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Quantum field theory of boson mixing
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We consider the quantum field theoretical formulation of boson field mixing and obtain the exact oscillation
formula. This formula does not depend on arbitrary mass parameters. We show that the space for the mixed
field states is unitarily inequivalent to the state space where the unmixed field operators are defined. We also
study the structure of the currents and charges for the mixed fields.
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[. INTRODUCTION Some mathematical derivations are given in the Appendix.
Particle mixing and oscillation&for a recent review, see IIl. MIXING OF BOSON FIELDS IN QFT

Ref. [1]) are among the most intriguing topics of particle

physics. The mixing of neutrinos and their oscillations seem The observed boson oscillations always involve particles

to be now experimentally established after a long seg2th  With zero electrical charge. What oscillate are some other

On the other hand, quark mixing and meson mixing arequantum numbers such as the strangeness and the isospin.

widely accepted and verifig@]. However, many features of Therefore, in the study of boson mixing and oscillatigims

the physics of mixing are still obscure, for example the issuezacuum we will consider complex fieldgl3]. The charge in

related to its origin in the context of the standard model andjuestion is some “flavor charge(e.g. the strangengsand

the related problem of the generation of maggis thus the complex fields are “flavor charged” fields, referred
Also from a purely mathematical point of view, there areto as “flavor fields” for simplicity.

aspects which are not fully understood. Indeed, only recently We define the mixing relations as

[5] a rich non-perturbative vacuum structure has been dis-

covered to be associated with the mixing of fermion fields in DA(X) = ¢1(X)COSO+ y(x)sin g
the context of quantum field theorfor a mathematically
rigorous approach see R¢€]). The careful study of such a Pp(X)=— p1(X)sSin O+ p,(X)cosh D)

structure[7] has led to the determination of the exact QFT

formula for neutrino oscillation$8,9], exhibiting new fea- where generically we denote the mixed fields with suffifes
tures with respect to the usual quantum mechanical Porand B. Let the fields¢;(x), i=1,2, be free complex fields
tecorvo formula[10]. Actually, it turns out[11,12 that the  with definite masses. Their conjugate momenta &fréx)
non-trivial nature of the mixing transformations manifests =g,/ (x) and the commutation relations are the usual ones:
itself also in the case of the mixing of boson fields. Of

course, in this case the condensate structure for the “flavor” [i(X), () ]e=t =[¢iT(X),7TI-T(y)]t:t,

vacuum is very much different from the fermion case and a ) o

careful analysis is necessary in order to understand which =is’(x-y)5;, i,j=12. (2
phenomenological consequences are to be expected for the . o

oscillations of mixed bosons. with the other equal-time commutators vanishing. The Fou-

In this paper, we perform this analysis first at a formal'ier expansions of fields and momenta are
level and then we study the oscillations of mixed mesons of

the kind of thek®— K. We will treat these particles as stable bi(x)= f ¢’k 1

ones, an approximation which however does not affect the ™" (2m)32 2w, ;

general validity of our results. In the framework of the QFT ' (3

analysis of Refs[5,11], a study of the meson mixing and

oscillations has been carried out in REE2], where modifi- 3y o

cations to the usual oscillation formulas, connected with the 7 (x)=i f - ﬁ(al elekit—p_ e iokit)elkex,

vacuum structure, have been presented. However, the results (2m)32 2 ' '

of Ref. [12] can be improved in many respects and in the (4)

present paper we show that the oscillation formula there ob-

tained has to be actually replaced with the exact one herehere w,;=k?+m and [ay;,a};1=[by;.b} ;1= 8%k

presented. —p)dij, withi,j=1,2 and the other commutators vanishing.
In Sec. Il we study the quantum field theory of two mixed We will consider stable particles, which will not affect the

spin-zero boson fields. In Sec. Il we analyze the structure ofeneral validity of our results.

currents for mixed fields and we derive the exact oscillation We now proceed in a similar way to what has been done

formula in Sec. IV. Section V is devoted to conclusions.in Ref.[5] for fermions and recast Egél) into the form

