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2D anti—de Sitter gravity as a conformally invariant mechanical system
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We show that two-dimension&D) AdS gravity induces on the spacetime boundary a conformally invariant
dynamics that can be described in terms of a de Alfaro—Fubini—Furlan model coupled to an external source
with conformal dimension 2. The external source encodes information about the gauge symmetries of the 2D
gravity system. Alternatively, there exists a description in terms of a mechanical system with anholonomic
constraints. The considered systems are invariant under the action of the conformal group generated by a
Virasoro algebra, which occurs also as an asymptotic symmetry algebra of two-dimensional anti—de Sitter
space. We calculate the central charge of the algebra and find perfect agreement between the statistical and
thermodynamical entropies of Ad®lack holes.
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Recent investigations have brought evidence of a deeplfaro—Fubini—Furlan(DFF) model[8] coupled to an exter-
connection between two-dimension@D) gravitating sys- nal source with conformal dimension 2. The external source
tems and conformal mechanick]. The most natural context encodes information about the gauge symmetries of the 2D
to test this conjecture is the anti—de Sitter/conformal fieldgravity system. Alternatively, the dynamics of the boundary
theory (AdS/CFT) correspondencf2] in two spacetime di- fields admits an equivalent description in terms of a me-
mensiong 3]. In fact, for D=2 this correspondence essen- chanical system with anholonomic constraints. In both cases,
tially states that gravity on AdSshould be described by a the mechanical system is invariant under the action of the
conformally invariant quantum mechanics. full one-dimensional conformal group generated by a Vira-

Most of the progress in this direction has been achieved irsoro algebra, which also appears as asymptotic symmetry
the context of 2D dilaton gravity, mainly because of the sim-algebra of Ad$. We compute the central charge of this al-
plicity of the model[4—6]. For these models the conformal gebra and find perfect agreement between statistical and ther-
symmetry (generated by a Virasoro algeprias a natural modynamical entropy of AdSblack holes.
interpretation in terms of the asymptotic symmetries of the Our starting point is the Jackiw-TeitelboitdT) model
gravitational system. Moreover, the central charge of the alf9], with action
gebra, whose value is crucial for calculating the statistical
entropy of 2D black holes, can be calculated using the de- Y 5
formation algebra of the boundary of Ag$4]. I= EJ d*—gm[R+2)\?],

Despite the simplicity of the model, the various attempts

to identify the conformal quantum mechanics that should bgyhere 7 represents the dilaton. Two-dimensional anti—de

dual to gravity on Ad$ and to calculate the entropy of 2D sitter space, or more generally black holes in AdSe so-
black holes by counting states of the CFT met only partialytions of this mode[11]:

succes$4-6]. The conformal mechanics involved could not

be identified and a mismatch ofy@ factor between thermo-  ds2= — (N?r2—a?)dt®+ (\%r2—a?) " tdx?, 7= no\X,

dynamical and statistical entropy was found. 2

The puzzle has become even more intricate in view of the

results of Ref.[7]. There it was shown that iD=2 the wherea is given in terms of the black hole mass, a2

AdS/CFT correspondence has a realization in terms of a two=2M/\. The thermodynamical black hole entropy is given

dimensional CFT, which is essentially a theory of openby

strings with Dirichlet boundary conditions. Moreover, it was

shown that the degeneracy of states of the 2D CFT explains 4 [7oM
TN2n

@

()

correctly the thermodynamical entropy of 2D black holes. S=
In this paper we show that the boundary dynamics in-

duced by Ad3 dilaton gravity can be described by a de g 45ymptotic symmetries of Ad@re defined as the trans-
formations which leave the asymptotic form of the metric

) ) o invariant; i.e., they preserve the largéehavior
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where the fieldsy,, parametrize the first sub-leading terms
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is not exact. The Lagrange equations of the first kind for the
fields ¢;={p,B, v} read
Fi—miéai-i-Awi:O, (11)
whereF; is the force that can be derived from a potential
Fi=—4;U, m; denote the masses of the fields, is a
Lagrange multiplier, and the; are the components of the

in the expansion and can be interpreted as deformations §ne-forme. If we choose

the boundary.

The asymptotic forn4) is preserved by infinitesimal dif-

feomorphismsy*(x,t) of the form[4]

et) al(t) 1
X[: E(t)+ W_Fr_‘l—’_o( r—5> :
) a'(t) 1
X'=—re(t)+ +o(—2), (5)
r r

wheree(t) anda*(t) are arbitrary functions, the* describ-
ing pure gauge diffeomorphisms. In Ré#] it was shown
that the symmetries) generate a Virasoro algebra.

