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Quantum dynamics of the slow rollover transition in the linear delta expansion

H. F. Jones,* P. Parkin,† and D. Winder‡
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~Received 29 November 2000; revised manuscript received 20 February 2001; published 16 May 2001!

We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which
is the principal feature of inflationary models of the early Universe. The method, which goes beyond the
Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods.
It provides a promising basis for extension to a full field theoretic treatment.
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I. INTRODUCTION

Inflationary models of the early Universe rely on the slo
evolution of an inflaton fieldw from the initial unstable
vacuum state in whicĥw&50 to the final stable vacuum in
which ^w&56a, say. The effective potentialVeff(wc) giving
rise to this transition has the generic form of a gentle
centered atwc50 with minima atwc56a.

The transition can be discussed at various levels of
phistication. At the most naive level one can think classica
in terms of a ball rolling slowly down the slope of the p
tential. The corresponding quantum-mechanical probl
which is the subject of the present paper, is the time de
opment of a state whose wave function is initially conce
trated around the position of the maximum of the potent
The full treatment of the problem must, of course, be form
lated within the framework of quantum field theory.

The problem is inherently non-perturbative, so that
calculations are dependent on the use of one n
perturbative approximation method or another. To date
the field theory context, the only methods available ha
been the large-N @1# and Hartree-Fock@2# approximations.
The large-N method is notoriously difficult to extend beyon
leading order, while the Hartree-Fock method involves
truncation whose accuracy is not obvious, and it may be
some of the results obtained are artifacts of the approxi
tions. It would therefore be useful to have another meth
which in principle is capable of systematic extension
higher orders, and has proved successful in other, static
texts. Such a potential method is the linear delta expan
@3#, which has had various successful applications@4# and
can be shown rigorously to converge when applied to
finite-temperature partition function@5# or the energy levels
@6# of the quartic anharmonic oscillator.

As a preliminary to the use of the linear delta expans
~LDE! in the full field-theoretic problem it is clearly desir
able to check its applicability and compare it with th
Hartree-Fock method in the simpler context of quantum m
chanics, where we will indeed find that it is considerab
more accurate.

The first treatment of the quantum mechanical probl
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was given by Guth and Pi@7#, who solved exactly the equa
tion of motion for an initial Gaussian wave-function in a
upside-down harmonic oscillator potentialV52 1

2 kx2. This
was followed by a paper by Cooperet al. @8#, who used a
Gaussian ansatz in the Dirac time-dependent variational p
ciple for the standard symmetry-breaking potentialV
5l(x22a2)2/24. The resulting Hartree-Fock solution trac
the exact solution for a short time, but departs from it befo
the time at which^x2& reaches its first maximum. Sever
years later Cheetham and Copeland@9# went beyond the
Gaussian approximation by using an ansatz which include
second-order Hermite polynomial. This represented an
provement on the Hartree-Fock approximation, but still d
not reproduce the first maximum in̂x2& of the exact wave-
function.

As mentioned above, we will use the quantum mechan
problem as a testing ground for the application of the lin
delta expansion to time-dependent problems. The LDE
method akin to perturbation theory, but with the crucial d
ference that the form of the unperturbed HamiltonianH0 is
not fixed once and for all, but varied at each order in t
expansion by some well-defined criterion. The role of t
formal parameterd is simply to keep track of the order of th
expansion. The method has the great advantage that its
eralization to field theory is straightforward. Its previous su
cess with the static properties of the anharmonic oscilla
encourage us to apply it to this dynamical problem.

The relevant Hamiltonian (\51) is

H52
1

2

]2

]x2 1l~x22a2!2/241const

52
1

2

]2

]x2 2
1

2
m2x21gx4, ~1!

with m25la2/6 andg5l/24, which we split according to

H52
1

2

]2

]x2 6
1

2
m2x21dg~x42rx2!, ~2!

where 2gr5m26m2. That is, we choose as bare mass te
6 1

2 m2x2. The sign of the term as well as the value ofm will
be determined as functions oft after the perturbative expan
sion has been carried out to a given order~at which staged
is set equal to 1! by the principle of minimal sensitivity
~PMS! @10#, namely that
©2001 The American Physical Society13-1
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]^x2&1/2

]m
50. ~3!