(a-k’| efi‘”k,it{— bikJ eiwk'it)eik-x
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BAX) =Gy (1) p1(X)Gylt) (5) 1
’ ’ So=§f d3k(af jay 1= bl b+ ak Ay,
X)=G, (1) (X)Gy(t) (6)
$6(x) =G, (1) 3(X) G Cbb 5
and similar ones forra(x), mg(X). Go(t) denotes th'e opera-  As for the case of the fermion mixing, the structure of the
tor which implements the mixing transformatiofi: generator Eq(7) is recognized to be the one of a rotation
combined with a Bogoliubov transformati¢see below Egs.
_ . 3 T t (21)—(24)]. Indeed, in the above equations, the coefficients
Gé)(t) exl{ |0f d X(’7T]_(X)¢2(X) ¢1(X)772(X) Uk(t)E|Uk|e|(wk’27wk’1)t ande(t)E|Vk|e'(“’k,l+“’k,2)t appear

to be the Bogoliubov coefficients. They are defined as

—5(X) d1(X) + Y T](X))], (7) 1 Jor;  [o,
. 1 '
|Uil= 5( @“L w_kl) ,

which is (at finite volume a unitary operator:G;l(t)

=G_g(t)=G§(t). The generator of the mixing transforma- 1 W1 Wi
tion in the exponent 06 ,(t) can also be written as V| = IV Vo (16)
Wy,2 W1
Gy(t)=exg 0(S, (1) = S_(1))]. (8)  and satisfy the relation
The operators [U?=Vil*=1, 17

which is in fact to be expected in the boson césete the
S, (t)=s' ()= _if d3x(71(X) o(X) — PL(X) (X)), difference with respect to the fermion case of H&f). V\kle
(9 can thus put |UJ=coshéf ,,|V,|= sinhé ,, with &,
=zIn(wy 1/ wy o).
We now consider the action of the generator of the mixing
transformations on the vacuuf@) , for the fields¢; (x):
a,i|0)1,=0, i=1,2. The generator induces &tJ(2) coher-

S,= _7'] d3x(r1(X) b1(X) — d(x) (%) ent state structure on such state]:
106,)a8=Gy (1)[0)12- (18)

From now on we will refer to the sta{@(6,t))4 g as to the
Q —i ; ; “flavor” vacuum for bosons. The suffixe& andB label the
So=5= 7f d3X(771(X) p1(X) — 1(X) 71 (X) flavor charge content of the state. We have
A8(0(6,1)[0(6,t))a g=1. In the following, we will consider
+15(X) ha(X) — pH(X) (X)), (11)  the Hilbert space for flavor fields at a given timesayt
=0, and it is useful to defing0(t)),g=|0(6,t))a s and
close thesu(2) algebra(at each timet): [S.(1),S ()] |0)a8=[0(8,t=0))a for future reference. A crucial point
=2S;, [S5,S.(1)]=*S.(1), [So,Ss]=[S,S.(t)]=0. IS that the flavor and the mass vacua are orthogonal in the
Note thatS; andS, are time independent. It is useful to write infinite volume limit. We indeed havesee Appendix
down explicitly the expansions of the above generators in
terms of annihilation and creation operators: 1,2<0|0(t)>A,B:1;[ 140Gy 5(1)[0)12

together with

— 5(X) Pa(X) + pH(X) TH(X)) (10

S+(t)=f d3k (U (1) af jay o= Vi (1) by 1y =11 &) for anyt, (19)
K

+Vi(t) af bTy o= Uy(t) by ;T 12
DA U baboa) (4D e have use@, '(t) =11, Gy 4(t) [see Eqs(8), (12)

and (13)]. In the infinite volume limit, we obtain
5. (0= [ kU a Vi al b iy k
lim 1 £00(1))a = lim e/’ J @il —g

