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More remarks on the electromagnetic properties of a domain wall interacting
with charged fermions
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The response to a magnetic flux is considered of the vacuum state of charged Dirac fermions interacting with
a domain wall made of a neutral spinless field in 311 dimensions with the fermion mass term having a phase
variation across the wall. It is pointed out that as a result of simpleC parity arguments the spontaneous
magnetization for this system is necessarily zero, thus invalidating some claims to the contrary in the literature.
The cancellation of the spontaneous magnetization is explicitly demonstrated in a particular class of models.
The same calculation produces a general formula for the electric charge density induced by the magnetic
flux—an effect previously discussed in the literature for axionic domain walls. The distribution of the induced
charge is calculated in specific models.
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I. INTRODUCTION

The possibility that domain walls that could have exist
in the early universe could also be related to the genera
of a primordial magnetic field correlated at large distan
@1# has been recently discussed in the literature@2–5#. The
models discussed are based on the idea that fermi
coupled to the field forming the wall, develop a spontane
magnetization perpendicular to the wall. Although it is
simple exercise in general physics to show that a unifo
magnetization of an infinite domain wall does not produc
magnetic field@6#, the phenomenon of magnetization of th
wall is interesting on its own.

The claims to a nonzero magnetic moment of the grou
state of a fermion field coupled to the wall in 311 dimen-
sions are inferred from the behavior in 211-dimensional
QED of Dirac fermions with a definite sign of the mass te
m. Namely, in certain calculations@2,7–9# of the energy of
the ground state of the fermion field in an external magn
field B, it is claimed that the total energy contains a linear
magnetic field term proportional tomB, which corresponds
to a spontaneous magnetization proportional to the mass
rameterm ~including the sign!. For a Dirac fermion field
coupled to a domain wall in 311 dimensions the quantiza
tion of the motion perpendicular to the wall splits the fe
mion system into an infinite set of modes, each correspo
ing to a~211!-dimensional QED with its own parameterm.
If the phase of the fermion mass term varies across the w
the set of positive values ofm differs from that of the nega
tive values ofm. Therefore in this picture it might at least b
not obvious that the overall magnetization cancels after s
mation over modes corresponding to positive and nega
values ofm.

It is nevertheless quite easy to argue that the cancella
necessarily takes place and the magnetization of the ferm
field ground state at the wall in 311 dimensions is strictly
zero. Indeed, the Lagrangian density for the fermions w
the phase of the massm depending on the coordinatez per-
pendicular to the wall can be generally written as

L5c̄@ i ~]a2 iAa!ga2m1~z!2 im2~z!g5#c, ~1!
0556-2821/2001/63~12!/125012~8!/$20.00 63 1250
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with m1 and m2 being, respectively, the real and imagina
parts ofm(z), and A standing for the electromagnetic fiel
potential and absorbing the chargee in the normalization of
the field. The variation ofm2 breaks theP andCP parities.
However, theC parity is manifestly conserved with bothm1
andm2 beingC even. Therefore after the fermions are int
grated out the energy of the system as a function ofA in the
C-even background ofm(z) cannot contain odd powers o
theC-odd fieldA. In particular the energy cannot be linear
the magnetic fieldB. The same argument holds also for th
situation where the fermions are assumed to posses
anomalous magnetic and/or electric dipole moment si
both such interactions also conserve theC parity.

This simple generalC parity argument is clearly sufficien
for excluding the possibility of spontaneous magnetization
the fermion vacuum in a domain wall background. Howev
as a result of the existence in the literature of claims to
contrary@3,9#, it is quite instructive to demonstrate explicitl
the vanishing of the linear in magnetic fieldBz5B term in
the energy~as well as of all the odd terms! at least in a
specific model. Moreover, theC parity argument certainly
allows a dependence of the energy onevenpowers of the
electromagnetic field, which gives rise to the most interest
phenomenon of the appearance of an electric charge de
once a magnetic flux is applied across the wall. This p
nomenon is related to the well-known coupling of a pseu
scalar field to the electromagnetic invariantE•B. For a
slowly varying withz mass term, one can approximatem(z)
around a given pointz0 asm(z)5m(z0)1dm(z) and, treat-
ing the varying partdm(z) as a small perturbation, find th
term proportional toE•B in the energy densityw from the
well-known triangle graph as

dw5
1

4p2

m2dm12m1dm2

m1
21m2

2 E•B. ~2!

The charge density is then found from variation with resp
to the potentialA0. For the magnetic field in thez direction,
Bz5B, one finds
©2001 The American Physical Society12-1
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^c̄~z!g0c~z!&52
dw

dA0
5

B

4p2

d

dz
arctanS m2~z!

m1~z! D . ~3!

