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Quantum field theory of boson mixing
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We consider the quantum field theoretical formulation of boson field mixing and obtain the exact oscillation
formula. This formula does not depend on arbitrary mass parameters. We show that the space for the mixed
field states is unitarily inequivalent to the state space where the unmixed field operators are defined. We also
study the structure of the currents and charges for the mixed fields.

DOI: 10.1103/PhysRevD.63.125015 PACS number~s!: 14.40.Aq, 11.15.Tk, 12.15.Ff
le
em

ar
f
u
n

re
nt
di
in

T

o

ts
O
or
d
hic
r

a
o

le
th
T

d

th
su
he
o
e

d
o

io
s

ix.

les
her
spin.

ed

es:

ou-

g.
e

ne
I. INTRODUCTION

Particle mixing and oscillations~for a recent review, see
Ref. @1#! are among the most intriguing topics of partic
physics. The mixing of neutrinos and their oscillations se
to be now experimentally established after a long search@2#.
On the other hand, quark mixing and meson mixing
widely accepted and verified@3#. However, many features o
the physics of mixing are still obscure, for example the iss
related to its origin in the context of the standard model a
the related problem of the generation of masses@4#.

Also from a purely mathematical point of view, there a
aspects which are not fully understood. Indeed, only rece
@5# a rich non-perturbative vacuum structure has been
covered to be associated with the mixing of fermion fields
the context of quantum field theory~for a mathematically
rigorous approach see Ref.@6#!. The careful study of such a
structure@7# has led to the determination of the exact QF
formula for neutrino oscillations@8,9#, exhibiting new fea-
tures with respect to the usual quantum mechanical P
tecorvo formula@10#. Actually, it turns out@11,12# that the
non-trivial nature of the mixing transformations manifes
itself also in the case of the mixing of boson fields.
course, in this case the condensate structure for the ‘‘flav
vacuum is very much different from the fermion case an
careful analysis is necessary in order to understand w
phenomenological consequences are to be expected fo
oscillations of mixed bosons.

In this paper, we perform this analysis first at a form
level and then we study the oscillations of mixed mesons
the kind of theK02K̄0. We will treat these particles as stab
ones, an approximation which however does not affect
general validity of our results. In the framework of the QF
analysis of Refs.@5,11#, a study of the meson mixing an
oscillations has been carried out in Ref.@12#, where modifi-
cations to the usual oscillation formulas, connected with
vacuum structure, have been presented. However, the re
of Ref. @12# can be improved in many respects and in t
present paper we show that the oscillation formula there
tained has to be actually replaced with the exact one h
presented.

In Sec. II we study the quantum field theory of two mixe
spin-zero boson fields. In Sec. III we analyze the structure
currents for mixed fields and we derive the exact oscillat
formula in Sec. IV. Section V is devoted to conclusion
0556-2821/2001/63~12!/125015~9!/$20.00 63 1250
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Some mathematical derivations are given in the Append

II. MIXING OF BOSON FIELDS IN QFT

The observed boson oscillations always involve partic
with zero electrical charge. What oscillate are some ot
quantum numbers such as the strangeness and the iso
Therefore, in the study of boson mixing and oscillations~in
vacuum! we will consider complex fields@13#. The charge in
question is some ‘‘flavor charge’’~e.g. the strangeness! and
thus the complex fields are ‘‘flavor charged’’ fields, referr
to as ‘‘flavor fields’’ for simplicity.

We define the mixing relations as

fA~x!5f1~x!cosu1f2~x!sinu

fB~x!52f1~x!sinu1f2~x!cosu ~1!

where generically we denote the mixed fields with suffixesA
and B. Let the fieldsf i(x), i 51,2, be free complex fields
with definite masses. Their conjugate momenta arep i(x)
5]0f i

†(x) and the commutation relations are the usual on

@f i~x!,p j~y!# t5t85@f i
†~x!,p j

†~y!# t5t8

5 id3~x2y! d i j , i , j 51,2. ~2!

with the other equal-time commutators vanishing. The F
rier expansions of fields and momenta are

f i~x!5E d3k

~2p!3/2

1

A2vk,i

~ak,i e2 ivk,i t1b2k,i
† eivk,i t!eik•x

~3!

p i~x!5 i E d3k

~2p!3/2
Avk,i

2
~ak,i

† eivk,i t2b2k,i e2 ivk,i t!eik•x,

~4!

where vk,i5Ak21mi
2 and @ak,i ,ap, j

† #5@bk,i ,bp, j
† #5d3(k

2p)d i j , with i , j 51,2 and the other commutators vanishin
We will consider stable particles, which will not affect th
general validity of our results.

