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Quantum dynamics of the slow rollover transition in the linear delta expansion
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We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which
is the principal feature of inflationary models of the early Universe. The method, which goes beyond the
Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods.
It provides a promising basis for extension to a full field theoretic treatment.
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[. INTRODUCTION was given by Guth and B¥], who solved exactly the equa-
tion of motion for an initial Gaussian wave-function in an
Inflationary models of the early Universe rely on the slow upside-down harmonic oscillator potenthdl= — 3kx?. This
evolution of an inflaton fielde from the initial unstable was followed by a paper by Coopet al. [8], who used a
vacuum state in whicke)=0 to the final stable vacuum in Gaussian ansatz in the Dirac time-dependent variational prin-
which (@)= *a, say. The effective potentid.x( o) giving  ciple for the standard symmetry-breaking potentdl
rise to this transition has the generic form of a gentle hill=\(x?—a?)?/24. The resulting Hartree-Fock solution tracks
centered atp.=0 with minima ate.= *a. the exact solution for a short time, but departs from it before
The transition can be discussed at various levels of sothe time at which(x?) reaches its first maximum. Several
phistication. At the most naive level one can think classicallyyears later Cheetham and Copela®] went beyond the
in terms of a ball rolling slowly down the slope of the po- Gaussian approximation by using an ansatz which included a
tential. The corresponding quantum-mechanical problemsecond-order Hermite polynomial. This represented an im-
which is the subject of the present paper, is the time develprovement on the Hartree-Fock approximation, but still did
opment of a state whose wave function is initially concen-not reproduce the first maximum {x?) of the exact wave-
trated around the position of the maximum of the potential function.
The full treatment of the problem must, of course, be formu- As mentioned above, we will use the quantum mechanical
lated within the framework of quantum field theory. problem as a testing ground for the application of the linear
The problem is inherently non-perturbative, so that thedelta expansion to time-dependent problems. The LDE is a
calculations are dependent on the use of one nonmethod akin to perturbation theory, but with the crucial dif-
perturbative approximation method or another. To date, irference that the form of the unperturbed Hamiltonkdg is
the field theory context, the only methods available havenot fixed once and for all, but varied at each order in the
been the largéN [1] and Hartree-Fock2] approximations. expansion by some well-defined criterion. The role of the
The largeN method is notoriously difficult to extend beyond formal parameted is simply to keep track of the order of the
leading order, while the Hartree-Fock method involves aexpansion. The method has the great advantage that its gen-
truncation whose accuracy is not obvious, and it may be thagralization to field theory is straightforward. Its previous suc-
some of the results obtained are artifacts of the approximasess with the static properties of the anharmonic oscillator
tions. It would therefore be useful to have another methodncourage us to apply it to this dynamical problem.
which in principle is capable of systematic extension to The relevant Hamiltonianf{=1) is
higher orders, and has proved successful in other, static con-

texts. Such a potential method is the linear delta expansion 2

Jd
— + N (x?>—a?)?/24+ const

[3], which has had various successful applicatiphsand H=- 2 9x?
can be shown rigorously to converge when applied to the )
finite-temperature partition functiofb] or the energy levels _ E ’9__ E 232 4 o 1
[6] of the quartic anharmonic oscillator. T2 2MX e &

As a preliminary to the use of the linear delta expansion
(LDE) in the full field-theoretic problem it is clearly desir- with m?>=Xa?/6 andg=\/24, which we split according to
able to check its applicability and compare it with the L2 1
Hartree-Fock method in the simpler context of quantum me-
chanics, where we will indeed I?ind that it is gonsiderably H=- EWiEMZX2+59(X4_pX2)’ 2
more accurate.
The first treatment of the quantum mechanical problenwhere 2jp=m?* 2. That is, we choose as bare mass term
+ 3 u?x2. The sign of the term as well as the valuewofwill
be determined as functions bafter the perturbative expan-
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I(x2)V? 0 3 where we have scalegland p according tog= u
i ' =plu.
A general feature of perturbative expansions for a poly-
Note that for either sign of the new mass tenmhas a  nomial potential of degrepis thate is also a polynomial, of
limited range. In caséi), when the mass term is 3 u°x?>,  degreeNp in Nth order of the expansion. Thus in the present
we have Zp=m?— u2. The essence of the delta expansioncase, expanding as ¢=38"¢,, the first-order partp; is
is that the extra term-gpx? in the interaction should com- an (even polynomial of degree 4, which we write as,

pensate as far as possible the original tgxf, which means  =a+by2+cy*. The equations of motion for the coefficients
thatp should be positive. Hence we require thet<m?. In a, bandc are
case(ii), when the mass term i 2 422, the same restric- .
tion will arise from the form of the zeroth-order solution and ia/lu=Ba—Db (9)
the initial wave function.
ib/=5Bb—6c—pgA
Il. DELTA EXPANSION