V(D) by i~ Uk (D by bl ) (13) Voo Voo
. for anyt. (20
| qBrcat _pt it
S3_2f k(@ 131~ bk~ A Bk 2 From the Appendix, Eq/A6), we see that Iff§( ) is indeed
. negative for any values df, 6 andmj,m, (note that G<4¢
+hoy bk (14 <m/4). We also observe that the orthogonality disappears
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when 6=0 and/orm;=m,, consistently with the fact that in

both cases there is no mixing. These features are similar tc

the case of fermion mixing5]: the orthogonality is essen-
tially due to the infinite number of degrees of freedom
[15,16 (the statement of Ref12] that in the boson case the

above vacua are orthogonal also at finite volume has to be

therefore corrected according to the present rgsult

We can define annihilation operators for the vacuum

0(t))ae as aa(B.)=G, (t)ar:G,(t), etc. with
ax a(6,1)|0(t))a=0. For simplicity we will use the nota-
tion a A(t)=ay A(0,t). Explicitly, we have

a alt)=cosf a1 +sin (U} (D ay o+ Vi(HbT ), o
21

a a(t)=cosa,,—sinf (Uy(Hay,— Vi(HbT, ),
(22)

by a(t)=cosfb_, ;+sindUE ()b + vk(t)al,z)& )
23

b_ia(1)=C0s0b_y ;—sind (Ui (t)b_y 1~ Vi(t)ag ).
(24)
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FIG. 1. The condensation density(p,a)|? as a function ofp
for a=0.98 (solid line) anda=0.92 (dashed ling

Sec. IV, itis important to consider this generalization. Let us
first rewrite the free fieldg, , in the form

o |
¢i(x)= f (ZT)S/Z(U&(U ay +U‘fk’i(t)b’r_k’i)elk~x’
(27)

These operators satisfy the canonical commutation relations
(at equal timep In their expressions the Bogoliubov trans-
formation part is evidently characterized by the terms with

3
i (X) =i f (ZT)?’/Z(ulzi(t) alt,i_ U7—Tk,i(t) b—k,i)eik'x,

the U and V coefficients. The condensation density of the i=1,2, (28)
flavor vacuum is given for any by
where we have introduced the notatidr=(1,2)
A,B<0(t)|al,iak,i|O(t)>A,B: A,B<0(t)|btk,ib—k,ilo(t»A,B
. : 1 . .
=sirfg|Vy|?, =12 (25 ué ()= oot ® _ o it
k" - ! L v—k’(t)_ e k"
. . . | 2wy i | V2w i
It is useful to note thafV,|? can be written as a function (29
of the rescaled momentum= \/2|k|%(m?+m2) and of the
adimensional parametar= (m5— mZ)/(m2+m3) as follows: On; o
ug (= T’e'wk,it, v ()= T'e*'wk,it. (30)
Vipafim——tt 1 (26
A7 :
P 2\(p?+1)%-a? 2 We now define
from which we see that the condensation density is maximal pfﬁ(t)ful’{a(t)uﬁﬁ(t)+v‘fk,a(t)vfkﬁ(t)
at p=0 [|Vmad 2= (m;—m,)%4m;m,] and goes to zero for o o e )
large momentdi.e. for |k|?>(m3+mz2)/2]. Note that the =€\ kam“kplcoshe, s, (3D)
corresponding quantity in the fermion case is limited to the
value 1/2 and the momentum scale is given by m,. A NO=0T OUL 4O —Uf (DT, 4(D)
plot of |V(p,a)|? is presented in Fig. 1 for sample values of (or b on i ek
the parametea. =e ke %kplsINNE, 4, (32)
i izati 1 o
Arbitrary mass parametrization SE,BE 5'” K, . a.f=12AB, (33
Above we have expanded the mixed fieldg g in the “k.p

same basis as the free fielgg ,. However, as noticed in

Ref. [7] for the case of fermion mixing, this is not the most Where oy ,= Vk*+ s We denote withu, and ug the ar-
general possibility. Indeed, one could as well expand thditrary mass parameters whije;=m; and u,=m, are the
flavor fields in a basis of fields with arbitrary masses. Ofphysical masses. Note tha;b‘{z(t)=uk(t) and A'{z(t)

