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2D anti–de Sitter gravity as a conformally invariant mechanical system
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We show that two-dimensional~2D! AdS gravity induces on the spacetime boundary a conformally invariant
dynamics that can be described in terms of a de Alfaro–Fubini–Furlan model coupled to an external source
with conformal dimension 2. The external source encodes information about the gauge symmetries of the 2D
gravity system. Alternatively, there exists a description in terms of a mechanical system with anholonomic
constraints. The considered systems are invariant under the action of the conformal group generated by a
Virasoro algebra, which occurs also as an asymptotic symmetry algebra of two-dimensional anti–de Sitter
space. We calculate the central charge of the algebra and find perfect agreement between the statistical and
thermodynamical entropies of AdS2 black holes.
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Recent investigations have brought evidence of a d
connection between two-dimensional~2D! gravitating sys-
tems and conformal mechanics@1#. The most natural contex
to test this conjecture is the anti–de Sitter/conformal fi
theory ~AdS/CFT! correspondence@2# in two spacetime di-
mensions@3#. In fact, for D52 this correspondence esse
tially states that gravity on AdS2 should be described by
conformally invariant quantum mechanics.

Most of the progress in this direction has been achieve
the context of 2D dilaton gravity, mainly because of the si
plicity of the model@4–6#. For these models the conform
symmetry ~generated by a Virasoro algebra! has a natural
interpretation in terms of the asymptotic symmetries of
gravitational system. Moreover, the central charge of the
gebra, whose value is crucial for calculating the statisti
entropy of 2D black holes, can be calculated using the
formation algebra of the boundary of AdS2 @4#.

Despite the simplicity of the model, the various attem
to identify the conformal quantum mechanics that should
dual to gravity on AdS2 and to calculate the entropy of 2D
black holes by counting states of the CFT met only par
success@4–6#. The conformal mechanics involved could n
be identified and a mismatch of aA2 factor between thermo
dynamical and statistical entropy was found.

The puzzle has become even more intricate in view of
results of Ref.@7#. There it was shown that inD52 the
AdS/CFT correspondence has a realization in terms of a t
dimensional CFT, which is essentially a theory of op
strings with Dirichlet boundary conditions. Moreover, it w
shown that the degeneracy of states of the 2D CFT expl
correctly the thermodynamical entropy of 2D black holes

In this paper we show that the boundary dynamics
duced by AdS2 dilaton gravity can be described by a d
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Alfaro–Fubini–Furlan~DFF! model@8# coupled to an exter-
nal source with conformal dimension 2. The external sou
encodes information about the gauge symmetries of the
gravity system. Alternatively, the dynamics of the bounda
fields admits an equivalent description in terms of a m
chanical system with anholonomic constraints. In both ca
the mechanical system is invariant under the action of
full one-dimensional conformal group generated by a Vi
soro algebra, which also appears as asymptotic symm
algebra of AdS2. We compute the central charge of this a
gebra and find perfect agreement between statistical and
modynamical entropy of AdS2 black holes.

Our starting point is the Jackiw-Teitelboim~JT! model
@9#, with action

I 5
1

2E d2xA2gh@R12l2#, ~1!

where h represents the dilaton. Two-dimensional anti–
Sitter space, or more generally black holes in AdS2, are so-
lutions of this model@11#:

ds252~l2r 22a2!dt21~l2r 22a2!21dx2, h5h0lx,
~2!

where a is given in terms of the black hole massM , a2

52M /l. The thermodynamical black hole entropy is give
by

S54pAh0M

2l
. ~3!

The asymptotic symmetries of AdS2 are defined as the trans
formations which leave the asymptotic form of the met
invariant; i.e., they preserve the larger behavior

gtt52l2r 21g tt~ t !1OS 1

r 2D , ~4!
©2001 The American Physical Society21-1
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gtr5
g tr~ t !

l3r 3
1OS 1

r 5D ,

grr 5
1

l2r 2
1

g rr ~ t !

l4r 4
1OS 1

r 6D ,

where the fieldsgmn parametrize the first sub-leading term
in the expansion and can be interpreted as deformation
the boundary.

The asymptotic form~4! is preserved by infinitesimal dif
feomorphismsxm(x,t) of the form @4#

x t5e~ t !1
ë~ t !

2l4r 2
1

a t~ t !

r 4
1OS 1

r 5D ,

x r52r ė~ t !1
a r~ t !

r
1OS 1

r 2D , ~5!

wheree(t) andam(t) are arbitrary functions, theam describ-
ing pure gauge diffeomorphisms. In Ref.@4# it was shown
that the symmetries~5! generate a Virasoro algebra.

The asymptotic behavior of the scalar fieldh, compatible
with the transformations~5!, must take the form

h5h0S lr~ t !r 1
gh~ t !

