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We discuss scenarios in which the galactic dark matter in spiral galaxies is described by a long range
coherent field which settles in a stationary configuration that might account for the features of the galactic
rotation curves. The simplest possibility is to consider scalar fields, so we discuss, in particular, two mecha-
nisms that would account for the settlement of the scalar field in a nontrivial configuration in the absence of a
direct coupling of the field with ordinary matter: topological defects and spontaneous scalarization.
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I. INTRODUCTION [14], that the laws of motion are modified when the accel-
erations involved are extremely small. Unfortunately this
It has been known for a long time that the motion of thescenario has not, as yet, been converted into a fully relativ-
stars and gases around the center of most galaxies cannotisécally invariant theory. Another type of model that has
explained in terms of the luminous matter content of thebeen exposed is to replace general relativity by a higher or-
galaxies, at least not within the context of Newtonian gravityder in curvature theory, which in some particular cases ap-
(see Ref[1] for a review. The standard view is that there is pears to be obtaining encouraging res{it5]. The problem
in almost every galaxy a large component of nonluminouswith this approach is that these types of theories have, in
matter (the gravitational dark matterthat forms a halo general, problems of principle like, for example, the lack of a
around the galaxy and that provides the additional gravitawell posed initial value formulation. Nevertheless, such rela-
tional attraction needed to explain the “rotation curves” in tively radical proposals are still attractive, due in part to a
terms of standard gravitational theory. There are several prantrinsic problems of the more conservative approaches in
posals for this dark component, ranging from new exoticexplaining the generality and universality of the phenomena,
particles such as those predicted by supersymnigtrd], to  namely the fact that the amount of luminous matter seems to
other less exotic candidates such as massive neutrinos, &lé such a good indicator of the amount of the dark matter
collectively known as weakly interacting massive particlescomponen{16] and the fact that the dark component hap-
(WIMP’s) (see Refs[2] and[5] for a review, to the relative  pens always to distribute itself in such a way that the result-
mundane idea of dark but ordinary bodies such as Jupiteing rotation curves(RC’s) are almost flat away from the
like objects collectively known as massive compact halo obgalactic center§l7].
jects (MACHO's) [6]. Searches for these types of objects Thus, in contrast with the former scenarios which would
have been madg], and although they report some findings, need to assume not only the existence of the dark matter but
there does not seem to be enough of these objects to accolaiso give some evolutionary scenarios that result in the afore-
for galactic dynamics. Moreover, there are severe bounds omentioned universality in its distribution, the modified grav-
the amount of baryonic matter in the universe arising fromity scenario would naturally account for such correlations
big bang nucleosynthesis and for some values of the Hubblwithout the need for additional assumptions. On the other
constant these bounds also imply that some of the galactisand, the former scenarios do not present any problem in
dark matter ought to be exoti8—10]. Independently of this, lending themselves to an acceptable theoretical formulation,
and despite their popularity, these types of models suffecompatible with present theories of particle physics and gen-
from various problems and require surprising coincidencegral relativity.
(see, for example, Refl11)). The object of this article is to discuss a third type of
Another type of proposal, which is in some sense morescenario which has some of the advantages of each scheme.
radical, is based on the idea that the gravitational theoryrhe idea is to take dark matter to be described not by a
would have to be modified when dealing with the scalesbunch of particles whose distribution needs to be explained,
associated with the motion of stars in galaxjé®,13, in but by a coherent field which would settle in a universal
particular, the idea is embodied by the proposal of Milgromstationary configuration that would account for the generic
features of the RC’s. The simplest possibility is provided by
scalar fields, which would, of course, have to be very long
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direct coupling of such a field with ordinary mat{é:g], and Scenario(c) is exemplified by the model of global mono-

in the absence of such coupling the field will, in general,poles[28] which have the notable feature of naturally lead-
settle globally in the minimum of the potential leading to aing to a 1t2 energy density behavior which would naively
homogeneous configuration that will not produce the desire@ccount for the flat rotation curves and which upon taking
effects. On the other hand, one could hope that, given théhe symmetry breaking scale to be the grand unified theories
likelihood of existence of large black holes at the center o GUT) scale would result in the correct order of magnitude
most galaxies, they would account for the nontrivial configu-for the galactic dark matter. Unfortunately, upon further ex-
ration of the scalar fields. Unfortunately, this kind of situa- @Mination of the simplest model severe problems arise, in
tion is largely forbidden by the “black hole no-hair theo- p_artlcular the monopole conflgur_atlon turns out to be repql-
rems” for scalar field§19—21]. These limitations severely Siv€[29], and moreover, the configuration would be too uni-
reduce the types of models one can consider, in particula?’ersal in the sense thqt it would be independent of_ the size of
there are, known to these authors, only three mechanisni8e galaxy thus defeating the hope for the correlation of dark
that would account for the settlement of the scalar field in 40 luminous matter over a range of galactic sizes. There is,
nontrivial configuration in the absence of a direct coupling off€Vertheless, hope to overcome these problems by the con-
the field with ordinary mattefor some other exotic matter Sideration of slightly more complicated mod¢25]. In that
which we will not consider because of the incremental numWork the simple monopole model was supplemented by the
ber of hypotheses it involvis(@) boson-star like clumpgh) |ntroduct|on of a nonminimal coupling betwegn the scalar
spontaneous scalarization, af@ topological defects. Other 1€lds and curvaturésee Ref[26] and Sec. V). This resulted
models that lack these features have been considered, f8 the restoration of gravitational attraction leading to re-

example, in Ref[22]. However, such models face two prob- gions of relatively flat rotation curves and to the possibilities
lems: first, they give rise to configurations where the scalaPf the dark-luminous matter correlations arising from the fact

field in consideration is singular “at the center,” and second,that in these models the scalar poten¥gkb®d) (where
the resulting scalar field potential needed to account for thé" stands for a triplet of scalar fields that characterize the
flat RC depends explicitly on the value of the “tangential global monopolgis replaced with the effective scalar poten-
velocity” of stars at the flat region. That is to say, such atidl V(®*®g) +F(®®,,R) (hereR stands for the scalar
potential has to be adjusted differently for different galaxiesCurvature of the space-time metrishose minima depend on

Needless to say, both problems clearly make those schemE¥ amount of matter present through the effect of the latter
unsuitable as models for the problem at hand. on R. The global monopole model has the additional advan-

Concerning caséa) mentioned above, it has been ana- {a0¢€ qf resilience qgainst the formati'on of black holes in the
lyzed in Ref.[23]. Their analysis focuses on cosmological 92lactic centers, since their topological charge makes them
and evolutionary considerations as well as the issues relatd@imune to the devastating limitations imposed by the no-
to the conditions under which the assumption of long rangd'a” theorems. . .
coherency of the scalar field is justified, rather than the uni- Despite the promising features of the mode, our in-
versal features of the galactic rotation curves. We will deaf€ntion in the present work is to take a step backwards and
here with the other two caséb) and (c). look at t_he problem from amore general point pf view before