We now proceed in a similar way to what has been do
in Ref. @5# for fermions and recast Eqs.~1! into the form
©2001 The American Physical Society15-1
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fA~x!5Gu
21~ t !f1~x!Gu~ t ! ~5!

fB~x!5Gu
21~ t !f2~x!Gu~ t ! ~6!

and similar ones forpA(x),pB(x). Gu(t) denotes the opera
tor which implements the mixing transformations~1!:

Gu~ t !5expF2 iuE d3x„p1~x!f2~x!2f1
†~x!p2

†~x!

2p2~x!f1~x!1f2
†~x!p1

†~x!…G , ~7!

which is ~at finite volume! a unitary operator:Gu
21(t)

5G2u(t)5Gu
†(t). The generator of the mixing transforma

tion in the exponent ofGu(t) can also be written as

Gu~ t !5exp@u„S1~ t !2S2~ t !…#. ~8!

The operators

S1~ t !5S2
† ~ t ![2 i E d3x„p1~x!f2~x!2f1

†~x!p2
†~x!…,

~9!

together with

S3[
2 i

2 E d3x„p1~x!f1~x!2f1
†~x!p1

†~x!

2p2~x!f2~x!1f2
†~x!p2

†~x!… ~10!

S05
Q

2
[

2 i

2 E d3x„p1~x!f1~x!2f1
†~x!p1

†~x!

1p2~x!f2~x!2f2
†~x!p2

†~x!…, ~11!

close thesu(2) algebra~at each timet): @S1(t),S2(t)#
52S3 , @S3 ,S6(t)#56S6(t), @S0 ,S3#5@S0 ,S6(t)#50.
Note thatS3 andS0 are time independent. It is useful to writ
down explicitly the expansions of the above generators
terms of annihilation and creation operators:

S1~ t !5E d3k„Uk* ~ t ! ak,1
† ak,22Vk* ~ t ! b2k,1ak,2

1Vk~ t ! ak,1
† b2k,2

† 2Uk~ t ! b2k,1b2k,2
†

… ~12!

S2~ t !5E d3k„Uk~ t ! ak,2
† ak,12Vk~ t ! ak,2

† b2k,1
†

1Vk* ~ t ! b2k,2ak,12Uk* ~ t ! b2k,2b2k,1
†

… ~13!

S35
1

2E d3k„ ak,1
† ak,12b2k,1

† b2k,12ak,2
† ak,2

1b2k,2
† b2k,2… ~14!
12501
n

S05
1

2E d3k„ ak,1
† ak,12b2k,1

† b2k,11ak,2
† ak,2

2b2k,2
† b2k,2…. ~15!

As for the case of the fermion mixing, the structure of t
generator Eq.~7! is recognized to be the one of a rotatio
combined with a Bogoliubov transformation@see below Eqs.
~21!–~24!#. Indeed, in the above equations, the coefficie
Uk(t)[uUkuei (vk,22vk,1)t andVk(t)[uVkuei (vk,11vk,2)t appear
to be the Bogoliubov coefficients. They are defined as

uUku[
1

2 SAvk,1

vk,2
1Avk,2

vk,1
D ,

uVku[
1

2 SAvk,1

vk,2
2Avk,2

vk,1
D ~16!

and satisfy the relation

uUku22uVku251, ~17!

which is in fact to be expected in the boson case~note the
difference with respect to the fermion case of Ref.@5#!. We
can thus put uUku[coshj1,2

k ,uVku[ sinhj1,2
k , with j1,2

k

5 1
2 ln(vk,1 /vk,2).
We now consider the action of the generator of the mix

transformations on the vacuumu0&1,2 for the fieldsf1,2(x):
ak,i u0&1,250, i 51,2. The generator induces anSU(2) coher-
ent state structure on such state@14#:

u0~u,t !&A,B[Gu
21~ t !u0&1,2. ~18!

From now on we will refer to the stateu0(u,t)&A,B as to the
‘‘flavor’’ vacuum for bosons. The suffixesA andB label the
flavor charge content of the state. We ha
A,B^0(u,t)u0(u,t)&A,B51. In the following, we will consider
the Hilbert space for flavor fields at a given timet, say t
50, and it is useful to defineu0(t)&A,B[u0(u,t)&A,B and
u0&A,B[u0(u,t50)&A,B for future reference. A crucial poin
is that the flavor and the mass vacua are orthogonal in
infinite volume limit. We indeed have~see Appendix!

