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Alternative approach to the galactic dark matter problem
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We discuss scenarios in which the galactic dark matter in spiral galaxies is described by a long range
coherent field which settles in a stationary configuration that might account for the features of the galactic
rotation curves. The simplest possibility is to consider scalar fields, so we discuss, in particular, two mecha-
nisms that would account for the settlement of the scalar field in a nontrivial configuration in the absence of a
direct coupling of the field with ordinary matter: topological defects and spontaneous scalarization.
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I. INTRODUCTION

It has been known for a long time that the motion of t
stars and gases around the center of most galaxies cann
explained in terms of the luminous matter content of
galaxies, at least not within the context of Newtonian grav
~see Ref.@1# for a review!. The standard view is that there
in almost every galaxy a large component of nonlumino
matter ~the gravitational dark matter! that forms a halo
around the galaxy and that provides the additional grav
tional attraction needed to explain the ‘‘rotation curves’’
terms of standard gravitational theory. There are several
posals for this dark component, ranging from new exo
particles such as those predicted by supersymmetry@2–4#, to
other less exotic candidates such as massive neutrinos
collectively known as weakly interacting massive partic
~WIMP’s! ~see Refs.@2# and@5# for a review!, to the relative
mundane idea of dark but ordinary bodies such as Jup
like objects collectively known as massive compact halo
jects ~MACHO’s! @6#. Searches for these types of objec
have been made@7#, and although they report some finding
there does not seem to be enough of these objects to acc
for galactic dynamics. Moreover, there are severe bound
the amount of baryonic matter in the universe arising fr
big bang nucleosynthesis and for some values of the Hu
constant these bounds also imply that some of the gala
dark matter ought to be exotic@8–10#. Independently of this,
and despite their popularity, these types of models su
from various problems and require surprising coinciden
~see, for example, Ref.@11#!.

Another type of proposal, which is in some sense m
radical, is based on the idea that the gravitational the
would have to be modified when dealing with the sca
associated with the motion of stars in galaxies@12,13#, in
particular, the idea is embodied by the proposal of Milgro
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@14#, that the laws of motion are modified when the acc
erations involved are extremely small. Unfortunately th
scenario has not, as yet, been converted into a fully rela
istically invariant theory. Another type of model that ha
been exposed is to replace general relativity by a higher
der in curvature theory, which in some particular cases
pears to be obtaining encouraging results@15#. The problem
with this approach is that these types of theories have
general, problems of principle like, for example, the lack o
well posed initial value formulation. Nevertheless, such re
tively radical proposals are still attractive, due in part to
intrinsic problems of the more conservative approaches
explaining the generality and universality of the phenome
namely the fact that the amount of luminous matter seem
be such a good indicator of the amount of the dark ma
component@16# and the fact that the dark component ha
pens always to distribute itself in such a way that the res
ing rotation curves~RC’s! are almost flat away from the
galactic centers@17#.

Thus, in contrast with the former scenarios which wou
need to assume not only the existence of the dark matter
also give some evolutionary scenarios that result in the af
mentioned universality in its distribution, the modified gra
ity scenario would naturally account for such correlatio
without the need for additional assumptions. On the ot
hand, the former scenarios do not present any problem
lending themselves to an acceptable theoretical formulat
compatible with present theories of particle physics and g
eral relativity.

The object of this article is to discuss a third type
scenario which has some of the advantages of each sch
The idea is to take dark matter to be described not b
bunch of particles whose distribution needs to be explain
but by a coherent field which would settle in a univers
stationary configuration that would account for the gene
features of the RC’s. The simplest possibility is provided
scalar fields, which would, of course, have to be very lo
ranged~i.e., masses smaller than 1/RG whereRG is the ra-
dius of the largest galaxy with flat RC’s!. The basic problem
is that there are very severe experimental bounds for
©2001 The American Physical Society16-1
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direct coupling of such a field with ordinary matter@18#, and
in the absence of such coupling the field will, in gener
settle globally in the minimum of the potential leading to
homogeneous configuration that will not produce the des
effects. On the other hand, one could hope that, given
likelihood of existence of large black holes at the center
most galaxies, they would account for the nontrivial config
ration of the scalar fields. Unfortunately, this kind of situ
tion is largely forbidden by the ‘‘black hole no-hair theo
rems’’ for scalar fields@19–21#. These limitations severely
reduce the types of models one can consider, in particu
there are, known to these authors, only three mechan
that would account for the settlement of the scalar field i
nontrivial configuration in the absence of a direct coupling
the field with ordinary matter~or some other exotic matte
which we will not consider because of the incremental nu
ber of hypotheses it involves!: ~a! boson-star like clumps,~b!
spontaneous scalarization, and~c! topological defects. Othe
models that lack these features have been considered
example, in Ref.@22#. However, such models face two pro
lems: first, they give rise to configurations where the sca
field in consideration is singular ‘‘at the center,’’ and secon
the resulting scalar field potential needed to account for
flat RC depends explicitly on the value of the ‘‘tangent
velocity’’ of stars at the flat region. That is to say, such
potential has to be adjusted differently for different galaxi
Needless to say, both problems clearly make those sche
unsuitable as models for the problem at hand.

Concerning case~a! mentioned above, it has been an
lyzed in Ref. @23#. Their analysis focuses on cosmologic
and evolutionary considerations as well as the issues rel
to the conditions under which the assumption of long ran
coherency of the scalar field is justified, rather than the u
versal features of the galactic rotation curves. We will d
here with the other two cases~b! and ~c!.

Scenario~b!, namely the spontaneous scalarization~see
Sec. V! @24#, is in some sense simpler because it involve
single scalar field in contrast to the various fields neede
the simplest versions of topological defects~e.g., global
monopoles!. Here the mechanism that allows for the no
trivial stationary configuration of the scalar field is connec
to a nonminimal coupling of the scalar field to the curvatu
This results in the effective gravitational coupling becomi
dependent on the scalar field. The point is that such a c
pling allows for the reduction of the total energy of the co
figuration ~in comparison with the corresponding configur
tion with the same baryon number and no scalar field! for
which the scalar field deviates from the trivial configurati
by taking values that reduce the gravitational coupling in
regions of high matter density@25#. Thus the model mus
incorporate from the onset the nonminimal coupling th
seems to be needed to account at the same time for the
relations in the dark-luminous matter components~see Ref.
@26# and the discussion of the third scenario below!. The
disadvantage of this model, which is in fact shared by
first model ~i.e., boson stars! @27#, is precisely the lack of
resilience against black holes whose existence in most
axies, if confirmed, would seem to preclude, through the
hair theorems@19–21#, the models based on this mechanis
12501
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Scenario~c! is exemplified by the model of global mono
poles@28# which have the notable feature of naturally lea
ing to a 1/r 2 energy density behavior which would naive
account for the flat rotation curves and which upon tak
the symmetry breaking scale to be the grand unified theo
~GUT! scale would result in the correct order of magnitu
for the galactic dark matter. Unfortunately, upon further e
amination of the simplest model severe problems arise
particular the monopole configuration turns out to be rep
sive @29#, and moreover, the configuration would be too u
versal in the sense that it would be independent of the siz
the galaxy thus defeating the hope for the correlation of d
to luminous matter over a range of galactic sizes. There
nevertheless, hope to overcome these problems by the
sideration of slightly more complicated models@26#. In that
work the simple monopole model was supplemented by
introduction of a nonminimal coupling between the sca
fields and curvature~see Ref.@26# and Sec. VI!. This resulted
in the restoration of gravitational attraction leading to r
gions of relatively flat rotation curves and to the possibiliti
of the dark-luminous matter correlations arising from the f
that in these models the scalar potentialV(FaFa) ~where
Fa stands for a triplet of scalar fields that characterize
global monopole! is replaced with the effective scalar pote
tial V(FaFa)1F(FaFa ,R) ~here R stands for the scala
curvature of the space-time metric! whose minima depend on
the amount of matter present through the effect of the la
on R. The global monopole model has the additional adv
tage of resilience against the formation of black holes in
galactic centers, since their topological charge makes th
immune to the devastating limitations imposed by the n
hair theorems.