Scenario(b), namely the spontaneous scalarizatisee embarking in the methodical study of a particular type of
Sec. \} [24], is in some sense simpler because it involves dnodel. _ _ _
single scalar field in contrast to the various fields needed in The paper is organized as follows: in Sec. II, we analyze
the simplest versions of topological defeds.g., global the generic fprm of the rotation curves of galaxies in a gen-
monopoles Here the mechanism that allows for the non- era_l relat|V|st|q context. In Sec. lll, we comment on the New_-
trivial stationary configuration of the scalar field is connected{onian approximation and on the embedding of the galaxy in
to a nonminimal coupling of the scalar field to the curvature.the large scale space-time. In Sec. IV, we discuss the addi-
This results in the effective gravitational coupling becomingtional information that can be obtained about the metric from
dependent on the scalar field. The point is that such a coRther considerations, specifically the deflection of light by
pling allows for the reduction of the total energy of the con-the gal'axy. Section V reviews the spontaneous scalarization
figuration (in comparison with the corresponding configura- SC€narios. In Sec. VI, we review the nonminimally coupled
tion with the same baryon number and no scalar Yiétd global_ monopole model and _dlscus_,s its shortcomings. Fi-
which the scalar field deviates from the trivial configuration"ally, in Sec. VIl we offer a discussion and analyze the di-
by taking values that reduce the gravitational coupling in the'€ctions for further developments.
regions of high matter densit)25]. Thus the model must

incorporate from the onset the nonminimal coupling that;, noTATION CURVES OF GALAXIES AND FREQUENCY

seems to be needed to account at the same time for the cor- SHIETS
relations in the dark-luminous matter compone(sise Ref.
[26] and the discussion of the third scenario beloWwhe The rotation curves(RC’s) provide the most direct

disadvantage of this model, which is in fact shared by themethod of analyzing the gravitational field inside a spiral

first model(i.e., boson stajs[27], is precisely the lack of galaxy. RC’s have been determined for a great amount of
resilience against black holes whose existence in most gaspiral galaxie§16,17. They are obtained by measuring the

axies, if confirmed, would seem to preclude, through the nofrequency shifts of light emitted from stars and from the

hair theorem$19—21], the models based on this mechanism.21-cm radiation from neutral gas clouds.
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In fact, since(apart from the central regionthe “tangen- As usual, the consideration of the norm of the four veloc-
tial velocity” of rotation v remains approximately constant ity (u“u,=—1), gives
up to distances far beyond the luminous radius of these gal- . . .
axies, a naive Newtonian analysis leads to the conclusion —1=—N2(r)(t?>)+ A%(r?)+r?(¢?). (2)
that the energy density decreases with the distance as )
and therefore that the mass of galaxies increasem@y  The energy and the angular momentum per unit of mass at
~r. On the other hand, one could naturally question whethefest of the test particle are conserved quantities and can be
this large mass ought not to result in an important gravita¥Vttén as
tional redshift. We will carry our analysis in a general rela- 0. 5,
tivistic setting and will see in the following sections that with E=—0,,e"0"=N(1), L=g,,9*u"=r(¢), (3
s e oo o Senres,ucence th imeike and otatona il s
in general, described by the standard fomis?=— (1 of the metrlc(l)', respectively. Introduc_lng these constants of
+20)d2+ (1+20) 'dr2+r2d) as can be initially MOUOn in the line element2), we obtain
thought(see, for example, Ref23]).
In order to analyze the problem we will focus directly on N2A2(r)2+ N2
what it is observed because only then will we be able to
discuss models that do not lend themselves to Newtonian
based inferences. This is an important point since the lack of his equation shows that the radial motion of a geodesic is
understanding of it leads to erroneous conclusi@as. the same as that of a particle with position dependent mass
The observations of stars and gas in spiral galaxies sho@nd with energyE?/2 in ordinary nonrelativistic mechanics
a shift z, in their intrinsic spectra which includes the con- moving in the effective potential
tributions of: (1) the cosmological expansiofiecession of
galaxies, (2) the peculiar motion of the galaxy3) the ther-
mal motion of atoms within the stars and gé$, the gravi-
tational field within the galaxy and stars, and finals) the
motion of the stars around the galactic center. As we mentioned, the RC of spiral galaxies are inferred from
When the “contaminating” effects fronil)—(3) are sub-  the red and blue shifts of the emitted radiation by stars mov-
tracted from the data, usually astronomers report the resuling in “circular orbits” on both sides of the central region
ing zin terms of a velocity field. Nevertheless, it is instruc- [17]. The light signal travels on null geodesics with tangent
tive to make the analysis in terms of the quantities that ar&*. We may restrick” to lie also in the “equatorial plane”
most directly observable: thes. We perform this in orderto 9= 7/2, and evaluate the frequency shift for a light signal
keep track of the effect of the underlying assumptions, and temitted fromQg in circular orbit and detected b§)p . The

enable us to carry the analysis when these are no longehngitions for circular orbits, Ve;;=0 andr=0 lead to
valid, as will be the case in some models we will consider.

2

L
— +1|=FE~ (4
"

L2

Ver(r)=NA(r) r—2+1 . 5

The starting point is to assume that stars behave like test 5 r39,N/N

particles which follow geodesics of a static and spherically =127 a NN (6)
symmetric space-time associated with sources that we do not '
specify for the moment. The most general line element of the N2
space-time in these circumstances takes the form =

P B = I NIN ™

ds?=—N?(r)dt?+ A%(r)dr?+r2d6?+r? sirf6d ¢>. The frequency shift associated to the emission and detection
(1) is given by

Next we consider two observet8g and Op with four ve- ,—1_2E ®)
locities ug, uf, respectively. Observe®g corresponds to wp'
the light emitter(i.e., to the stars placed at a poiRt of
space-timg and O, represents the detector at poy, lo-  Where
cated far from the emitter and that can be idealized to corre- we=—K,Ulp: 9)
spond to “spatial infinity.” ¢ w-ClPe

Without loss of ge”efa"ty’ we can assume that the Starﬁwe indexC refers to emission or detection at the correspond-
move on the galactic planed=m/2, so that ug ing space-time point.
=(t,r,0,0)e, where the dot stands for derivation with re- Two frequency shifts corresponding to maximum and
spect to the proper time of the particle. minimum values are associated with light propagation in the

On the other hand, we suppose that the detector is statéame and opposite direction of motion of the emitter, respec-
(i.e., Op’s four-velocity is tangent to the static Killing field tively (i.e., k"=k?=0). Such shifts are the frequency shifts
é’/(?t), and so W|th reSpeCt to the above coordinates its fOUrof a receding or approaching star, respective|y_ Using the
velocity isuf=(t,0,0,0) . constancy along the geodesic of the product of the Killing
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field g/ ot with a geodesic tangent together with E¢®.and We will for convenience introduce the following alterna-
(8), and expressiond) and(6), we find the two shifts to be tive form of the metric variables:

-1

Np {1F[rd,N(r)/N(r)]¥3 N2(r)=exd20(r)].  (15)

+—= 1 y A2 =
z==1 N(r) [1—ra,N(r)/N(r)]*? (10 )

2m(r)
r

1_

whereN(r) represents the value of the metric potential at theEiNStein’s equations then read

radius of emissiorr, and Ny the corresponding value of
N(r) at r—o where the detector is supposed to lie. For
asymptotically flat space-timeé,— 1. However, for space-

d,m=4mr2p, (16)