course, these arbitrary mass parameters should not appearsV,(t). We can now write the expansion of the flavor fields
the physically observable quantities. Thus, as a check for the the general fornfwe use a tilde to denote the generalized

validity of the oscillation formula we are going to derive in ladder operatojs
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d3k B 5 _ The LagrangianZ is invariant under the global(1)
¢, (X)= j —m(ufﬁa(t)ak,g(t)+v‘fkyo(t)bikyg(t))e'k'x, phase transformationd/,=e'“®,,: as a result, we have the
(2m) conservation of the Noether char@e= [ d3x1°(x), which is

(34 indeed the total charge of the systejwe have 1#(x)

with o=A,B, which is to be compared with the expansion in =i ®(X) 7P (x) with J#=5#— 5-].

the free field basis as given in EJ$): Let us now consider th8U(2) transformation
d3k : D/ (x)=€eTid(x), j=1,2,3, (41)
¢U(X):JW(U?i(t)ak,g(t)Jrvd)k,i(t)bTk,a(t))e'k'x, " "

(35) with a; real constantsrj=o;/2 ando; being the Pauli ma-
trices. Form# m,, the Lagrangian is not generally invariant
where (@,i)=(A,1),(B,2). The relation between the two sets under Eq.(41) and we obtain, by use of the equations of

of flavor operators is given as motion,
- e ) SL(X)=—ia;® (X[ Mg, 7]P (X) = — ;I (X),
B —31 J Fm 1 m J9pm,j
(bik,(,m) (t)(b*k,(,(t) ® (42)
_(Pk*ai(t) Ngi(t) (ak,a(t)> I O)=1DL () 73 Dy(x), j=1,2.3. (43)
" oo/, G0

The corresponding chargd@m,j(t)Efd3xJ%’j(x), close the
K ot : su(2) algebra(at each time). The Casimir operato€,, is
J(t)=exp[ f d k§a,i[ak,a(t)bk,g(t)—bk,a(t)ak,a(t)]}, proportional to the total chargeCn,=[37_,Q% (t)]*?

(37) =1Q. Observe also that the transformation induced by
. K 1 Qm,2(t)!
with &; i=3In(wy ,/wy;). For ua=m; and ug=m, one has
J=1. Note that the transformation EB6) is in fact a Bo- Di(x)=e 2RmAP (x)e? CmaV (44)
goliubov transformation which leaves invariant the form
aj ,(Day ,(t)—bly (Db_y ,(1). is just the mixing transformation EG39). Thus 2., 4(t) is
the generator of the mixing transformations. Moreover,
lll. THE CURRENTS FOR MIXED BOSON FIELDS Qm, = (1)=3[Qm1(t) *iQmt)], Qms, andC, are nothing

) o . but S.(1), S;, and S, respectively, as introduced in Egs.
Before presenting the exact oscillation formula, let us IN-(9)_(11). From Eq.(42) we also see tha@y 5 and C,, are

vestigate in this section the structure of currents and chargeg)nserved consistently with Eq4.4),(15). Observe that the
for the mixed fields. This will enable us to identify the rel- .o hinations '

evant physical observables to look at for flavor oscillations.

Since we are here interested in vacuum oscillations, in the

following we neglect interaction terms and only consider the Q,,=-Q=*Q,,3 (45)
free field Lagrangian for two charged scalar fields with a “ 2 '

mixed mass term:

