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Possible extensions of the 4D Schwarzschild horizon in the 5D brane world
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We show that, in the absence of matter in the bulk, the Einstein equations and the Gauss-normal form of the
metric place stringent restrictions on the form of the event horizon in a brane world. As a consequence, the
off-brane extension of the standard four-dimensional~4D! Schwarzschild horizon in the Randall-Sundrum
AdS5 spacetime, as it is viewed from the brane can only be of a tubular shape, instead of a pancake shape.
When it is viewed from the AdS5 horizon, such a tubular horizon is absent.
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I. INTRODUCTION

A recent breakthrough in high-energy physics is the p
sibility of observing large extra space dimensions. It h
been conjectured that the standard model particles are
fined to propagate within a three-dimensional~3D! brane
embedded in a space of (41d) dimensions. On the contrar
gravitons can escape and propagate also in the bulk.
most important recognition is that the energy scale of
extra dimensions can be as low as few TeV and their sig
ture may show up in future colliders~see, for example, Ref
@1#!. Since gravity is formulated by (41d)-D general rela-
tivity, the gravitational force within the brane may conta
detectable corrections to Newton’s law@2#. The recovery of
general relativity on thephysical branehas become an inter
esting issue to explore.

One implementation of such a brane world scenario w
proposed by Randall and Sundrum@3#. The physical brane in
their model is the junction of two pieces of 5D spacetim
manifolds that are asymptotically anti–de Sitter spacetim
The Gauss-normal form of the metric in this space is

ds25e22kuyuḡmndxmdxn1dy2, ~1!

with the brane located aty50 and k.0 sets the energy
scale of the extra space dimension. The metricḡmn is deter-
mined by the 5D Einstein equations

Rmn2
1

2
Rgmn2Lgmn524p2G5Tmndm

mdn
nd~y!

16kgmndm
mdn

nd~y!, ~2!

where the cosmological constantL526k2, G5 is the 5D
gravitational constant andTmn the energy-momentum tenso
on the brane. Here and throughout the paper, we adop
convention that the Greek indices take values 0–3 and
Latin indices 0–4. The 4D gravitational constant is given
G;G5 /k. In the absence of matter,Tmn50, ḡmn5hmn is a
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solution of Eq.~2!. Subsequently, the metric in Eq.~1! be-
comes that of AdS5. The solution to Eq.~2! can also be
obtained from the solution to the sourceless equation,Tmn

50, subject to the appropriate Israel matching condition@4#
determined byTmn . The perturbative solution of Eq.~2! to
the linear order inG for an arbitraryTmn @5# and to second
orderG2 for a static spherical mass distribution on the bra
@6# reveals no tangible disagreement with the classical t
of 4D general relativity at largek.

It is generally believed that 4D general relativity is reco
ered beyond the weak coupling expansion on the phys
brane for largek @7#. By combining the Schwarzschild me
ric on the physical brane and the profile of the linear gra
tational potential off the physical brane, the authors of R
@5# conjectured a pancake shaped horizon for the phys
black hole, a gravitational field generated by a mass poin
the brane. In this paper, we shall make some rigorous st
ments on the form of the horizon of a physical black ho
which when confined to the physical brane reproduces
standard 4D Schwarzschild horizon. We find that the E
stein equations together with a Gauss-normal form of
metric imply particular types of horizons but the panca
shape does not belong to these types.

II. EINSTEIN EQUATIONS IN 5D

The 5D Einstein sourceless equations can be rewritte

Rmn24k2gmn50, Rym50, Ryy24k250. ~3!

The most general metric inD5411 dimensions produced
by a static, spherically symmetric matter distribution on t
physical brane has the following form:

ds25e22kuyu~2eadt21ebdr21ecr 2dV2!1dy2, ~4!

wheredV25du21sin2 udf2 is the solid angle onS2 anda,
b, andc are functions ofr andy. Let us pause for a momen
to explain this particular form of the metric. The most ge
eral, axially symmetric and static metric inD5411 dimen-
sions can be written as

,
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ds252A~r,h!dt21B~r,h!dr21C~r,h!r2dV2

12D~r,h!drdh1E~r,h!dh2. ~5!

