satisfy this property is then describegh,o ~orrelation functiong f, g,.) can then be written as
1¥t2

by the probability distributiorp(x) xc(x)/p(C). . . .
Assume now that we have prepared a system in a ptateP(FHGtz) in terms of the functions, andG, defined by Eq.

and we want to perform a series of measurements of an 0616) The information of the correlation functions of a Single
servable f(x)=3:fiyc(x) at time t, and of g(x) Observabld is contained in the generating functional
i

=Ejgj)(Dj(x) at timet,>t,. For simplicity, we shall ignore = in

any self-dynamics of the physical systems as it evolves fromz,[J(-)]= >, —lf dty . ..dt(fy ... f )I(ty) ... (L)
t; to t,. We can consider a number of measurement situa- n=0 N: ! "

tions, labeled byi andj, corresponding to an arrangement

where the filterC; is placed at timet; and the filterD; at =J' Dx(-)P[x(~)]exp{iJ tht[x(~)]J(t)),
timet,. From a series of measurements one will establish the

number of systems in the ensemble that pass both filters and (1.8
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in terms of a function of timg(t), commonly referred to as something to do with quantum mechanical quantities such as
the “source.” interference phases. This remark turns out to be accurate. In
The generating functional is essentially the Fourier transf11] a scheme was described in terms of which the quantum
form of the probability measures. The definition can be ex-mechanical correlation functions can be operationally mea-
tended for families of observablés. Since correlation func- sured. It proceeds essentially by measuring interference
tions can be operationally determined, it is possible, inphases between different states. It is a measurement proce
principle, to determine the probability measure with arbitrarydure similar to ones used for the Aharonov-Bohm effect or
accuracy. the Berry phasd¢12]. This is natural in a sense, since the
Berry phase is the irreducible element for which quantum
C. Quantum correlations theory necessitates the use of complex numpess How-
ver, in the present paper we are interested in the classical
imit rather than the full structure of quantum theory and we

In the previous section we gave a summary of classicg
probability theory, thus establishing our notation, and idengp i not pursue this topic. The interested reader is referred to
tified the operational meaning of correlation functions inr17).
classical probability. We now want to check the possibility that the quantum

The correspo_nding structures for a single moment of imé, 4 +he statistical correlation functions coincide. An easily
are well known in standard quantum theory. Elementary al-

ternatives are rays on a complex Hilbert spateobserv- d|scern|bclje cbase |sb|vvhe[’A(t1),It3(t2'\)/l]=0, €., vxlllher_\t the b
ables are self-adjoint operators Bln a general property cor- measured observables commute. Viore generally, 1t can be

responds to a projection operator, and a state to a densixf”f'ed that a necessary and sufficient condition is

matrix.

Let us now consider an ensemble of quantum systems Re TH(Q;(t2) Pi(t1)pPi(t1))=0, (1.12
prepared in a state described by a density matr@ad try to o o . . _
operationally construct the correlation function of two ob-for all i,j andi’#i. In this case the following property is

servablesA==a,P; andB=1,b;Q; at timest; andt,>t,,  Safisfied:

respectively. Herd; refers to an exhaustive’(P,;=1) and

exclusive @;P;=P;4;) set of projectors, and so do&y . > Pt ) =Tr(pQ;(t))=p(j,t)  (1.13
Let the Hamiltonian of the system Ib¢ and p, the state '

of the system at timé=0. Then a series of measurementsfor all . This implies that the probabilties assigned to the set
. . . L & j. This implies p ilities assig s
wil enabIAe L_‘S (o identify the propablllty tha; is found true of all possible histories satisfy the additivity condition. They,
and then Qs found true. According to the rules of quantum terefore, define a classical probability measure. It is evident
theory this will be that in this case the quantum and the statistical correlation
S R P N functions coincide.
p(i.ty:],tn) =T Qje™ M2 WP Mtpelp; (=] This condition for classicality is exactly the one upon
A a ~ which the formalism of consistent histories is based. This
=Tr(Qj(t2) Pi(t1) poPi(t1)), (1.9
where we used the Heisenberg picture notation for operato

formalism is an indispensable part of our analysis and we
I1‘,51erefore proceed to examine it next.
A(t)=e"'Ae Mt If we now vary over all possible values of

i andj, we can construct thetatistical correlation function Il. QUANTUM PROCESSES
betweenA andB A. Consistent histories
L The consistent histories approach to quantum theory was
(AtlBt2>S=2 aib;p(i.ty;j,ty). (1.10  developed by Griffiths[14], Omnes [4], Gell-Mann, and

I Hartle [15,5,6. The basic object is &istory, which corre-

. . o sponds to properties of the physical system at successive
But this correlation function isot what one usually calls ;<o ie of time. A discrete-time history will then corre-

a correlation function in quantum theory. This name is usu- .

ally employed for the expectation of a product of operators SPONd to a strin®y Py, ... ,Py_of projectors, each labeled
by an instant of time. From them, one can construct the class
. .. R R operator
<At18t2>Q:Tr(pA(toB(tz)):; aib; Tr(pPi(t1)Q;(t2)).
(1.11) Co=U"(t)P U(ty) ... UT(ty)P U(ty),  (2.1)

Thisis a complex—v_alued objeg:_t .in contrast to En10 that where((s) — e~ iHS s the time-evolution operator. The prob-
was constructed using probabilities of events and can only bgbility for the realization of this history is

real valued. Then, what does the quantum mechanical corre-
lation correspond to? Clearly it is unlike classical correla- e
tions. The fact that it is complex-valued suggests that it has P(a)=Tr(C,poC.,), (2.2
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wherep, is the density matrix describing the system at time ~ One can similarly define time-orderespoint functions,
t=0. or anti-time-ordered