L(X)=3,D](X) 3 P(x) =PI (X)MP((x), (38 Qi:f d3k(af jax, bl by, =12, (46)
H T_
with @¢=(ba. ¢s), are simply the conservédNoethei charges for the free
m2 m2 fields ¢1 and ¢2 with Q1+ Q2: Q
M :( 2A Af) We now perform th&sU(2) transformations on the flavor
Mag Mg doubletd; :
By means of Eq(1), ®L(x)=e4TDi(x), j=1,23, 47)
® cosf  sinf © 9 4 obtai
= and obtain
00=] " osp) P00: (39
——ig ®f . = —q; .
L becomes diagonal in the basig, = (¢, $>): OL(X)=—iaj @1 (X)[M, 7] 1(X) =~ @}, 7,(x), 49
L(X)=3,P ()P r(x) = PFOMgD (),  (40)
where My=diag(m?,m3) and mj=micogg+mgsi’d,ma INote that, in absence of mixing, these charges would indeed be
= mZsin9+mjcoS6,ma ;= (M5 — m7)sin #cosé. the flavor charges, being the flavor conserved for each generation.
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) =T10{() 7 De(x),  [=1,23. (49) (anlNa[an)=(pa;+Ma1)COS O+ (pZp+ N3p)SINO.
(55

The related chargle,j(t)Efdst?,j(x), still fulfill the

su(2) algebra andC;=Cn,,=3Q. Due to the off-diagonal The oscillation formula then follows as

(mixing) terms in the mass matriM, Qg (t) is time-

dependent. This implies an exchange of charge betwgen ~ o~ ~ o~ o~

and ¢, resulting in the flavor oscillations. This suggests to  (@a(D|Nalaa(t))=(aalNalan)

us to define indeed thigavor chargesas

2 2
AE
— a2 coga sin2<—t)
Na 2

Qa(h)=50Q+ Q¢ 5(1), (50

N| =

(56)

Qg(t)= EQ—Qf (1), (51) and a similar one for the expectation valueNy. From the
2 ' above, as announced, it is evident that these formulas explic-
, ) itly depend on thearbitrary) parameters., [see Eq.(31)].
with Q(t) +Qg(t)=Q. These charges have a simple eX-\yjie also note that, fopua=m, and xg=m,, one hasp
pression in terms of the flavor ladder operators: =1, Ap=0, pap=U andi ,,= V. Consequently, Eq¢55),
(56) reduce respectively to Egél8) and (20) of Ref.[12].

Q0= [ &K@l (D30 bl (0D (D),
B. The exact oscillation formula

o=AB. (52 We now show how a consistent treatment of the flavor

oscillation for bosons in QFT can be given which does not

This is because they are connected to the Noether Charg(&hibit the above pathological dependence on arbitrary pa-

Q; of Eg. (46) via the mixing generator: Q(t) rameters

=G, {()QiGy(1), with (0,i)=(A1),(B,2). Note that the There are two key points to be remarked. A general fea-
flavor charges are invariant under the transformation Ecy .« of field mixing is that the number operator for mixed
(36). particles is not a well-defined operator. It is so because the
mixing transformations mix creation and annihilation opera-
IV. THE OSCILLATION FORMULA FOR MIXED BOSONS tors and then the annihilatiofcreation operators for flavor
particles and antiparticles do not commute at different times
[see Eqgs(21)—(24)]. Moreover, the number operator does
depend on the arbitrary mass parameters. Much care is there-
fore required in the use of the number operator. A second
remark is that the flavor states are not to be defined by using
he vacuunj0), ,: the flavor states so defined are in fact not
ormalized and the normalization factor E§4) depends on
he arbitrary mass parameters.
These two difficulties can be bypassed by using the rem-
y already adopted in Ref8,9] for the case of fermions:
e flavor states have shown to be consistently defined by
acting with the flavor creation operators on tflavor
vacuum The observable quantities are then the expectation
A. The oscillation formula of Binger and Ji values of theflavor chargeson the flavor states: the oscilla-

Following Ref.[12], let us define thégeneralizeliflavor ~ tion formulas thus obtained do not depend on the arbitrary
state by acting on thenass vacuuni0), , with the flavor ~Mass parameters.