1,2̂ 0u0~ t !&A,B5)
k

1,2̂ 0uGk,u
21~ t !u0&1,2

5)
k

f 0
k~u! for anyt, ~19!

where we have usedGu
21(t)5)kGk,u

21(t) @see Eqs.~8!, ~12!
and ~13!#. In the infinite volume limit, we obtain

lim
V→`

1,2̂ 0u0~ t !&A,B5 lim
V→`

e[V/(2p)3]E d3k ln f 0
k(u)50

for anyt. ~20!

From the Appendix, Eq.~A6!, we see that lnf0
k(u) is indeed

negative for any values ofk, u andm1 ,m2 ~note that 0<u
<p/4). We also observe that the orthogonality disappe
5-2
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QUANTUM FIELD THEORY OF BOSON MIXING PHYSICAL REVIEW D63 125015
whenu50 and/orm15m2, consistently with the fact that in
both cases there is no mixing. These features are simila
the case of fermion mixing@5#: the orthogonality is essen
tially due to the infinite number of degrees of freedo
@15,16# ~the statement of Ref.@12# that in the boson case the
above vacua are orthogonal also at finite volume has to
therefore corrected according to the present result!.

We can define annihilation operators for the vacu
u0(t)&A,B as ak,A(u,t)[Gu

21(t)ak,1Gu(t), etc. with
ak,A(u,t)u0(t)&A,B50. For simplicity we will use the nota
tion ak,A(t)[ak,A(u,t). Explicitly, we have

ak,A~ t !5cosu ak,11sinu„Uk* ~ t !ak,21Vk~ t !b2k,2
†

…,
~21!

ak,B~ t !5cosu ak,22sinu „Uk~ t !ak,12Vk~ t !b2k,1
†

…,
~22!

b2k,A~ t !5cosu b2k,11sinu„Uk* ~ t !b2k,21Vk~ t !ak,2
†
…,
~23!

b2k,B~ t !5cosu b2k,22sinu „Uk~ t !b2k,12Vk~ t !ak,1
†
….
~24!

These operators satisfy the canonical commutation relat
~at equal times!. In their expressions the Bogoliubov tran
formation part is evidently characterized by the terms w
the U and V coefficients. The condensation density of t
flavor vacuum is given for anyt by

A,B^0~ t !uak,i
† ak,i u0~ t !&A,B5 A,B^0~ t !ub2k,i

† b2k,i u0~ t !&A,B

5sin2uuVku2, i 51,2. ~25!

It is useful to note thatuVku2 can be written as a function
of the rescaled momentump[A2uku2/(m1

21m2
2) and of the

adimensional parametera[(m2
22m1

2)/(m1
21m2

2) as follows:

uV~p,a!u25
p211

2A~p211!22a2
2

1

2
, ~26!

from which we see that the condensation density is maxi
at p50 @ uVmaxu25(m12m2)2/4m1m2# and goes to zero fo
large momenta@i.e. for uku2@(m1

21m2
2)/2]. Note that the

corresponding quantity in the fermion case is limited to
value 1/2 and the momentum scale is given byAm1m2. A
plot of uV(p,a)u2 is presented in Fig. 1 for sample values
the parametera.

Arbitrary mass parametrization

Above we have expanded the mixed fieldsfA,B in the
same basis as the free fieldsf1,2. However, as noticed in
Ref. @7# for the case of fermion mixing, this is not the mo
general possibility. Indeed, one could as well expand
flavor fields in a basis of fields with arbitrary masses.
course, these arbitrary mass parameters should not appe
the physically observable quantities. Thus, as a check for
validity of the oscillation formula we are going to derive
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Sec. IV, it is important to consider this generalization. Let
first rewrite the free fieldsf1,2 in the form

f i~x!5E d3k

~2p!3/2
„uk,i

f ~ t ! ak,i1v2k,i
f ~ t !b2k,i

†
…eik•x,

~27!

p i~x!5 i E d3k

~2p!3/2
„uk,i

p ~ t ! ak,i
† 2 v2k,i

p ~ t ! b2k,i…e
ik•x,

i 51,2, ~28!

where we have introduced the notation (i 51,2)

uk,i
f ~ t ![

1

A2vk,i

e2 ivk,i t, v2k,i
f ~ t ![

1

A2vk,i

eivk,i t,

~29!

uk,i
p ~ t ![Avk,i

2
eivk,i t, v2k,i

p ~ t ![Avk,i

2
e2 ivk,i t. ~30!