But this expression does not define a probability measure _ A g Aa
in the space of all histories, because the Kolmogorov addi- G*A@1.t1;82,t2) = 0(t1 = t2) T poA*1(t) A%(t) ]
tivity condition cannot be satisfied; i and 8 are exclusive B n ~a
histories, anda\/B denotes their conjunction as proposi- T+ 0(t2 =) Tr poA”2(t) A% (1) ].
tions, then it is not true that 2.7

p(a\/B)=p(a)+p(B). (2.3 In general, one can defineixedcorrelation functionsz"s,
with r time-ordered and anti-time-ordered entries, as for
The histories formulation of quantum mechanics does notinstance,
therefore, enjoy the status of a genuine probability theory. ) _ ,
However, an additive probability measuie definable, G*X(ay,t1;az,t5| by ty)
when we restrict it to particular sets of histories. These are B ~b S Aa ~a
called consistent setsThey are more conveniently defined = 0(t= t) T A™(11) poA™ (1) A™(15) ]
through the introduction of a new object, the decoherence _ Abi+/\ 5 Ads Aay
functional. This is a complex-valued function of a pair of +0(ty— o) TITAP(t) poA°2(t2) A™(ty) ].
histories given by (2.8

S - These correlation functions are generated by the closed-time-
d(a,B)=Tr(CgpoCa). 24 path(CTP) generating functional associated to the far#if

A set of exclusive and exhaustive alternatives is called con-

“ing__iym
sistent if for all pairs of different histories and 8 we have AR Z %f dt, ...dtdt] ...dt",
n,m=0 nim!
Red(«a,B)=0. (2.5
G™™M(ay,ty; .. an,talby,tys oL iby,th), (2.9

In that case one can use E@.2) to assign a probability

measure to this set. The consistent histories interpretation Jil(tl) .. .Ji”(tn)Jtil(ti) .. .Jkim(tr’n).

then proceeds by postulating that any prediction or retrodic-

tion we can make using probabilitiesust always make ref- HereJ3 andJ? are functions of time that play the role of

erence to a given consistent séfhis leads to counter- sources similar to the ones in E@..8) for the classical sto-

intuitive  situations of getting mutually incompatible chastic processes.

predictions, when reasoning within different consistent sets. The name closed time arose, because in the original con-

The predictions of this theory are therefore contextual, but irception(by Schwingel16] and Keldysh17]) the time path

any case, this is a general feature of all realist interpretationsne follows is from some initial timé=0 to t—o, thus

of quantum theory. covering all time-ordered points and then back from infinity
Except for trivial cases, it is only coarse-grained observio 0 covering the anti-time-ordered points. The total time

ables that satisfy an exa@r approximatgconsistency con- path is in effect closed.

dition. This means that the histories are constructed out of Conversely the correlation functions can be read f@m

projectorsP, whose trace is much larger than unity.

GA™M as,ty; .. an,talby,ty bt

B. The closed-time-path generating functional

We saw that in quantum theories probabilities and statis-

n
tical correlations are contained in the decoherence functional, _ (—i)nim 4 "
in fact, in its diagonal elements. We shall now show that the 83%(ty)- - - 83%n(ty) 83°K(ty)- - - 8I°™(tyn)
same is true for the quantum correlation functions.
Recall that in the decoherence functional projectors enter
in a time-ordered seriesThis suggests that it would be best xXZ[J;,d-] (2.10
to use time-ordered correlation functions. L&t denote a Jy=3_=0
family of commuting operators. Then the time-ordered two-
point correlation function is defined as C. Relation between the functionals
G2%ay ty:a,,ty) = G(tz—tl)Tr[ﬁoAal(tl)Aaz(tg)] Clearly there must be a relation between the decoherence
’ functional and the CTP one. One can see in the correlation
+0(t,—t) Tr] poA22(t,) A(t,)]. functions if we assume a single operafor =;a;P; and con-

(2.6) sider a pair of histories
Here we have denoted hy(t) the step function. aliptyy - Sinst) ={Pijptes Pt}
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and
d(C,D)=J DX(-)DX"(-)ALX(-)|x"(+)]
Blig,ty; . in ) ={P; . ty; .. P Lt} el X( ) TxolX' ()], (2.12
Then one can easily verify that in terms of a functiomA:Q"x QT that plays the role of an
integration kernel. This is in complete analogy to the sto-
Gr™(ty, - bty oot chastic probability measuré[x(-)] of Eq. (1.7).
One can viewA[x(-)|x'(-)] as the decoherence func-
=3 3 a a b b. tional between a pair of fine-grained historieg ) andx’
PRuut I Phuut PR S N S (+), only that such histories cannot be represented by projec-
) ) ) ) tors on a Hilbert space. For example, if these histories were
Xdla(iy,ty; .. in,tn), B0t - imtm) 1 defined on the configuration space for the time interval

(2.11) [ti,t;], one could write the standard expressjéih

The straightforward relation is nonetheless not possible to ADX() X' (1= polx(ti) X" (t) J8[X(te) X (t1)]
show in an elementary fashion. One needs to consider corre- « @i SX()1=is[x' ()] (2.13
lation functions at all times$ and this necessitates a descrip- ' '
tion in terms of histories that can have temporal support ovef, terms of the matrix elements of the initial density matrix
thg whole of the real Ilng or at least a contlnuous'subset Qf 'tpo, the standard configuration space action, and a delta func-
This can be achieved in the framework of continuous-time;on, for the final-time points of the paths.
histories[18-21]. However, this requires a significant up- 1tz 13 3 7is the CTP generating functional associated
grading of the formalism of quantum mechanical h|stor|es.t0 Al we have
The key idea is to represent histories by projectors on a ten-
sor product of Hilbert spaces.tH; [22] in analogy to the
construction of the history sample space classically. A suit-Z,[J, ,J,]zf DX(-)Dx’(-)e!/atF 0 g=ifdu (x'*(n
able Hilbert spacénot a genuine tensor prodiictan be con-
structed[18] for the case thal is a continuous set and the XALX()|X ()] (2.149
decoherence functional can be defined as a bilinear, Hermit-
ian functional on this space. It can then be shown that as m other words, viewed as a bi-functional over the functions
functional it is essentially a double “Fourier transform” of on Q7, the decoherence functional is identical to the CTP
the CTP generating functional. generating functional. The only difference is on the type of
This proof is to be found if10] and is elementary if one functions upon which they take values—the first on charac-
follows the logic of the construction. Here we shall restrictteristic functions and the second on complex-valued func-

ourselves to a convenient statement of this result. tions of unit norm. In fact, Eq(2.12 amounts to
Let us assume that we have a family of commuting self-
adjoint operatordA’. Their spectrum is then a subs@t of G™M(ag,ty; .. san,tylby,ta; - b t)
some vector spacR". Any operator that commutes with
is in one-to-one correspondence to functidi{) with x =J j DX(-)DX’ (+)X®(ty) . . . X?(ty)x"P1(t])
€O and can be written af(A). Like the classical case we
can construct a space of histori@d as a suitable subset of XX Pm(t ) ALX(-)[X' ()], (2.19

