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Possible extensions of the 4D Schwarzschild horizon in the 5D brane world
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We show that, in the absence of matter in the bulk, the Einstein equations and the Gauss-normal form of the
metric place stringent restrictions on the form of the event horizon in a brane world. As a consequence, the
off-brane extension of the standard four-dimensio@) Schwarzschild horizon in the Randall-Sundrum
AdS; spacetime, as it is viewed from the brane can only be of a tubular shape, instead of a pancake shape.
When it is viewed from the Adshorizon, such a tubular horizon is absent.
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[. INTRODUCTION solution of Eq.(2). Subsequently, the metric in E(l) be-
comes that of AdS The solution to Eq(2) can also be

A recent breakthrough in high-energy physics is the posebtained from the solution to the sourceless equafiqp,
sibility of observing large extra space dimensions. It has=0, subject to the appropriate Israel matching condifibh
been conjectured that the standard model particles are codetermined byT,,. The perturbative solution of Eq2) to
fined to propagate within a three-dimensiorf@D) brane  the linear order irG for an arbitraryT,, [5] and to second
embedded in a space of 441) dimensions. On the contrary orderG? for a static spherical mass distribution on the brane
gravitons can escape and propagate also in the bulk. TH&] reveals no tangible disagreement with the classical tests
most important recognition is that the energy scale of theof 4D general relativity at large.
extra dimensions can be as low as few TeV and their signa- It is generally believed that 4D general relativity is recov-
ture may show up in future collideKsee, for example, Ref. ered beyond the weak coupling expansion on the physical
[1]). Since gravity is formulated by (#d)-D general rela- brane for large< [7]. By combining the Schwarzschild met-
tivity, the gravitational force within the brane may contain ric on the physical brane and the profile of the linear gravi-
detectable corrections to Newton'’s |4@]. The recovery of tational potential off the physical brane, the authors of Ref.
general relativity on th@hysical branehas become an inter- [5] conjectured a pancake shaped horizon for the physical
esting issue to explore. black hole, a gravitational field generated by a mass point on

One implementation of such a brane world scenario washe brane. In this paper, we shall make some rigorous state-
proposed by Randall and Sundr{i&]. The physical brane in ments on the form of the horizon of a physical black hole,
their model is the junction of two pieces of 5D spacetimewhich when confined to the physical brane reproduces the
manifolds that are asymptotically anti—de Sitter spacetimestandard 4D Schwarzschild horizon. We find that the Ein-

The Gauss-normal form of the metric in this space is stein equations together with a Gauss-normal form of the
2yl , ) metric imply particular types of horizons but the pancake
ds’=e 9, dx dx"+dy?, (1) shape does not belong to these types.
with the brane located af=0 and x>0 sets the energy
scale of the extra space dimension. The megyj¢ is deter- [l. EINSTEIN EQUATIONS IN 5D

mined by the 5D Einstein equations . . . .
y q The 5D Einstein sourceless equations can be rewritten as

1
— 2 v
Rmn_ERan_/\gmn—_Afﬂ' GsT ., 0m0n6(Y) Ruv_4K29uv:0* Ry,=0, Ryy_4K2:0- (3)
+6£0,,,0m8,0(Y), @ The most general metric iD=4+1 dimensions produced

by a static, spherically symmetric matter distribution on the

. _ 2 .
where the cosmological constant=—6«“, Gg is the 5D physical brane has the following form:

gravitational constant and,, the energy-momentum tensor
on the brane. Here and throughout the paper, we adopt the o~ 2uly] B2 b2 e )
convention that the Greek indices take values 03 and the ~ dS°=€ *Vi(—e*dt*+e’dr?+er?d0?) +dy?,  (4)
Latin indices 0—4. The 4D gravitational constant is given by
G~Gs/«. In the absence of mattef,,,=0, g,,=7,,isa wheredQ?=d6?+sir? gd¢? is the solid angle o1%? anda,
b, andc are functions of andy. Let us pause for a moment
to explain this particular form of the metric. The most gen-
*E-mail address: giannak@theory.rockefeller.edu,eral, axially symmetric and static metric =4+ 1 dimen-
ren@theory.rockefeller.edu sions can be written as
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ds’=—A(p, n)dt*+B(p, n)dp?+ C(p,7)p?dQ? Next we choos® such thatA;=dy. As a result® satisfies
the following first order partial differential equation:
+2D(p,7)dpdn+E(p, 7)d 7. (5)
J 0