We now define

rab
k* ~ t ![uk,a

p ~ t !uk,b
f ~ t !1v2k,a

f ~ t !v2k,b
p ~ t !

5ei (vk,a2vk,b)tcoshja,b
k , ~31!

lab
k* ~ t ![v2k,a

p ~ t !uk,b
f ~ t !2uk,a

f ~ t !v2k,b
p ~ t !

5e2 i (vk,a1vk,b)tsinhja,b
k , ~32!

ja,b
k [

1

2
ln

vk,a

vk,b
, a,b51,2,A,B, ~33!

wherevk,a[Ak21ma
2. We denote withmA and mB the ar-

bitrary mass parameters whilem1[m1 andm2[m2 are the
physical masses. Note thatr12

k (t)5Uk(t) and l12
k (t)

5Vk(t). We can now write the expansion of the flavor fiel
in the general form~we use a tilde to denote the generaliz
ladder operators!:

FIG. 1. The condensation densityuV(p,a)u2 as a function ofp
for a50.98 ~solid line! anda50.92 ~dashed line!.
5-3
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fs~x!5E d3k

~2p!3/2
„uk,s

f ~ t !ãk,s~ t !1v2k,s
f ~ t !b̃2k,s

† ~ t !…eik•x,

~34!

with s5A,B, which is to be compared with the expansion
the free field basis as given in Eqs.~6!:

fs~x!5E d3k

~2p!3/2
„uk,i

f ~ t !ak,s~ t !1v2k,i
f ~ t !b2k,s

† ~ t !…eik•x,

~35!

where (s,i )5(A,1),(B,2). The relation between the two se
of flavor operators is given as

S ãk,s~ t !

b̃2k,s
† ~ t !

D 5J21~ t !S ak,s~ t !

b2k,s
† ~ t ! D J~ t !

5S rk* s i~ t ! ls i
k ~ t !

lk* s i~ t ! rs i
k ~ t !

D S ak,s~ t !

b2k,s
† ~ t ! D , ~36!

J~ t !5expH E d3kjs,i
k @ak,s

† ~ t !b2k,s
† ~ t !2b2k,s~ t !ak,s~ t !#J ,

~37!

with js,i
k [ 1

2 ln(vk,s /vk,i). For mA5m1 andmB5m2 one has
J51. Note that the transformation Eq.~36! is in fact a Bo-
goliubov transformation which leaves invariant the for
ak,s

† (t)ak,s(t)2b2k,s
† (t)b2k,s(t).

III. THE CURRENTS FOR MIXED BOSON FIELDS

Before presenting the exact oscillation formula, let us
vestigate in this section the structure of currents and cha
for the mixed fields. This will enable us to identify the re
evant physical observables to look at for flavor oscillatio
Since we are here interested in vacuum oscillations, in
following we neglect interaction terms and only consider
free field Lagrangian for two charged scalar fields with
mixed mass term:

L~x!5]mF f
†~x! ]mF f~x!2F f

†~x!MF f~x!, ~38!

with F f
T5(fA ,fB),

M5S mA
2 mAB

2

mAB
2 mB

2 D .

By means of Eq.~1!,

F f~x!5S cosu sinu

2sinu cosu DFm~x!, ~39!

L becomes diagonal in the basisFm
T 5(f1 ,f2):

L~x!5]mFm
† ~x!]mFm~x!2Fm

† ~x!MdFm~x!, ~40!

where Md5diag(m1
2 ,m2

2) and mA
25m1

2cos2u1m2
2sin2u,mB

2

5m1
2sin2u1m2

2cos2u,mAB
2 5(m2

22m1
2)sinucosu.
12501
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The LagrangianL is invariant under the globalU(1)
phase transformationsFm8 5eiaFm : as a result, we have th
conservation of the Noether chargeQ5*d3xI0(x), which is
indeed the total charge of the system@we have I m(x)
5 iFm

† (x)]m
JFm(x) with ]m

J[]Wm2]mQ ].
Let us now consider theSU(2) transformation

Fm8 ~x!5eia jt jFm~x!, j 51,2,3, ~41!

with a j real constants,t j5s j /2 ands j being the Pauli ma-
trices. Form1Þm2, the Lagrangian is not generally invarian
under Eq.~41! and we obtain, by use of the equations
motion,

dL~x!52 ia jFm
† ~x!@Md ,t j #Fm~x!52a j]mJm, j

m ~x!,
~42!