Xc1Q;. Subsets of)T are histories of the quantum me- , ,
Hence there exists the following correspondence between

chanical observable'. classical and quantum probabilit
The decoherence functional is then a map that to each pair q P Y-

of subsetsC andC’ of QT it assigns a complex number in Quantum — Classical
such a fashion that the following properties are satisfied
[6,23: Probabilities d(C,C') — p(C),
Correlations Z[J.,J_] — Z°[J].
(i) d(C’,C)=d*(C,C’), Hermiticity,

(i) d(0,C)=0, null triviality, The probability measure is a real-valued functional on func-

(iii) d(1,1)=1, normalization, tions of O T, while the decoherence functional is a Hermitian

(iv) d(CuC’,D)=d(C,D)+d(C’,D) fordisjointCand bilinear functional on the functions é1". In a given system,
C’, additivity. one goes frond to p when the decoherence conditighb) is

satisfied, while in both cases one goes from probabilities to
Such a decoherence functional can be constructed as a carerrelations through a Fourier transform.

tinuum limit of the discrete-time expressiofa2). Because What we will next show is how to effect the transition
of the additivity condition, one caformally write the deco- from the CTP generating functional to a stochastic process
herence functional as an integral oM@f x QT for the coarse-grained variables. Working at the level of the
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cprrelatipn functipns makgs the constrgction of stochastic d(eig.) ,a;,(,))=0(e‘52”\‘”2), (3.2
differential equations easier than working at the level of
probabilities. or some other type of rapid falloff. For pure initial states, this
behavior is expectedyhena? is much larger than the un-
IIl. FROM QUANTUM TO CLASSICAL certainties of the initial state and the Hamiltonian evolution
preserves this propert}24]. In this case, the diagonal ele-
A. The basic choice for coarse-graining ments are close to defining probabilities for coarse-grained

In order to study the transition from quantum to classical histories centered arour)_c(-) and with a spreadr at each
we need to choose the variables on which we shall concermoment of time.

trate. This amounts to a choice of a fam#y of intercom- Now, we want to find a probability distribution that would
muting operators. Now, maxima”ami]y of intercommuting give these values for the probabilities of these histories. A
operators generically contains full information about the evo-Single-time projector is centered in a volume(@fof size
lution of the quantum systeni{Possible exceptions to this

rule are trivial cases, as, for instance, when the Hamiltonian f dxfx)=(2ma?)"2. (3.3

and the initial density matrix commutes with &ll).

One can implement a coarse-graining procedure even & propability distribution on the space éfiiscretizedl paths
this stage. It suffices to take fé¢' a nonmaximal family of that reproduces these expressions for probabilities of these
operators. This is the case, for instance, in quantum Browneoarse-grained sets is
ian motion models. If we assume that the total system con-
sists of a large number of harmonic oscillators, a maximal _
family of intercommuting operators consists of the position pIx(-)]= 2—2rn/2d(a;(') 1 O0x())s (3.4
operators of all particles. When we choose to focus on a (2ma”)

single one of them, we effectively coarse grain by treating,\,heren is the number of time steps assuméBlividing by

the remaining degrees of freedom as an environment. This e yolume turns the probabilities of events into a density.
the type of coarse-graining associated with the studies of ope can use E¢2.12 to write

environment-induced decoherence.
However, this type of coarse-graining does not suffice.
One has usually to consider smeared values of the relevantd(@x(.) 70‘;(~)):f Dx(-)Dx'(-)
observables. This is effected by considering projectors,
which are sufficiently smeared ov€r. We shall take() to 1 — 2
be R® so its points will be vectors®. xexp — FHX( ) =x()|]
In general, it is difficult to work with characteristic func- 7

tions, so we will work withsmeared characteristic functions 1 -
If we denote by|x| their Euclidean distance, then a good ——2||x’(-)—x(~)||2 AX()[X" ()]
choice for the projector is the function 20
(3.9
1 V12
f;(x)=ex;{ - ?‘2|x—x| ) (3.1 Note that our expressions are still defined with respect to

discrete time.

From Eq.(2.14 we see that the kernd can be obtained

This Gaussian is not a sharp projectg; itis strongly p(_:'akeﬁjrom the inverse Fourier transform of the CTP generating
in a sphere of lengtlr around the poink; hence it is a good  f,nctional. This yields

approximation to a true projector for not very large values of
g. —
We can construct discrete-time histories, consisting of D[X(')]IJ DJ,(-)DJ_()

projectorsfy centered arounat_, at each timeg; . One such i
t; i e~ VAm(dy -3 +3_-3 ) —ilVZax- (3, -J-)

history can be viewed as a discretized approximation to a
coarse-grained history in continuous time, centered around a XZ[I N(N2ma),I_I(\N2ma)]. (3.6
patht—x(t). ' o

We now consider two such discretized histories, centered There is now no multiplicative term that depends on the
at the same time points, each corresponding to a different Number of time steps. Hence, one can safely go to the con-
pathx(-) andx’(-). Let us denote them byy., anday ., t|_nuum limit from this expression. We _ha_ve d_enotedJas_
If we expect our system to exhibit classical behavior, then™ >iJ(ti)x(ti) and at the continuum limit this expression

the off-diagonal elements of the decoherence functional willVill ecome an integral. . .
fall  rapidly  whenever 82=|[x(:)—x ()||%=3i[x, To get the generating functional for the classical correla-
= L) — . = i ti

o tion functions one Fourier transforms the probability mea-
—x'(t;)|? is much larger thalN x o2. (HereN is the number  sure to gefwe now drop the index that refers to our choice
of time steps Typically one has of variables for the correlation functions

125024-6



QUANTUM CORRELATION FUNCTIONS AND THE . . . PHYSICAL REVIEW D 63 125024

- ) o?>1 in order to have consistency of histories. It should
Z°J]=e"" /&'JJ dR(-)e M2RR nonetheless be much smaller than a macroscopic scale by
which we observe phenomena.