-1
times generated by global monopollig— (1—a)'? (see 9= m(r)(l_ 2m(r))
the Sec. V). ' r2 r
It is worth noting that in terms of the tetrads 3
e(o):N_l(a/ﬂt), e(1)=A_1(r9/ﬂr), e(2)=r_l((9/(90), 9(3) 1+ 4t Pr) (17)
=(r sind) " Y(dla¢), the frequency shifts take the form m(r) |-
Np The equation of hydrostatic equilibrium resulting from the
z.=1- (5oL, (1) conservation of the energy-momentum tenggi“”=0 be-

comes

where v:=[2;_1 5 (U /Uy *]¥? and u,, stands for the
components of the star’s four-velocity along the tet(ael., 8,P,=—(d,v)p
the velocity measured by a Eulerian observer whose world

line is tangent to the static Killing fie)dand I'=(1
—v?)~Y2is the usual Lorentz factor. Clearly, in the present
case of circular orbits on the plarge= /2, it turns out that
v=U(z)y/uy=[rd,N(r)/N(r)]*2. It is convenient to define
the quantities:zp=13(z, —z_) and zy=3(z, +z_) which

1+ Pri_ 2 (P,—P,) (18)

P rpo " 6)-
We note that the observations in spiral galaxXi#g] yield
Zp=v~const andzp>z,. From these conditions and from
Eq. (12) we obtain

are easily connected to the observations. From the expression ! ! ~1 (19
(10) we obtain N(r) [1—ra,N(r)/N(r)]¥?
Np  [ra,N(r)/N(r)]*? and
ZD(r):N(r) ! 12’ (12)
[1—r<9rN(r)/N(r)] vE[rarN(r)/N]l’Z; (20)
(=1 Np 1 13 the value ofy roughly ranges from 10* to 10 3 depending
Zpr)y=1- : on a particular spiral galaxy. The integration of HG9)
N(r — 1/2
() [1—ra,N(r)/N(r)] gives
We note, for example, thatz{—1)?—z3=[N(r)/Np] 2, 02
and thus we could in principle recovi(r) directly from the N(r)= <_) , (21)
observations. Then we can use tiN¢r) to recalculatez, Iy

and z from the above expressions and compare them with
the measured values. This would be a test of the assumptid’ﬁ
that the dynamics is determined by the geodesics of a sta-
tionary metric, quite independently of the assumption of the?
dynamics of the geometry itself or of the nature of the dar
matter.

herer is constant.
Note that using Eq(21) in Eqgs.(17) and(18), we obtain
system of three equatioiise., Eqs.(16)—(18)] for four
nknowns(i.e., m,p,P,,P,). In the case of a perfect fluid,
owever, the four unknowns are reduced to three shce
=P,=p. This therefore constrains the equation of state
=p(p). On the other hand, for the case where the matter
content is associated, for example, with a scalar field, then
P, , andP, are not independent but are given in terms of the
In this section we will use the form of the RC’s to obtain field and its gradients, thus we obtain a constraint on the

the space-time metric and information on the matter contenform of the scalar potential.
The energy-momentum tensor must be diagonal and spheri- We will look for a solution that satisfies the Newtonian
cally symmetric, as dictated by the symmetries of the spaceconditions
time (1), so we define

IIl. GRAVITATIONAL FIELD IN THE DARK MATTER
ZONE

Pro<p. (22
p=-Ti{, P,=T], P=T)=T¢ (14)

;
andT#=0 for u# . m(r)<z, @3

125016-4



ALTERNATIVE APPROACH TO THE GALACTIC DARK. .. PHYSICAL REVIEW D63 125016

43P, <m(r). (24)

2M
dSzZ_(l—T dt2+

2M\ 1t
1- T dr2
Under these conditions Eq&l6)—(18) reduce to
+r2(d6?+sirf6de?) r>Ry, (30)
d,m(r)=4mr?p, (25)

' P whereM = aRy/2.

Here we are taking the view that the region of flat rotation
m(r) (26) curves terminates in a narrow transition region where the

ov=—r, . .
id r2 behavior of the density changes from the?lto a constant
that for simplicity we take to be zero, the point being that in
he limit in which the region is very narrow the metric will
9P =—(3,v)p, 27) the limit ch the region is very narrow the metric

not change abruptly as we cross the region, but the derivative
of the metric coefficients will experience a jump. It would be
interesting to consider various alternatives for the details of
the interpolating regions.

An alternative to the search of solutions satisfying the
Newtonian condition§22)—(24) is to start from Eqs(16)—
(18) without imposing the Newtonian approximation but as-
suming that the dark matter is represented by a perfect fluid.
Then again, the use of EQR1) with P, =P, allows the in-
1Iegration of Eqs(16)—(18) as follows:

using the expressiof21) for N in Egs. (26) and (27) with
v=In[N], and solving the system, we obtain

2 4

U
m(r)~v?r, p(r)~——=, P,~ .
( g 4r? ' 87r?

(28)

The solution corresponds to the relatifn~v?p/2 which

looks somewhat peculiar. If we view this as the equation o

state of a perfect fluid, in the case of an ideal gas we would 2 2
. . i ve (2-09)

conclude that its temperatuiieis constant and proportional m(r)= — ——————r,

to v2. The interpretation is that the dark matter represented 2 (1+20%-0v%

by a perfect fluid is made of particlésleal gas that interact

among themselves strongly enough to maintain thermal equi- 02 (2—v?) vt 1

librium but do not interact in the same way with ordinary p(r)= 87 1o A Pr=8— — a3

matter or with photons. The idea is then that the dark matter T (1+ 20 =0)r T (142070 )r

temperature determines its density profile and the space-time (3D

metric, and through this, the rotation curves of the stars in , . . . . 5 2

the galaxy. One of the problems of this type of model is theWhICh results in an "equation of stateP, =v"p/(4=2v").

. 2 < .
need to explain why the isothermal configuration of the 1‘IuidIn irtatcf;{:gevoiitl\'/vzocgﬁ rci(:aocvke:/\/tr?(;r?grlut?gﬂ:). roximations
does not extend to the center of the galaxy. P pp

; : . . we considered are self-consistent. That is, we substitute Eq.
Using Egs.(21) and (28) in Eqg. (1) we obtain the final : . S
result fgr thqe r;et)ric in ghis? Iimit:q @ (21) in the left hand side of Eq.19) obtaining

202 1 1 _ 1 p 2
dszz—(rL) 4+ (1-a) AP+ r2(dP+siPade?),  NOD [1_raNmNI2 VA od@-a) 10

g (29) (32

. . L .. The difference between this expression and 1 must be neg-
wherea=2v2. We emphasize that this solution is only valid P 9

in the flat RC zone. We know that eventually this must beli%l_bglillg_foﬂ]?s ngﬂirg}/;z h;ghb;tsne;fitr:zrczgot k:eelrgogd: c:r
matched to a Ro_bertson-Wa_Iker metric descrlbmg_ the uniz o small. To get an estimate we use the approximation
verse, or alternatively, we might use the asymptotically flat " - 5 . 5 .
idealization for regions very far from the galaxy in question. X~ ~1=v°In(X) valid for [u“In(X)|<1. These require-
To do so we must consider E(29) as describing the space- MeNts are then
time geometry for <R, and the Schwarzschild metric for

r>R,, whereR, is the radius where the flat rotation curves

end. The advantage of this approximation is that far from thel_hus the approximations are self-consistent as long as

galaxy the space-time is Minkowskian, a fact that facilitates, 10P<In(r/R)<1F. which d : .
for example, the analysis of the propagation of light signals. <In(r/Rg) < , which does not impose any practi-
Matching continuously the two metrics B allows the cally relevant constraints for the case of the galaxies and the

determination of the integration constants: extent of the flat_ RC'S. .
It is worth noting that the form of the metric that we have

obtained differs from what would be naively expected:

lIN(r/Ry)|<v 2. (33

202

ds’=—(1-a) dt?+(1—a) 'dr?