The asymptotic behavior of the scalar fiejd compatible
with the transformation$5), must take the form

1
+0 r_3 , (6)

wherep and vy, play a role analogous to that of thg,, .

ap(tyr+ 22V

7= 7o

Introducing the new fields, invariant under the pure gauge

diffeomorphisms parametrized ky*,

1
B= PVt Yy
1
Y= YT 5 Ve (7)

the equations of motion following from the acti¢h) yield,
in the limit r —o !

N "2p=py—B, (8)

by+ﬁ=0. 9

Equations(8) and (9) determine a mechanical system with

anholonomic constraint, since the one-form
w=vydp+dp (10

IAt first sight, it seems not necessary to require &), since it
comes from the leading term in the stress tensor compohgnt

which is of order 1¥? [12]. However, T, , transforming as a ten-
sor, is clearly not invariant under coordinate transformations. In

fact, in the light-cone coordinates used below, E®). originates

from an order 1 term, so requiring E(P) is really necessary for

consistency.

m,=\"%, mg=m,=0, (12)

and

U=\Bp, (13

the Lagrange equatiori¢l) yield Eq. (8), together with the
Lagrange multiplieA =\ p. Before we proceed, we note that
from Eqgs.(8) and(9), one gets the conservation law

1 )
T+U=§)\_1p2+)\,3p=00n5t. (14

Notice thatT+ U is essentially the mass of the black holes
considered irf4].

The boundary fieldsp; span a representation of the full
infinite dimensional group generated by the Killing vectors
(5). In fact, under the asymptotic symmetrigs, they trans-
form as

op= ql)— ;Ep,
.. ep
5,8=e/3+e,8+}\—, (15
Sy=€y+2ey— F
The above transformations are easily recognizethasma-
lous) transformation laws for conformal fields of weights
—1,1,2 respectively. We are interested in the transformation

laws of the equation of motio(8), the constraint9), and the
conserved chargél4). Using Eq.(15), we get

o d . . L
5[7P+/3]:fa[7P+,3]+26[)’P+,3]

. p
+e€ —yp+,8+;, (16)
pi_ 91 P
0 —yp—l—ﬁ—l—; —edt yp+[3+}\2
+ e + B+ 1
€ —vyp+p Nt (17)
d
AT+U]=eg[T+U]. (18)
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We see that the constraint transforms like a conformal fieldnent leading to Eq(22) relies on the identification of; as
of weight 2 with anomaly term. The conformal weights of the boundary value for the stress-energy tensor of a 2D CFT.
the equation of motion and the conserved charge are 1 and O To do this, we choose the conformal gauge
respectively, and anomalies are absent. The above equations
imply that on shell the constraint and the equation of motion ds’=—e®“dx"dx". (23
are invariant under the transformatiofi®). i o

Alternatively, we may describe the dynamical syst@n Then the actior(1) takes the Liouville-like form
in terms of the DFF mode|8] of conformal mechanics,

C 1

coupled to an external source. To this aim, we start from the |=— J' dzx( I wd_n+i_wd, n— =\29e2*|. (24)
conservation law(14), i.e., T+U=c. Introducing the new 2
field g=/p/\, which has conformal dimension 1/2, and
eliminating 8 from Eq.(14) by means of Eq(8), we arrive at
the equation

The action must be complemented by the constraftite
equations of motion for the missing components of the met-
ric)

- g )\2 ++ gr - + +W=
q_EZEW’ (19) T.:=057—29.1md.0=0, (25

whereT.. .. denote the components of the stress-energy ten-
with g= —c/(2\), whereas from Eq(14) follows sor. _ _ _
For n—< the potential term in the actiof24) goes to
@ g A2 zero and the model becomes an exact 2D CHT In fact,
—t—=——35. (200  defining the new fieldX,Y,
2 2q2 4

w=X=Y, np=X+Y, (26)
One can easily check the equivalence of the sy<i@n9)
with Egs.(19),(20). Moreover, Eq(19) is easily recognized the action and the constraints become
as the equation of motion for the DFF model coupled to an
externa_l sourcey. . _ . | = _zf d2x(d, Xa_X—3,Yd_Y), (27)
At this point it is straightforward to write down an action
for the dynamical syster(iL9). It is given by

1
[ o

. g 1
02— 24 \2,(02
29 AN (21)

T =X+ =29 X X+29.Y3.Y=0.
(28)

Taking »—o we reach the boundary of AdSwhich in
light-cone coordinates is located xat =x~. One can show
Equation(21) resembles very much the IR-regularized actionthat T. . |poundary= T - —|boundary= Ttt» With Ty given by
proposed by DFH8], the only difference consisting of the Eq. (22).
fact that the external soureg which couples to the field, Let us now show that; generates the diffgroup. Intro-
is not constant, but represents an operator of conformal diducing the charges
mension 2. Note that in the calculation 6f, y, being an
external source, is not varied. One can easily show that the
action is(up to a total derivativeinvariant under the confor-
mal transformation$15).