More precisely, the stochastic approximati9) is ac-
) 3.7 curate within an order ofl{,;./o)?, wherel ;. is the micro-
scopic scale that is determined by the dynamics or the initial
state. However, there is also an error proportional to
0/Lmad?, Wherel . is the macroscopic scale observa-
i i o _. . ‘tion, i.e., the scale of accuracy we are interested in having.
by assuming thaZ“[0]=1. The normalization condition is Thjs is due to the use of the Gaussian approximation for the

not kept because we have employed approximate charact&lioiectors. Overall we have an error of the order of
istic functions. Had we used a sharp characteristic function,

the construction would automatically guarantee normaliza- C1(Imicl )2+ Co( /L 1ad)?, (3.10
tion. Now there is a deviation from unity of the order «f.

The expressior3.7) can be simplified. Assume that we \yherec, andc, are constants of the order of unity. It is
have a classical stochastic process for the variatfleswith  nerefore evident that a separation of scales is necessary, if
a generating functionalo[ J]. Let us follow the same proce- he stochastic description is to make any sense.
dure for coarse-graining as before, using the approximate second, the general logic of this construction is to identify
projectors (3.1). The coarse-grained generating functionaly stochastic process that adequately describes the evolution
would be of the classicalized coarse-grained observables. There is a

- ) subtle difference from the consistent histories scheme in that
Z°[J]=e 7AIIZ1 ], (3.8)  we do not seek to construct consistent sets for the system and
hence make statements about individual quantum systems.

This means that we can consider the generating functionqbur approach is more Operationaj_ Given that quantum
in Eq. (3.7) as coming from coarse-graining a classical sto-theory is a model that provides the statistical behavior of
chastic process with twice the degree of coarse-graining ashysical systems, we ask to construct a different model
the one from quantum theory. One can then drop the termdased on probability theory that describes some regime of
outside the integral it3.7) as coming from coarse-graining the same physical system. For this purpose we utilize the

R J R 3
270 2" \2mo 2

with R=3(J, +J_) andJ=J,—J_.
This generating functional needs to be normalized to unit

XZ

of an underlying stochastic process given by consistency condition in order to identify the validity of our
approximation. Then, we build the probability distribution
| 1onR.R R J R J from the diagonal elements of the decoherence functional.
Z°[J]= | dR(-)e Y2R-Rz + =, - =
R2roe 2 \27c 2
(3.9 B. Phase space coarse-grainings

This equation gives the stochastic correlation functions in One does not have to restrict to the correlation functions
guation g : of a family of commuting operators in order to construct the
the classical limit of the quantum system described by th

CTP generating functiona[J, ,Z_]. It should be always TP generating functional. By considering correlation func-

kept in mind that this procegsives reliable results only on tions in both position and momentum, it is possible to gen-
P P > G y eralize the definition2.9). Indeed in this equation it is not
scales much larger than~.

We should now pause for a minute and examine the aglécessary to assume that the operafgtsare commuting.
sumptions we used in order to arrive here. We assumed commutativity because we wanted a description

First, one should ask what is the meaning of the parametdf €rms of paths on the common spectrum of these opera-
o. Is it arbitrary or not? In principle it is not. It is the degree ©rS- _ _ _
of coarse-graining that is necessary in order that the falloff HOWever, in any Hilbert space that carries a representa-
(2.5) of the off-diagonal elements of the decoherence funclion Of the canonical commutation relations

tional is manifested. It therefore has to be much larger than

- . . . gl pl1=ij i
the natural scale associated with microscopic processes; [q".p]=id", (3.1
however, it ought to be small compared to macroscopic, . . . .
scales. it is possible to assign a function on the phase sphce

={(q",p')} for each operator by means of the Wigner trans-

In principle, o can be determined from a full study of the 0

decoherence functional. Usually a measure of coars or
graining is the trace of the corresponding positive operator.
However, we have considered here only commuting vari- A_,;:A(q,p):f dédye 9 TPxTr(Aglaé+ipxy:

ables with a continuous spectrum, and the trace of the opera-

tors corresponding to E@3.7) is infinite. This is related to

the fact that there is no defaulhiversalscale by which to =Tr(AA(q,p)). (3.12
judge whethelwr is large. This problem is remedied by con-

sidering phase space coarse-grainings as we shall see shorthn important property of this transform is that it preserves
In this case the natural scalefis=1 and one can say that the trace
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If one then denotes bz)(ogo[\]+ ,J_] the CTP generating

TrA=f dadpFa(q.p). (3.13 functional corresponding to an initial state given |g&o)
then the CTP generating functional for the same system but a