This form can be simplified further if we s&(p,7)dp? %Qlcos}( COS@_AZS'nXS'nH%()‘ls'”XCOS@
+2D(p,7)dpdy+E(p, n)d7?=N\257+\555 where \7,\5
are the positive eigenvalues of the matrixE ), + A, cosy sing)=0. )
where &;=cosydnp—sinydp and &,=sinydzn+cosydp.
A2\2,x are known functions ofp, 7. Furthermore lets
introduce @=0(p,7) and write \285+\385=A%+A3
with

SinceA, is a differential form of two variables, there always
exists an integration factqe such thatA,= udr. Upon ex-
pressing all functions in terms ofandy and by identifying
A:e—2K|y|+a’pZC: I,2e—2;<|y\-%—c”u/2:e—2f<\y|+b we recover
the Gauss-normal form of the metric, Ed).

A1=A16,€080 —\;5,sin0O, Substituting the metrid4) into Eq. (3), we obtain the
(6)  following components of the Einstein equation outside the
Ay,=N\16;,SINO+\,5,c0s0. source:

2 1
—a”—ra’+—a’(—a’+b’—2c’)

1
Rtt+4K2e—2xy+a:§ea—b 5

. 1 .
a—5ka—kb—2kc+ E'a(éH- b+2¢)

—2kyt+a

=0, ()

1
Ee

R 42b_1 //+ " 1b/+2 /+1/ ! b/ 1Ib/ !
. Ke—2a c ; rc 4a(a )2c( c’)

1 .. . 1. .
+§e*2ky+b b—5xb—Ka—2kt+5b(a+b+2¢t)|=0, 9
1 4 "—b’ 1
Rag_4K2r2eC:§r2ecfb C/I+FCI+ +C/2+§(a1_b1)cl
i JRP I 8 Aot Lo ; -b
+§r e YT e—k(a+b)—6kC+ Ec(a+b+2c) +e7°—1=0, (10
1. 1 ,
Ryy—4f<2=§(é+b+2'¢)—K(a+b+2c)+Z(a2+b2+2cz)=O,
(12)
i, .., 2. 1 .
R,y=Ryr=§ a'+2c —?(b—c)+ Ea (a—b)—c’'(b—c¢)|=0,

where the prime denotes a partial derivative with respect to of the parametria-y plane. We callP the physical region.
and the dot denotes a partial derivative with respecy.to The physical region may or may not cover the enting
These equations apply to the positive side of the brgne, plane. An example of a physical region that does not cover
>0, the corresponding equations to the negative side of ththe entire parametric space is the A@3netric discussed in

brane,y<0, are obtained by switching the sign of Ref. [8]. We also assume that there exists an asymptotic
region.4 within P, where the metric componergs, e°, and
. POSSIBLE EXTENSIONS OF THE 4D e® are well approximated by linear gravity and the functions
SCHWARSCHILD HORIZON a, b, andc are well behaved beyond. As we have seen, this

is the case for both brane-based coordinates and for; AdS

In this section we shall formulate the concept that wouldp,orizon-based coordinates. Starting frotnwe trace all pos-
define an event horizon in the 5D brane world. We assumgjp|e light rays given byls?=0 or more specifically by