The dynamical system described by Ed8),(9) [or and using the transformation lai46), one has
equivalently by Eq(19)] defines a one-dimensional confor- . ) )
mal field theory (CFT). The invariance group of the model O Tu=[J, Tu]=€Ty+2eTy. (30)
coincides with the group of asymptotic symmetries of AdS o )
and can be realized as the difjroup describing time rep- EXpanding in Fourier modes,
arametrizationsét=€(t). In analogy with 2D CFT, one
would like to identify the stress-energy tensigf associated Ty= 2 Le ™ g(t)= 2 ape ™ (32)
with the CFT,. This analogy suggests th&; is proportional
to the constraint$9):

J= f €Ty, (29)

and using Eq(30), one finds thal,, generates a Virasoro
. . algebra:

Te=Npy+pB). (22)

. . [LmuLm]:(m_n)Lm+n- (32

(The constant of proportionality has been chosen to ensure
thatT,; has the dimensions of a mass squarédfact, from  Equation(22) does not give the most general form of the
Eqgs.(8), (9) and(16) it is evident thafT; plays the same role CFT; stress-energy tensor. We have the freedom to add to it
as the holomorphid@ . , (and antiholomorphid@__) stress- a constant ternfwhich we choose proportional to the black
energy tensors play in 2D CFT. A more compelling argu-hole massM) and an improvement term:
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Ttt|impr:Ttt+)\M+bbi (33 t:iea)\r (38)
an '

whereb is an arbitrary constant. The improvement term is a
total derivative and does not affect the statusTgfas gen- Thus the vacuum and black hole solutions correspond to
erator of the diff group. Though the constahtis at the CFT  different time variables on the boundary. Moreover, for
level undetermined, it can be computed using the underlying- <7<, 0<t<w, part of the “history” seen by the
gravitational dynamics. Comparing E@3) with the expres- vacuum observer cannot be seen by the black hole observer.
sion for T; found in Ref.[5], one getdh= —27,. It follows that there will be a term in the entropy describing
We can now calculate the central charGeassociated the entanglement of states, which has the form of a contri-
with the Virasoro algebrd32). A naive computation will bution Cg, to the central charge. This contribution can be
give the valueC =24, found in Ref[5]. This can be shown calculated using a method similar to that employed in Ref.
explicitly using the general transformation law of a GFT [7] (Cenis interpreted as a Casimir enejgy
stress-energy tensor: The transformation law of the stress-energy tensor under a
general change of coordinatest(r) is given by the trans-

) ) C.. formation (34) in its finite form
OTy=€Ty+ 2€Tn+l—2€. (34 (34)

2
{rt}, (39

(dt)z em( dt

Using Eqgs.(15) and(16), one can easily show that, given T=\a7) T 12 \ar

by Eqg. (33) follows the transformation law34), with C

= 247,. This value of the central charge, once inserted in thevhere {r.t} is the Schwarzian derivative. Applied to the

Cardy formula,S=2m+/CLy/6 [10], produces a black hole transformation38), Eq. (39) gives

entropy, which differs by a/2 factor from the thermody-

namical value(3). T,.=(ant)?Ty—
However, in this computatiofand in those of Ref44,5]

as wel), one only considers the contribution of the-w

boundary of Ad$. The black hole solutiori2) has also an

inner boundary11,4] (located ar =0 for the ground state or fact, on shell the term proportional to the constraints is zero

at the horizon for the generic black hglevhich can give a and we can always chooge= const. Becaus®, in Eq. (40)
contribution to the central charge. That this inner boundary y pe” o o 1N £-
can be crucial for understanding the black hole entropy hagefers to the vacuum, we hail =0, and Eq/(40) becomes
been shown if13]. c

There is a simple way to compute this contribution. We AM = — —Mg2)2, (41

need to change the coordinates, from the Schwarzsahiiil ( 24

frame used in Eq(2) to the conformal frame, where the 14 coordinate transformatia88) maps the ground state
vacuum and black hole solutions have, respectively, the fomihto the black hole with massl =a2ze\/2 [11], which in-