Ry ds?= —(1+2®)dt?+ (1+2d) 1dr2
+r2(d6?+sirfode?) r<Rg, +r2(d6?+sirf0de?), (34)
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with @ representing the Newtonian potential. This form is IV. BENDING OF LIGHT IN THE DARK MATTER ZONE
often implicitly assumedsee Ref[23]) and the fact that it is One of the wavs we could in orinciole explore the issue of
not appropriate for the region where the RC'’s are flat lies at Y P P b

: : 0 whether the flat RC’s are the result of some form of un-

g‘:f c[%rle])of the problems with the analysis of R@0] (see known matter or the result of the change in the dynamical

We also point out that if we assume that the flat RC's!aWS thqt govern the motion of_partlcles WOUId be by stu_dy-

: e . S -ing the light deflection by galaxies. In particular, by studying

extend indefinitely, the resulting space-time is not asymptotl—the deflection of vhotons passing throuah the reaion where
cally flat but rather is asymptotically flat but for a deficit b b 9 9 9

angle (AFDA) [32]. In this context we stress that it is pos- IEE ScirZIarZIg?(t' I]Zreotr#Sf;?udsisct:grqsédserv?lgr\]/a}?réoargp[ﬁ:cmgg
sible to consider such “idealized infinitely extended galax'bendirr)l ofgli htéssumin the metric. that has beenpmatched
ies” as isolated objects in the framework of general relativity 9 9 9

by replacing the asymptotically flat framework by the frame-W'th an asyn_wptoncally flat exterior, i.e., E(B0).

work AFDA [32]. One might want to embark in such con- The bending of the light results 9]

siderations since, in fact, the RC’s remain flat to the farthest Ap=2|p(rg) — po| — (41)
distances that can be observed. On the other hand there is a

natural way to estimate an upper bound for the cutoff of suclwhere ¢., is the incident direction and, is the coordinate
behavior. The idea is to consider the point at which the deradius of closest approach to the center of the galaxy:
caying density profile associated with the galaxy becomes

smaller than the average energy density of the universe. We r\2N2(rg)
call this boundRy}),,. The value forRy,, is obtained by ‘ﬁ(ro)_d’w:J’r A(r) (E) NZ(r)
imposing the condition that the density at this point, pro- °

vided by Eq.(28), is to coincide with the mean density of the The integral is split in two parts for the two domains of the

—-1/2
dr

— @2

o

universe: metric (30):

y : @ o= [ a0 1]1/20”
Ryax) ™~ ——5 5 =Pu, 35 ro) = ¢= N |— - —
P(Ruax) = g7 =P o rol N2(r) r
" 22 71/2d

wherepy is the mean density of the universe. Then we have +f A(r) (L) (ro) _r.
Ro ro/ N2(r) r

u v @3
RMax: 47TPU. (36)

The second integral is computed by expanding the integrand
Now we introduce the valupy, in terms of the dimension- in powers ofM/rq andM/r [9] using Eq.(30) for r>R,

less  Hubble parameter h  defined as Hy - 5
=10Ch km/(sec Mpc) and)y=py/perit (L) N (fo)_l :(L teoml o)
ro/ N2(r) ro rro
pu=1.8791x 10 2°Q),h? kg/m®
r\? 2Mr
=2.7816'Q h*M /Mpc>. (37) =I5 -1 1_m+...,
We obtain (44)

and the results is

U
RY =2.45<10F QY kpc. 38 ~
Max hitu KP (38) B F\2N2(r,) vz
fA(r) — -1 =
Ro ro/ N2(r) r

Takingh=0.65 andv~ (10 3-10 ), we have

U _1p * dr M Mr
Rijax=3.77x (10°~10%) Q ** kpc. (39 = 7——p| 1+ —F+ ——=+---
R (r) 1} r ro(r+rp)
Moreover, forQ,=1, o
! ol M ro|2]Y2
Ryax=3.77X (10°~10%) kpc. (40) =arcsin — |+ —1{2—|1—| =—
a Ro/ o Ro

On the other hand, the measured flat regions are aRgut Ro—ro)| Y2
~2R,p Where R, is the radius encompassing 83% of the - Ro+rg + (45
total integrated light of the galaxy. We can take as a typical
value Ry~30 kpc, therRy< Ry .y - The first integral of Eq(43) with Eq. (30) for r <R, gives
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using satellite galaxie33] or the weak lensing of back-
ground galaxies by foreground dark hal@!]. From these
measurements, halo radii of more than 200 kpc are inferred.
For our galaxy it is 230 kp€35] and from satellite galaxies
of a set of spiral galaxies values larger than 400 [ are
found. By taking Ry~230 kpc, we would haveR,,<r
<15R,,=R, (Where we have choseR,,= 15 kpc). In this
case we would have 1/%5;/Ry<1 and a value near to the
maximum in Fig. 1. It would be interesting to explore the
possibility to have relevant observations in this context.

We discuss next two of the three simplest scenarios in
which the dark matter corresponds to coherent scalar fields.

V. SPONTANEOUS SCALARIZATION

As we mention in the introduction, the phenomenon of

FIG. 1. Bending angle of the light as a function of the parameterspontaneous scalarization in compact objegtstably in

ro/Rg.

ZN?(r) B

r
jA(r)“ﬁ) N(r)
. [\ 20-0?) 124,
=(1-a) MH(E) —1} -

(1_61)71/2 —-12
= Z—arcta
(v°-1)

o

-1

r 2(1-v9)
) (46)

Finally, using Eqs(45) and(46) in Eq. (41) and then using
(42), the bending angle of light yields

R N
=|2arcsin — |+ —i{2—|1—| =—
Ro o Ro
RO_rO l/2]+2(1_a)—1/2
Ro+ro (v2-1)
Ry 2(1-02) -1/2 -
X\ arcta r_) -1 —5(| =™ (47
0
where we took the limit
. r 20109 e
Ilmr_woarcta E -1 =5 (48)

If we putrog=R, in Eq. (47), we obtain the standard result
for the Schwarzschild metric with masé= aRy/2 and with

neutron stansthat arise in a class of scalar tensor theories of
gravity [24] is one of the mechanisms that allows the appear-
ance of a nontrivial scalar field in the absence of a direct
coupling between the scalar field and ordinary matter. The
general feature of these kinds of theories is a scalar field
coupled nonminimally to gravity which leads to an effective
gravitational coupling which depends explicitly on the scalar
field. The nontrivial scalar field configuration appears when
the object is compact enough so that the energy of the con-
figuration for a fixed baryon number is minimized through a
change in the value of the effective gravitational constant.
That is, for a fixed baryon number, the energy of the con-
figuration with a scalar field is lower than the corresponding
configuration in absence of a scalar fi¢kb|. An heuristic
interpretation that is confirmed by the numerical results
shows that, from a Newtonian point of view, the relevant
quantity to be minimized is the combinati@M instead of
the total massvi. We observed that although the most evi-
dent additional contributions t&M [37] are both positive
and thus increasing the value &M, their effect is more
than compensated by the reduction of the value of the con-
tribution GM,,, which is the leading term il M. Thus
there appears a nontrivial configuration of the scalar field
which is associated with the minimizatioft fixed total
baryon numberof the the valueGM [25].