The two cases need to be treated separately. Which of ic/u=9BC+gA,

them is relevant at a given value bfs determined by the

L which can be solved successively in reverse order, using the
PMS criterion.

solutions forA andB previously determined. The initial con-
ditions att=0 area=b=c=0. Thusc is given by

A. Case(i)
i iitonian i —igN8 | - o1
In this case the bare Hamiltonian is o= 9~ / {364—2 sinh 0+ —sinh 40— Co]- (10)
12 1 (cosh@)®? 4
- ,2y2
HO 2 (9X2 21“’ L (4)

where 6= ut+i 7 andcy=3i 5o+ 2i sin 275+ (i/4)sin 4.

. . Using this solution in the equation férwe obtain
It is useful to scalex according tox=y/,u, so that

w( b “igV ( L%+ Zsinhdd| +b
=—F—1"735 =sin

to=— 4] ® (costpy®z| 271772 ’

Given that the initial wave function is a Gaussian of the form + ﬂ[g“gtanh“m cosKo— Cotanh“g]} ' (11)

y(t=0)=A exp(—By?), the zeroth-order equation of motion 4

Howo=1dyq/dt can be solved exactly by a wave function of h
the same form withA and B becoming functions of. The where
equations they have to satisfy are P P 9i

. i 3
bo=5p 70+ 7P SN 270+ 7= 1otanno— 7 Cotan o

iB/u=2B%+ !
i = = .
K 2 3i
- Zco§ 7o-
iA/u=AB, (6)
Finally, using this solution in the equation famwe obtain
with solutions
gN .. - -
1 ) a=———=—71— =p6Btanhd+bytanhd—a,
B= Stan(7o—iut) (coshe) 2
3i 1 P 1 .
A=NTcog go—iut)] 2 7) T 3| - 50 sech o+ ztanhe
where 7, is determined byB(t=0)=3tanz, and the nor- ~ 1
malization constanf\" by A(t=0)=A\{(cosz,) Y2 This is +0+5Co secd|, (12
precisely the solution of Guth and Pi for the upside-down
oscillator, withm replaced byy. where

To obtain a systematic perturbative expansion in powers

of & it is useful to writey= ¢ exd —B(t)y?]. The equation 1 . 33 .

for 1) iS then ao=§p7]0tan7]0+lbotan170+ Z| E(_| Mo 5687]0
P ' 1 " AT 2 H ; 1
ip=p Bo+2Bye' — 5"+ 89(y = py?)e|, (8) +itanso) +i o+ 5 CoSeC o).
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B. Case(ii)
The zeroth-order equations in this case are

iB/u=2B2 !
IB/u= 5
iA/u=AB, (13
with solutions
1 .
Bzzcotr(noﬂ,ut)
A= NTsinh no+iut)] Y2 (14

As mentioned in the Introduction, the restriction @nin this
case comes from the form &(t=0) and the form of the

initial wave function, which, in all the papers quoted, is
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1. 1 . 9 3i
b0=§p 70~ 2P sinh 29y — 2 nocoth o+ Zcocoth 7o
3
+ Zcosﬁno.

Finally, using this solution in the equation farwe obtain
N
a=————
(i sin§)*?
3i|3.

1 - - 1
-713° coseéd+ Scoth—6— Ecocoseé’b

- - ~
2P fcoth+ibycotd+ag

]. (17)

where

1. 3|3
a9 =>p 170c0th 17— bocoth 70— 7|5 79 coseclRy,

1 [
+ 50th7o+ 70— 5 Co coseclz,

taken as a minimal wave packet appropriate to a positive

mass term +3m?x2. In the present formulation this
means thatB(t=0)=(1/2)(m/ux). But since B(t=0)
=(1/2)cothny<1/2, we have the same restriction qn
namelyu<m, as in casdi).

The first-order equations faa, b and ¢ are identical in
form to Eg. (9), but the driving termsA and B are now
different.

The solution forc is now

—igNI8

C=—"—=%—73
(i sin)°?

~ ~ 1
(30—2 sin 20+ Zsin 40—00] (15
where cy= —3i 7+ 2i sinh2y,—(i/4)sinh4y, and in this
casef= ut—iz,.