2lr D1OS 1

r 3D , ~6!

wherer and gh play a role analogous to that of thegmn .
Introducing the new fields, invariant under the pure gau
diffeomorphisms parametrized byam,

b5
1

2
rg rr 1gh ,

g5g tt2
1

2
g rr , ~7!

the equations of motion following from the action~1! yield,
in the limit r→`,1

l22r̈5rg2b, ~8!

ṙg1ḃ50. ~9!

Equations~8! and ~9! determine a mechanical system wi
anholonomic constraint, since the one-form

v[gdr1db ~10!

1At first sight, it seems not necessary to require Eq.~9!, since it
comes from the leading term in the stress tensor componentTrt ,
which is of order 1/x2 @12#. However,Tmn , transforming as a ten
sor, is clearly not invariant under coordinate transformations.
fact, in the light-cone coordinates used below, Eq.~9! originates
from an order 1 term, so requiring Eq.~9! is really necessary for
consistency.
12502
of

e

is not exact. The Lagrange equations of the first kind for
fields w i5$r,b,g% read

Fi2mi ẅ i1Lv i50, ~11!

whereFi is the force that can be derived from a potentialU,
Fi52] iU, mi denote the masses of the fields,L is a
Lagrange multiplier, and thev i are the components of th
one-formv. If we choose

mr5l21, mb5mg50, ~12!

and

U5lbr, ~13!

the Lagrange equations~11! yield Eq. ~8!, together with the
Lagrange multiplierL5lr. Before we proceed, we note tha
from Eqs.~8! and ~9!, one gets the conservation law

T1U5
1

2
l21ṙ21lbr5const. ~14!

Notice thatT1U is essentially the mass of the black hol
considered in@4#.

The boundary fieldsw i span a representation of the fu
infinite dimensional group generated by the Killing vecto
~5!. In fact, under the asymptotic symmetries~5!, they trans-
form as

dr5eṙ2 ėr,

db5eḃ1 ėb1
ë ṙ

l2
, ~15!

dg5eġ12ėg2
ê

l2
.

The above transformations are easily recognized as~anoma-
lous! transformation laws for conformal fields of weights
21,1,2 respectively. We are interested in the transforma
laws of the equation of motion~8!, the constraint~9!, and the
conserved charge~14!. Using Eq.~15!, we get

d@gṙ1ḃ#5e
d

dt
@gṙ1ḃ#12ė@gṙ1ḃ#

1 ëF2gr1b1
r̈

l2G , ~16!

dF2gr1b1
r̈

l2G5e
d

dt F2gr1b1
r̈

l2G
1 ėF2gr1b1

r̈

l2G , ~17!

d@T1U#5e
d

dt
@T1U#. ~18!

n
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We see that the constraint transforms like a conformal fi
of weight 2 with anomaly term. The conformal weights
the equation of motion and the conserved charge are 1 a
respectively, and anomalies are absent. The above equa
imply that on shell the constraint and the equation of mot
are invariant under the transformations~15!.

Alternatively, we may describe the dynamical system~8!
in terms of the DFF model@8# of conformal mechanics
coupled to an external source. To this aim, we start from
conservation law~14!, i.e., T1U5c. Introducing the new
field q5Ar/l, which has conformal dimension21/2, and
eliminatingb from Eq.~14! by means of Eq.~8!, we arrive at
the equation

q̈2
g

q3
5

l2

2
gq, ~19!

with g52c/(2l), whereas from Eq.~14! follows

q̇2

2
1

g

2q2
52

l2

4
b. ~20!

One can easily check the equivalence of the system~8!,~9!
with Eqs.~19!,~20!. Moreover, Eq.~19! is easily recognized
as the equation of motion for the DFF model coupled to
external sourceg.

At this point it is straightforward to write down an actio
for the dynamical system~19!. It is given by

I 5E dtF1

2
q̇22

g

2q2
1

1

4
l2gq2G . ~21!

Equation~21! resembles very much the IR-regularized acti
proposed by DFF@8#, the only difference consisting of th
fact that the external sourceg, which couples to the fieldq,
is not constant, but represents an operator of conforma
mension 2. Note that in the calculation ofdI , g, being an
external source, is not varied. One can easily show that
action is~up to a total derivative! invariant under the confor
mal transformations~15!.

The dynamical system described by Eqs.~8!,~9! @or
equivalently by Eq.~19!# defines a one-dimensional confo
mal field theory (CFT1). The invariance group of the mode
coincides with the group of asymptotic symmetries of Ad2
and can be realized as the diff1 group describing time rep
arametrizationsdt5e(t). In analogy with 2D CFT, one
would like to identify the stress-energy tensorTtt associated
with the CFT1. This analogy suggests thatTtt is proportional
to the constraints~9!:

Ttt5l~ṙg1ḃ !. ~22!