Note that for either sign of the new mass term,m has a
limited range. In case~i!, when the mass term is2 1

2 m2x2,
we have 2gr5m22m2. The essence of the delta expansi
is that the extra term2grx2 in the interaction should com
pensate as far as possible the original termgx4, which means
that r should be positive. Hence we require thatm2,m2. In
case~ii !, when the mass term is1 1

2 m2x2, the same restric-
tion will arise from the form of the zeroth-order solution an
the initial wave function.

II. DELTA EXPANSION

The two cases need to be treated separately. Whic
them is relevant at a given value oft is determined by the
PMS criterion.

A. Case„i…

In this case the bare Hamiltonian is

H052
1

2

]2

]x2 2
1

2
m2x2. ~4!

It is useful to scalex according tox5y/Am, so that

H052
m

2 S ]2

]y2 1y2D . ~5!

Given that the initial wave function is a Gaussian of the fo
c(t50)5A exp(2By2), the zeroth-order equation of motio
H0c05 i ]c0 /]t can be solved exactly by a wave function
the same form withA and B becoming functions oft. The
equations they have to satisfy are

iḂ/m52B21
1

2
,

iȦ/m5AB, ~6!

with solutions

B5
1

2
tan~h02 imt !

A5N @cos~h02 imt !#21/2 ~7!

whereh0 is determined byB(t50)5 1
2 tanh0 and the nor-

malization constantN by A(t50)5N(cosh0)
21/2. This is

precisely the solution of Guth and Pi for the upside-do
oscillator, withm replaced bym.

To obtain a systematic perturbative expansion in pow
of d it is useful to writec5w exp@2B(t)y2#. The equation
for w is then

i ẇ5mFBw12Byw82
1

2
w91dg̃~y42 r̃y2!wG , ~8!
12501
of

rs

where we have scaledg and r according tog5m3g̃ and r

5 r̃/m.
A general feature of perturbative expansions for a po

nomial potential of degreep is thatw is also a polynomial, of
degreeNp in Nth order of the expansion. Thus in the prese
case, expandingw as w5(d nwn , the first-order partw1 is
an ~even! polynomial of degree 4, which we write asw1
5a1by21cy4. The equations of motion for the coefficien
a, b andc are

i ȧ/m5Ba2b ~9!

i ḃ/m55Bb26c2 r̃g̃A

iċ/m59Bc1g̃A,

which can be solved successively in reverse order, using
solutions forA andB previously determined. The initial con
ditions att50 area5b5c50. Thusc is given by

c5
2 i g̃N/8

~coshũ !9/2H 3ũ12 sinh 2ũ1
1

4
sinh 4ũ2c0J , ~10!

whereũ5mt1 ih0 andc053ih012i sin 2h01(i/4)sin 4h0.
Using this solution in the equation forb we obtain

b5
2 i g̃N

~coshũ !5/2H 2
1

2
r̃S ũ1

1

2
sinh2ũ D1b0

1
3i

4
@3ũtanhũ1cosh2ũ2c0tanhũ #J , ~11!

where

b05
i

2
r̃h01

i

4
r̃ sin 2h01

9i

4
h0tanh02

3

4
c0tanh0

2
3i

4
cos2h0 .