However, the Wigner transform does not preserve mUItip"'different initial statep

cation of operators. The defining conditié*?=P for pro-
jectors is therefore not preserved and a projector is mapped
into some general positive function, rather than a character- Z[J. 'J—]zf dxodéof s(X0:€0)Zye [ I+ 31,
istic function of a subset aof . (3.17
Since any operator can be represented by a functidm, of
histories would be represented by functions on a sﬂ‘aTce and a similar equation would hold for the classical limit,
which will be a suitable subspace &f,_;I',. In Ref.[10] it provided that the degree of coarse-graining necessary for de-
was shown that a decoherence functional can be constructedherence is determined by the study of the sfamather
as an Hermitian bilinear functional on the space of functionghan the coherent states.
on I'". It is related to the CTP generating functional by
means of a Fourier transform. C. Gaussian processes
All the formulas in the previous paragraph can then be

reinterpreted fo fit the phase space context by allowing the, Let us ré?r"; consider a ?uan_tum Isyl/stem describedl ]E)y a
variablesx to denote botty andp. (The dimension of is aussian generating functional. Its most general form

clearly even. The main difference is that the Gaussian func-WOuld be
tion f; corresponds to an operatbrwith a finite trace. By i i _ _
virtue of Egs.(2.1) and(2.13 Z[J, J_]=exp — §J+ L-Jy +§J_ L-J_+id,-K-J_

TrE=(2m0?)"2 (3.19

+i(J+—J)-X}. (3.18

The parameteo has units of action and is an absolute mea-

sure of the degree of coarse-graining on phase space. Con-

sistency occurs whenever>#, where provides the natu- b

ral length scale on phase space. In fact, in the study of a Iargey

class of closed quantum systems, Ositas showed25]

that the off-diagonal elements of the decoherence functional J-L-J =f dtdt’ J(t)LaP(t,t")JP(t")

are of the order of#{/ )4, wherer =2k is the dimension of

I'. Hence, even ifi/o~10"° there is a substantial degree of and the bar denotes complex conjugatismienotes the one-

decoherence to justify the use of classical probability and oint functionG10= G and

is still sufficiently smallcompared to some external macro-

Here we have denoted Hykernels of the fornL°(t,t")

scopic scales to justify the use of the Gaussian approxima- iL25%(t,t")=G?*%a,t;b,t’)—X(a,t)X(b,t"), (3.19
tion for the projector. From a macroscopic perspective it
would be sufficient to consider the leading ordepthof the iK2(t,t")=G Y a,t|b,t’) + G Y (b,t'|a,t)
correlation functions.

The study of phase space histories is more intricate be- —2X(a,t)X(b,t"). (3.20

cause one has to choose proper units for position and mo-

mentum by which to write a Euclidean norm in the coarse- We can writeL=L,—iL, andK=K;—iKj in terms of
grained projector(2.1). For classicality it is not only the real-valued kernels;,L,,K;,K,. The Hermiticity con-
necessary to have a |arge Va|uemfbut thechoice of units dition on the CTP generating functional would then entail
has to be preserved by the dynamical evolufi®®,26. This

T_ T_

is a nontrivial condition that largely depends on the system’s Li=Li, Lz=Ly, (3.21)

Hamiltonian. For this we shall prefer to employ configura-

tion space coarse-grainings. Ki=0, Kp=2L,. (3.22

Whenever we have a representation of the canonical com- ) ) )

mutation relations we can define the coherent states Evaluating the integral3.7) yields
|Z>:|X§>:eia§+if)x|o>, (3.19 Ze[J]=e I EIFIIX, (3.23

where|0) is a fiducial vector, often taken to be the lowest Where

energy eigenstate. The important point is that one can assign

to a large class of density matricesa functionf ,(x, &) (its E=L,+ iLl- L. (3.24

P symbo) defined by 407
-~ It is worth noticing that whenever the terkry, is domi-
p—f dxd&f (x. &) xE)(xél. (318 nant, the classical two-point function is independent of the
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coarse-graining scale and equal to the real part of the quartarge to allow us to obtain any useful information. This is
tum two-point function. However, this simplification can oc- what is meant when we say that squeezed states are highly

cur only in Gaussian systems. nonclassical states.
IV. EXAMPLES B. Quantum Brownian motion
A. Harmonic oscillators We shall study here the Caldeira-Leggett md@a1—29,

i.e., a single harmonic oscillator of malssand frequencyw
coupled linearly to a bath of harmonic oscillators in a ther-
mal state. More precisely the system is defined by the Hamil-

For a single harmonic oscillator with frequenay and
massm in a thermal state, we have for the configuration
space correlation functions

tonian
Ly(t,t") L g [t—t’| (4.1) p2 1 p? 1
(tt)=— z—sinw|t—t'], . ~ P . . p; .
2mao H=m+§Mw2x2+x§i: ciqi+§i: 2_r‘ln, Emiwizqiz).
1 (4.6
Lz(t,t’)=ﬁ coth( Bw/2)cosw(t—t'), (4.2
@ From the Heisenberg equations of motion we get
and Eq.(3.24) givesE (t,t).
One should recall that the smearing scales determined d?.. %2-_3 ¢q
by the condition(2.5) on the falloff of the diagonal elements MEX"' M= — i Cidi, (4.7)
of the decoherence functional. Here should be much
larger than (2nw) 2, the position uncertainty of the ground 5
state. This can be verified by direct evaluation, but it is made d_A_ + w242 _&;( 4.8
plausible by the following observation: a thermal state has a dtzq' @idi= m," '
positive P symbol, and hence its quantum behavior is iden-
tical to t'he' one of thg coherent states, which in a Gaussiafe second equation has a solution
system is identical with that of the vacuum.
The termL,-L, is proportional to ¢?me) %, hence -
comparatively small. In.particular, at high tempergt;@r@ 9i(t)=Go; COSw t+ Poi sinw;
<1 thel, term is dominant, the correlation function ds m; w;
independent and one recovers the classical result. -
Let us recall that this system does not describe a harmonic — ——| dssinw;(s—s")X(s), (4.9
oscillator in contact with a heat bath; it describeslased MwiJo
system, evolving unitarily and prepared in a thermal state
(whatever that might meanPhysically more relevant is the which when substituted into E@4.7) yields
case of an oscillator undergoing quantum Brownian motion,
to be taken up later. d2 . 2 A 1 A
But we shall first examine the case where the system is —x+ w’X— Mf dsp(t—s)x(s)=— Vi E ciq;(t).
initially prepared in a squeezed state. A squeezed Btate dt 0 '
is the zero eigenstate of the operator (4.10
b= coshr/2a+ sinhr/2e'¢a’, (4.3  Here
wherer=0. The correlation functior., is identical to the _ Ci2 i
one for the vacuum case, while ”(S)_Zi 2maw; oIS (41D
L(t,t')= L[coshr cosw(t—t’) is known as thalissipation kernelLet us denote by(t) the
2me solution of the homogeneous equation corresponding to Eq.
+sinhr cosw(t+t' — ¢)]. (4.4  (4.10 with the initial conditionsu(0)=1 andu(0)=0. It
can be identified as the inverse Laplace transform of the
Clearly it is necessary that function
o> (coshr/2mw) (4.5 5
U(s)= 55 o=, (4.12
in order to have decoherence. In that case ItAeterm is $"+ w = 2Mn(s)