~The constant of proportionality has been chosen to en
thatTtt has the dimensions of a mass squared.! In fact, from
Eqs.~8!, ~9! and~16! it is evident thatTtt plays the same role
as the holomorphicT11 ~and antiholomorphicT22) stress-
energy tensors play in 2D CFT. A more compelling arg
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ment leading to Eq.~22! relies on the identification ofTtt as
the boundary value for the stress-energy tensor of a 2D C

To do this, we choose the conformal gauge

ds252e2vdx1dx2. ~23!

Then the action~1! takes the Liouville-like form

I 52E d2xS ]1v]2h1]2v]1h2
1

2
l2he2vD . ~24!

The action must be complemented by the constraints~the
equations of motion for the missing components of the m
ric!

T665]6
2 h22]6h]6v50, ~25!

whereT66 denote the components of the stress-energy
sor.

For h→` the potential term in the action~24! goes to
zero and the model becomes an exact 2D CFT@7#. In fact,
defining the new fieldsX,Y,

v5X2Y, h5X1Y, ~26!

the action and the constraints become

I 522E d2x~]1X]2X2]1Y]2Y!, ~27!

T665]6
2 X1]6

2 Y22]6X]6X12]6Y]6Y50.
~28!

Taking h→` we reach the boundary of AdS2, which in
light-cone coordinates is located atx15x2. One can show
that T11uboundary5T22uboundary5Ttt , with Ttt given by
Eq. ~22!.

Let us now show thatTtt generates the diff1 group. Intro-
ducing the charges

Ĵ5E eTtt , ~29!

and using the transformation law~16!, one has

deTtt5@ Ĵ,Ttt#5eṪtt12ėTtt . ~30!

Expanding in Fourier modes,

Ttt5( Lme2 imlt, e~ t !5( ame2 imlt, ~31!

and using Eq.~30!, one finds thatLm generates a Virasoro
algebra:

@Lm ,Lm#5~m2n!Lm1n . ~32!

Equation ~22! does not give the most general form of th
CFT1 stress-energy tensor. We have the freedom to add
a constant term~which we choose proportional to the blac
hole massM ) and an improvement term:
1-3
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Tttu impr5Ttt1lM1br̈, ~33!

whereb is an arbitrary constant. The improvement term is
total derivative and does not affect the status ofTtt as gen-
erator of the diff1 group. Though the constantb is at the CFT
level undetermined, it can be computed using the underly
gravitational dynamics. Comparing Eq.~33! with the expres-
sion for Ttt found in Ref.@5#, one getsb522h0.

We can now calculate the central chargeC associated
with the Virasoro algebra~32!. A naive computation will
give the valueC524h0 found in Ref.@5#. This can be shown
explicitly using the general transformation law of a CF1
stress-energy tensor:

dTtt5eṪtt12ėTtt1
C

12
ê . ~34!

Using Eqs.~15! and~16!, one can easily show thatTtt given
by Eq. ~33! follows the transformation law~34!, with C
524h0. This value of the central charge, once inserted in
Cardy formula,S52pACL0/6 @10#, produces a black hole
entropy, which differs by aA2 factor from the thermody-
namical value~3!.

However, in this computation~and in those of Refs.@4,5#
as well!, one only considers the contribution of ther→`
boundary of AdS2. The black hole solution~2! has also an
inner boundary@11,4# ~located atr 50 for the ground state o
at the horizon for the generic black hole!, which can give a
contribution to the central charge. That this inner bound
can be crucial for understanding the black hole entropy
been shown in@13#.

There is a simple way to compute this contribution. W
need to change the coordinates, from the Schwarzschild (r ,t)
frame used in Eq.~2! to the conformal frame, where th
vacuum and black hole solutions have, respectively, the f
@11#

ds25
1

l2x2 ~2dt21dx2!, ~35!

ds25
a2

sinh2~als!
~2dt21ds2!. ~36!

The key point is that in the conformal frame the inner boun
ary ~and the horizon! is pushed tox5`, whereas the time-
like r 5` boundary of AdS2 is now located atx50. The
information about the existence of the inner boundary is n
encoded in the coordinate transformation

t5
1

al
ealt cosh~als!, x5

1

al
ealt sinh~als!,

~37!

which maps the vacuum~35! onto the black hole solution
~36! @11#.

Evaluating these transformations on thex5s50 bound-
ary, where our one-dimensional conformal field theory
sides, we find
12502
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t5
1

al
ealt. ~38!