Cent

24

a’\2. (40)

From Eg. (33) it follows that by fixing the diffeomor-
phisms invariance on shell, we can always h@yg=\M. In

[11] serted into Eq(41) gives
1 =_
dg= 7 (—de+ ), (35) Cen=—1270. (42)
Notice that the entanglement contribution is negative, yield-
a2 ing a total central charge
ds’= ————(—d7r?+do?). (36)
sinfP(an o) Ciot=C+ Cen=1270. (43

The key point is that in the conformal frame the inner bound-Using this value of the central charge in Cardy’s formula,
ary (and the horizohis pushed tax=<, whereas the time- one finds perfect agreement with the thermodynamical en-
like r=co boundary of Ad$ is now located ak=0. The tropy of the 2D black holg3).
information about the existence of the inner boundary is now Let us now discuss the physical interpretation of the dy-
encoded in the coordinate transformation namical system(19) and its relationship with 2D dilaton
gravity. The equation of motiofiL9) describes a mechanical
1 1 system coupled to an external source. Alternatively, one can
t=y e cosharo), x=_-e*’sinaro), think of y as a time-dependent coupling constant, appearing
(37 in the harmonic oscillator potential.

Becausey is arbitrary[the only constraint on it is the
which maps the vacuunB5) onto the black hole solution transformation law(15)], the dynamical system is essentially
(36) [11]. non-deterministic. Moreover, because the external source is

Evaluating these transformations on the =0 bound- time dependent, the energy is not conserved and we have a
ary, where our one-dimensional conformal field theory retime-dependent Hamiltonian, whose evolution is not com-
sides, we find pletely fixed by the dynamics of the system.
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Strictly speaking we have to deal with an ensemble ofthe energy(14) is invariant(on shel) under conformal trans-
Hamiltonians. One has thus a strong analogy with disorderefbrmations, all these vacua are degenerate in energy.
systems in statistical mechanics. The main difference is that, Now, the crucial point is that there is a one-to-one corre-
whereas in the case of disordered systems we have a profpondence between these vacua and the solutions of the dy-
ability distribution for the couplings, in our case they are namical systen19). Note that also thélR-regularized DFF
a_lrbitrary functions, for which we only give the.transforma- model (21) breaks theSL(2,R) symmetry of the original
tion law under thg conformal group. Moreover, in our c&se model if we take the source constant. Introducing a time-
is a smooth function of. dependent external source, transforming as a conformal field

From the point of view of the 2D gravitational theory the ¢ \yeight 2, we reinstate the full conformal symmetry. From

meaning of the source is clear. The fieldg andy describe the poi . . T !
. point of view of 2D gravity we are considering different
deformations of the boundary of AdSyenerated by 2D bulk p-dependent vacua.

diffeomorphisms, whereas the figbddescribes deformations The above considerations indicate a natural way to ex-

of the dilaton. Thus, the functiory encodes information eplain statistically the entropy of 2D black holes. This entropy
about the gauge symmetry of the 2D gravity theory. Th can be interpreted in terms of the degeneracy ofpthacua.

non-deterministic nature of the dynamical systétf) is a Th 14) is i iant und f |t f
consequence of the gauge freedom of the gravitational dy- e energy(14) is invariant under conformal transforma-

namics. This indicates an interesting relationship betweef{ons: O that we can calculate the entropy by counting the
gauge symmetries and non-deterministic dynamical Systemgq_dependent ex_0|tat|or?s in the conﬂgurgﬂon space of_vacua.

In Ref. [5], it was pointed out that the non-constant value ~ From the point of view of the dynamical system this de-
of the dilaton p+0 in terms of boundary fieldsreaks the ~generacy is encoded in the external souyc&he quadratic
SL(2,R) isometry group of Ad$and that the origin of the Mass-temperature and mass-entropy dependgficevhich
central chargéand hence of the black hole entropsan be is typical of a 2D CFT and which, in principle, could be used
traced back to this breaking. Different valuespofepresent to rule out the duality of Adg gravity with a conformal
different vacua of the 2D gravity theory which break quantum mechanics, is presumably related to the fact that the
SL(2,R). Indeed the conformal transformatioftb) (which ~ conformally invariant mechanical system in question is not a
are the boundary counterpart of the 2D diffeomorphjsmsusual mechanical system but a DFF model coupled to an
map all these vacua one into the other. Moreover, becausaxternal source.
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