Despite the promising features of the model~c!, our in-
tention in the present work is to take a step backwards
look at the problem from a more general point of view befo
embarking in the methodical study of a particular type
model.

The paper is organized as follows: in Sec. II, we analy
the generic form of the rotation curves of galaxies in a g
eral relativistic context. In Sec. III, we comment on the Ne
tonian approximation and on the embedding of the galaxy
the large scale space-time. In Sec. IV, we discuss the a
tional information that can be obtained about the metric fr
other considerations, specifically the deflection of light
the galaxy. Section V reviews the spontaneous scalariza
scenarios. In Sec. VI, we review the nonminimally coupl
global monopole model and discuss its shortcomings.
nally, in Sec. VII we offer a discussion and analyze the
rections for further developments.

II. ROTATION CURVES OF GALAXIES AND FREQUENCY
SHIFTS

The rotation curves~RC’s! provide the most direct
method of analyzing the gravitational field inside a spi
galaxy. RC’s have been determined for a great amoun
spiral galaxies@16,17#. They are obtained by measuring th
frequency shifts of light emitted from stars and from t
21-cm radiation from neutral gas clouds.
6-2



t
ga
io

he
ita
la
th
la
no

n
t
ia

k

ho
n-

u
-
ar

d
ng
r
te
ll
n

th

rr

ta

e-

ta

u

c-

s at
n be

s
of

c is
ass

s

om
ov-
n
nt

al

tion

nd-

nd
the
ec-
ts
the
ng

ALTERNATIVE APPROACH TO THE GALACTIC DARK . . . PHYSICAL REVIEW D63 125016
In fact, since~apart from the central regions! the ‘‘tangen-
tial velocity’’ of rotation v remains approximately constan
up to distances far beyond the luminous radius of these
axies, a naive Newtonian analysis leads to the conclus
that the energy density decreases with the distance asr 22

and therefore that the mass of galaxies increases asm(r )
'r . On the other hand, one could naturally question whet
this large mass ought not to result in an important grav
tional redshift. We will carry our analysis in a general re
tivistic setting and will see in the following sections that wi
standard assumptions about the matter content of the ga
the behavior of the RC’s indicates that the space-time is
in general, described by the standard formds252(1
12F)dt21(112F)21dr21r 2dV as can be initially
thought~see, for example, Ref.@23#!.

In order to analyze the problem we will focus directly o
what it is observed because only then will we be able
discuss models that do not lend themselves to Newton
based inferences. This is an important point since the lac
understanding of it leads to erroneous conclusions@30#.

The observations of stars and gas in spiral galaxies s
a shift ztot in their intrinsic spectra which includes the co
tributions of: ~1! the cosmological expansion~recession of
galaxies!, ~2! the peculiar motion of the galaxy,~3! the ther-
mal motion of atoms within the stars and gas,~4! the gravi-
tational field within the galaxy and stars, and finally~5! the
motion of the stars around the galactic center.

When the ‘‘contaminating’’ effects from~1!–~3! are sub-
tracted from the data, usually astronomers report the res
ing z in terms of a velocity fieldv. Nevertheless, it is instruc
tive to make the analysis in terms of the quantities that
most directly observable: thez’s. We perform this in order to
keep track of the effect of the underlying assumptions, an
enable us to carry the analysis when these are no lo
valid, as will be the case in some models we will conside

The starting point is to assume that stars behave like
particles which follow geodesics of a static and spherica
symmetric space-time associated with sources that we do
specify for the moment. The most general line element of
space-time in these circumstances takes the form

ds252N2~r !dt21A2~r !dr21r 2du21r 2 sin2udw2.
~1!

Next we consider two observersOE and OD with four ve-
locities uE

m , uD
m , respectively. ObserverOE corresponds to

the light emitter~i.e., to the stars placed at a pointPE of
space-time!, andOD represents the detector at pointPD lo-
cated far from the emitter and that can be idealized to co
spond to ‘‘spatial infinity.’’

Without loss of generality, we can assume that the s
move on the galactic planeu5p/2, so that uE

m

5( ṫ , ṙ ,0,ẇ)E , where the dot stands for derivation with r
spect to the proper time of the particle.

On the other hand, we suppose that the detector is s
~i.e., OD’s four-velocity is tangent to the static Killing field
]/]t), and so with respect to the above coordinates its fo
velocity is uD

m5( ṫ ,0,0,0)D .
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As usual, the consideration of the norm of the four velo
ity (umum521), gives

2152N2~r !~ ṫ2!1A2~ ṙ 2!1r 2~ ẇ2!. ~2!

The energy and the angular momentum per unit of mas
rest of the test particle are conserved quantities and ca
written as

E52gmn«mun5N2~ ṫ !, L5gmncmun5r 2~ ẇ !, ~3!

where«m, cm denote the timelike and rotational killing field
of the metric~1!, respectively. Introducing these constants
motion in the line element~2!, we obtain

N2A2~ ṙ !21N2FL2

r 2
11G5E2. ~4!

This equation shows that the radial motion of a geodesi
the same as that of a particle with position dependent m
and with energyE2/2 in ordinary nonrelativistic mechanic
moving in the effective potential

Ve f f~r !5N2~r !FL2

r 2
11G . ~5!

As we mentioned, the RC of spiral galaxies are inferred fr
the red and blue shifts of the emitted radiation by stars m
ing in ‘‘circular orbits’’ on both sides of the central regio
@17#. The light signal travels on null geodesics with tange
km. We may restrictkm to lie also in the ‘‘equatorial plane’’
u5p/2, and evaluate the frequency shift for a light sign
emitted fromOE in circular orbit and detected byOD . The
conditions for circular orbits] rVe f f50 and ṙ 50 lead to

L25
r 3] rN/N

12r ] rN/N
, ~6!

E25
N2

12r ] rN/N
. ~7!

The frequency shift associated to the emission and detec
is given by

z512
vE

vD
, ~8!

where

vC52kmuC
muPC

; ~9!

the indexC refers to emission or detection at the correspo
ing space-time point.

Two frequency shifts corresponding to maximum a
minimum values are associated with light propagation in
same and opposite direction of motion of the emitter, resp
tively ~i.e., kr5ku50). Such shifts are the frequency shif
of a receding or approaching star, respectively. Using
constancy along the geodesic of the product of the Killi
6-3
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NUCAMENDI, SALGADO, AND SUDARSKY PHYSICAL REVIEW D63 125016
field ]/]t with a geodesic tangent together with Eqs.~9! and
~8!, and expressions~7! and~6!, we find the two shifts to be

z6512
ND

N~r !

$17@r ] rN~r !/N~r !#1/2%

@12r ] rN~r !/N~r !#1/2
, ~10!

whereN(r ) represents the value of the metric potential at
radius of emissionr, and ND the corresponding value o
N(r ) at r→` where the detector is supposed to lie. F
asymptotically flat space-timesND→1. However, for space
times generated by global monopolesND→(12a)1/2 ~see
the Sec. VI!.