Using this solution in the equation fdrwe obtain

aN i~ 1
— 5P 60— =sin 26

- +b
(i sin9)>? 2 0

3 ~ o~ ~
— z[—36coff+ coS 6+ cqcotd] |, (16)

where

1 1+(26/|A%|)Re{A*[a+3b/(2a) +15¢/(4a®)]} 1

We have checked these solutions by numerical integration
using the Runge-Kutta method. This reveals that in ¢age
care needs to be taken to ensure that we are on the appropri-

ate branch of the square roots. At valuest efhere sing=
—1, a naive numerical evaluation will stay on the first sheet,
thus giving rise to a discontinuity, whereas the true solution
is, of course, continuous.

In fact, as we shall see, the coefficients not needed in
the calculation ofx?)*2 to first order ing, though it is, of
course, needed in higher order.

Ill. VARIATIONAL ASPECT

The expressions we have obtained all depend on the pa-
rameteru introduced in Eq(2). The other essential aspect of
the delta expansion is that such a parameter is determined by
some non-perturbative criterion, most frequently the prin-
ciple of minimal sensitivity, Eq(3).

To that end we need an expression §&f), which, given
that the wave function is &complex Gaussian with polyno-
mial corrections, can be written down in closed form in
terms of the coefficientd,B,a,b,c. Thus to orders,

|42=[|A[2+ 25 Re[A* (a+Dby?+cy) e ", (18)

wherea=2 ReB, so that

b 3c
(19

(y?)=

 2a 1+(26/|A2|)Re[A*[a+Db/(2a)+3c/(4a?) ]}

1+ 25R A*|—+
PRI TG e

It is an interesting feature of the structure of the perturbativesecond equation is identical to the first, and not merely an
equations that the wave-function is automatically normalizedD($) approximation to it. The expectation value we seek is

to the order we are working. That i$p§ ¢;=0. Thus the

obtained on scaling by, i.e. (x?)=(y?)/u.
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FIG. 1. Graphs ofx?)Y2 versusou? for t=5, 9 and 13, where
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o=—1 for case(i) ando=+1 for case(ii).

At this stage we sef=1 and apply Eq(3). This has to be

done for each timg and the result is that the chosen va,l_ue
of u now becomes a function gfdven thought was treated

0.04
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FIG. 2. 0;2 versust. The changeover from casp to caseii)
occurs betweeh=11 andt=12.

since we are unable to go to very high orders in the expan-
sion this is a more important property than tii@lependence

of u. The O@F°) calculation does not have such a stationary
point.

In Fig. 1 we show graphs dfx?)Y/2 for various values of
t. The parameters chosen are those used in R&fand[9],
namelya=5 and\=0.01 (which corresponds to a “large”
dimensionless coupling contaf&]). We include both cases
by plotting (x?)Y/? as a function ofou?, whereo=—1 for
case(i) and +1 for case(ii). There is a well-defined maxi-
mum which moves steadily to the right agcreases, cross-
ing over from casdi) to case(ii) betweent=11 andt=12.
From these and similar graphs we extract the valug @),
which is plotted in Fig. 2asoux?). The wayu develops in
time makes very good intuitive sense. At small times the
wave function is still concentrated near the origin, and the
main influence is the downward sloping part of the potential,
—1m?x?, but at later times, as it spreads out, the upward
curving parts of the potential become more important and the

positive mass squared term3 u°x? represents a more rea-
sonable starting point for the approximation.

Using these values ofu(t) we can then calculate
(x%)Yq u(t),t] from Eq.(19) as a function ot. This is plot-
ted in Fig. 3 along with the results obtained using the
“Hartree-Fock” method of Ref.[8], the improved varia-
tional method of Ref[9], the exact value ofx?)Y4(t), ob-
tained by Fourier transform and numerical integratit],
and finally the result of first-order perturbation theory. The
latter corresponds to @ of the delta expansion, but wifta
fixed atmin case(i), and exemplifies the importance of the

t-dependence of..

As can be seen, the delta-expansion result tracks the exact
result for longer than either of the other variational calcula-
tions, essentially up to the point whe¢&?)? reaches its
maximum, but then overshoots. A similar degree of accuracy
in quantum field theory would mean that, to this order of the
expansion, the inflationary period would be very well de-

as a constant in the equations of motion. In the present cassgribed, but the reheating process less so.
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FIG. 3. (x?Y2versugt. First-order linear delta expansi¢hDE)
compared with the exact resExac), the variational calculations
of Ref. [7] (HF) and Ref.[8] (CC), and first-order perturbation
theory (PT).