Jm, j
m ~x!5 iFm

† ~x!t j]
m
JFm~x!, j 51,2,3. ~43!

The corresponding charges,Qm, j (t)[*d3xJm, j
0 (x), close the

su(2) algebra~at each timet). The Casimir operatorCm is
proportional to the total charge:Cm[@( j 51

3 Qm, j
2 (t)#1/2

5 1
2 Q. Observe also that the transformation induced

Qm,2(t),

F f~x!5e22iuQm,2(t)Fm~x!e2iuQm,2(t) ~44!

is just the mixing transformation Eq.~39!. Thus 2Qm,2(t) is
the generator of the mixing transformations. Moreov
Qm,6(t)[ 1

2 @Qm,1(t)6 iQm,2(t)#, Qm,3 , andCm are nothing
but S6(t), S3, and S0, respectively, as introduced in Eq
~9!–~11!. From Eq.~42! we also see thatQm,3 and Cm are
conserved, consistently with Eqs.~14!,~15!. Observe that the
combinations

Q1,2[
1

2
Q6Qm,3 ~45!

Qi5E d3k~ak,i
† ak,i2b2k,i

† b2k,i !, i 51,2, ~46!

are simply the conserved1 ~Noether! charges for the free
fields f1 andf2 with Q11Q25Q.

We now perform theSU(2) transformations on the flavo
doubletF f :

F f8~x!5eia jt jF f~x!, j 51,2,3, ~47!

and obtain

dL~x!52 ia j F f
†~x!@M ,t j #F f~x!52a j]mJf , j

m ~x!,
~48!

1Note that, in absence of mixing, these charges would indeed
the flavor charges, being the flavor conserved for each genera
5-4
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QUANTUM FIELD THEORY OF BOSON MIXING PHYSICAL REVIEW D63 125015
Jf , j
m ~x!5 iF f

†~x!t j]
m
JF f~x!, j 51,2,3. ~49!

The related charges,Qf , j (t)[*d3xJf , j
0 (x), still fulfill the

su(2) algebra andCf5Cm5 1
2 Q. Due to the off-diagonal

~mixing! terms in the mass matrixM, Qf ,3(t) is time-
dependent. This implies an exchange of charge betweenfA
andfB , resulting in the flavor oscillations. This suggests
us to define indeed theflavor chargesas

QA~ t ![
1

2
Q1Qf ,3~ t !, ~50!

QB~ t ![
1

2
Q2Qf ,3~ t !, ~51!

with QA(t)1QB(t)5Q. These charges have a simple e
pression in terms of the flavor ladder operators:

Qs~ t !5E d3k„ak,s
† ~ t !ak,s~ t !2 b2k,s

† ~ t !b2k,s~ t !…,

s5A,B. ~52!

This is because they are connected to the Noether cha
Qi of Eq. ~46! via the mixing generator: Qs(t)
5Gu

21(t)QiGu(t), with (s,i )5(A,1),(B,2). Note that the
flavor charges are invariant under the transformation
~36!.

IV. THE OSCILLATION FORMULA FOR MIXED BOSONS

Let us now calculate the oscillation formula for mixe
bosons. We will first follow the approach of Ref.@12# and
show that the oscillation formulas there presented exhib
dependence on the arbitrary mass parametersms , a feature
which is not physically acceptable. We will do this by usin
the generalized operators introduced above. Then we
show how to cure this pathology, in analogy to what w
done in Refs.@8,9#, where the exact formula for neutrin
oscillations was derived and it was shown to be independ
from the arbitrary mass parameters that can be introduce
the expansions of the flavor fields.

A. The oscillation formula of Binger and Ji

Following Ref.@12#, let us define the~generalized! flavor
state by acting on themass vacuumu0&1,2 with the flavor
creation operators~we omit momentum indices!:

uãA&[ãA
† u0&1,25rA1cosuua1&1rA2sinuua2& ~53!

with uai&5ai
†u0&1,2. As already discussed in Ref.@12#, the

flavor state so defined is not normalized and the normal
tion factor has to be introduced as

ÑA[^ãAuãA&5rA1
2 cos2u1rA2

2 sin2u. ~54!

We have
12501
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^ãAuÑAuãA&5~rA1
2 1lA1

2 !cos2u1~rA2
2 1lA2

2 !sin2u.
~55!