again negligible. For values ofat the order of unity, it is not _
different from the vacuum case, but for langéhe degree of where 7 is the Laplace transform of the dissipation kernel.
coarse-graining necessary for classicality might become to@e can then write the solution of E¢4.10 as
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. . Do. 1 .
X(t)=Xqu(t)+ %u(t)— M Z ci{qm f;dsqt—S)COSwis

Poi
m; w;

+

. (4.13

t
f dsut—s)sinw;s
0

Now we assume that the initial state of the system is factor-

izable to a thermal state at temperatiire 3~ * for the en-
vironment and a density matri?x} for the distinguished os-

PHYSICAL REVIEW D63 125024

(Apo)z-

La(t,t)=(Axp)?u(tu(t’) + 2 u(tu(t’)

Cpq o Ny
Ve [u(tyu(t’)+u(tHu(t)]
1 !
+ WN(t,t ). (4.18

Now we want to derive the stochastic limit to which these

value

X(t)=Tr poX(t)]=Xou(t) + % u(t), (4.14

is a solution of the dissipative equations of motion, while the

two-point function reads

(Apo)?

TIpoX(DX(1)]= (A% 2u(u(t’) + =5 u(Du(t’)

Seary i)+t
4 LuOut) +Fut)u(t)]
+ﬁ[u(t)0(t')—u(t’)ﬂ(t)]

1 t t’ , ’ ’
+W“Odsjo ds'u(s)(s—s)u(s')

H ! t ! _ ! ’
+|fodsf0 ds'u(s)p(s—s’)u(s’)|.
(4.15

HereAxy,Apg, andC,, are the uncertainties and correlation

between position and momentatat0. Also,

2
Ci Bw;

coth—— cosw;s,
2mi [Oh 2

v(s)= 2. (4.16

is known as thenoise kernel

From this equation, it is easy to determine the keriels
and K. If we write the last line in Eq(4.15 as (1M?)
X[N(t,t")+iH(t,t")], we have

1 . .
Ly(t,t) = 0(t—t")| 7 [u(®u(t’) —u(t)u(®)]

+ot' —1)

1 ) 1 N
+WH(M ) M[u(t yu(t)

(4.17)

. 1
—u(t)u(t’)]+WH(t’,t)

(3.24). Note, however, that the necessary degree of coarse-
graining in order to achieve decoherence must be in a phase
space region much larger than the one occupied by the initial
state. Hence we take the coarse-graining scale to be much
larger than the uncertainties and correlations of the initial
state. This allows us to drop all terms bN{t,t") in Eq.
(4.15. The semiclassical equations are then largely indepen-
dent of the details of the initial state.

To see this in more detail we need to specify a given
distribution of modes and couplings in the environment. This
information is encoded in the spectral density

2

=3 5

S(k— ;). 4.19

If the spectral density is specified, then we can fully deter-
mine the noise and dissipation kernels as

n(s)=f dkl(k)sinks, (4.20

v(s)zJ de(k)cotI’( %k) cosks. (4.21)

A large class of physically interesting choices for spectral
density are

2M kst
—yk( )  k=A

I(k)={ 7 |©® (4.22

where A is a high-frequency cutoff. The exponentleter-
mines the infrared behavior of the bath. B3¢ 1 the envi-
ronment is called ohmic, fos<1 subohmic, and fos>1
supraohmic.

High temperature

For high temperaturdA <1, thel, term is proportional
to 8~ ! and dominates the classical correlation function. The
classical stochastic process will then independendof the
precise choice of coarse-graining. The two point function for
x will then be

B(t,t)= thdsqt—s)Jt/ds’u(t’—s’) (s—s')
RN VEN I 0 g '
(4.23
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But this is the correlation function for the solution of the where u,(x,t) are some complex-valued solutions to the

classical stochastic differential equation Klein-Gordon equation and
d? t a,,a5]= 8,5 4.2
ME x(t)+ szx(t)—f dsy(t—s)x(s)=f(t), [aa,25]= Oap (4.29
t ° (4.24 Let us assume that the system is found in a Gaussian state

_ _ . _ _ |Q), which is annihilated by the operatay,. The action of
wheref(t) is a Gaussian process with two-point function 31 on | ) produces all states of the Fock space. It is easy to

’ ’ compute

(FOF(t))=n(t—t"). (4.29 P

The noise kernel then gives the correlation function for an (Q (X, 1) (X' 1) Q)= Uy (Xt UL (X, 1).
external noise perturbing the classical dissipative equations a

of motion. This justifies its name and recovers results sug- (4.30

gested by the path integral techniqugs], or explicitly , ) ,

proved only in particular regime$,24]. Note however, that L€t Us now consider a partl_cula(r) instamt O as reference
this is true only when the Lterm in Eq. (3.24) dominates, as {ime in which the mode functiong,(x) =u,(xt) form an
in the case of high temperatutes the previous paragraph it Orthonormal basis

is by necessity that the? term is small. Here it is not the

case, becaude; also contains a contribution from the envi- f dxug(x)u%(x)z Sup (4.3D)
ronment degrees of freedom that might give a substantial

contribution in certain regimes. In the general case Ltﬁ\e

term might be of importance, something that implies that the f dx@(x)u%(x)=0. (4.32
stochastic limit will not be given by such a simple expression

in terms of an external force guided by the noise kernel. Here, we wrote adx the volume element of the push-backed

spacetime metric in the spacelike surfaee0. Any scalar
function on a instant of time can be decomposed in modes
Consider now the case of a free, massive scalar field in