This form can be simplified further if we setB(r,h)dr2

12D(r,h)drdh1E(r,h)dh25l1
2d1

21l2
2d2

2 where l1
2,l2

2

are the positive eigenvalues of the matrix (D
B

E
D),

where d15cosxdh2sinxdr and d25sinxdh1cosxdr.
l1

2,l2
2,x are known functions ofr, h. Furthermore lets

introduce Q5Q(r,h) and write l1
2d1

21l2
2d2

25D1
21D2

2

with

D15l1d1 cosQ2l2d2 sinQ,
~6!

D25l1d1 sinQ1l2d2 cosQ.
to

,
th

uld
m
n
a
n

12501
Next we chooseQ such thatD15dy. As a resultQ satisfies
the following first order partial differential equation:

]

]r
~l1 cosx cosQ2l2 sinx sinQ!1

]

]h
~l1 sinx cosQ

1l2 cosx sinu!50. ~7!

SinceD2 is a differential form of two variables, there alway
exists an integration factorm such thatD25mdr. Upon ex-
pressing all functions in terms ofr andy and by identifying
A5e22kuyu1a,r2C5r 2e22kuyu1c,m25e22kuyu1b we recover
the Gauss-normal form of the metric, Eq.~4!.

Substituting the metric~4! into Eq. ~3!, we obtain the
following components of the Einstein equation outside
source:
Rtt14k2e22ky1a5
1

2
ea2bF2a92

2

r
a81

1

2
a8~2a81b822c8!

2
1

2
e22ky1aF ä25kȧ2kḃ22k ċ1

1

2
ȧ~ ȧ1ḃ12ċ!G50, ~8!

Rrr 24k2eb5
1

2
a91c92

1

r
b81

2

r
c81

1

4
a8~a82b8!2

1

2
c8~b82c8!

1
1

2
e22ky1bF b̈25kḃ2kȧ22k ċ1

1

2
ḃ~ ȧ1ḃ12ċ!G50, ~9!

Ruu24k2r 2ec5
1

2
r 2ec2bFc91

4

r
c81

a82b8

r
1c821

1

2
~a82b8!c8G

1
1

2
r 2e22ky1cF c̈2k~ ȧ1ḃ!26k ċ1

1

2
ċ~ ȧ1ḃ12ċ!G1ec2b2150, ~10!

Ryy24k25
1

2
~ ä1b̈12c̈!2k~ ȧ1ḃ12ċ!1

1

4
~ ȧ21ḃ212ċ2!50,

~11!

Rry5Ryr5
1

2 F ȧ812ċ82
2

r
~ ḃ2 ċ!1

1

2
a8~ ȧ2ḃ!2c8~ ḃ2 ċ!G50,
ver

otic

ns

dS
where the prime denotes a partial derivative with respectr
and the dot denotes a partial derivative with respect toy.
These equations apply to the positive side of the braney
.0, the corresponding equations to the negative side of
brane,y,0, are obtained by switching the sign ofk.

III. POSSIBLE EXTENSIONS OF THE 4D
SCHWARSCHILD HORIZON

In this section we shall formulate the concept that wo
define an event horizon in the 5D brane world. We assu
that there exists a solution of the 5D Einstein equatio
which satisfies the Israel matching condition across the br
and maintains the Lorentzian signature in a certain regioP
e

e
s
ne

of the parametricr-y plane. We callP the physical region.
The physical region may or may not cover the entirer-y
plane. An example of a physical region that does not co
the entire parametric space is the AdSC metric discussed in
Ref. @8#. We also assume that there exists an asympt
regionA within P, where the metric componentsea, eb, and
ec are well approximated by linear gravity and the functio
a, b, andc are well behaved beyondA. As we have seen, this
is the case for both brane-based coordinates and for A5
horizon-based coordinates. Starting fromA, we trace all pos-
sible light rays given byds250 or more specifically by

dt25eb2adr21ec2ar 2dV21e2ky2ady2 ~12!
7-2
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POSSIBLE EXTENSIONS OF THE 4D SCHWARZSCHILD . . . PHYSICAL REVIEW D63 125017
until we come to a point from which the light cannot prop
gate forward in certain spatial direction. By continuity, t
union of these points forms a 4D hypersurfaceH, which we
refer to as an event horizon. We shall consider the case
H lies within ~not coincide with the border of! P.