The oscillation formula then follows as

^ãA~ t !uÑAuãA~ t !&5^ãAuÑAuãA&

24
rA1

2 rA2
2

ÑA

sin2u cos2u sin2S DE

2
t D

~56!

and a similar one for the expectation value ofÑB . From the
above, as announced, it is evident that these formulas ex
itly depend on the~arbitrary! parametersms @see Eq.~31!#.
We also note that, formA5m1 and mB5m2, one hasrA1
51, lA150, rA25U andlA25V. Consequently, Eqs.~55!,
~56! reduce respectively to Eqs.~18! and ~20! of Ref. @12#.

B. The exact oscillation formula

We now show how a consistent treatment of the flav
oscillation for bosons in QFT can be given which does n
exhibit the above pathological dependence on arbitrary
rameters.

There are two key points to be remarked. A general f
ture of field mixing is that the number operator for mixe
particles is not a well-defined operator. It is so because
mixing transformations mix creation and annihilation ope
tors and then the annihilation~creation! operators for flavor
particles and antiparticles do not commute at different tim
@see Eqs.~21!–~24!#. Moreover, the number operator doe
depend on the arbitrary mass parameters. Much care is th
fore required in the use of the number operator. A seco
remark is that the flavor states are not to be defined by u
the vacuumu0&1,2: the flavor states so defined are in fact n
normalized and the normalization factor Eq.~54! depends on
the arbitrary mass parameters.

These two difficulties can be bypassed by using the re
edy already adopted in Refs.@8,9# for the case of fermions
the flavor states have shown to be consistently defined
acting with the flavor creation operators on theflavor
vacuum. The observable quantities are then the expecta
values of theflavor chargeson the flavor states: the oscilla
tion formulas thus obtained do not depend on the arbitr
mass parameters.

In the line of Refs.@8,9#, let us now define2 the state of the
aA particle as uãk,A&A,B[ãk,A

† (0)u0̃&A,B with u0̃&A,B

[J21u0&A,B, and consider the expectation values of the fl
vor charges~52! on it ~analogous results follow if one con
sidersuãk,B&A,B). We obtain

2In the following, we will work in the Heisenberg picture: this i
particularly convenient in the present context since special care
to be taken with the time dependence of flavor states~see the dis-
cussion in Ref.@8#!.
5-5
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Q̃k,s~ t ![ A,B^ãk,AuQ̃s~ t !uãk,A&A,B

5u@ ãk,s~ t !,ãk,A
† ~0!#u22u@ b̃2k,s

† ~ t !,ãk,A
† ~0!#u2,

s5A,B. ~57!

We also haveA,B^0̃uQ̃s(t)u0̃&A,B50 and Q̃k,A(t)1Q̃k,A(t)
51.

A straightforward direct calculation shows that the abo
quantitiesdo not dependon mA andmB , i.e.,

A,B^ãk,AuQ̃s~ t !uãk,A&A,B5A,B^ak,AuQs~ t !uak,A&A,B ,

s5A,B, ~58!

and similar one for the expectation values onuãk,B&A,B .
Equation~58! is a central result of our work: it confirms tha
the only physically relevant quantities are the above exp
tation values of flavor charges. Note that expectation val
of the number operator, of the kindA,B^ãk,AuÑs(t)uãk,A&A,B

5u@ ãk,s(t),ãk,A
† (0)#u2 and similar ones, do indeed depen

on the arbitrary mass parameters, although the flavor st
are properly defined~i.e. on the flavor Hilbert space!. The
cancellation of these parameters happensonly when consid-
ering the combination of squared modula of commutators
the form Eq.~57!.3 A similar cancellation occurs for fermi
ons @9# with the sum of the squared modula of anticomm
tators.

Finally, the explicit calculation gives

Qk,A~ t !5u@ak,A~ t !,ak,A
† ~0!#u22u@b2k,A

† ~ t !,ak,A
† ~0!#u2

512sin2~2u!F uUku2sin2S vk,22vk,1

2
t D

2uVku2sin2S vk,21vk,1

2
t D G , ~59!

Qk,B~ t !5u@ak,B~ t !,ak,A
† ~0!#u22u@b2k,B

† ~ t !,ak,A
† ~0!#u2

5sin2~2u!F uUku2sin2S vk,22vk,1

2
t D

2uVku2sin2S vk,21vk,1

2
t D G . ~60!