It is worth noting that in terms of the tetrad
e(0)5N21(]/]t), e(1)5A21(]/]r ), e(2)5r 21(]/]u), e(3)
5(r sinu)21(]/]f), the frequency shifts take the form

z6512
ND

N
~17v !G, ~11!

where vª@( i 51,2,3(u( i ) /u(0))
2#1/2 and u(m) stands for the

components of the star’s four-velocity along the tetrad~i.e.,
the velocity measured by a Eulerian observer whose w
line is tangent to the static Killing field! and G5(1
2v2)21/2 is the usual Lorentz factor. Clearly, in the prese
case of circular orbits on the planeu5p/2, it turns out that
v5u(3) /u(0)[@r ] rN(r )/N(r )#1/2. It is convenient to define
the quantities:zD5 1

2 (z12z2) and zA5 1
2 (z11z2) which

are easily connected to the observations. From the expres
~10! we obtain

zD~r !5
ND

N~r !

@r ] rN~r !/N~r !#1/2

@12r ] rN~r !/N~r !#1/2
, ~12!

zA~r !512
ND

N~r !

1

@12r ] rN~r !/N~r !#1/2
. ~13!

We note, for example, that (zA21)22zD
2 5@N(r )/ND#22,

and thus we could in principle recoverN(r ) directly from the
observations. Then we can use thisN(r ) to recalculatezA
andzD from the above expressions and compare them w
the measured values. This would be a test of the assump
that the dynamics is determined by the geodesics of a
tionary metric, quite independently of the assumption of
dynamics of the geometry itself or of the nature of the d
matter.

III. GRAVITATIONAL FIELD IN THE DARK MATTER
ZONE

In this section we will use the form of the RC’s to obta
the space-time metric and information on the matter cont
The energy-momentum tensor must be diagonal and sp
cally symmetric, as dictated by the symmetries of the spa
time ~1!, so we define

r[2Tt
t , Pr[Tr

r , Pu[Tu
u5Tw

w ~14!

andTn
m50 for mÞn.
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We will for convenience introduce the following alterna
tive form of the metric variables:

A2~r !5S 12
2m~r !

r D 21

, N2~r !5exp@2n~r !#. ~15!

Einstein’s equations then read

] rm54pr 2r, ~16!

] rn5
m~r !

r 2 S 12
2m~r !

r D 21

3S 11
4pr 3Pr

m~r ! D . ~17!

The equation of hydrostatic equilibrium resulting from th
conservation of the energy-momentum tensor¹nTmn50 be-
comes

] r Pr52~] rn!rS 11
Pr

r D2
2

rr
~Pr2Pu!. ~18!

We note that the observations in spiral galaxies@17# yield
zD5v'const andzD@zA . From these conditions and from
Eq. ~12! we obtain

1

N~r !

1

@12r ] rN~r !/N~r !#1/2
'1 ~19!

and

v[@r ] rN~r !/N#1/2; ~20!

the value ofv roughly ranges from 1024 to 1023 depending
on a particular spiral galaxy. The integration of Eq.~19!
gives

N~r !5S r

r g
D v2

, ~21!

wherer g is constant.
Note that using Eq.~21! in Eqs.~17! and~18!, we obtain

a system of three equations@i.e., Eqs.~16!–~18!# for four
unknowns~i.e., m,r,Pr ,Pu). In the case of a perfect fluid
however, the four unknowns are reduced to three sincePr
5Pu[p. This therefore constrains the equation of statep
5p(r). On the other hand, for the case where the ma
content is associated, for example, with a scalar field, thenr,
Pr , andPu are not independent but are given in terms of t
field and its gradients, thus we obtain a constraint on
form of the scalar potential.

We will look for a solution that satisfies the Newtonia
conditions

Pr ,u!r, ~22!

m~r !!
r

2
, ~23!
6-4
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4pr 3Pr!m~r !. ~24!

Under these conditions Eqs.~16!–~18! reduce to

] rm~r !54pr 2r, ~25!

] rn5
m~r !

r 2
, ~26!

] r Pr52~] rn!r, ~27!

using the expression~21! for N in Eqs. ~26! and ~27! with
n5 ln@N#, and solving the system, we obtain

m~r !'v2r , r~r !'
v2

4pr 2
, Pr'

v4

8pr 2
. ~28!

The solution corresponds to the relationPr'v2r/2 which
looks somewhat peculiar. If we view this as the equation
state of a perfect fluid, in the case of an ideal gas we wo
conclude that its temperatureT is constant and proportiona
to v2. The interpretation is that the dark matter represen
by a perfect fluid is made of particles~ideal gas! that interact
among themselves strongly enough to maintain thermal e
librium but do not interact in the same way with ordina
matter or with photons. The idea is then that the dark ma
temperature determines its density profile and the space-
metric, and through this, the rotation curves of the stars
the galaxy. One of the problems of this type of model is
need to explain why the isothermal configuration of the flu
does not extend to the center of the galaxy.

Using Eqs.~21! and ~28! in Eq. ~1! we obtain the final
result for the metric in this limit:

ds252S r

r g
D 2v2

dt21~12a!21dr21r 2~du21sin2udw2!,

~29!

wherea52v2. We emphasize that this solution is only val
in the flat RC zone. We know that eventually this must
matched to a Robertson-Walker metric describing the u
verse, or alternatively, we might use the asymptotically
idealization for regions very far from the galaxy in questio
To do so we must consider Eq.~29! as describing the space
time geometry forr ,R0 and the Schwarzschild metric fo
r .R0, whereR0 is the radius where the flat rotation curv
end. The advantage of this approximation is that far from
galaxy the space-time is Minkowskian, a fact that facilitat
for example, the analysis of the propagation of light signa

Matching continuously the two metrics atR0 allows the
determination of the integration constants:

ds252~12a!S r

R0
D 2v2

dt21~12a!21dr2

1r 2~du21sin2udw2! r ,R0 ,
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ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2~du21sin2udw2! r .R0 , ~30!

whereM5aR0/2.
Here we are taking the view that the region of flat rotati

curves terminates in a narrow transition region where
behavior of the density changes from the 1/r 2 to a constant
that for simplicity we take to be zero, the point being that
the limit in which the region is very narrow the metric wi
not change abruptly as we cross the region, but the deriva
of the metric coefficients will experience a jump. It would b
interesting to consider various alternatives for the details
the interpolating regions.

An alternative to the search of solutions satisfying t
Newtonian conditions~22!–~24! is to start from Eqs.~16!–
~18! without imposing the Newtonian approximation but a
suming that the dark matter is represented by a perfect fl
Then again, the use of Eq.~21! with Pr5Pu allows the in-
tegration of Eqs.~16!–~18! as follows:

m~r !5
v2

2

~22v2!

~112v22v4!
r ,

r~r !5
v2

8p

~22v2!

~112v22v4!r 2
, Pr5

v4

8p

1

~112v22v4!r 2
,

~31!

which results in an ‘‘equation of state’’Pr5v2r/(422v2).
In practicev2!1, so we recover the solution~28!.

At this point we can check whether the approximatio
we considered are self-consistent. That is, we substitute
~21! in the left hand side of Eq.~19! obtaining

1

N~r !

1

@12r ] rN~r !/N~r !#1/2
5A 1

~12v2!~12a!
~r /R0!2v2

.

~32!

The difference between this expression and 1 must be n
ligible in comparison tov which itself is of the order
1023–1024. This requiresr /R0 to be neither too large no
too small. To get an estimate we use the approximat
X2v2

'12v2ln(X) valid for uv2ln(X)u!1. These require-
ments are then

u ln~r /R0!u!v22. ~33!