To prevent light propagation, some of the coefficients
the right hand side of Eq.~12! need to become sufficientl
divergent so that an increment of the corresponding spa
coordinate would take infinite amount of timet. Therefore,
we can determine the form of the horizon by finding t
locus of the logarithmic singularities of the functionsa, b,
andc. This locus has to be consistent with the Einstein eq
tions ~8!–~11!.

We denote the locus of the logarithmic singularities ofa,
b, and c by H(r ,y)50 and an arbitrary point on it by
P(r 0 ,y0). The unit normal vectornW and the unit tangen
vector tW at P on r-y plane are

nW 5~cosa,sina!, tW5~2sina,cosa!, ~13!

where

cosa5
1

D S ]H

]r D
P

, sina5
1

D S ]H

]y D
P

~14!

and

D5AS ]H

]r
D

P

2

1S ]H

]y
D

P

2

. ~15!

Let us consider a pointQ(r ,y) in the neighborhood ofP and
let us transform the coordinates into

j5~r 2r 0!cosa1~y2y0!sina,
~16!

h52~r 2r 0!sina1~y2y0!cosa.

As j→0 andh→0, we expect that

ea.Ajna, eb.Bjnb, ec.Cjnc, ~17!

wherena , nb , andnc are integers due to the reality requir
ment of the metric components on both sides of the horiz
and A, B, and C are numerical constants. The integersna ,
nb , andnc could not all be zero, otherwise there would be
singularity at the pointP. The Lorentzian signature in th
physical region forbidsec and the metric determinan
e28ky1a1b12cr 4 sin2 u from changing their signs. These co
siderations restrict bothnc andna1nb12nc to be even. By
continuity, these exponents are maintained along the en
H. Therefore,
12501
at

n

al

-

n,

ire

a.na ln j, b.nb ln j, c.nc ln j. ~18!

Taking into account that

]

]r
5cosa

]

]j
2sina

]

]h
,

~19!
]

]y
5sina

]

]j
1cosa

]

]h
,

their derivatives behave as

ȧ.
na

j
sina, ḃ.

nb

j
sina, ċ.

nc

j
sina ~20!

and

a8.
na

j
cosa, b8.

nb

j
cosa, c8.

nc

j
cosa. ~21!

We observe that the derivatives ofa, b, cbecome singular
asQ approachesP. As a result of substituting Eqs.~20! and
~21! into Eqs.~8!–~11!, the cancellation of the leading sigu
larities inRyy24k2 and inRry , O(1/j2), leads to two con-
ditions onna , nb , nc , anda:

E sin2 a50, F sina cosa50 ~22!

with

E52na2nb22nc1
1

2
~na

21nb
212nc

2! ~23!

and

F52na22nc1
1

2
na~na2nb!2nc~nb2nc!. ~24!

There are three types of solutions to be analyzed.
Type I: EÞ0. The only solution is sina50, which implies

a tube shapedH:

S ]H

]y D
P

50. ~25!

The standard Schwarszchild horizon of a physical black h
belongs to this type. In the coordinates straight with resp
to the brane, the recovery of 4D general relativity on t
brane forkGM@1 implies that

ds2.2S 12
2GM

r Ddt21
dr2

12
2GM

r

1r 2dV2 ~26!

for y50. The standard Schwarzschild horizon atr .2GM
corresponds to the exponentsna51, nb521, and nc50.
Therefore, since the integer combinationEÞ0, the off-brane
extension of the horizon is a tube as is shown in Fig. 1~a!. It
7-3
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either extends to infinity in they direction, similar to the
horizon of the black cigar solution of Chamblin-Hawkin
Reall @9# though the explicit forms of the solution are diffe
ent, or it terminates at the border of the physical regi
similar to the example in Ref.@8#. This rules out the possi
bility of a pancake shaped Schwarzschild horizon in 5D.
the other hand, in the coordinates straight with respect to
AdS5 horizon, the validity of linear gravity for larger or
large positivey excludes the tubular form of the horizo
completely, as is shown in Fig. 1~b!. Because of the bran
bending in the negativey direction and the failure of the
linear approximation there, we are unable to rule out
possibility of horizons of the subsequent two types in t
coordinate system.