Several problems arise if we want to use this mechanism
to induce a nontrivial configuration of a scalar field at the
galactic scale. First, in the model studied so far we have seen
that spontaneous scalarization occurs only if the object is
compact enough, that is, @ M/R~1/2 and needless to say
that the galaxy as a whole does not satisfy this critézia
cept perhaps at the centelf we assume that a large dense
object lies at the center of the galaxy one would need some
very unusual equations of state to overcome the standard

A¢p=(4M/ry)=4x10"°. Figure 1 shows the bending angle limits on the mass of these objects associated with the re-

of light A ¢ as a function of the parametes/R,. If we take

quirement of stability against collapse. But even if we were

the impact parametar, to be in the range of the measured to assume such an object, the scalar field associated with the

flat regions by neutral hydrogen measuremeftit), Ry
<ro=<2Ryn= Ry, then we have 1Rr,/Ry<1. In this case,
the maximum value foA ¢ is obtained for the valuey /R,

phenomena of spontaneous scalarization falls mgat/least
in the models considered so fao it would not be relevant
at the distances associated with the flat RC’s that lie at a

=1/2. Recently, the investigations for determining the radiugdistance of the order of kiloparsecs from the galactic center.
of dark matter halos have gone beyond the HI measuremenEsnally, the energy of the configurations with nontrivial con-
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figuration according to this phenomenon is smaller than thatoupled global monopoles. The main results of this section
of the corresponding configuration in which the scalar fieldhave been reported in ReR6].

vanishes, thus the phenomenon seems to take us in the op- Particle physics models predict the formation of topologi-
posite direction as compared to what seems to be required tmal defects during phase transitions in the early universe. The
explain the additional attractive effect on the test stars in thenechanism argued for the formation of these is the sponta-
galaxy. If we wanted to consider extended objects other thateous breaking of symmetry of the model under consider-
neutron stars, it is not even clear how to build a sufficientlyation leading to a manifold of degenerate vacua with non-
dense object. The only possibility would seem to be bosofirivial topology. Topological defects can be classified
stars[38] which now would act only as triggers of the spon- according to the topology of the vacuum manifold. If the
taneous scalarization. These models would require us to hynanifold of equivalent vacua1 contains unshrinkable sur-
pothesize two scalar fields, one providing the oscillating bofaces,m>(M) #1, then monopoles are formed. These can be
son field of the boson star, and a second one providing thelassified into local and global monopoles depending on
mechanism for spontaneous scalarization. On the other harfyether the symmetry broken is local or global. In the first
we must point out that although boson star masses are usG@se(gauge monopoléshe monopole configuration has fi-
ally very small, when one introduces self-interactions theifité energy concentrated in a small core and produces an
mass can be as large asZ7J20”2M@ (for a scalar field mass asymptotically flat spape—nme, while |n.the seco_nd case, the
m~10"° eV and a sufficiently large self-interaction constant9/0bal-monopole configuration has a linearly divergent en-
\) [39]. Still we face the problem associated with the rapid®9y due to the long range Nambu-Goldstone field with en-

falloff of the energy density associated with the scalar field 89y density decreasing with the distance ‘_"‘,g As we have
which would go like 1. mentioned, this behavior is very appealing in view of the fact

The hope here would be to consider alternative forms ofat this is precisely what seems to be required in a naive
the nonminimal coupling, with the possible introduction of picture to provide a natural explanation for the flatness of the

various forms of self-interaction terms for the scalar field,RC’S- . . . -

that would not only lead to spontaneous scalarization but to a !t was shown by Barriola and Vilenkif28] that this lin-
rather different falloff behavior of the scalar field. Neverthe-8arly divergent “mass” has, at large distances, an effect
less, as was already mentioned, there is one very serio@alogous to that of a deficit solid angleplus that of a tiny
problem remaining with this type of scenario, and it is theMass associated to the core of the monopole. Then, assuming

issue of black holes. There is at the present time mountind'€ €xistence of a global monopole in a typical galaxy the
evidence that there is at the center of most galaxies a verptal Newtonian mass contribution of the portion of the glo-
massive black hole, and in view of the no-hair theorems foal monopole contained Vg'th'“gal (with 1gar~15 kpe) is
scalar fieldd19—21, it seems clear that the phenomenon offound to beM ~ar /2~ 102 GeV, where we took a typ|20al
spontaneous scalarization does not have an analogy when tgeand unified valuep~10'° GeV, and wherex=8wG»”.
compact objects are replaced by black holes. Thus in thosENiS estimate turns out to be ten times the total mass due to
galaxies the scalar field would relax to the trivial configura-the contribution of 18 solar mass in a typical galaxj.e.,
tion and thus any explanation of the RC's based on thaMswrs~10°° GeV). These numbers are again what is needed
phenomenon would cease to be operative. There are, howQ ac_count for the observations. Finally, if we assume that
ever, some small loopholes remaining in the black holehe field of the monopole extends on average a distance of
uniqueness theorems for the case of nonminimally coupleéen galactic radii from the galaxy where the configuration
scalar fields which leave a ray of hope in this general direcPresumably coincides with that of the monopole centered in
tion, and which are currently under investigatiato]. the neighboring galaxy, theM~10"° GeV, which is 100

For the case of massless bosomassless complex scalar times that of the galaxy. This value leads to a contribution of
fields), a Newtonian analysis leads to flat RG38]. Unfor- the monopole to the total average density in the universe,
tunately, in that work, the author neglects to note that thevhich is of the order of magnitude predicted by the standard
RC's are not directly observable but only inferred from theinflationary scenarios. Actually, it is the reversed argument
corresponding light shifts. As it turns out, in that model thethat helps to place upper bounds on the density number of
“gravitational” redshift would be very large to the point that global monopoles present in the univefda]. On the other
by ignoring it, the author is ignoring effects of the samehand, Harari and Lous{®9] showed that the small effective
order of magnitude as the ones that are being consideref!assMcy¢~0.8a is in fact negative and produces a repul-
Moreover, the law of composition of velocities used there tosive potential. They studied the motion of test particles in the
reproduce the RC’s is not valid. space-time of a global monopole concluding that there are no

In the following section we analyze the case for the mattefound orbits. This result led thus to the unavoidable conclu-

represented by global monopoles nonminimally coupled té&ion that minimally coupled global monopoles are not good
gravity. candidates to explain the RC’s despite the suggestive num-

bers and features considered above.
Another problem is the fact that the monopole configura-
VI. GLOBAL MONOPOLES tion is rather urjique, in the sense that it is basically indepen—
dent of the ordinary matter content in the corresponding gal-
We will now consider one example of what we feel is at axy, which conflicts with the fact that there is a rather large
this time the most promising class of models: nonminimallyrange of galactic masses for which the dark matter compo-
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nent is about ten times more massive than the ordinary mafigurations and the resulting space-time. Owing to the com-

ter componenf42]. plexity of the resulting equations, we will perform a numeri-
Recently, we have showf26] that by coupling global cal analysis in terms of the following variables:

monopoles nonminimally to gravity it is possible to avoid the

most undesirable features of the minimal case, notably, the v(r)=In[N(r)], (56)
lack of bound orbits, and the universality of the monopole ~
configuration. v(r)=wv(r)—v(0), (57

Specifically we considered a theory of a triplet of scalar

fields ¢2, a=1,2,3, nonminimally couple@NMC) to gravity A= 1-a- 2Gom(r)| 12 59
with global Q3) symmetry which is broken spontaneously to r '
U(1). The simplest model of this kind is described by the
Lagrangian where
1 1 a=————, A=8u1Gy7n°. 59
£=¢—9[ER+F<R.¢%3> —J—gb%ﬁ)z 1+2¢A o 59
The relevant Einstein equations take then the following
+V(d2a) |, (a9  form:
am a
_ _ _ —=4mr’E— 5 —, (60)
where V(¢3¢,) is the usual Mexican hat potential ar 2Gg

V(¢%¢a) = (N14) (4% pa— %)

Equation(49) shows that the introduction of the coupling ﬂ: 2 GOm+ i+47-rrG T 61)
term is equivalent to consider an effective potential ar rz2 2r 0 eftr|
V(¢?da)er=V(d%ba) —F(R, ¢ da), (50 where
which explicitly depends on the matter content through E=NTgy (62

and thus the content of ordinary matter of the galaxy affects . .
the location of the minima. This feature can thus help 0> the effective total energy denglty. .
avoid the scenario where the monopole configuration is uni- _On th? other_ hand, the Klein-Gordon equation can be
versal, and opens the possibility to recover the correlatioﬁl\’rltten .d|recftly in terms of the energy momentum of the
between the masses in the dark and ordinary matter comp<§9alar fields:
nents of the galaxy.