Thus the approximations are self-consistent as long
2106! ln(r /R0)!106, which does not impose any pract
cally relevant constraints for the case of the galaxies and
extent of the flat RC’s.

It is worth noting that the form of the metric that we hav
obtained differs from what would be naively expected:

ds252~112F!dt21~112F!21dr2

1r 2~du21sin2udw2!, ~34!
6-5
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NUCAMENDI, SALGADO, AND SUDARSKY PHYSICAL REVIEW D63 125016
with F representing the Newtonian potential. This form
often implicitly assumed~see Ref.@23#! and the fact that it is
not appropriate for the region where the RC’s are flat lies
the core of the problems with the analysis of Ref.@30# ~see
Ref. @31#!.

We also point out that if we assume that the flat RC
extend indefinitely, the resulting space-time is not asympt
cally flat but rather is asymptotically flat but for a defic
angle~AFDA! @32#. In this context we stress that it is po
sible to consider such ‘‘idealized infinitely extended gala
ies’’ as isolated objects in the framework of general relativ
by replacing the asymptotically flat framework by the fram
work AFDA @32#. One might want to embark in such con
siderations since, in fact, the RC’s remain flat to the farth
distances that can be observed. On the other hand there
natural way to estimate an upper bound for the cutoff of s
behavior. The idea is to consider the point at which the
caying density profile associated with the galaxy becom
smaller than the average energy density of the universe.
call this boundRMax

U . The value forRMax
U is obtained by

imposing the condition that the density at this point, p
vided by Eq.~28!, is to coincide with the mean density of th
universe:

r~RMax
U !'

v2

4p~RMax
U !2

5rU , ~35!

whererU is the mean density of the universe. Then we ha

RMax
U 5A v2

4prU
. ~36!

Now we introduce the valuerU in terms of the dimension
less Hubble parameter h defined as H0
[100h km/(sec Mpc) andVU[rU /rcrit ,

rU51.8791310226VUh2 kg/m3

52.781011VUh2M ( /Mpc3. ~37!

We obtain

RMax
U 52.453106

v
h

VU
21/2 kpc. ~38!

Taking h50.65 andv'(1023–1024), we have

RMax
U 53.773~103–102!VU

21/2 kpc. ~39!

Moreover, forVU51,

RMax
U '3.773~103–102! kpc. ~40!

On the other hand, the measured flat regions are abouR0
'2Ropt whereRopt is the radius encompassing 83% of t
total integrated light of the galaxy. We can take as a typi
valueR0'30 kpc, thenR0,RMax

U .
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IV. BENDING OF LIGHT IN THE DARK MATTER ZONE

One of the ways we could in principle explore the issue
whether the flat RC’s are the result of some form of u
known matter or the result of the change in the dynami
laws that govern the motion of particles would be by stud
ing the light deflection by galaxies. In particular, by studyi
the deflection of photons passing through the region wh
the RC’s are flat. Let us thus consider a photon approach
the spiral galaxy from far distances. We will compute t
bending of light assuming the metric that has been matc
with an asymptotically flat exterior, i.e., Eq.~30!.

The bending of the light results in@9#

Df52uf~r 0!2f`u2p, ~41!

wheref` is the incident direction andr 0 is the coordinate
radius of closest approach to the center of the galaxy:

f~r 0!2f`5E
r 0

`

A~r !F S r

r 0
D 2 N2~r 0!

N2~r !
21G21/2

dr

r
. ~42!

The integral is split in two parts for the two domains of th
metric ~30!:

f~r 0!2f`5E
r 0

R0
A~r !F S r

r 0
D 2 N2~r 0!

N2~r !
21G21/2

dr

r

1E
R0

`

A~r !F S r

r 0
D 2 N2~r 0!

N2~r !
21G21/2

dr

r
.

~43!

The second integral is computed by expanding the integr
in powers ofM /r 0 andM /r @9# using Eq.~30! for r .R0,

F S r

r 0
D 2 N2~r 0!

N2~r !
21G5S r

r 0
D 2F112M S 1

r
2

1

r 0
D1•••G

5F S r

r 0
D 2

21GF12
2Mr

r 0~r 1r 0!
1•••G ,

~44!

and the results is

E
R0

`

A~r !F S r

r 0
D 2 N2~r 0!

N2~r !
21G21/2

dr

r

5E
R0

` dr

F S r

r 0
D 2

21G1/2F11
M

r
1

Mr

r 0~r 1r 0!
1•••G

5arcsinS r 0

R0
D1

M

r 0
H 22F12S r 0

R0
D 2G1/2

2S R02r 0

R01r 0
D 1/2J 1•••. ~45!

The first integral of Eq.~43! with Eq. ~30! for r ,R0 gives
6-6
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ALTERNATIVE APPROACH TO THE GALACTIC DARK . . . PHYSICAL REVIEW D63 125016
E A~r !F S r

r 0
D 2 N2~r 0!

N2~r !
21G21/2

dr

r

5~12a!21/2E F S r

r 0
D 2(12v2)

21G21/2
dr

r

5
~12a!21/2

~v221!
arctanF S r

r 0
D 2(12v2)

21G21/2

. ~46!

Finally, using Eqs.~45! and ~46! in Eq. ~41! and then using
~42!, the bending angle of light yields

Df5U2arcsinS r 0

R0
D1

2M

r 0
H 22F12S r 0

R0
D 2G1/2

2S R02r 0

R01r 0
D 1/2J 1

2~12a!21/2

~v221!

3H arctanF S R0

r 0
D 2(12v2)

21G21/2

2
p

2 J U2p, ~47!

where we took the limit

limr→r 0
arctanF S r

r 0
D 2(12v2)

21G21/2

5
p

2
. ~48!

If we put r 05R0 in Eq. ~47!, we obtain the standard resu
for the Schwarzschild metric with massM5aR0/2 and with
Df5(4M /r 0)5431026. Figure 1 shows the bending ang
of light Df as a function of the parameterr 0 /R0. If we take
the impact parameterr 0 to be in the range of the measure
flat regions by neutral hydrogen measurements~HI!, Ropt
<r 0<2Ropt5R0, then we have 1/2<r 0 /R0<1. In this case,
the maximum value forDf is obtained for the valuer 0 /R0
51/2. Recently, the investigations for determining the rad
of dark matter halos have gone beyond the HI measurem

FIG. 1. Bending angle of the light as a function of the parame
r 0 /R0.
12501
s
ts

using satellite galaxies@33# or the weak lensing of back
ground galaxies by foreground dark halos@34#. From these
measurements, halo radii of more than 200 kpc are infer
For our galaxy it is 230 kpc@35# and from satellite galaxies
of a set of spiral galaxies values larger than 400 kpc@36# are
found. By taking R0'230 kpc, we would haveRopt<r 0
<15Ropt5R0 ~where we have chosenRopt515 kpc). In this
case we would have 1/15<r 0 /R0<1 and a value near to th
maximum in Fig. 1. It would be interesting to explore th
possibility to have relevant observations in this context.