Thus the vacuum and black hole solutions correspond
different time variables on the boundary. Moreover, fo
2`,t,`, 0,t,`, part of the ‘‘history’’ seen by the
vacuum observer cannot be seen by the black hole obse
It follows that there will be a term in the entropy describin
the entanglement of states, which has the form of a con
bution Cent to the central charge. This contribution can
calculated using a method similar to that employed in R
@7# (Cent is interpreted as a Casimir energy!.

The transformation law of the stress-energy tensor und
general change of coordinatest5t(t) is given by the trans-
formation ~34! in its finite form

Ttt5S dt

dt D 2

Ttt2
Cent

12 S dt

dt D 2

$t,t%, ~39!

where $t,t% is the Schwarzian derivative. Applied to th
transformation~38!, Eq. ~39! gives

Ttt5~alt !2Ttt2
Cent

24
a2l2. ~40!

From Eq. ~33! it follows that by fixing the diffeomor-
phisms invariance on shell, we can always haveTtt5lM . In
fact, on shell the term proportional to the constraints is z
and we can always chooser5const. BecauseTtt in Eq. ~40!
refers to the vacuum, we haveTtt50, and Eq.~40! becomes

lM52
Cent

24
a2l2. ~41!

The coordinate transformation~38! maps the ground stat
into the black hole with massM5a2h0l/2 @11#, which in-
serted into Eq.~41! gives

Cent5212h0 . ~42!

Notice that the entanglement contribution is negative, yie
ing a total central charge

Ctot5C1Cent512h0 . ~43!

Using this value of the central charge in Cardy’s formu
one finds perfect agreement with the thermodynamical
tropy of the 2D black hole~3!.

Let us now discuss the physical interpretation of the d
namical system~19! and its relationship with 2D dilaton
gravity. The equation of motion~19! describes a mechanica
system coupled to an external source. Alternatively, one
think of g as a time-dependent coupling constant, appea
in the harmonic oscillator potential.

Becauseg is arbitrary @the only constraint on it is the
transformation law~15!#, the dynamical system is essential
non-deterministic. Moreover, because the external sourc
time dependent, the energy is not conserved and we ha
time-dependent Hamiltonian, whose evolution is not co
pletely fixed by the dynamics of the system.
1-4
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Strictly speaking we have to deal with an ensemble
Hamiltonians. One has thus a strong analogy with disorde
systems in statistical mechanics. The main difference is t
whereas in the case of disordered systems we have a p
ability distribution for the couplings, in our case they a
arbitrary functions, for which we only give the transform
tion law under the conformal group. Moreover, in our caseg
is a smooth function oft.

From the point of view of the 2D gravitational theory th
meaning of the sourceg is clear. The fieldsb andg describe
deformations of the boundary of AdS2, generated by 2D bulk
diffeomorphisms, whereas the fieldr describes deformation
of the dilaton. Thus, the functiong encodes information
about the gauge symmetry of the 2D gravity theory. T
non-deterministic nature of the dynamical system~19! is a
consequence of the gauge freedom of the gravitational
namics. This indicates an interesting relationship betw
gauge symmetries and non-deterministic dynamical syste

In Ref. @5#, it was pointed out that the non-constant val
of the dilaton (rÞ0 in terms of boundary fields! breaks the
SL(2,R) isometry group of AdS2 and that the origin of the
central charge~and hence of the black hole entropy! can be
traced back to this breaking. Different values ofr represent
different vacua of the 2D gravity theory which brea
SL(2,R). Indeed the conformal transformations~15! ~which
are the boundary counterpart of the 2D diffeomorphism!
map all these vacua one into the other. Moreover, beca
nd

n

d

e

12502
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the energy~14! is invariant~on shell! under conformal trans-
formations, all these vacua are degenerate in energy.

Now, the crucial point is that there is a one-to-one cor
spondence between these vacua and the solutions of the
namical system~19!. Note that also the~IR-regularized! DFF
model ~21! breaks theSL(2,R) symmetry of the original
model if we take the sourceg constant. Introducing a time
dependent external source, transforming as a conformal
of weight 2, we reinstate the full conformal symmetry. Fro
the point of view of 2D gravity we are considering differe
r-dependent vacua.

The above considerations indicate a natural way to
plain statistically the entropy of 2D black holes. This entro
can be interpreted in terms of the degeneracy of ther vacua.
The energy~14! is invariant under conformal transforma
tions, so that we can calculate the entropy by counting
independent excitations in the configuration space of vac

From the point of view of the dynamical system this d
generacy is encoded in the external sourceg. The quadratic
mass-temperature and mass-entropy dependence@7#, which
is typical of a 2D CFT and which, in principle, could be us
to rule out the duality of AdS2 gravity with a conformal
quantum mechanics, is presumably related to the fact tha
conformally invariant mechanical system in question is no
usual mechanical system but a DFF model coupled to
external source.
ys.
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