Figure 3 is the main result of this section, but it is also of
interest to enquire how closely the calculated wave function
agrees with the exact result, since a well-known feature of
variational methods is that quite reasonable values for expec-

tation values such a&?) can be obtained with rather inac-

curate wave functions. In fact our wave function agrees

rather well with the true wave function up te-6, but begins

to diverge from it thereafter, even though still giving good

values for(x?). In Fig. 4 we plot the two values dfy|?
versusx for t=6 and 8.

IV. HIGHER ORDER

The simplicity of the method means that in quantum me

chanics, if not in field theory, it is relatively easy to go to
higher order in the delta expansion.
The general form of thath-order wave functiorp,, is

2n+1

Pn= 2 anry

r=1

2(r—1)’ (20)

and the equation of motion of the coefficients is

iénr/M:(4r —3)Bay —r(2r— 1)an,r+1+a(anfl,r72
_Ean—l,r—l): (21)

with the understanding that a coefficiemt,s on the right-
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FIG. 4. Graphs ofy|2 versusx for t=6 and 8. The solid line is
the first-order LDE calculation and the dotted line is the exact re-

sult.

should remain normalized to each ordewirwhich provides
us with an important check on the accuracy of the calcula-
tion.

Altogether we have extended the method to order 7. In
second and third order the PMS plots(of) versusu ex-
hibit either only a point of inflection or rather narrow
maxima or minima. The results are an improvement on the
first-order result for smalt, but fare worse at largetr The
third-order result, improved by taking the Paajgproximant
P54, is shown in Fig. 5. In order 4, however, the PMS plot
exhibits a clean broad minimum, and the results show a dra-
matic improvement, up to the turnover point, where they
diverge from the exact result. As we go to higher order the
pattern is similar, with order 7 exhibiting a clean broad maxi-

hand side vanishes if the second index lies outside the rangaum, and a further improvement, again up to the turnover

1s=s<2m+1. In this new notation the first-order coeffi-
cients area=a,;, b=a;, andc=ays.

point but not beyond. These results are shown in Fig. 5,
which focuses on the region near the turnover.

It becomes increasingly impractical to solve these equa- What emerges from these calculations is that there seems
tions analytically, but numerical integration using the Runge+o be a barrier to the method at the turnover point. That is,
Kutta method presents no problem. As mentioned above, theuccessive orders can be expected to represent the true curve
structure of the equations is such that the wave functiomore and more closely up to that point, but then diverge
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FIG. 5. (x3)2 versust. Successive orders of the linear delta
expansion compared with the exact regkacy.

from it. The turnover exhibited by the first-order result,
which seemed to mimic that of the exact result, now seem
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FIG. 6. Graph of||? versusx for t=8. The solid line is the

first-order LDE calculation, the dashed line the fourth-order calcu-
lation, and the dotted line is the exact result.

resent problem should be tractable. However, the disadvan-
ge of this method is that its extension to field theory be-

to have been fortuitous and unrepresentative of the methagyq first order becomes extremely difficult.

as a whole. In cosmological terms it appears that the delta |n, field theory the linear delta expansion is, apart from the
expansion has a good chance of giving a reasonable descrigrucial variational aspect, a modified form of perturbation
tion of the slow roll process, but not the subsequent reheatheory, which includes mass insertions along with the four-
ing. point vertices. It is the variational aspect which takes one
The fourth-order wave function is almost indistinguish- beyond perturbation theory, making the variational param-
able from the exact wave function &t 6. The fourth-order eter a non-analytic function of the coupling constant, and, in
approximation to|¢|? att=8 is shown in Fig. 6. It is ex- the present context, a function of time as well. The impor-
tremely close to the exact wave function for larger values ofance of going beyond the Gaussian approximation has been
x, but differs somewhat at lower values xfThis feature is emphasized in Ref$9] and[13], and the LDE indeed pro-
understandable in terms of the PMS procedure we haveides a non-Gaussian alternative to the Hartree-Fock ap-
adopted, which is to optimizéx?). This measure is more proximation. The superiority of the method in the simpler
sensitive to larger values of Hence, with a single varia- gquantum mechanical problem encourages us to attempt to
tional parameter at our disposal the method will tend to op-apply it to the full quantum field theory problem, which will
timize this part of the wave function, if necessary at thebe the subject of future research. We can be hopeful that the
expense of the smak-behavior. delta expansion will give a good reasonable description of
the slow roll process, but it seems that the reheating process

will require some more sophisticated ansatz.
V. DISCUSSION
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