C. Scalar field

vacuum. The correlation functions read ua(x,t)zAaﬁ(t)u?g(xHBaﬁ(t)ﬁg(x). (4.33
o d*k 1 Cikex ) The matricesA and B are the Bogoliubov coefficients and
Li(x,t;x',t") = —j (27)? 20 e "sinwt—t'], satisfy the matrix identity
(4.26 ATA-B'B=1, (4.34
dk 1 which essentiall hat ti ion is g i-
ool sy T Cikx 4 y means that time evolution is gielassi
La(x, X", t") = f (27)3 2wy € coswy(t—t'). cally) by a symplectic transformation. The correlation func-

(4.27) tion (4.30 reads then

Sincew,=m, coarse-grainings with?’m?>1 for each mode  (Q|d(x,t)b(x’,t")|Q)
will manifest a suppression of the interferences. As in the _ _
harmonic oscillator thé 3 term will be negligible and the, =u0(x)AT(t")A()u2(x) +u’(x")BT(t")B(t)u’(x)
will provide the classical correlation function. —Oy o ntrer -2 Or i it 0
For a massless field, there is no natural coarse-graining HUTXDA(T)BOUT) +ur(x")BI(t)A(HUT(X),
scale for all modes. One needs to take larger values tf (4.35
adequately deal with the infrared modes. Configuration space
coarse-graining is clearly bad in such a case. The analysiwhere a matrix notation has been employed.
has to be performed in phase space and provides the same This gives for the kernels
results as then#0 casg 30]. n
Consider now the case of a free scalar field in a general L(t,x;t",x")=—26(t—t")Im ul(xH[AT(t)A(L)
globally hyperbolic spacetime. The reader is referred to the _
standard treatments of Birrell and Davif31] and Wald =BT(t")B(t)Ju’(x) —26(t" —t)Imu®(x)
[32]. Let us byt denote the time coordinate in a spacelike + Nt N0 o
foliation, by x the spatial coordinates, and let us use a col- X[ATOAR) =BIOB)JU(X') (4.39
lective indexa to label the modes. The Heisenberg-picture o — 0, ot At
field will read then Lo(t,x;t7,x") =2 Reuw’(x")[AT(1)A()
+B'(t")B(H)]u’(x)

SD=2 [aUa(x D) +aUa(x D). (4.28 +2 ReWC(X AT BN,  (4.37)
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The Bogoliubov transformation is a generalization of theSubstitutingJ.. =R/(v27o) =J/2 in Egs.(4.42 yields for
squeezing transformation we studied earlier. For a singlehe classical generating functional
mode we had to coarse-grain in regions of configuration
space much larger than the uncertainty. It is similar in this el _(12mR-R
case. We can coarse-grain each mode separately at a scale Z°[J]= j dR(-)e
o?. From Eq.(4.35 we can read the uncertainty for each
mode (defined using the mode functiorm%). This will be xex;;[if dt
equal to

i s 5
V{E 530 ! WT_/Z%R(t)}

s

2 8J(1) SR(1)

(A)?=[ATA+B'B],o(1) +[AB+BAL(1). Y
(4.38

The first term is always larger in norm than the second R J R J
due to Schwarz inequality. The degree of coarse-graining in XZg +=, - =
each mode must be much larger thai A+ B'B),,(t) for 2mo 2" \2mo 2
all t. To have a uniform coarse-graining scale for all modes it

is necessary that? has to be much larger than the norm of If we assume that the length scale by which the potential
the matrix varies is much larger thanr we can keep the lower order

term in o in the exponential to get

. (4.43

|ATA+BTB|(t) =||2ATA—1]|(t)<2||Al|%(t).

(439) ZCI[J] — f d R( A )e—(l/27T)R~R
The matrixA has a finite norm by virtue of the Bogoliubov

identity (4.34). Now, in order to have a meaningful coarse- \/— i

graining procedure it is necessary that the norms of the Bo- xexg — | dtym/2oV 2 5J() ISR Zo[R,J]
; ; Y _ (1) [6R(1)

goliubov matrices be bounded in time. Hence one can write a

sufficient condition for the possibility of a coarse-graining ch[J] f dt 1 v () }
2 . o~ — ——0 LN
scaleo“ valid for all modes, 0 2\2m 2 53(t)
o?=supl|A(D)]]?. (4.40
o _ xf dR(t)R(t)e” H#MRRZR J], (4.44
We can then employ Eq3.24) to identify the correlation

function for the classicalized field. Due to E@.40 the Li . . .
term will in general be smaller, as in the case of the squeeze‘éfhere ZO[‘:] 'i def_lned fromfo[\h ’/‘]\7%/'& E?Z (?’/'S\a/)z—and
system, hence the distributio@.37 gives the correlation W& Wrote for brevityZo[R,J]1=Zo[R/V2mo+J2RIy2mo

function of the classical stochastic process. —J12]. L . .
The above expression is the leading orderginof the

generating functional and is valid onlyhen the potential V
is assumed to vary in macroscopic scales

So far we have considered only the case of Gaussian pro- Note that as we see from E@t.44), a perturbation expan-
cesses. We shall now study the case of nonquadratic systersion of the quantum theory doest generically amount to a
through the use of perturbation theory. Let uszyyJ. ,J_] perturbative expansion in the corresponding classical limit.
denote a CTP generating functional that can be exactlfhese results are of relevance for the study of perturbation
evaluated, e.g., a Gaussian. In general, a perturbative expatireory in quantum Brownian motigr33,34.
sion aroundz, will be of the form