that there exists a solution of the 5D Einstein equations
which satisfies the Israel matching condition across the brane
and maintains the Lorentzian signature in a certain reglon dt?=eP~3dr2+ef~3r2d02+ 2V 3dy? (12
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until we come to a point from which the light cannot propa- a=n,In¢, b=nyIn& c=n.Iné. (18)
gate forward in certain spatial direction. By continuity, the
union of these points forms a 4D hypersurf@¢ewhich we  Taking into account that
refer to as an event horizon. We shall consider the case that
‘H lies within (not coincide with the border pfP. J J d
To prevent light propagation, some of the coefficients on gr  CoSaGTsihag
the right hand side of Eq12) need to become sufficiently (19)
divergent so that an increment of the corresponding spatial 9 9 9
coordinate would take infinite amount of tinteTherefore, a—zsinaa—g-i—COSaa—,
we can determine the form of the horizon by finding the y K
locus of the logarithmic singularities of the functioasb, ; N
. . . ) X their d t beh
andc. This locus has to be consistent with the Einstein equa- eir defivatives behave as
tions (8)—(11). Ny Ny ne
We denote the locus of the logarithmic singularitiesapf a=—sina, b=-—sina, t=-—sina (20
b, and c by H(r,y)=0 and an arbitrary point on it by g 3 3
P(ro,Yo). The unit normal vecton and the unit tangent and
vectort atP onr-y plane are
Ny Ny Nc
. a'=—cosa, b'=-—cosa, ¢c'=—cosa. (21
n=(cosa,sina), t=(—sina,cosa), (13
where
1 (oH ~1(oH 14
COSO[—KWP, SIna—KWP ( )
and
aH\? [oH\?
A= — +—] . (15
ar ay /g

=]

Let us consider a poir®(r,y) in the neighborhood d? and
let us transform the coordinates into

&=(r—rg)cosa+(y—yp)sSina,

3 3 3

We observe that the derivativesafb, cbecome singular
asQ approache®. As a result of substituting Eq$20) and
(21) into Egs.(8)—(11), the cancellation of the leading sigu-
larities inRyy—4«? and inR,,, O(1/£%), leads to two con-
ditions onng,, ny, n., anda:

EsiP =0, F sina cosa=0 (22
with
1 5 5 2
and
1
F:_na_znc+§na(na_ Np) — Ne(Np—Ng). (24)

There are three types of solutions to be analyzed.
Type t E#0. The only solution is sie=0, which implies

(16)
a tube shape#i:
n=—(r—rg)sina+(y—yp)Ccosa.
JH
(—) =0. (25
As é—0 and7—0, we expect that W/ p

a 0 b o . The standard Schwarszchild horizon of a physical black hole

e"=Ag", e’=B{™, e"=C{', (17 belongs to this type. In the coordinates straight with respect

to the brane, the recovery of 4D general relativity on the

wheren,, n,, andn,; are integers due to the reality require- brane for«GM=>1 implies that

ment of the metric components on both sides of the horizon, 2GM dr2
and A, B, andC are numerical constants. The integets d522_<1_ )dt2+

ny, andn. could not all be zero, otherwise there would be no 1 2GM
singularity at the poinf. The Lorentzian signature in the r
physical region forbidse® and the metric determinant

e 8xytatbracr4 gir? g from changing their signs. These con- for y=0. The standard Schwarzschild horizonrat2GM
siderations restrict both, andn,+n,+2n. to be even. By corresponds to the exponentg=1, n,=—1, andn.=0.
continuity, these exponents are maintained along the entiréherefore, since the integer combinatigg 0, the off-brane
H. Therefore, extension of the horizon is a tube as is shown in Fig).1t

+r2dQ?

(26)
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Weak tent with the other components of the Einstein equations. We
grafity have not found yet any restrictions on the shapes of the cor-
responding horizons. The first solution of the integer triplet
corresponds to the isotropic coordinates of a black loje
=2, n,=n.=0), which can be obtained through a
y-independent coordinate transformation from the standard
metric. It can be shown, however, thatyadependent and
Gauss-normal form preserving transformation that leaves the
brane intact does not exist. Therefore, this particular horizon
cannot be transformed into a pancake shaped one.
y For a general Gauss-normal form of the metdg, we
may define the %4 matrix ofg,, by G, and theR,,— 4k?
equation can be written as