We discuss next two of the three simplest scenarios
which the dark matter corresponds to coherent scalar fie

V. SPONTANEOUS SCALARIZATION

As we mention in the introduction, the phenomenon
spontaneous scalarization in compact objects~notably in
neutron stars! that arise in a class of scalar tensor theories
gravity @24# is one of the mechanisms that allows the appe
ance of a nontrivial scalar field in the absence of a dir
coupling between the scalar field and ordinary matter. T
general feature of these kinds of theories is a scalar fi
coupled nonminimally to gravity which leads to an effecti
gravitational coupling which depends explicitly on the sca
field. The nontrivial scalar field configuration appears wh
the object is compact enough so that the energy of the c
figuration for a fixed baryon number is minimized through
change in the value of the effective gravitational consta
That is, for a fixed baryon number, the energy of the co
figuration with a scalar field is lower than the correspond
configuration in absence of a scalar field@25#. An heuristic
interpretation that is confirmed by the numerical resu
shows that, from a Newtonian point of view, the releva
quantity to be minimized is the combinationGM instead of
the total massM. We observed that although the most ev
dent additional contributions toGM @37# are both positive
and thus increasing the value ofGM, their effect is more
than compensated by the reduction of the value of the c
tribution GMbar, which is the leading term inGM. Thus
there appears a nontrivial configuration of the scalar fi
which is associated with the minimization~at fixed total
baryon number! of the the valueGM @25#.

Several problems arise if we want to use this mechan
to induce a nontrivial configuration of a scalar field at t
galactic scale. First, in the model studied so far we have s
that spontaneous scalarization occurs only if the objec
compact enough, that is, ifGM/R;1/2 and needless to sa
that the galaxy as a whole does not satisfy this criteria~ex-
cept perhaps at the center!. If we assume that a large dens
object lies at the center of the galaxy one would need so
very unusual equations of state to overcome the stand
limits on the mass of these objects associated with the
quirement of stability against collapse. But even if we we
to assume such an object, the scalar field associated with
phenomena of spontaneous scalarization falls as 1/r ~at least
in the models considered so far! so it would not be relevan
at the distances associated with the flat RC’s that lie a
distance of the order of kiloparsecs from the galactic cen
Finally, the energy of the configurations with nontrivial co

r

6-7
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figuration according to this phenomenon is smaller than
of the corresponding configuration in which the scalar fi
vanishes, thus the phenomenon seems to take us in the
posite direction as compared to what seems to be require
explain the additional attractive effect on the test stars in
galaxy. If we wanted to consider extended objects other
neutron stars, it is not even clear how to build a sufficien
dense object. The only possibility would seem to be bo
stars@38# which now would act only as triggers of the spo
taneous scalarization. These models would require us to
pothesize two scalar fields, one providing the oscillating
son field of the boson star, and a second one providing
mechanism for spontaneous scalarization. On the other h
we must point out that although boson star masses are
ally very small, when one introduces self-interactions th
mass can be as large as 1027l1/2M ( ~for a scalar field mass
m;1025 eV and a sufficiently large self-interaction consta
l) @39#. Still we face the problem associated with the rap
falloff of the energy density associated with the scalar fie
which would go like 1/r 4.

The hope here would be to consider alternative forms
the nonminimal coupling, with the possible introduction
various forms of self-interaction terms for the scalar fie
that would not only lead to spontaneous scalarization but
rather different falloff behavior of the scalar field. Neverth
less, as was already mentioned, there is one very ser
problem remaining with this type of scenario, and it is t
issue of black holes. There is at the present time moun
evidence that there is at the center of most galaxies a
massive black hole, and in view of the no-hair theorems
scalar fields@19–21#, it seems clear that the phenomenon
spontaneous scalarization does not have an analogy whe
compact objects are replaced by black holes. Thus in th
galaxies the scalar field would relax to the trivial configu
tion and thus any explanation of the RC’s based on t
phenomenon would cease to be operative. There are, h
ever, some small loopholes remaining in the black h
uniqueness theorems for the case of nonminimally coup
scalar fields which leave a ray of hope in this general dir
tion, and which are currently under investigation@40#.

For the case of massless bosons~massless complex scala
fields!, a Newtonian analysis leads to flat RC’s@38#. Unfor-
tunately, in that work, the author neglects to note that
RC’s are not directly observable but only inferred from t
corresponding light shifts. As it turns out, in that model t
‘‘gravitational’’ redshift would be very large to the point tha
by ignoring it, the author is ignoring effects of the sam
order of magnitude as the ones that are being conside
Moreover, the law of composition of velocities used there
reproduce the RC’s is not valid.

In the following section we analyze the case for the ma
represented by global monopoles nonminimally coupled
gravity.

VI. GLOBAL MONOPOLES

We will now consider one example of what we feel is
this time the most promising class of models: nonminima
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coupled global monopoles. The main results of this sect
have been reported in Ref.@26#.

Particle physics models predict the formation of topolo
cal defects during phase transitions in the early universe.
mechanism argued for the formation of these is the spo
neous breaking of symmetry of the model under consid
ation leading to a manifold of degenerate vacua with n
trivial topology. Topological defects can be classifie
according to the topology of the vacuum manifold. If th
manifold of equivalent vacuaM contains unshrinkable sur
faces,p2(M)ÞI , then monopoles are formed. These can
classified into local and global monopoles depending
whether the symmetry broken is local or global. In the fi
case~gauge monopoles! the monopole configuration has fi
nite energy concentrated in a small core and produces
asymptotically flat space-time, while in the second case,
global-monopole configuration has a linearly divergent e
ergy due to the long range Nambu-Goldstone field with
ergy density decreasing with the distance asr 22. As we have
mentioned, this behavior is very appealing in view of the fa
that this is precisely what seems to be required in a na
picture to provide a natural explanation for the flatness of
RC’s.

It was shown by Barriola and Vilenkin@28# that this lin-
early divergent ‘‘mass’’ has, at large distances, an eff
analogous to that of a deficit solid anglea plus that of a tiny
mass associated to the core of the monopole. Then, assu
the existence of a global monopole in a typical galaxy
total Newtonian mass contribution of the portion of the g
bal monopole contained withinr gal ~with r gal'15 kpc) is
found to beM;ar gal/2'1069 GeV, where we took a typica
grand unified valueh'1016 GeV, and wherea58pGh2.
This estimate turns out to be ten times the total mass du
the contribution of 1011 solar mass in a typical galaxy~i.e.,
M stars'1068 GeV). These numbers are again what is need
to account for the observations. Finally, if we assume t
the field of the monopole extends on average a distanc
ten galactic radii from the galaxy where the configurati
presumably coincides with that of the monopole centered
the neighboring galaxy, thenM'1070 GeV, which is 100
times that of the galaxy. This value leads to a contribution
the monopole to the total average density in the unive
which is of the order of magnitude predicted by the stand
inflationary scenarios. Actually, it is the reversed argum
that helps to place upper bounds on the density numbe
global monopoles present in the universe@41#. On the other
hand, Harari and Lousto´ @29# showed that the small effectiv
massmcore'0.8a is in fact negative and produces a repu
sive potential. They studied the motion of test particles in
space-time of a global monopole concluding that there are
bound orbits. This result led thus to the unavoidable conc
sion that minimally coupled global monopoles are not go
candidates to explain the RC’s despite the suggestive n
bers and features considered above.

Another problem is the fact that the monopole configu
tion is rather unique, in the sense that it is basically indep
dent of the ordinary matter content in the corresponding g
axy, which conflicts with the fact that there is a rather lar
range of galactic masses for which the dark matter com
6-8
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ALTERNATIVE APPROACH TO THE GALACTIC DARK . . . PHYSICAL REVIEW D63 125016
nent is about ten times more massive than the ordinary m
ter component@42#.

Recently, we have shown@26# that by coupling global
monopoles nonminimally to gravity it is possible to avoid t
most undesirable features of the minimal case, notably,
lack of bound orbits, and the universality of the monopo
configuration.

Specifically we considered a theory of a triplet of sca
fieldsfa, a51,2,3, nonminimally coupled~NMC! to gravity
with global O~3! symmetry which is broken spontaneously
U~1!. The simplest model of this kind is described by t
Lagrangian

L5A2gF 1

16p
R1F~R,fafa!G2A2gF1

2
~¹fa!2

1V~fafa!G , ~49!

where V(fafa) is the usual Mexican hat potentia
V(fafa)5(l/4)(fafa2h2)2.