Let us now calculate the oscillation formula for mixed
bosons. We will first follow the approach of R¢fl2] and
show that the oscillation formulas there presented exhibit
dependence on the arbitrary mass parameigrsa feature
which is not physically acceptable. We will do this by using
the generalized operators introduced above. Then we wi
show how to cure this pathology, in analogy to what was,
done in Refs[8,9], where the exact formula for neutrino
oscillations was derived and it was shown to be independergd
from the arbitrary mass parameters that can be introduced ltrp1
the expansions of the flavor fields.

creation operatoréve omit momentum indicés In the line of Refs[8,9], let us now definethe state of the
- = . an particle as |ak,A>A,BEaE,A(O)|0>A,B with  [0)a s
lap)=2ax|0)1,=pa1c0sblas) +passindla,)  (53)  =J"10), s, and consider the expectation values of the fla-

vor chargeg52) on it (analogous results follow if one con-
with |ai):a?|0>l,2. As already discussed in Rdf12], the SiderS|5k,B>A,B)- We obtain
flavor state so defined is not normalized and the normaliza-
tion factor has to be introduced as

~ -~ o~ 2 s . 2In the following, we will work in the Heisenberg picture: this is
Na=(anlan) = pa cos 6+ pjosinf 6. (54  particularly convenient in the present context since special care has
to be taken with the time dependence of flavor stése® the dis-
We have cussion in Ref[8]).
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Ok ()= a (| Qu(t) A Ada s ous®) | H ﬂ

= [ o(1),af A(0)][2—|[BT ,(1),af A(0)]|%,

“ m I

We also havep 5(0|Q,(t)[0)a =0 and Oy a(t) + Oy a(t) Vv s UV 6 UU 5 VV T 4

=1. -2
A straightforward direct calculation shows that the above U U U

guantitiesdo not depenan u, and ug, i.e., T

6l
(@Al Qu(t)[a a)a 8= as(akAl Qu(D]ak Adas _ _ _
FIG. 2. Plot of Qy g(t) in function of time fork=0, m;=2,
oc=A,B, (58 m,=50 and#= /4.

and similar one for the expectation values @YBMB_ boson flavor charge can assume also negative values. This
Equation(58) is a central result of our work: it confirms that fact points to the statistical nature of the phenomenon: it
the only physically relevant quantities are the above expecmeans that when dealing with mixed fields, one intrinsically
tation values of flavor charges. Note that expectation valuedeals with a many-particle system, i.e., a genuine field theory

of the number operator, of the kin»d,B<5-k,A|Nrr(t)|5-k,A>A,B phenomenon. This situation has a strong analogy with ther-
=|[5k,a(t) ,al A(0)]]2 and similar ones, do indeed depend mal f_ield theory(i.e., QFT.at fin@te temperatu)’élG],_ where
on the arbitrary mass parameters, although the flavor stat@iiasi-particle states are ill defined ahd only stgtlstlcal aver-
are properly definedi.e. on the flavor Hilbert spageThe  ages make sense. Of course, there is no violation of charge
cancellation of these parameters happenly when consid- ~conservation for the overall system of two mixed fields.
ering the combination of squared modula of commutators of The above formulas are obviously different from the usual
the form Eq.(57).2 A similar cancellation occurs for fermi- quantum mechanical oscillation formulas, which however
ons[9] with the sum of the squared modula of anticommu-are recovered in the relativistic limfti.e., for |k|?>(mJ
tators. +m3)/2]. Apart from the extra oscillating terithe one pro-
Finally, the explicit calculation gives portional to|V,|?) and the momentum dependent ampli-
tudes, the QFT formulas carry the remarkable information
_ T 2 t + 2 about the statistics of the oscillating particles: for bosons and
Qa0 =[[8 A, 8 A"~ (= A1) 2 A0V fermions the amplitudeeBogoIiubO\glJ cpoefficient)sare dras-
_ o Ok @i tically different according to the two different statistigsJ¢|
=1-sir’(20) |Uk|23|n2(#t) and|V,| are circular functions in the fermion case and hy-
perbolic functions in the boson cas@&his fact also fits with
B |Vk|zsinz< wy ot wk’lt” the above mentioned statistical nature of the oscillation phe-

2 (59 nomenon in QFT. Note also that our treatment is essentially
non-perturbative and in this differs from other QFT ap-
proaches to particle mixing and oscillatiofsee for example