Before analyzing the next two types, we notice that
solutions toE50 correspond to points with integer coord
nates lying on an oblate spheroid with axis 2 and&. There
are only twelve of them, and we should exclude the soluti
with odd nc or odd na1nb12nc and the ones that mak
none of eb2a, ec2a and e2a divergent. Consequently, w
have the following.

Type II: E50 but FÞ0. The only solutions in this cas
are (na ,nb ,nc)5(2, 2, 0) or~2, 2, 2! with either sina50
or cosa50. The latter implies a horizon parallel to the pla
y50 and it may exist in the coordinates straight with resp
to the AdS5 horizon for a physical black hole.

Type III: E50 and F50. The qualified solutions for
(na ,nb ,nc) are ~2, 0, 0! and ~2, 0, 2!. They are also consis

FIG. 1. A physical black hole viewed in two coordinate system
~a! In the coordinates based on the brane, where the thick
denotes the brane and the dashed line the off-brane extension o
4D Schwarzschild horizon. The Schwarzschild radius isr c

52GM@11O(1/k2G2M2)# and the mass point is located atr 5y
50. ~b! In the coordinates based on the AdS5 horizon, where the
thick line denotes the bent brane.
12501
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tent with the other components of the Einstein equations.
have not found yet any restrictions on the shapes of the
responding horizons. The first solution of the integer trip
corresponds to the isotropic coordinates of a black hole~na
52, nb5nc50!, which can be obtained through
y-independent coordinate transformation from the stand
metric. It can be shown, however, that ay-dependent and
Gauss-normal form preserving transformation that leaves
brane intact does not exist. Therefore, this particular hori
cannot be transformed into a pancake shaped one.

For a general Gauss-normal form of the metric~1!, we
may define the 434 matrix of ḡmn by G, and theRyy24k2

equation can be written as

Ryy24k25
1

2 S ]

]y
e22ky

]

]y
ln~2detG! D

1
1

4
tr G21

]G
]y

G21
]G
]y

50. ~27!

Now our statements regarding the Schwarzschild horizon
be generalized to a spinning black hole located on the br
y50. Assume that the 4D Kerr metric@10# is recovered on
the brane for sufficiently largek, then we have

ds2.2
D

r2 ~dt2 j sin2 udf!21
sin2 u

r2 @~r 21 j 2!df2 jdt#2

1
r2

D
dr21r2du2, ~28!

for y50, whereD5r 222GMr1 j 2 and r25r 21 j 2 cos2 u
with M the mass andj the angular momentum per unit mas
A horizon corresponds to the solutions ofD50, that might
have two solutions or none. It is straightforward to show th
the metric determinant detG52(r 21 j 2 cos2 u)2 sin2 u and
its logarithm are free from the horizon singularities. On t
other hand, the matrixG21(]G/]r ) contains a 1/D singularity
at the horizon. If the 5D extension of this horizon were be
towards or away from they axis, this singularity would be
shared by the matrixG21(]G/]y) off the brane. This is again
forbidden by the Einstein equation~27!.

Having a pancake shaped horizon as the 5D extensio
the Schwarszchild horizon is physically implausible. If th
were the case, somewhere off the brane and near the hor
we would expect that

ea;y2yc , eb;
1

y2yc
, ~29!

with yc a function ofr. It follows then from Eq.~12! that it
would take a finite amount of time for a light beam comin
out of the horizon to propagate in they direction. Conse-
quently the black hole would appear to be luminating in t
y direction.

The conclusions we have reached above depend on
form of the metric, Eq.~1!, and the Einstein equations. W

:
e
the
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might try to relax the Gauss-normal form of the metric.
the case of a spherical black hole, we might consider
metric

ds25e22kuyu~2eudt21evdr21r 2dV2!1efdy2, ~30!

where u, v, f are functions ofr and y. The equationRyy
24k2ef50 then becomes

ü1 v̈22k~ u̇1 v̇22 ḟ !2
1

2
ḟ ~ u̇1 v̇ !1

1

2
~ u̇21 v̇2!

1e2ky1 f 2vF f 91
2

r
f 81

1

2
f 8~ f 81u82v8!G

18k2~12ef !50. ~31!