Equation~49! shows that the introduction of the couplin
term is equivalent to consider an effective potential

V~fafa!eff5V~fafa!2F~R,fafa!, ~50!

which explicitly depends on the matter content throughR,
and thus the content of ordinary matter of the galaxy affe
the location of the minima. This feature can thus help
avoid the scenario where the monopole configuration is u
versal, and opens the possibility to recover the correla
between the masses in the dark and ordinary matter com
nents of the galaxy.

In the following we show in detail how the nonminima
coupling leads to the existence of bound orbits. We will
cus on the case whereF(R,fafa)5(jfafa)R, wherej is
the NMC constant. The gravitational field equations follo
ing from the Lagrangian~49! can be written as

Rmn2
1

2
gmnR58pG0Teff

mn , ~51!

where

Teff
mn5

Geff

G0
~4jTj

mn1Tsf
mn!, ~52!

Tj
mn5¹m~fa¹nfa!2gmn¹l~fa¹lfa!, ~53!

Tsf
mn5¹mfa¹nfa2gmnF1

2
~¹fa!21V~fafa!G . ~54!

The equation of motion for the scalar fields is

hfa12jfaR5
]V~fbfb!

]fa
. ~55!

We will only consider a metric describing spherical a
static space-times~1! and study solutions of the gravitation
and scalar fields equations describing global monopole c
12501
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e
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ts
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figurations and the resulting space-time. Owing to the co
plexity of the resulting equations, we will perform a nume
cal analysis in terms of the following variables:

n~r !5 ln@N~r !#, ~56!

ñ~r !5n~r !2n~0!, ~57!

A~r !5S 12a2
2G0m~r !

r D 21/2

, ~58!

where

a5
D

112jD
, D58pG0h2. ~59!

The relevant Einstein equations take then the follow
form:

]m

]r
54pr 2E2

a

2G0
, ~60!

]n

]r
5A2H G0m

r 2
1

a

2r
14prG0Teff r

r J , ~61!

where

E5N2Teff
tt ~62!

is the effective total energy density.
On the other hand, the Klein-Gordon equation can

written directly in terms of the energy momentum of th
scalar fields:

hfa5216pjfaG0~E2S!1
]V~fbfb!

]fa
, ~63!

where

S5Teff i
i ~64!

is the trace of the ‘‘spatial part’’ ofTeff
mn , which plays the role

of an effective pressure.
In the coordinates~1! this equation reads

]2fa

]r 2
52F2

r
1

]n

]r
2S 12a2

2G0m

r D 21

3S 4pG0rE2
G0m

r 2
2

a

2r D G ]fa

]r

1S 12a2
2G0m

r D 21

3F]V~fbfb!

]fa
216pjfaG0~E2S!G

2
1

r 2 S 12a2
2G0m

r D 21

3F ]2fa

]u2
1

cosu

sinu

]fa

]u
1

1

sin2u

]2fa

]w2 G . ~65!
6-9
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The ansatz for a monopole configuration is

fa5h f ~r !
xa

r
, ~66!

with xaxa5r 2, so that a monopole solution is found iff
→1 at spatial infinity~i.e., uufauu→h).

It is clear from Eqs.~52!–~54!, that the intermediary vari-
ablesE andS @see Eqs.~62! and ~64!# involve second order
derivatives of the scalar field. However, we can elimin
such terms from the gravitational field equations with t
help of the ansatz for the monopole field and of the Kle
Gordon equation, and obtain ‘‘sources’’ containing at m
first order derivatives of the scalar field. We also introdu
the following dimensionless quantities:

r̃ªr •hl1/2, ~67!

m̃ªm•G0hl1/2, ~68!

ẼªE•
G0

h2l
, ~69!

S̃ªS•
G0

h2l
, ~70!

Dª8pG0h2, ~71!

aª
D

112jD
, ~72!

G̃effª
1

112jD f 2
, ~73!

then the final form of the equations to be analyzed num
cally is

] r̃ m̃54p r̃ 2Ẽ2
a

2
, ~74!

] r̃ ñ5
A2

112jD r̃ f ~] r̃ f !G̃eff
H a

2r̃
1

m̃

r̃ 2
1

D

2
r̃ G̃effF 1

2A2
~] r̃ f !2

2
~ f 221!2

4
2

f 2

r̃ 2
2

8j f ~] r̃ f !

r̃ A2 G J , ~75!

] r̃ r̃ f 52F2

r̃
1] r̃ ñ2S 12a2

2m̃

r̃
D 21

3S 4p r̃ Ẽ2
a

2r̃
2

m̃

r̃ 2D G ~] r̃ f !1S 12a2
2m̃

r̃
D 21

3F f ~ f 221!1
2 f

r̃ 2
216pj f ~Ẽ2S̃!G , ~76!

where
12501
e

-
t
e

i-

Ẽ2S̃5
DG̃eff

8p~1124Dj2f 2G̃eff!
F S 1

A2
~] r̃ f !21

2 f 2

r̃ 2 D ~1112j!

1~ f 221!2112j f 2~ f 221!G , ~77!

Ẽ5
DG̃eff

8p~1124Dj2f 2G̃eff!
F2

4j f ~] r̃ f !~] r̃ ñ !

A2

3~1124Dj2f 2G̃eff!14j f 2~ f 221!

1S 1

2A2
~] r̃ f !21

f 2

r̃ 2D ~118j18Dj2f 2G̃eff!

1
~ f 221!2

4
~128Dj2f 2G̃eff!G . ~78!

Here Ẽ and S̃ are dimensionless as in Eq.~69!.
We note now that the sources of the differential equatio

contain only first order derivatives of the field variables a
are thus suitable for numerical integration with a Rung
Kutta algorithm.

A. Asymptotic expansions and boundary conditions

Let us discuss the asymptotic behavior of global mon
poles at the origin and spatial infinity in order to find th
boundary conditions for the numerical integration. The reg
larity condition atr 50 on the metric requires

m̃~0!50, ] r̃ m̃~0!52a/2. ~79!

The boundary condition onñ(r ) is by definition

ñ~0![0. ~80!

The boundary condition on the scalar field atr 50 is ~false
vacuum!

f ~0!50. ~81!

Then one finds the expansions of the functionsm̃( r̃ ), f ( r̃ ),
and ñ( r̃ ), at r 50,

m̃~ r̃ !52
a

2
r̃ 1

D

12F1

2
13~8j11! f c

2G r̃ 31O~ r̃ 4!, ~82!

f ~ r̃ !5 f cr̃ 1O~ r̃ 3!, ~83!

ñ~ r̃ !52
D

24
~1124j! f c

2r̃ 21O~ r̃ 3!, ~84!

wheref c is determined by the boundary conditions at spa
infinity. Let us defineM5m̃(`). As we mentioned, we con
6-10
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ALTERNATIVE APPROACH TO THE GALACTIC DARK . . . PHYSICAL REVIEW D63 125016
sider monopole configurations~i.e., f→1 at spatial infinity:
true vacuum!. Then we have the asymptotic expansions
spatial infinity,

m̃~ r̃ !5M1
a

2r̃D
Fa2

D
1

8j~12a!

a G1O~ r̃ 22!, ~85!

f ~ r̃ !512
1

~112jD! r̃ 2
1O~ r̃ 24!, ~86!

ñ~ r̃ !5 ñ~`!2
M

~12a! r̃
1O~ r̃ 22!. ~87!