Notice the negative sign in front of theuVku2 terms in
these formulas, in contrast with the fermion case@8,9#: the

3One may think it could make sense to take the expectation v
of the flavor charges on states defined on the mass Hilbert spac
the ones defined in Eq.~53!. A direct calculation however show
that this is not the case and these expectation values depend o
mass parameters: the conclusion is that one must use the fl
Hilbert space.
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boson flavor charge can assume also negative values.
fact points to the statistical nature of the phenomenon
means that when dealing with mixed fields, one intrinsica
deals with a many-particle system, i.e., a genuine field the
phenomenon. This situation has a strong analogy with th
mal field theory~i.e., QFT at finite temperature! @16#, where
quasi-particle states are ill defined and only statistical av
ages make sense. Of course, there is no violation of ch
conservation for the overall system of two mixed fields.

The above formulas are obviously different from the us
quantum mechanical oscillation formulas, which howev
are recovered in the relativistic limit@i.e., for uku2@(m1

2

1m2
2)/2]. Apart from the extra oscillating term~the one pro-

portional to uVku2) and the momentum dependent amp
tudes, the QFT formulas carry the remarkable informat
about the statistics of the oscillating particles: for bosons
fermions the amplitudes~Bogoliubov coefficients! are dras-
tically different according to the two different statistics (uUku
and uVku are circular functions in the fermion case and h
perbolic functions in the boson case!. This fact also fits with
the above mentioned statistical nature of the oscillation p
nomenon in QFT. Note also that our treatment is essenti
non-perturbative and in this differs from other QFT a
proaches to particle mixing and oscillations~see for example
Ref. @17# for a review!.

In order to better appreciate the features of the QFT f
mulas, it is useful to plot the oscillating charge in time f
sample values of the masses and for different values of
momentum~we use the same units for masses and mom
tum!. It is evident how the effect of the extra oscillating ter
is maximal at lower momenta~see Figs. 2 and 3! and disap-
pears for largek ~see Fig. 4! where the standard oscillatio
pattern is recovered. In the following plots we useTk
54p/(vk,22vk,1) and assume maximal mixing.

It is also interesting to plot the time average of the osc
lating charge,Q̄k,B5(1/nTk)*0

nTkdt Qk,B(t), as a function of
the momentum. In Fig. 5 we plotQk,B(t) averaged over two
different time intervals, i.e., forn510 andn5100: it is in-
teresting to observe how the larger is the time interval,
more the curve converges to the average of the standard
mula, which has the value12 . The behavior for largek is due
to the fact that, as already observed, the exact oscilla

e
, as

the
vor

FIG. 2. Plot ofQk,B(t) in function of time fork50, m152,
m2550 andu5p/4.
5-6
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formula reduces to the quantum mechanical oscillation
in the large momentum limit@i.e., for uku2@(m1

21m2
2)/2].

V. CONCLUSIONS

In this paper we have considered the quantum field th
retical formulation of spin-zero boson field mixing and o
tained the exact oscillation formula which does not depe
on arbitrary mass parameters which can be introduced in
generality in the theory. We have also studied the struc
of the currents and charges for the mixed fields. In orde
make our discussion more transparent, we neglected th
stability of the oscillating particles. This does not affect t
general validity of our result which rests on the intrins
features of QFT.

A crucial point in our analysis is the disclosure of the fa
that the space for the mixed field states is unitarily inequi
lent to the state space where the unmixed field operators
defined. This is a common feature with the QFT structure
the fermion mixing, which has recently been establish
@5–9#. The vacuum for the mixed fields turns out to be
generalizedSU(2) coherent state. Of course, in the bos
case the condensate structure for the ‘‘flavor’’ vacuum
found to be very much different from the one in the fermi
case. Besides the intrinsic mathematical interest, our ana
provides interesting phenomenological insights. It leads
the exact oscillation formula for bosons which predicts

FIG. 3. Plot ofQk,B(t) in function of time fork510, m152,
m2550 andu5p/4.

FIG. 4. Plot of Qk,B(t) in function of time for k5100, m1

52, m2550 andu5p/4.
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cillation behaviors susceptible of being experimenta
tested.