T

J Jd

Weak R, —4Kk2=—| —e 2%—|n(—detg

gravity i 2\ ay ay ( )
G G

+Etrg’l—g’1—=0 (27
4 ay ay

—/ Now our statements regarding the Schwarzschild horizon can
be generalized to a spinning black hole located on the brane
Y y=0. Assume that the 4D Kerr metrfdQ] is recovered on
FIG. 1. A physical black hole viewed in two coordinate systems:the brane for sufficiently large, then we have
(@) In the coordinates based on the brane, where the thick line

denotes the brane and the dashed line the off-brane extension of the A sin? 0

4D Schwarzschild horizon. The Schwarzschild radius ris ~ ds?=— — (dt—j sir? 8d¢)?+ ——[(r?+j?)d¢—jdt]?
=2GM[1+0(1/k*G?M?)] and the mass point is located rat y P P

=0. (b) In the coordinates based on the Ad®rizon, where the p2

thick line denotes the bent brane. + Xdr2+ p2d6?, (28)

either extends to infinity in thg direction, similar to the

horizon of the black cigar solution of Chamblin-Hawking- for y=0, whereA=r2—2GMr+j? and p2=r?+j2cos 6
Reall[9] though the explicit forms of the solution are differ- \ith M the mass anfithe angular momentum per unit mass.
ent, or it terminates at the border of the physical regiona horizon corresponds to the solutions =0, that might
similar to the example in Ref8]. This rules out the possi- have two solutions or none. It is straightforward to show that
bility of a pancake shaped Schwarzschild horizon in 5D. Onthe metric determinant dét= — (r2+j2 co€ 6)?sir? @ and
the other hand, in the coordinates straight with respect to thgs |ogarithm are free from the horizon singularities. On the
AdS; horizon, the validity of linear gravity for large or  other hand, the matrig~(4G/dr) contains a 1A singularity
large positivey excludes the tubular form of the horizon at the horizon. If the 5D extension of this horizon were bent
completely, as is shown in Fig.(l). Because of the brane towards or away from thg axis, this singularity would be
bending in the negativg direction and the failure of the ghared by the matrig~(9G/dy) off the brane. This is again
linear approximation there, we are unable to rule out thgprhidden by the Einstein equatiq@?).

possibility of horizons of the subsequent two types in this  Haying a pancake shaped horizon as the 5D extension of

coordinate system. the Schwarszchild horizon is physically implausible. If this

Before analyzing the next two types, we notice that theyere the case, somewhere off the brane and near the horizon,
solutions toE=0 correspond to points with integer coordi- we would expect that

nates lying on an oblate spheroid with axis 2 afidd There

are only twelve of them, and we should exclude the solutions 1

with odd n. or odd n,+ny+2n. and the ones that make e,~Y—VY., e~ , (29)
none ofe®~2, e°~2 and e~ 2 divergent. Consequently, we Y~Ye

have the following.

Type It E=0 butF+#0. The only solutions in this case with y. a function ofr. It follows then from Eq.(12) that it
are (,,ny,nc)=(2, 2, 0) or(2, 2, 2 with either sina=0  would take a finite amount of time for a light beam coming
or cosa=0. The latter implies a horizon parallel to the plane out of the horizon to propagate in thedirection. Conse-
y=0 and it may exist in the coordinates straight with respectuently the black hole would appear to be luminating in the
to the AdS horizon for a physical black hole. y direction.

Type Il E=0 and F=0. The qualified solutions for The conclusions we have reached above depend on the
(ng,np,n.) are(2, 0, 0 and(2, 0, 2. They are also consis- form of the metric, Eq(1), and the Einstein equations. We
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might try to relax the Gauss-normal form of the metric. In wherel is the Schwarzschild radiu® is the radial coordi-
the case of a spherical black hole, we might consider th@ate, andy is a polar angle or$®, dQ) is the solid angle on
metric S?. If we introduce cylindrical coordinates =R siny and
y’' =R cosy, we find
ds?=e 2<VI(—e'dt?+evdr2+r2d0?) +e'dy?, (30) ,
| T
whereu, v, f are functions ofr andy. The equationR,,
—4k%e"'=0 then becomes RZ

|2 r'dr’ + rdIZ
( y'dy’)”