Finally, using this solution in the equation fora we obtain

a5
g̃N

~coshũ !1/2H 2
1

2
r̃ ũtanhũ1b0tanhũ2a0

1
3i

4 F3S 2
1

2
ũ sech2ũ1

1

2
tanhũ D

1 ũ1
1

2
c0 sech2ũ G J , ~12!

where

a05
1

2
r̃h0tanh01 ib0tanh01

3

4
i F3

2
~2 ih0 sec2h0

1 i tanh0!1 ih01
1

2
c0 sec2h0G .
3-2
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B. Case„ii …

The zeroth-order equations in this case are

iḂ/m52B22
1

2
,

iȦ/m5AB, ~13!

with solutions

B5
1

2
coth~h01 imt !

A5N @sinh~h01 imt !#21/2. ~14!

As mentioned in the Introduction, the restriction onm in this
case comes from the form ofB(t50) and the form of the
initial wave function, which, in all the papers quoted,
taken as a minimal wave packet appropriate to a posi
mass term 1 1

2 m2x2. In the present formulation this
means that B(t50)5(1/2)(m/m). But since B(t50)
5(1/2)cothh0,1/2, we have the same restriction onm,
namelym,m, as in case~i!.

The first-order equations fora, b and c are identical in
form to Eq. ~9!, but the driving termsA and B are now
different.

The solution forc is now

c5
2 i g̃N/8

~ i sinũ !9/2H 3ũ22 sin 2ũ1
1

4
sin 4ũ2c0J ~15!

where c0523ih012i sinh2h02(i/4)sinh4h0 and in this
caseũ5mt2 ih0.

Using this solution in the equation forb we obtain

b5
g̃N

~ i sinũ !5/2H 2
i

2
r̃S ũ2

1

2
sin 2ũ D1b0

2
3

4
@23ũcotũ1cos2ũ1c0cotũ #J , ~16!

where
tiv
e

12501
e

b05
1

2
r̃h02

1

4
r̃ sinh 2h02

9

4
h0cothh01

3i

4
c0cothh0

1
3

4
cosh2h0 .

Finally, using this solution in the equation fora we obtain

a5
g̃N

~ i sinũ !1/2H 1

2
r̃ ũcotũ1 ib0cotũ1a0

2
3i

4 F3

2
ũ cosec2ũ1

1

2
cotũ2 ũ2

1

2
c0cosec2ũG J , ~17!

where

a05
1

2
r̃h0cothh02b0cothh02

3

4 F3

2
h0 cosech2h0

1
1

2
cothh01h02

i

2
c0 cosech2h0G .

We have checked these solutions by numerical integra
using the Runge-Kutta method. This reveals that in case~ii !
care needs to be taken to ensure that we are on the appr
ate branch of the square roots. At values oft where sinũ5
21, a naive numerical evaluation will stay on the first she
thus giving rise to a discontinuity, whereas the true solut
is, of course, continuous.

In fact, as we shall see, the coefficienta is not needed in
the calculation of̂ x2&1/2 to first order ind, though it is, of
course, needed in higher order.

III. VARIATIONAL ASPECT

The expressions we have obtained all depend on the
rameterm introduced in Eq.~2!. The other essential aspect o
the delta expansion is that such a parameter is determine
some non-perturbative criterion, most frequently the pr
ciple of minimal sensitivity, Eq.~3!.

To that end we need an expression for^x2&, which, given
that the wave function is a~complex! Gaussian with polyno-
mial corrections, can be written down in closed form
terms of the coefficientsA,B,a,b,c. Thus to orderd,

ucu25@ uAu212d Re$A* ~a1by21cy4!%#e2ay2
, ~18!

wherea52 ReB, so that
^y2&5
1

2a

11~2d/uA2u!Re$A* @a13b/~2a!115c/~4a2!#%

11~2d/uA2u!Re$A* @a1b/~2a!13c/~4a2!#%
5

1

2a F11
2d

uA2u
ReH A* S b

a
1

3c

a2D J G . ~19!
an
is
It is an interesting feature of the structure of the perturba
equations that the wave-function is automatically normaliz
to the order we are working. That is,*w0* w150. Thus the
e
d
second equation is identical to the first, and not merely
O(d) approximation to it. The expectation value we seek
obtained on scaling bym, i.e. ^x2&5^y2&/m.
3-3
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At this stage we setd51 and apply Eq.~3!. This has to be
done for each timet, and the result is that the chosen valuem̄
of m now becomes a function of t, even thoughm was treated
as a constant in the equations of motion. In the present c