In fact, in the framework of the QFT analysis of Ref
@5,11#, a study of the meson mixing and oscillations has be
already carried out in Ref.@12# and applied to theh-h8
oscillation. However, the results of Ref.@12# give observable
quantities which are dependent on arbitrary mass parame
and this is of course physically not acceptable, as observe
Ref. @7#. In the present paper we have pointed out the ori
of such a pathology and have shown how to obtain res
which are independent from arbitrary parameters. The os
lation formula obtained in Ref.@12# has to be actually re-
placed with the exact one here presented. In order to c
pare our results with the ones of Ref.@12#, we presented in
Fig. 6 a plot of charge oscillations forh-h8 at zero momen-
tum, in correspondence to what has been done in Ref.@12#.

An interesting extension of the present work is the ana
sis of the mixing involving vector boson fields, or even fiel
with different spins~in external fields!, an example of which
could be the axion-photon mixing@18#. We are currently
investigating such problems.

Let us close by observing that although our QFT analy
discloses features which cannot be ignored in any furt
study of the field mixing and oscillations, since they are
trinsic to the structure of the QFT formalism, neverthele
there are many aspects which are not fully understood

FIG. 5. The time average ofQk,B(t) over 10Tk ~dashed line!
and over 100Tk ~solid line! with respect to the average of th
standard oscillation formula~horizontal axis! as a function ofk for
the valuesm152, m2550 andu5p/4.

FIG. 6. Plot ofQk,h(t) ~solid line! andQk,h8(t) ~dashed line! in
function of time for an initially pureh state and fork50, m1

5549 MeV,m25958 MeV andu5254°.
5-7
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BLASONE, CAPOLUPO, ROMEI, AND VITIELLO PHYSICAL REVIEW D63 125015
many features of the physics of mixing are still obscure@1#,
as already observed in the Introduction. The mixing of n
trinos and their oscillations seem to be now experiment
established and quark mixing and meson mixing are wid
accepted and verified. However, several questions@19–26#
are the object of active discussion in the framework of
quantum mechanics formalism for neutrino oscillations. A
matter of fact, such a state of affairs has been a strong
tivation for our searching in the structural aspects of QF
possible hint to the understanding of particle mixing a
oscillations.
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APPENDIX: ORTHOGONALITY BETWEEN MASS
AND FLAVOR VACUA

We calculate here1,2̂ 0u0(u,t)&A,B . In the following we
work at finite volume~discretek) and suppress the tim
dependence of the operators whent50. Let us first observe
that u0(u,t)&A,B5eiHt u0(u,0)&A,B , with H
5( i 51

2 (kvk,i(ak,i
† ak,i1b2k,i

† b2k,i). Thus we have

1,2̂ 0u0(u,t)&A,B51,2̂ 0u0(u,0)&A,B .
We then define)k f 0

k(u)[)k 1,2̂ 0uGk,u
21(0)u0&1,2 and ob-

serve that

d

du
f 0

k~u!5uVku1,2̂ 0u~b2k,1ak,21b2k,2ak,1!Gk,u
21u0&1,2

~A1!

52uVku1,2̂ 0uGk,u
21~ak,2

† b2k,1
† 1ak,1

† b2k,2
† !u0&1,2,

~A2!

where, we recall,uVku[Vk(0) in our notation of Sec. II. We
now consider the identity
.

e
.
.

s,

12501
-
y
ly

e
a
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a

~b2k,1ak,21b2k,2ak,1!Gk,u
21

5Gk,u
21Gk,2u

21 ~b2k,1ak,21b2k,2ak,1!Gk,2u

5Gk,u
21@b2k,A~2u!ak,B~2u!1b2k,B~2u!ak,A~2u!#.

Then the equation follows:

d

du
f 0

k~u!

522uVku2cosu sinu f 0
k~u!

1sin2u uVku3
1,2̂ 0uGk,u

21~ak,2
† b2k,1

† 1ak,1
† b2k,2

† !u0&1,2

~A3!

522 uVku2cosu sinu f 0
k~u!2sin2uuVku2

d

du
f 0

k~u!

~A4!

and

d

du
f 0

k~u!52
2uVku2cosu sinu

11sin2uuVku2
f 0

k~u!, ~A5!

which is solved by

f 0
k~u!5

1

11sin2uuVku2
, ~A6!

with the initial conditionf 0
k(0)51.

We observe that we can operate in a similar fashion
rectly with f 0

k(u,t)[1,2̂ 0uGk,u
21(t)u0&1,2. We then find that

f 0
k(u,t) is again given by Eq.~A6! and thus it is actually

time-independent. We also note that by a similar procedu
can be proved that limV→` A,B^0(u,t)u0(u8,t)&A,B→0 for
u8Þu.
k
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