RZ dr/Z

— 1 +r'2dQ%+dy’?, (36)
U+ —2k(U+0—2F )= Zf(U+0)+ = (U2+0?) _ ,
2 2 and we have a circular horizon on-y’ plane at the expense
2 1 of introducing off-diagonal terms of the metric. To enforce
+e2y il —fry Zf(f U —0) the Gauss-normal form of the metric, consider the transfor-
r 2 mation

21 _afy—
+8k%(1—eh=0. (31 R=R(r,y), x=x(r.y). (37)

Let us assume that an approximate Schwarszchild metric carhe functionsR(r,y) and x(r,y) have to satisfy the condi-
be recovered on the brane, which is locategi-a0 and that tjons

the 5D extension of the horizon is given By(r,y)=0. If we

consider an arbitrary point on iB(r,Yo), With the variable R> [dR\* _[dx\?
¢ defined as before, we have R2—|2 W W —h
(39)
u~Ing, v~-In¢ f~niné (32 1 0JRIR dxdx

| . . R RP=12r oy " ar oy >
with n being an even integer. Then the leading singularity on
the left hand side of EC(B].) results from either There is a Simp|e solution witR= ,/y2+|2 andX an arbi-
trary function ofr only, which results in a Gauss-normal

1 1 form of the metric(36), i.e.,
Uit 5 (U2+6%)~ Gsira 33 1c(36), |
2 2
_ Y 2. 2.2 d_X 2
or ds’= Wdt +(y +1 ) dr dr
+(y2+12)sir? ydQ2+dy?. (39

eZKy+f7v

1 1
7+ —f’z) ~( -n+ §n2)§”1c0§ .

2 The horizon,y=0, then becomes of type Ill. This transfor-

(34  mation, however, is singular on the horizon, more specifi-
cally the Jacobiad(R, x)/d(r,y) is zero. If a solution to Eq.
For n<—1, Eq.(34) represents the leading singularity, the (38) that is nonsingular at the horizon could be found, then
only solution is cogr=0 and this horizon will not join the Wwe would have a horizon of type I, since km,(JR/dy)
Schwarszchild horizon on the branentf—1, Eq.(33) rep- =0 in any case in order to balance the first equation of Eq.
resents the leading singularity, and the only solution is(38 and the nonvanishing Jacobian demands that
sina=0. Therefore, the 5D extension of Schwarszchild ho-liMmg_.|(dR/dr) #0.
rizon is again a tube.
The existence of a 5D extension of a 4D Schwarzschild IV. CONCLUSIONS

horizon for a physical black hole relies on the recovery of 4D . .
general relativity on the brane for large The rigorous state- " summary, we have found that the vacuum Einstein
ments we made on the possible shapes of the horizon, hoduations together with a Gauss-normal form of the metric
ever, are independent of the valuexgfsince the terms of the pla(_:e fairly stringent restrictions on the form of_ the event
first derivative with respect ty in Egs. (8)=(11) do not horizon. The suggested pancake shaped extension of the 4D

contribute to the leading singularity of a horizon. In the fol- SChwarzschild horizon cannot exist in the Gauss-normal
lowing, we illustrate various types of horizons for a 5D form of the metric. In the coordinate system based on the

Schwarzschild metrick=0), i.e. brane[11], the event horizon has a tubular shape extending
T possibly to infinity in agreement with recent numerical stud-

2 dR2 ies [12], while in the coordinate system based on the AdS

d<2= _( — —|dt2+ > +R2(dy2+sir? ydQ?), horizon, the region of validity of linear gravity excludes this
R _ |_ possibility. The horizon then might belong to either type Il or

R? type Ill. The technique of balancing the leading singularities

(35 in the Einstein equation that we have developed in the
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present work may be generalized to other singularities of th&V/e hope to report our progress towards these directions in
solution, e.g., the curvature singularity. Since our analysighe near future.

does not depend on the value afour classification of ho-
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