In the following we show in detail how the nonminimal
coupling leads to the existence of bound orbits. We will fo-
cus on the case whef&(R, ¢2,) = (£4°h,)R, whereg is ~ Where
the NMC constant. The gravitational field equations follow- S=Ti., (64)
ing from the Lagrangiari49) can be written as o

N (")

D(f)az _167T§¢aG0(E_S)+T¢a,

(63

is the trace of the “spatial part” oT 4 , which plays the role
of an effective pressure.

R = EQMRZSWGOTgffV’ (51) In the coordinate$l) this equation reads
where S E+&_v_ _ 2Gem|~*
G a2 |r o ar « r

po_ —eff WY Ty
Tert G, (AETE"+Tg), (52) Gy a|]ag?
X 47TGOrE_ > E 0"_I'
TE'=VH($V"ha) — gV (¢°V  ¢,), (53
2Gom| !
1 ) +|1l—a—
T =V gV o= g""| 5 (V) +V($%¢a) |- (54) r
IV($° ) a
The equation of motion for the scalar fields is X T 16mEd°Go(E—9)
aV(P° -1
Dge+2egoR= VP D). (55) ) PR
‘9¢a r2 r

We will only consider a metric describing spherical and
static space-time&l) and study solutions of the gravitational
and scalar fields equations describing global monopole con-

a2¢a+cosb’ apd 1 PR
96% sind 30 it ge? |

(65
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The ansatz for a monopole configuration is . AG o 1 , 2§2
a —S= 5= —(Ff)+ = | (1+12¢)
A X 8m(1+24AE312Gy) | | A r2
$*=nt(r) (66)
2_ 2 2082 __
with x®x3=r2, so that a monopole solution is found ff + (7= 1)+ 12675(1 1)]’ 77)
—1 at spatial infinity(i.e., || $?||— 7).
It is clear from Eqs(52)—(54), that the intermediary vari- ~ ~
ablesE and S[see Eqs(62) and(64)] involve second order Eo AGej _4ét(arf)(grv)
derivatives of the scalar field. However, we can eliminate 8m(1+ 24A§2f2(”3€ﬁ) A2
such terms from the gravitational field equations with the 5
help of the ansatz for the monopole field and of the Klein- X (1+ 24A £2F2G o) + 4£F2(F2—1)
Gordon equation, and obtain “sources” containing at most )
first order derivatives of the scalar field. We also introduce 1 , f P
the following dimensionless quantities: + E(‘Tff) +7_2 (1+86+BAL M Gen)
Ti=r-ga?, (67) (f2—1)2 ~
+— (1-8AE%2Gyy) | . (78)
m:=m-Gon\12 (68)
B Go HereE and'S are dimensionless as in E@9).
E=E-—-, (69 We note now that the sources of the differential equations
7 contain only first order derivatives of the field variables and
are thus suitable for numerical integration with a Runge-
~ G '
3._S. TO' (70) Kutta algorithm.
7N
A. Asymptotic expansions and boundary conditions
A=8mGon’, (71) Let us discuss the asymptotic behavior of global mono-
A poles at the origin and spatial infinity in order to find the
a: , (72 boundary conditions for the numerical integration. The regu-
1+2¢A larity condition atr =0 on the metric requires
= 1 m(0)=0, m(0)=— al2. 79
am———, (73 (0)=0, #M(0)=—a (79
1+2&Af 5
i ) _The boundary condition on(r) is by definition
then the final form of the equations to be analyzed numeri-
cally is 1(0)=0. (80)
~ ~ oy~ o
fTrm=47Tr2E—§, (74 The boundary condition on the scalar fieldrat0 is (false
vacuun)
- A2 m A |1
= L T S B — ()2 f(0)=0. (81)
1+ 2EATT(5F)Gey | 2r T2 2 2A?
(f2-1)2 2 8&f(arf) e Thgg one flndsothe expansions of the functiomg), f(r),
T4 e || (79  andw(r), atr=0,
2 2m\ * m(t)=— i L ae+)E2[Fr0[), (82
grf=— :+(r,u—(1—a—7 2 122 ¢ ’
r r
— a m om| f(n=fr+0o(r¥), 83
X|4mE— —=—=| |(&f)+| 1—a— =
2r r? r
~ A 72 T3
of v(r)=— ﬂ(1+24§)fcr +0(r?), (84
x| f(f2=1)+ = —16méf(E-9) |, (76)
' wheref is determined by the boundary conditions at spatial
where infinity. Let us defineM =m(s). As we mentioned, we con-
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sider monopole configuratior(ge., f—1 at spatial infinity:

true vacuum Then we have the asymptotic expansions at

spatial infinity,

-~ a [a? 8&(1-a) -
M) =M+ | -+ ———| +O(f %), (89
f(r)= - (s ,

(r=1 (1+2§A)r2+0(r ) (86)
~—~ o~ M ~

v(r)=w(w)— ~+0(r 2. (87)

(1—a)r

We will impose for the asymptotic behavior of the metric,
flat-but-for-a-deficit-angle

the standard asymptotically
(SAFDA) « space-time(see Ref.[32]) and therefore the

boundary condition on the function(r) at spatial infinity is

v(OO)Z%ln(l—a). (89

The integration of the equations is performed by specify-

ing the regularity condition on the scalar fieldrat 0,
#f(0)="f.. (89

The valuef cannot be arbitrary, but must be so thaatisfy

the appropriate boundary conditions at spatial infinity. This

is enforced by the use of a standard shooting mefd&d

PHYSICAL REVIEW D63 125016

(r)

0.5

D A R B S S
0 0.5 1 1.5 2

log,o[1 + r/r ]

FIG. 2. The figure depicts the global monopole fiéld@) for
£=0, a«=0.795 (solid line), £=2, «=0.1 (dashed ling and ¢
=0.3, «=0.79 (dash-dotted ling Herer .=(7\*3 1.

Caseé>1/2. The range allowed for the breaking scale is
A e[0,0) and for the deficit angler [ 0,1/2¢). This is con-
sistent with the conditiov<<1.

Figures 2—4 show numerical solutions for the cgse?
satisfying the required boundary conditions.

Case¢<1/2. The range permitted for the breaking scale
is Ae[0,1/(1-2&a)] and for the deficit angler[0,1]. In
this case the static configurations cease to exist when
>1/(1-2¢a).