We will impose for the asymptotic behavior of the metr
the standard asymptotically flat-but-for-a-deficit-ang
~SAFDA! a space-time~see Ref.@32#! and therefore the
boundary condition on the functionn( r̃ ) at spatial infinity is

n~`!5
1

2
ln~12a!. ~88!

The integration of the equations is performed by spec
ing the regularity condition on the scalar field atr 50,

] r̃ f ~0!5 f c. ~89!

The valuef c cannot be arbitrary, but must be so thatf satisfy
the appropriate boundary conditions at spatial infinity. T
is enforced by the use of a standard shooting method@43#.

We can compute the solution by integrating the equati
in one step, fromr 50 to a radius which is chosen conv
niently so thatf 51 with a certain degree of approximatio
The physical lapseN(r )5en at r 50 is calculated at the en
of the numerical integration from Eqs.~57! and ~88!,

n~0!5
1

2
ln~12a!2 ñ` , ~90!

where the valueñ` is obtained from the numerical integra
tion. This ensures that at spatial infinity we recover t
SAFDA a space-time.

We note that the Arnowitt-Deser-Misner~ADM ! mass of
the configurations of global monopoles,~see Ref.@32# for a
rigorous definition of the ADM mass for the case of spa
times with a deficit angle! can be easily computed from th
integral

MADMa 5M5 limr→`m~r !5E
0

`S 4pr 2E~r !2
a

2 Ddr.

~91!

B. Results

In order to obtain static configurations, we must impo
the condition 0,a,1 for the deficit angle. The behavior o
the deficit anglea whenD;0 is

a;D22jD21O~D3!. ~92!
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Casej.1/2. The range allowed for the breaking scale
DP@0,̀ ) and for the deficit angleaP@0,1/2j). This is con-
sistent with the conditiona,1.

Figures 2–4 show numerical solutions for the casej52
satisfying the required boundary conditions.

Casej<1/2. The range permitted for the breaking sca
is DP@0,1/(122ja)# and for the deficit angleaP@0,1#. In
this case the static configurations cease to exist whenD
.1/(122ja).

Figures 2–4 show numerical solutions for the casesj
50.3 andj50 ~minimal coupling case! satisfying the re-
quired boundary conditions.

In the minimal coupling case Harari and Lousto´ @29# es-
timated analytically the mass of the monopole asM;

22a/3, and the size of the cored̃;2, then numerically
showed thatM;20.75a. That is, they showed that the rati
M /a is practically insensitive toa ~see Figs. 5 and 6!.

In the nonminimal coupling case, for a givenj the situa-
tion is similar in that the ratioM /a is practically insensitive

FIG. 2. The figure depicts the global monopole fieldf (r ) for
j50, a50.795 ~solid line!, j52, a50.1 ~dashed line!, and j
50.3, a50.79 ~dash-dotted line!. Herer c[(hl1/2)21.

FIG. 3. Mass profilem(r ) for j50, a50.795 ~solid line!, j
52, a50.1 ~dashed line!, andj50.3, a50.79 ~dash-dotted line!.
Asymptotically this quantity provides the ADM mass of the co
figuration. Heremc[(G0hl1/2)21.
6-11
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FIG. 4. Metric potentialsN(r )/(12a)1/2 ~solid lines!, A(r )(1
2a)1/2 ~dashed lines!, and the productAN ~dash-dotted lines! for
three different configurations. The top panel corresponds toj50,
a50.795, the middle panel toj52, a50.1, and the bottom pane
to j50.3, a50.79. Note thatAN approaches the unit ‘‘outside’
the monopole core, while the metric potentialsN andA tend to the
asymptotically flat-but-for-a-deficit-angle values far from the o
gin.
12501
to a for a<0.01. Actually, in this range of smalla, that
ratio depends weakly on the value ofj. However, for a
.0.01 the ratio depends strongly onj anda ~cf. Figs. 5 and
6!. This can be seen by performing an analysis similar to
one of Ref.@29# but assuming the following approximation

f 5H f cr̃ if r̃ , d̃,

12
1

~112jD! r̃ 2
if r̃ . d̃,

~93!

and for the functionm̃( r̃ ),

m̃5H 2
a

2
r̃ 1

D

24
r̃ 3 if r̃ , d̃,

M if r̃ . d̃,

~94!

FIG. 5. ADM mass of configurations for different values of th
deficit angle forj50 ~solid line!, j522 ~dashed line!, j50.3
~dash-dotted line!, andj52 ~dotted line!.

FIG. 6. ADM mass-deficit angle rate of configurations for d
ferent values of the deficit angle forj50 ~solid line!, j522
~dashed line!, j50.3 ~dash-dotted line!, andj52 ~dotted line!.
6-12
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matching continuously the functionm̃ and its derivative at
r̃ 5 d̃, we obtain

M52
2

3

D

~112jD!3/2
52

2

3
a~112jD!21/2, ~95!

d̃5
2

~112jD!1/2
52~122ja!1/2, ~96!

where we have used the relationD5a/(122ja). For the
casej50, we reproduce forM and d̃ the values estimated
analytically by Harari and Lousto´ @29#. We can see that in
the casej.1/2, we haveDP@0,̀ ) and aP@0,1/2j) and
thereforeM→0 when a→1/2j, this is confirmed numeri-
cally for the valuej52 ~cf. Fig. 6!. Now we match continu-
ously the functionf at r̃ 5 d̃ and we obtain

f c5
2

3A3
~112jD!1/25

2

3A3
~122ja!21/2, ~97!

then whena→1/2j we find that the value off c diverges;
this is checked out numerically for the valuej52 ~cf. Fig.
7!.

C. Geodesic motion in the space-time of a global monopole

In order to analyze the geodesic motion of test particle
the space-time generated by a global monopole we cons
Eq. ~5!. In this caseND5(12a)1/2 and the remaining gravi
tational potentials are given numerically. Figure 8 shows
effective potential forj522 and for different values of the
other parameters; here we note the existence of a pote
well and a nontrivial minimum and thus the existence
stable circular orbits.

For j.0 the effective potential~5! does not exhibit
maxima or minima. An heuristic analysis that helps us
understand the appearance of extrema ofVe f f whenj,0 and

FIG. 7. Derivative of the global monopole atr 50 for different
values of the deficit angle forj50 ~solid line!, j522 ~dashed
line!, j50.3 ~dash-dotted line!, andj52 ~dotted line!.
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their absence whenj.0 is the following. We know that
] rVe f f52N2(r )(2L2/r 31L2] rn/r 21] rn). So in order for
] rVe f f50 allowing an extremum, notably a minimum, it
necessary that] rn.0 ~or equivalently] rN.0). This means
thatN(r ) should have an increasing behavior as a function
r at least in some region away from the origin. Equation~75!
provides the sign for the slope ofN. Near the originf ; f cr
and then] rn;2(D/12)(1124j)r f c

21O(r 3). For] rn.0, j
must be negative enough so that the coefficient (1124j) is
negative~cf. Fig. 9!. On the other hand, forj>0, ] rn,0
and thereforeVe f f has no minima~no bound orbits! ~cf. Figs.
4 and 10!. This heuristic argument is confirmed by the ri
orous numerical analysis from which the critical valuejcrit
that allows the existence of bound orbits is found to bejcrit
'20.15.