Let us assume that an approximate Schwarszchild metric
be recovered on the brane, which is located aty50 and that
the 5D extension of the horizon is given byH(r ,y)50. If we
consider an arbitrary point on it,P(r 0 ,y0), with the variable
j defined as before, we have

u; ln j, v;2 ln j, f ;n ln j ~32!

with n being an even integer. Then the leading singularity
the left hand side of Eq.~31! results from either

ü1 v̈1
1

2
~ u̇21 v̇2!;

1

j2 sin2 a ~33!

or

e2ky1 f 2vS f 91
1

2
f 82D;S 2n1

1

2
n2D jn21 cos2 a.

~34!

For n,21, Eq. ~34! represents the leading singularity, th
only solution is cosa50 and this horizon will not join the
Schwarszchild horizon on the brane. Ifn.21, Eq.~33! rep-
resents the leading singularity, and the only solution
sina50. Therefore, the 5D extension of Schwarszchild h
rizon is again a tube.

The existence of a 5D extension of a 4D Schwarzsch
horizon for a physical black hole relies on the recovery of
general relativity on the brane for largek. The rigorous state-
ments we made on the possible shapes of the horizon, h
ever, are independent of the value ofk, since the terms of the
first derivative with respect toy in Eqs. ~8!–~11! do not
contribute to the leading singularity of a horizon. In the fo
lowing, we illustrate various types of horizons for a 5
Schwarzschild metric (k50), i.e.,

ds252S 12
l 2

R2Ddt21
dR2

12
l 2

R2

1R2~dx21sin2 xdV2!,

~35!
12501
e

an

n

s
-

d

w-

where l is the Schwarzschild radius,R is the radial coordi-
nate, andx is a polar angle onS3, dV is the solid angle on
S2. If we introduce cylindrical coordinatesr 85R sinx and
y85R cosx, we find

ds252S 12
l 2

R2Ddt21
l 2

12
l 2

R2

~r 8dr81y8dy8!2

R2 1dr82

1r 82dV21dy82, ~36!

and we have a circular horizon onr 8-y8 plane at the expens
of introducing off-diagonal terms of the metric. To enforc
the Gauss-normal form of the metric, consider the trans
mation

R5R~r ,y!, x5x~r ,y!. ~37!

The functionsR(r ,y) andx(r ,y) have to satisfy the condi
tions

R2

R22 l 2 S ]R

]y D 2

1R2S ]x

]y D 2

51,

~38!
1

R22 l 2

]R

]r

]R

]y
1

]x

]r

]x

]y
50.

There is a simple solution withR5Ay21 l 2 and x an arbi-
trary function of r only, which results in a Gauss-norma
form of the metric~36!, i.e.,

ds252
y2

y21 l 2 dt21~y21 l 2!S dx

dr D
2

dr2

1~y21 l 2!sin2 xdV21dy2. ~39!

The horizon,y50, then becomes of type III. This transfo
mation, however, is singular on the horizon, more spec
cally the Jacobian](R,x)/](r ,y) is zero. If a solution to Eq.
~38! that is nonsingular at the horizon could be found, th
we would have a horizon of type I, since limR→ l(]R/]y)
50 in any case in order to balance the first equation of
~38! and the nonvanishing Jacobian demands t
limR→ l(]R/]r )Þ0.

IV. CONCLUSIONS

In summary, we have found that the vacuum Einst
equations together with a Gauss-normal form of the me
place fairly stringent restrictions on the form of the eve
horizon. The suggested pancake shaped extension of th
Schwarzschild horizon cannot exist in the Gauss-norm
form of the metric. In the coordinate system based on
brane@11#, the event horizon has a tubular shape extend
possibly to infinity in agreement with recent numerical stu
ies @12#, while in the coordinate system based on the Ad5
horizon, the region of validity of linear gravity excludes th
possibility. The horizon then might belong to either type II
type III. The technique of balancing the leading singularit
in the Einstein equation that we have developed in
7-5
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present work may be generalized to other singularities of
solution, e.g., the curvature singularity. Since our analy
does not depend on the value ofk, our classification of ho-
rizons applies to the large extra compact dimension scen
M43S1, which corresponds tok50 and periodicity in they
direction. Our rigorous statements on the shape of the h
zon provide not only hints to the form of the exact solutio
but may also impact on the stability of it. It is also interesti
to explore the metric of a physical black hole numerical
on
-

F

12501
e
is

rio

ri-
,

.

We hope to report our progress towards these direction
the near future.
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