Figures 2—4 show numerical solutions for the cages
=0.3 and¢=0 (minimal coupling casesatisfying the re-

We can compute the solution by integrating the equationgired boundary conditions.

in one step, fronr =0 to a radius which is chosen conve-

In the minimal coupling case Harari and Lou$®®9] es-

niently so thatf =1 with a certain degree of approximation. timated analytically the mass of the monopole s~

The physical laps@&l(r)=e” atr =0 is calculated at the end
of the numerical integration from Eq&7) and(88),

v(0)= %m(l—a)—?/m, (90)

—2al3, and the size of the coré~2, then numerically
showed thaM ~ —0.75«. That is, they showed that the ratio
M/« is practically insensitive ta (see Figs. 5 and)6

In the nonminimal coupling case, for a givérthe situa-
tion is similar in that the ratioM/ « is practically insensitive

where the value., is obtained from the numerical integra- I e ]
tion. This ensures that at spatial infinity we recover the //’\\
SAFDA «a space-time. o[ \ 7
We note that the Arnowitt-Deser-MisnéADM) mass of | / \
the configurations of global monopoldsge Ref[32] for a E" )/ N
rigorous definition of the ADM mass for the case of space-—' o |~ , , , + > . .+ =~ .
times with a deficit anglecan be easily computed from the i ' A - \' '
integral = N T e me o
g ol \ T
* a o r .
MADMazleimem(r)=fo <4wr2E(r)—§)dr. I
(91) | 1 1
0 1 2 3 4

B. Results

log,o[1 + r/7]

In order to obtain static configurations, we must impose

the condition B<a<1 for the deficit angle. The behavior of

the deficit anglex whenA~0 is

a~A—2EA%+0O(A3). (92

FIG. 3. Mass profilem(r) for £=0, «=0.795(solid line), &
=2, a=0.1(dashed ling and¢=0.3, «=0.79 (dash-dotted ling
Asymptotically this quantity provides the ADM mass of the con-
figuration. Herem,=(Go7A )1,
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O e — e — S T T
£ . TTTER
> r -
= ol -
o F-- ]
o 1 1 |
0 1 2 3 4
1°g10[0(]
(a) log,o[1 + r/r,]
FIG. 5. ADM mass of configurations for different values of the
j ———— deficit angle foré=0 (solid line), ¢=—2 (dashed ling £=0.3
L ] (dash-dotted ling and£=2 (dotted ling.
@ B to a for «<0.01. Actually, in this range of smalk, that
© .
s ] ratio depends weakly on the value éf However, for «
§ 7 >0.01 the ratio depends strongly grand « (cf. Figs. 5 and
2 ] 6). This can be seen by performing an analysis similar to the
o ] one of Ref.[29] but assuming the following approximation:
E i
= ~ o
for if r<s,
f= 1 -~ 93
ol ] 1-———— if 7573 9
So 1 2 3 4 (1+2¢A)r?
(b) log [1 + r/r.] o
and for the functiorm(r),
T
a. A, . - -
- ——r+r3 if 1<,
@ 7 m= 2 24 (94)
B ] M if >3,
= ]
2 ]
R “ . :
S i
3 i
[ 1
= o H
] ~ / -
[3) /
E r
o P R B R ': o L // ]
0 1 2 3 4 ~. ’
= F y ]
| L 7
(c) logo[1 + r/r.] i 7
FIG. 4. Metric potentialdN(r)/(1—a)? (solid lines, A(r)(1 [ e T = =E e . ’
— @) (dashed lines and the producAN (dash-dotted lingsfor - e
three different configurations. The top panel corresponds=t0, ol v ]
a=0.795, the middle panel t§=2, «=0.1, and the bottom panel -3 -2 -1 0
to £=0.3, «=0.79. Note thatAN approaches the unit “outside” log, [«]
10

the monopole core, while the metric potentill@ndA tend to the

asymptotically flat-but-for-a-deficit-angle values far from the ori- £ 6. ADM mass-deficit angle rate of configurations for dif-

gin. ferent values of the deficit angle faf=0 (solid ling), &=—2
(dashed ling ¢=0.3 (dash-dotted ling and¢é=2 (dotted ling.
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0
~—

10

£(0)

1°g10[a]

FIG. 7. Derivative of the global monopole et 0 for different
values of the deficit angle foé=0 (solid ling), £&=—2 (dashed
line), £=0.3 (dash-dotted ling and ¢é=2 (dotted ling.

matching continuously the functiom and its derivative at
=5, we obtain

|\/|——EL——E (1+2&A)"12 (95
T 3(+2ea)2 37 '
5 =2(1-2&a)Y? (96)

o= ——
(1+2&A)12

where we have used the relatidn= a/(1—2£«a). For the

caseé=0, we reproduce foM and s the values estimated
analytically by Harari and Loustf29]. We can see that in
the caseé>1/2, we haveA e[0,°) and a[0,1/2) and

thereforeM —0 when a—1/2¢, this is confirmed numeri-
cally for the value¢=2 (cf. Fig. 6. Now we match continu-

ously the functiorf atT =3 and we obtain

(1-2¢a)™ 2,

fc=i3(1+2§A)1’2=i 97

33 33
then whena— 1/2¢ we find that the value of; diverges;
this is checked out numerically for the valge-2 (cf. Fig.
7).

C. Geodesic motion in the space-time of a global monopole

PHYSICAL REVIEW D63 125016

Veﬂ(r)

o 1 1 1 1

0 1 2 3 4

log,ol1 + r/r.]

Vere(r)

0.5

0 1 2 3 4

logyoll + r/r.]

FIG. 8. Functional dependence of the effective poteitigl vs
T for the caset= —2, a=0.43 (top panel and a=0.125 (bottom
pane). For each configuration we show three values of the angular
momentum:L=4 (solid line), L=1 (dashed ling and L=0.3
(dash-dotted line Herer .= (7\Y?) "1,

their absence whe§>0 is the following. We know that
3 Vets=2N2(r)(— L2/ r3+L29,v/r?+ 9,v). So in order for
d:Ves=0 allowing an extremum, notably a minimum, it is
necessary that,»>0 (or equivalentlyd,N>0). This means
thatN(r) should have an increasing behavior as a function of
r at least in some region away from the origin. Equatio®
provides the sign for the slope df. Near the originf~f.r
and therg, v~ — (A/12) (1+24¢)rf2+0(r®). For9,v>0, &
must be negative enough so that the coefficient R4¢) is

In order to analyze the geodesic motion of test particles imegative(cf. Fig. 9. On the other hand, foé¢=0, d,v<<0
the space-time generated by a global monopole we considend therefor&/. s has no minimgno bound orbits(cf. Figs.

Eq. (5). In this caseNp = (1— «)*? and the remaining gravi-

4 and 10. This heuristic argument is confirmed by the rig-

tational potentials are given numerically. Figure 8 shows therous numerical analysis from which the critical valéig,

effective potential foi= —2 and for different values of the

that allows the existence of bound orbits is found toéhe

other parameters; here we note the existence of a potentiat —0.15.

well and a nontrivial minimum and thus the existence of

stable circular orbits.
For £&>0 the effective potential5) does not exhibit

Moreover, forL=0 which corresponds t&.=N?, a
peculiar situation occurs in the cases whé&tg; has ex-
trema, notably a maxim@.g., foré=—2). The maxima and

maxima or minima. An heuristic analysis that helps us tominima of V4 will correspond to the locus of unstable and

understand the appearance of extremd gf when£<0 and

stable stationary points where test particles are stagc,
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Metric potentials

0 1 2 3 4

log [1 + r/r.]