Moreover, for L50 which corresponds toVe f f[N2, a
peculiar situation occurs in the cases whereVe f f has ex-
trema, notably a maxima~e.g., forj522). The maxima and
minima of Ve f f will correspond to the locus of unstable an
stable stationary points where test particles are static~i.e.,

FIG. 8. Functional dependence of the effective potentialVe f f vs

r̃ for the casej522, a50.43 ~top panel! anda50.125 ~bottom
panel!. For each configuration we show three values of the ang
momentum:L54 ~solid line!, L51 ~dashed line!, and L50.3
~dash-dotted line!. Herer c[(hl1/2)21.
6-13
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where particles do not feel any gravitational field!. As seen
from Fig. 9, we appreciate that at the originr 50, test par-
ticles can be at rest in stable equilibrium, while atr max where
Ve f f is maximum test particles can be in unstable static eq
librium. In other words,r max separates two regions: one a
tractive and other repulsive@cf. theN(r ) profile from Fig. 9#.

FIG. 9. Same as Fig. 4 forj522, a50.43.

FIG. 10. Same as Fig. 8 forj50, a50.795~top panel!, and for
j52, a50.1 ~bottom panel!.
12501
i-

This strange behavior contrasts dramatically with the ca
of ‘‘conventional’’ gravitational sources like stars, plane
etc. where test particles are always attracted towards
source and where there are ‘‘no trivial’’ points at which th
can remain static. In the case of minimally coupled glob
monopoles test particles are always repelled.

Since bound orbits exist in the space-time generated
nonminimal global monopole with suitablej, we can com-
pute the corresponding shiftzD from Eq. ~12! using the nu-
merical solutions forN and compare with the RC’s of spira
galaxies. Figure 11 depictsz1 ~dashed line!, z2 ~solid line!,
and zD ~dash-dotted line! as functions ofr̃ for the casesa
50.43 ~left panel!, anda50.125~right panel! respectively.
We note that even for this very simple model the figures t
would correspond to the rotation curves contain a relativ
‘‘flat region’’ within the values ofr corresponding to stable
orbits ~i.e., the behavior ofzD near its maximum!.

From these figures it is interesting to note thatz1 which is
in principle associated with a blueshift, does not always c
respond to a blueshift, since there is a valuer b that separates
positive from negative values ofz1 . This is easy to under-

FIG. 11. Functional dependence ofz1 ~dashed line!, z2 ~solid

line!, andzD ~dash-dotted line! vs r̃ for circular orbits in the case
j522, a50.43 ~top panel!, and a50.125 ~bottom panel!. The
asterisk depicts the location of the radius beyond which the st
circular orbits cease to exist (r;9r c).
6-14
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ALTERNATIVE APPROACH TO THE GALACTIC DARK . . . PHYSICAL REVIEW D63 125016
stand since the valuez1 arises from a competition betwee
the gravitational redshift and the kinematical blueshift. F
slow particles~i.e., particles orbiting at ‘‘small’’r ) moving
in the same direction as the emitted light, the gravitatio
barrier dominates over the positive contribution of the kin
matical effects, and thus the frequency of emitted light h
an overall attenuation. At orbits with radiusr b , particles are
fast enough for the kinematical blueshift to cancel the gra
tational redshift resulting inz150. For example, from Eq
~11! and for v!1, it turns out that z1,0 if v,1
2N(r )/(12a)1/2. We note that in the nonminimal couplin
case (12a)1/2.N(r ) in the regions where bound orbits e
ist. For larger values ofr, z1 reaches a maximum and the
starts decreasing since the gravitational barrier beco
larger ~see Fig. 8! while the tangential velocityv @v
5(r ] rN/N)1/2)] becomes smaller until reaching zero at t
radiusr max whereN is maximum~see Fig. 12!.

Concerningz2 , this quantity is generically negative~i.e.,
it corresponds to a true redshift!. For instance, whenv!1,
then z2'12(12a)1/2(11v)/N so z2,0 if (12a)1/2(1
1v)/N.1. This condition holds in most of the region o
bound orbits since in that caseN,(12a)1/2 andvÞ0 ~see
Figs. 9!. However, moving away from the originv→0 andN
grows to a maximum value wherev50 and z25z151
2(12a)1/2/N which can be positive. For the cases~values
of j) giving rise to bound orbits, it seems thatN always has
a global maximum and thenNmax.(12a)1/2. Thereforez6

.0 at r max. In fact the region ofr where z2>0 is very
narrow and corresponds to (12a)1/2(11v)/N<1 @practi-
cally unseen at the scales of Fig.~11!; this corresponds to
orbits of small angular momentum#.

To conclude this section, we mention that although
nonminimal global monopole model can repair the two m
objections posed on the minimal model~namely, the bound
orbit and the correlation between luminous and dark ma
problems!, there are still several improvements needed
order that the quantitative predictions of this model fit re
sonably well with the astrophysical data. Therefore it is s
very premature for this model to be considered as a real

FIG. 12. Tangential velocityv5(r ] rN/N)1/2 in units of c for
j522, a50.125~solid line!, anda50.43 ~dashed line!. The as-
terisk depicts the location of the radius beyond which the sta
circular orbits cease to exist.
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candidate for explaining the galactic dark matter and the c
responding rotation curves. The fact that the model is fu
consistent mathematically~no singularities, noad hocpre-
scriptions for the ‘‘tangential velocities’’ or for the metric!,
in addition to the numerical coincidences mentioned at
beginning of the section, provides some hope for pursuin
much more detailed study along this direction.

VII. CONCLUSIONS

The galactic rotation curves continue to pose a challe
to present day physics as one would want to understand
only the nature of the dark matter that is associated w
them but also the reason behind their universality~i.e., why
is it distributed within a galaxy in a way that leads to almo
flat rotation curves, and why is the amount of dark mat
present in a galaxy so well correlated with the luminous m
ter? @16,44#!.

Models based in ordinary physical objects could alrea
be facing problems~depending on the exact value of th
Hubble constant@10#! in view of the bounds that big ban
nucleosynthesis impose on the baryon content of the
verse.

Models based on particle physics are the most commo
considered~usually within a Newtonian scheme! but they
need to address the nature and the distribution probl
separately, leading to a larger number of hypotheses and
prising coincidences@11#.

In view of the recent cosmological measurements and
theories that have been put forward to explain them@45#, one
is naturally led to consider alternative models based in
introduction of long range coherent fields@23#. In this work,
we have given a review of various types of approaches
these questions indicating in each case the problems and
vantages.

We have argued that so far the most promising and sim
approach would involve global monopoles with some sort
nonminimal coupling to gravity. It remains for the future
establish how far this sort of idea can be pushed towards
goal of making a realistic and compelling model for the d
namics and evolution of galaxies. In particular, any su
model must also be studied in the context of cosmolog
perturbations, large scale structure, and the cosmic mi
wave background~CMB!. In this regard we should point ou
that the simplest models of topological defects as seeds
structure formation seem to be incompatible with the aco
tic peak in the CMB anisotropies detected by Boomera
and Maxima@46#. However, all these studies have cons
ered the simplest minimally coupled models and it is uncl
how the models of the type being analyzed here would
have in this respect. Finally, we should mention that
currently favored cosmological scenarios require at least
hypothetical components: the cold dark matter~usually in the
form of WIMP’s! necessary for the structure growth and t
dark matter in galaxies and clusters, and the cosmolog
constantL which provides the closure density~as required
by inflation! as well as the repulsive component that see
to be required in order to account for the observations of
luminosity distance of high red shift~type Ia! supernovae

le
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@47#. The fact that the nonminimally coupled monopoles e
hibit both an attractive regime at short distances and a re
sive regime at large distances leads us to speculate wh
these type of models can be used to explain the two asp
of the unobserved energy content of the universe in term
a single hypothetical component. Needless to say, all th
aspects will require intense further exploration, which
hope to undertake in the near future.
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