Qup(t)=[[aKs(t),af A(0)]*=I[b"y a(t),af A(0)]1? Ref.[17] for a review.
_ In order to better appreciate the features of the QFT for-
=sin2(26)[|uk|zsin2(%2—%t) mulas, it is useful to plot the oscillating charge in time for
2 sample values of the masses and for different values of the

oot @ momen_tum(\_/ve use the same units for masses _anq momen-
_ |Vk|zsin2(k’2—k’lt) } (60)  tum). Itis evident how the effect of the extra oscillating term
2 is maximal at lower momentgee Figs. 2 and)3and disap-
pears for largek (see Fig. 4 where the standard oscillation

Notice the negative sign in front of th@/,|? terms in  pattern is recovered. In the following plots we u3g
these formulas, in contrast with the fermion c#8g9]: the  =47/(wy,— w 1) and assume maximal mixing.
It is also interesting to plot the time average of the oscil-
lating charger,B=(1/nTk)ng"dt Qi s(t), as a function of

%0ne may think it could make sense to take the expectation valuf’® momentum. In Fig. 5 we pla, g(t) averaged over two
of the flavor charges on states defined on the mass Hilbert space, different time intervals, i.e., fon=10 andn=100: it is in-
the ones defined in Eq53). A direct calculation however shows teresting to observe how the larger is the time interval, the
that this is not the case and these expectation values depend on tre the curve converges to the average of the standard for-
mass parameters: the conclusion is that one must use the flaveaula, which has the valug. The behavior for largé is due
Hilbert space. to the fact that, as already observed, the exact oscillation
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2 0.55

Q(t) - On

1.5

/ k! ,‘/ N N - -
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FIG. 3. Plot of @y g(t) in function of time fork=10, m;=2,

FIG. 5. The time average afy g(t) over 10T, (dashed ling
m,=50 andf= /4.

and over 100T, (solid line with respect to the average of the

standard oscillation formuléhorizontal axi$ as a function ok for
formula reduces to the quantum mechanical oscillation on¢he valuesm;=2, m,=50 and6= m/4.

in the large momentum limfii.e., for |k|?>(m3+m3)/2]. o _ _ _ _
cillation behaviors susceptible of being experimentally
tested.

In fact, in the framework of the QFT analysis of Refs.

In this paper we have considered the quantum field theo[-5’11]’ a stud_y of the meson mixing and o_scillations has been
retical formulation of spin-zero boson field mixing and ob- alsrgi?lgzo(r:]arl-lng\?ve?/gtr I?heRre;amsluzlgsaor;ngfgIei(\j/et?)btgeer”v-anble
tained the exact oscillation formula which does not depenc? L ' <19
on arbitrary mass parameters which can be introduced in fuﬁ‘u"’mtme.S which are depepdent on arbitrary mass parameters,
generality in the theory. We have also studied the structur nd this is of course physically not acceptgble, as observgd_ In
of the currents and charges for the mixed fields. In order t fe;.u[za{ Ian tgfhglrgsen;np daﬂzrv\évesr?gv\ci F;]%'\?vtetg gg;;ir;lerzggll?s
make our discussion more transparent, we neglected the iI3\7hich are ﬁlde en%yent from arbitrary parameters. The oscil-
stability of the oscillating particles. This does not affect theIation formula gbtained in Ref12] h);g 0 be actﬁall re-
general validity of our result which rests on the intrinsic . ; y
features of QFT. placed with the ex_act one here presented. In order to com-