FIG. 1. Graphs of̂ x2&1/2 versussm2 for t55, 9 and 13, where
s521 for case~i! ands511 for case~ii !.
12501
se,

since we are unable to go to very high orders in the exp
sion this is a more important property than theN-dependence
of m̄. The O(d 0) calculation does not have such a stationa
point.

In Fig. 1 we show graphs of̂x2&1/2 for various values of
t. The parameters chosen are those used in Refs.@8# and@9#,
namelya55 andl50.01 ~which corresponds to a ‘‘large’’
dimensionless coupling contant@8#!. We include both cases
by plotting ^x2&1/2 as a function ofsm2, wheres521 for
case~i! and 11 for case~ii !. There is a well-defined maxi
mum which moves steadily to the right ast increases, cross
ing over from case~i! to case~ii ! betweent511 andt512.
From these and similar graphs we extract the value ofm̄(t),
which is plotted in Fig. 2~assm̄2). The waym̄ develops in
time makes very good intuitive sense. At small times t
wave function is still concentrated near the origin, and
main influence is the downward sloping part of the potent
2 1

2 m2x2, but at later times, as it spreads out, the upwa
curving parts of the potential become more important and
positive mass squared term1 1

2 m̄2x2 represents a more rea
sonable starting point for the approximation.

Using these values ofm̄(t) we can then calculate

^x2&1/2@m̄(t),t# from Eq.~19! as a function oft. This is plot-
ted in Fig. 3 along with the results obtained using t
‘‘Hartree-Fock’’ method of Ref.@8#, the improved varia-
tional method of Ref.@9#, the exact value of̂x2&1/2(t), ob-
tained by Fourier transform and numerical integration@11#,
and finally the result of first-order perturbation theory. T
latter corresponds to O(d) of the delta expansion, but withm
fixed atm in case~i!, and exemplifies the importance of th
t-dependence ofm̄.

As can be seen, the delta-expansion result tracks the e
result for longer than either of the other variational calcu
tions, essentially up to the point where^x2&1/2 reaches its
maximum, but then overshoots. A similar degree of accur
in quantum field theory would mean that, to this order of t
expansion, the inflationary period would be very well d
scribed, but the reheating process less so.

FIG. 2. sm̄2 versust. The changeover from case~i! to case~ii !
occurs betweent511 andt512.
3-4
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QUANTUM DYNAMICS OF THE SLOW ROLLOVER . . . PHYSICAL REVIEW D63 125013
Figure 3 is the main result of this section, but it is also
interest to enquire how closely the calculated wave funct
agrees with the exact result, since a well-known feature
variational methods is that quite reasonable values for ex
tation values such aŝx2& can be obtained with rather inac
curate wave functions. In fact our wave function agre
rather well with the true wave function up tot'6, but begins
to diverge from it thereafter, even though still giving goo
values for ^x2&. In Fig. 4 we plot the two values ofucu2

versusx for t56 and 8.

IV. HIGHER ORDER

The simplicity of the method means that in quantum m
chanics, if not in field theory, it is relatively easy to go
higher order in the delta expansion.

The general form of thenth-order wave functionwn is

wn5 (
r 51

2n11

anry
2(r 21), ~20!

and the equation of motion of the coefficients is

i ȧnr /m5~4r 23!Banr2r ~2r 21!an,r 111g̃~an21,r 22

2 r̃an21,r 21!, ~21!

with the understanding that a coefficientams on the right-
hand side vanishes if the second index lies outside the ra
1<s<2m11. In this new notation the first-order coeffi
cients area5a11, b5a12 andc5a13.