D. Perturbative expansion

V. CONCLUDING REMARKS

23+ ,J]—ex;{ IF[I E’_IEDZO[J* J-1 Let us now summarize our results. We first showed that
(4.41) the quantum mechanical correlation functions do not corre-
_ ) ) spond to the statistical properties of a physical system and
in terms of a functionaF[x(-),x'(-)], which depends on pence do not correspond to a classical stochastic process.
some coupling constant. In the case that the CTP generatinghen we explained the relation of Schwinger and Keldysh's

functional depends on configuration space variables, theTp generating functional to the decoherence functional of
Hamiltonian is of the fornHy+V(x), and the initial state is the consistent histories approach to quantum theory. This
the vacuum, we have enabled us to use the decoherence condition for histories in
order to develop a procedure of going from a quantum pro-
703, .3 ]=exp(iJ dtv[i 6 cess to a stochastic process that corresponds to a given de-
e 8J (1) gree of coarse-graining for a class of observables. The end
result was Eq(3.9) that gives the relation between the clas-
—ivl =i g )Z [3,.0.]. (442 sical generating functional and the CTP generating func-
SI_(t)]) o ' tional. But we should keep in mind that any results of the
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stochastic description that give some detailed structure imecessary that the system will classicalize. For instance, in
scales smaller thaor are unreliable. the one dimensional case, time evolution might cause a con-
We then proceeded to study examples. We showed that itinuous increase of the squeeze parameter in a given mode.
Gaussian processes the classical limit is a Gaussian procéssthis case no fixed degree of coarse-graining is good at all
with a correlation function given by theeal part of the times and there is very little we can do with a classical de-
guantum two-point function plus a term that depends on thecription. Let us assume, however, that this is not the case.
coarse-graining scale. The second term is negligible in gerAccording to our earlier analysis, this would mean that we
eral, but this is not necessary in the case of quantum Browrzan choose a coarse-graining scale satisfying B0.
ian motion at low temperatures, because then it largely defhen, one might expect that the system will exhibit stochas-
pends on the properties of the bath rather than the initialic behavior for at least some of its properties.
condition of the distinguished system. In order for assumptiofi) to be valid, the stochastic pro-
Now, what is the use of these results? The answer is thatess for the stress-energy tensor should have small deviations
a stochastic description might be more amenable to our infrom its mean. This is rarely true, as in simple spacetimes
tuition than a quantum one. For instance, given a stochastione can show that the quantum fluctuations of the stress-
process, one can simulate the evolution of individual systemenergy tensor are of the same order of magnitude as its mean
and identify typical behaviors. This is something thahnot  value[35]. This leads to the point that the semiclassical de-
be donein quantum theory. We have n@ncontroversigl  scription of back reaction of quantum fields onto geometry
way to describe the random evolution of an individual sys-ought to have a stochastic compong3t—42.
tem'’s observables, while in classical probability we can write  This is where our results in Sec. IV C are of relevance.
equations of the Langevin type. In this sense, the stochasti€irst, we argued that the conditigq4.40 is sufficient to ob-
approximation captures an aspect of the quantum mechanictdin classicality; then we showed that it is essentially the
randomness that might be manifested on macroscopic ageal part of the two-point function of the fields that gives
even intermediate scales. Hence for the Brownian particlehe two-point function at the classical limit. Now the stress-
the knowledge of the noise due to the environment might benergy tensor is a quadratic functional of the fields
sufficient for certain applications.
Substituting the full quantum behavior for an approximate
description in terms of the Langevin equation is necessary in TH(X)=3V#P(X) V' p(X) — 59" ()
cases where the quantum system acts as a driving force term
for another classical one. This is the case, for instance, of any X(=V, Vit m?) ¢(x). (5.2
detector coupled to a quantum field. While one often uses a
guantum description for a detector, this is clearly inappropri-
ate for realistic systems; a detector is a macroscopic systegp0
and the description of its effective behavior in terms of a
simple Schrdinger equation is an idealization that is hardly
justified from first principles. On the other hand, a detector
can be treated as a classical system—e.g., with respect to its . ) )
center of mass—that is coupled to a stochastic driving force, (T*"(X))= lim 3[LV2(ViV,, +VV,,) =124 g*"(x)
that arises from the fluctuation of the quantum system, with X' —x
which it is coupled. In this case the stochastic description of +g" (X ) (VEV ,+mAAs(x,x). (5.3
a quantum system is not only convenient, but necessary.
The situation is similar in the case of quantum field theory
in curved spacetime as fa_r as the issue of back-reaction i§ Now, the imaginary point of the two-point function van-
concern.ed.. The quantum field acts as a source for the C'?S%hes ag—t’ as can be easily checked by E4.35. Since
cal gravitational field via its stress-energy tensor. One writegyg part is antisymmetric the symmetrization of the deriva-

Its expectation value can be read from the two-point func-
n via point splitting and renormalization. This means that
we can define

then the semiclassical gravity equation tives in the definition(5.3) implies that it vanishes. Hence,
thequantum mechanical expectation of the stress-energy ten-
Gv= (T ) (5.1)  sor equals the classical stochastic expectatidowever, as

we said before, one needs to take the higher order correla-

There is an underlying assumption in any use of this equations into account in order to have a consistent back reaction.
tion. As it stands it is nonsensical; on the left hand side is an this case, the naive prescription of using the quantum
observable for an individual system and on the right handnechanical correlation functions of the stress-energy tensor
side an ensemble average. What is implied is ilnathe breaks down. The correct higher order correlation functions
behavior of the quantum field is in some regime approxi-for the stress-energy tensor ought to be constructed from the
mately deterministic andii) the corresponding classical classical correlation$4.37). Clearly, the stochastic process
value of the stress energy tensor is equal to the expectatidor the stress-energy tensorrist Gaussian, even though it is
value over the field’'s state. obtained from the Gaussian process for the figld

Of course these two assumptions need to be verified. In The general conclusion in this description is that the back-
order for the quantum field to behave classically, coarsereaction of quantum fields to geometry can be described by a
graining is necessary. Even with coarse-graining it is nostochastic differential equation of the type
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GL=«T,[d], (5.4 This result is conditional upo.40 holding that defines the
possibility of having a robust coarse-graining.
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