FIG. 9. Same as Fig. 4 fdf=—2, «=0.43.

where particles do not feel any gravitational fields seen
from Fig. 9, we appreciate that at the origis0, test par-
ticles can be at rest in stable equilibrium, while gf, where

Ve IS maximum test particles can be in unstable static equi-?

librium. In other wordsr .« Separates two regions: one at-
tractive and other repulsief. theN(r) profile from Fig. 9.

0
N [T

PHYSICAL REVIEW D63 125016

z(r)

P R S S S R S S S
0 0.5 1 1.5

(@) log,,[1 + r/r,]

0.2

— ©
N

-0.2

—0.4

(b)

0.5 1

log,gl1 + r/r.]

1.5

Vegr(r)

2 2.5

(@)

(b) log,,[1 + r/r.]

FIG. 10. Same as Fig. 8 f@r=0, «=0.795(top pane), and for
¢=2, «=0.1 (bottom panel

FIG. 11. Functional dependence of (dashed ling z_ (solid
line), and zp (dash-dotted linevs T for circular orbits in the case
&=—-2, «=0.43 (top panel, and «=0.125 (bottom panel The
asterisk depicts the location of the radius beyond which the stable
circular orbits cease to exist {-9r.).

This strange behavior contrasts dramatically with the cases
of “conventional” gravitational sources like stars, planets,
etc. where test particles are always attracted towards the
source and where there are “no trivial” points at which they
can remain static. In the case of minimally coupled global
monopoles test particles are always repelled.

Since bound orbits exist in the space-time generated by
nonminimal global monopole with suitabke we can com-
pute the corresponding shiff, from Eq.(12) using the nu-
merical solutions foN and compare with the RC’s of spiral
galaxies. Figure 11 depicts, (dashed ling z_ (solid line),

and zp (dash-dotted lineas functions off for the casesy
=0.43 (left pane), and «=0.125(right pane] respectively.
We note that even for this very simple model the figures that
would correspond to the rotation curves contain a relatively
“flat region” within the values ofr corresponding to stable
orbits (i.e., the behavior ofy near its maximum

From these figures it is interesting to note thatwhich is
in principle associated with a blueshift, does not always cor-
respond to a blueshift, since there is a valy¢hat separates
positive from negative values af, . This is easy to under-
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T T T T T T candidate for explaining the galactic dark matter and the cor-
R e ] responding rotation curves. The fact that the model is fully
e RS 1 consistent mathematicallgno singularities, naad hoc pre-
i N ] scriptions for the “tangential velocities” or for the metjjc
F \ . in addition to the numerical coincidences mentioned at the
\ ] beginning of the section, provides some hope for pursuing a
\ ] much more detailed study along this direction.

0.3
\
/
!

[ru’r](l/ 2)
0.2

0.1
=== T

\ 1 VII. CONCLUSIONS

| ] The galactic rotation curves continue to pose a challenge
° T T\ to present day physics as one would want to understand not
0 0.5 1 1.5 only the nature of the dark matter that is associated with
Jog. [1 + r/r.] them but also the reason behind their universdiiey., why
10 ° is it distributed within a galaxy in a way that leads to almost
FIG. 12. Tangential velocity = (rd,N/N)¥2 in units ofc for  flat rotation curves, and why is the amount of dark matter
£=—2, a=0.125(solid line), and «=0.43 (dashed ling The as- Presentin a galaxy so well correlated with the luminous mat-
terisk depicts the location of the radius beyond which the stablder?[16,44)).
circular orbits cease to exist. Models based in ordinary physical objects could already
_ ) N be facing problemgdepending on the exact value of the
stand since the value, arises from a competition between Hypple constanf10]) in view of the bounds that big bang
the gravitational redshift and the kinematical blueshift. Forpycleosynthesis impose on the baryon content of the uni-
slow particles(i.e., particles orbiting at “small’r) moving  yerse.
in the same direction as the emitted light, the gravitational pjodels based on particle physics are the most commonly
barrier dominates over the positive contribution of the kine'considered(usually within a Newtonian schemdut they
matical effects, and thus the frequency of emitted light haseed to address the nature and the distribution problems
an overall attenuation. At orbits with radiug, partiCIes are Separa’[e]y, |eading to a |arger number of hypotheses and sur-
fast enough for the kinematical blueshift to cancel the graVi'prising coincidencef11].
tational redshift resulting iz, =0. For example, from Eq. In view of the recent cosmological measurements and the
(11 and for v<1, it turns out thatz, <0 if v<1  theories that have been put forward to explain tfés], one
—N(r)/(1- ). We note that in the nonminimal coupling is naturally led to consider alternative models based in the
case (+ a)*>N(r) in the regions where bound orbits ex- introduction of long range coherent fielf3). In this work,
ist. For larger values of, z, reaches a maximum and then we have given a review of various types of approaches to
starts decreasing since the gravitational barrier becomegese questions indicating in each case the problems and ad-
larger (see Fig. 8 while the tangential velocityv [v vantages.
= (r9,N/N)*?] becomes smaller until reaching zero at the We have argued that so far the most promising and simple
radiusr ma whereN is maximum(see Fig. 12 approach would involve global monopoles with some sort of
Concerningz_ , this quantity is generically negatiee.,  nonminimal coupling to gravity. It remains for the future to
it corresponds to a true redshiffor instance, when<1,  establish how far this sort of idea can be pushed towards the
thenz_~1—(1—a)Y(1+v)/N soz <0 if (1—a)?¥1  goal of making a realistic and compelling model for the dy-
+v)/N>1. This condition holds in most of the region of namics and evolution of galaxies. In particular, any such
bound orbits since in that cade<(1—a)¥ andv+#0 (see  model must also be studied in the context of cosmological
Figs. 9. However, moving away from the origin—0 andN perturbations, large scale structure, and the cosmic micro-
grows to a maximum value where=0 andz_=z,=1  wave backgroundCMB). In this regard we should point out
—(1—a)YN which can be positive. For the casemlues that the simplest models of topological defects as seeds for
of £) giving rise to bound orbits, it seems thdtalways has structure formation seem to be incompatible with the acous-
a global maximum and theN,> (1— «)*2 Thereforez.. tic peak in the CMB anisotropies detected by Boomerang
>0 atr,.. In fact the region ofr wherez_=0 is very and Maxima[46]. However, all these studies have consid-
narrow and corresponds to {la)Y3(1+v)/N<1 [practi- ered the simplest minimally coupled models and it is unclear
cally unseen at the scales of Fid.1); this corresponds to how the models of the type being analyzed here would be-
orbits of small angular momentdm have in this respect. Finally, we should mention that the
To conclude this section, we mention that although thecurrently favored cosmological scenarios require at least two
nonminimal global monopole model can repair the two mainhypothetical components: the cold dark mattesually in the
objections posed on the minimal modelamely, the bound form of WIMP’s) necessary for the structure growth and the
orbit and the correlation between luminous and dark mattedlark matter in galaxies and clusters, and the cosmological
problems, there are still several improvements needed inconstantA which provides the closure densitgs required
order that the quantitative predictions of this model fit rea-by inflation) as well as the repulsive component that seems
sonably well with the astrophysical data. Therefore it is stillto be required in order to account for the observations of the
very premature for this model to be considered as a realistituminosity distance of high red shiftype 18 supernovae
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