It becomes increasingly impractical to solve these eq
tions analytically, but numerical integration using the Rung
Kutta method presents no problem. As mentioned above
structure of the equations is such that the wave func

FIG. 3. ^x2&1/2 versust. First-order linear delta expansion~LDE!
compared with the exact result~Exact!, the variational calculations
of Ref. @7# ~HF! and Ref. @8# ~CC!, and first-order perturbation
theory ~PT!.
12501
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should remain normalized to each order ind, which provides
us with an important check on the accuracy of the calcu
tion.

Altogether we have extended the method to order 7.
second and third order the PMS plots of^x2& versusm ex-
hibit either only a point of inflection or rather narrow
maxima or minima. The results are an improvement on
first-order result for smallt, but fare worse at largert. The
third-order result, improved by taking the Pade´ approximant
P21, is shown in Fig. 5. In order 4, however, the PMS pl
exhibits a clean broad minimum, and the results show a d
matic improvement, up to the turnover point, where th
diverge from the exact result. As we go to higher order
pattern is similar, with order 7 exhibiting a clean broad ma
mum, and a further improvement, again up to the turno
point but not beyond. These results are shown in Fig.
which focuses on the region near the turnover.

What emerges from these calculations is that there se
to be a barrier to the method at the turnover point. That
successive orders can be expected to represent the true
more and more closely up to that point, but then diver

FIG. 4. Graphs ofucu2 versusx for t56 and 8. The solid line is
the first-order LDE calculation and the dotted line is the exact
sult.
3-5
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from it. The turnover exhibited by the first-order resu
which seemed to mimic that of the exact result, now see
to have been fortuitous and unrepresentative of the me
as a whole. In cosmological terms it appears that the d
expansion has a good chance of giving a reasonable des
tion of the slow roll process, but not the subsequent reh
ing.

The fourth-order wave function is almost indistinguis
able from the exact wave function att56. The fourth-order
approximation toucu2 at t58 is shown in Fig. 6. It is ex-
tremely close to the exact wave function for larger values
x, but differs somewhat at lower values ofx. This feature is
understandable in terms of the PMS procedure we h
adopted, which is to optimizêx2&. This measure is more
sensitive to larger values ofx. Hence, with a single varia
tional parameter at our disposal the method will tend to
timize this part of the wave function, if necessary at t
expense of the small-x behavior.

V. DISCUSSION

In the context of quantum mechanics a possible varian
the present treatment would be the use of the original d
expansion@12#, whereby thex4 term in the potential is writ-
ten asx2(11d) and expanded asx2(11d ln x21•••). This ex-
pansion is known to converge for the energy levels of
anharmonic oscillator, and the O(d) calculation for the

FIG. 5. ^x2&1/2 versust. Successive orders of the linear del
expansion compared with the exact result~Exact!.
S
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present problem should be tractable. However, the disad
tage of this method is that its extension to field theory b
yond first order becomes extremely difficult.

In field theory the linear delta expansion is, apart from t
crucial variational aspect, a modified form of perturbati
theory, which includes mass insertions along with the fo
point vertices. It is the variational aspect which takes o
beyond perturbation theory, making the variational para
eter a non-analytic function of the coupling constant, and
the present context, a function of time as well. The imp
tance of going beyond the Gaussian approximation has b
emphasized in Refs.@9# and @13#, and the LDE indeed pro-
vides a non-Gaussian alternative to the Hartree-Fock
proximation. The superiority of the method in the simpl
quantum mechanical problem encourages us to attemp
apply it to the full quantum field theory problem, which wi
be the subject of future research. We can be hopeful that
delta expansion will give a good reasonable description
the slow roll process, but it seems that the reheating proc
will require some more sophisticated ansatz.
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FIG. 6. Graph ofucu2 versusx for t58. The solid line is the
first-order LDE calculation, the dashed line the fourth-order cal
lation, and the dotted line is the exact result.
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