A crucial point in our analysis is the disclosure of the factgfireg)ur zefulfts r\]N'th the O.lrllets. of FfeéI_Z]; wte presented in
that the space for the mixed field states is unitarily inequiva- '?n' ina p?r 0 cnzrgne OStCIVE:hIOtnE O’E)" gdzenro mc[gné(;n-
lent to the state space where the unmixed field operators a}g , IN correspondence to what has been done ’
defined. This is a common feature with the QFT structure of . An mtere_s'glng_exten_smn of the presef.“ work is the a_naly-
the fermion mixing, which has recently been establishe is of the mixing involving vector boson fields, or even fields
[5-9]. The vacuum,for the mixed fields turns out to be aWith different SF’"FS“” external fie_ld}s, an example of which
generalizedSU(2) coherent state. Of course, in the boson?ncz/uelgtibgti;hesiz'r?n'r%g?é?nnsm'x'nmS]' We are currently
case the condensate structure for the “flavor” vacuum is gating P L .
found to be very much different from the one in the fermion . Let us close by observmg that althqugh our QFT analysis
case. Besides the intrinsic mathematical interest, our analysfgﬁglozefihf:?:glze;gmChaggnonstltilIt;fio'ggO;?:Cénthinyafr%rti?fr
provides interesting phenomenological insights. It leads t rinsi):: to the structure gof the QFT formélism nevgrtheless
the exact oscillation formula for bosons which predicts os-, . ’

there are many aspects which are not fully understood and

V. CONCLUSIONS

1r

Qua() b 100 0

y B* ld v o v 80 t (10_243)

t

1 2 3 Tk

FIG. 6. Plot ofQy ,(t) (solid line) and Qy ,(t) (dashed lingin
FIG. 4. Plot of Q, g(t) in function of time for k=100, m, function of time for an initially puren state and fork=0, m;
=2, m,=50 andf= /4. =549 MeV, m,=958 MeV andf= —54°.
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many features of the physics of mixing are still obsclurg (b_ 18y 2+ b_y 8, 1) Gy

as already observed in the Introduction. The mixing of neu- o o ’

trinos and their oscillations seem to be now experimentally =G,Z,§GQ39(b_k,1ak,2+ b_yoak1)Gk -
established and quark mixing and meson mixing are widely 4

accepted and verified. However, several questjdi®s-26 =Gy gl a(—0)axs(—0)+b_ g(—O)axal—0)].

are the object of active discussion in the framework of theT
guantum mechanics formalism for neutrino oscillations. As a
matter of fact, such a state of affairs has been a strong moq .
tivation for our searching in the structural aspects of QFT ad_afO( 0)
possible hint to the understanding of particle mixing and

hen the equation follows:

oscillations. = —2|V,|?cos@ sin 0f( 0)
ACKNOWLEDGMENTS +5in?0 [Vi|* 1 £0|Gy @ by 1+ a1 2)[0)12
We thank MURST, INFN and ESF for partial support. (A3)
d
APPENDIX: ORTHOGONALITY BETWEEN MASS = —2|V,|?cos6 sin ofk( 0)—sin20|vk|2d—6f'5( 6)
AND FLAVOR VACUA
(A4)
We calculate herg 40|0(6,t))ag- In the following we and
work at finite volume(discretek) and suppress the time
dependence of the operators when0. Let us first observe d 2|V,|2cos@ sin @
that |0(6,t))ap=€""0(6,0))a 8. with H agfge)z—- _ —15(0), (A5)
=32 Sioi(alag bl b;). Thus we have 1+sir? 6|V
140[0(8,1))a8=140/0(6,0))a - which is solved by
We then defindl, f§(6)=11, 1 £0|G; §(0)|0);, and ob-
serve that .
fo(6)= (A6)

d , ) 1+sirt6|V, |2’
g o0 =IVid 1.0l (b i 21 b1 28 1) Gy 4/ 0) 1.2 _ o o

with the initial conditionfy(0)=1.
(A1)
rectly with f‘g(e,t)z1V2<O|G[y§(t)|0>1,2. We then find that

=— V|1 £0|G; Y(af b ;+af bT, )[0)1 0,
[Vid1 40/ o@D k1t Bb-k 2012 f§(6,t) is again given by Eq(A6) and thus it is actually

(A2) time-independent. We also note that by a similar procedure it
where, we recalllV,|=V,(0) in our notation of Sec. Il. We can be proved that lign... 5 g(0(6,t)|0(6',t))ag—0 for
now consider the identity 0'+ 6.
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