The total charge is then given by the total flux of the ma
netic field through the wall,F5*dxdyBz , and the differ-
ence of the phases of the mass termm11 im2 at two infinities
in z, DF5arctan(m2 /m1)uz→1`2arctan(m2 /m1)uz→2` :

Q5E dxdydẑ c̄~z!g0c~z!&5
FDF

4p2 . ~4!

The induced charge is a direct analogue of the~generally
fractional! fermionic charge of a kink in~111!-dimensional
models@10,11#. This phenomenon in 311 dimensions was
considered@12# in connection with a magnetic monopo
~dyon! traversing an axionic domain wall, in which proce
the net change~reversal! of the magnetic flux across the wa
results in charge exchange between the dyon and the w1

In the specific model considered in the present paper,
calculation of the induced charge density automatica
comes along with the calculation of the~eventually vanish-
ing! spontaneous magnetization. It will be shown that,
expected on general grounds, the relation~4! between the
total induced charge and the total magnetic flux does
depend on the specific shape of the dependence of the p
F on z. However thedistributionof the induced charge den
sity in z does depend on the specific rate of variation of
mass parameterm(z), and generally differs from that give
by Eq. ~3!, which is justified in the limit where the rate o
variation can be considered as slow. One can notice in
connection that the charge distribution may be of grea
physical relevance than the total charge, since barring
existence of monopoles it is physically impossible to p
duce a net magnetic flux through an infinite or closed w
Therefore the total charge has to be zero, while the distr
tion of the density of charge can be nontrivial.

The further material in this paper is organized as follow
In Sec. II the class of models considered is described as
as some properties of the relevant operators correspondin
motion in thex-y plane in a magnetic field and to motion
thez direction in the domain wall background are discuss
In Sec. III the dependence onB of the energy of the ground
state of the fermion field is calculated and the vanishing
all odd terms in the expansion inB is demonstrated, includ
ing the vanishing of the spontaneous magnetization. In S
IV a general expression for the induced charge densit
presented, and Sec. V contains the calculation of this den
in the limit of a slowly varying phase as well as a discuss
of the topological nature of the total induced charge.
explicit calculation of the distribution of the induced char

1Reference@12# contains a reference to an unpublished commu
cation with H. Georgi and J. Polchinski, who apparently had a
interpreted the effect of the triangle graph in terms of an indu
charge in a magnetic field. However, as they both kindly cor
sponded to me, they had never pursued this issue beyond an un
ten remark. The monopole-axion wall charge exchange was
later discussed by Kogan@13#.
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in two particular sample situations is considered in Sec.
Finally, a general discussion and a summary of results
presented in Sec. VII.

II. THE MODEL AND THE RELEVANT OPERATORS

The simplifying assumption in the class of models to
considered here is that the real partm1 of the mass term is
fixed and nonzero, while the imaginary partm2 depends onz.
To the best of the author’s knowledge, a model of such ty
with m2 being proportional to a spinless fieldf, m25gf,
with the field varying asf(z)5v tanh(mfz/2) across the do-
main wall, was first suggested by Lee and Wick@14# as a
model of spontaneous breaking ofCP symmetry. The fer-
mion spectrum and scattering states in the presence of
domain wall in this model were studied in Ref.@15#.

In the generic case of a nonzero change ofm2 between the
infinities in z and a nonzero constantm1, one can assume fo
definiteness without further loss of generality thatm1 is posi-
tive and thatm2(z) changes from a negative value atz→
2` to a positive one atz→1`. Also for definiteness it is
assumed here that a uniform positive magnetic fieldB is
applied in thez direction. In what follows the gauge for th
electromagnetic field is fixed in a standard way such that
vector potential for the fieldB is given byAx50, Ay5Bx.
Adopting also the standard representation for theg matrices,
the one-particle Hamiltonian, corresponding to the Lagra
ian ~1!, takes the following form:

H5S m1 0 iP† 2 iR

0 m1 iR† iP

2 iP 2 iR 2m1 0

iR† 2 iP† 0 2m1

D , ~5!

andH2 has the diagonal form

H25diag~m1
21P†P1RR†,m1

21PP†

1R†R,m1
21PP†1RR†,m1

21P†P1R†R!. ~6!

These formulas make use of the following notation for t
operators describing, respectively, the Landau quantiza
of the motion in thex-y plane and the quantization of motio
along thez axis:

R5]x1Bx1py , R†52]x1Bx1py ~7!

and

P5]z1m2~z!, P†52]z1m2~z!. ~8!

The quantitypy is the value of the conserved momentum
the y direction ~as a consequence of the chosen gauge c
dition!. The energy levels, determined by the eigenvalues
R†R and RR†, do not depend onpy and the degenerac
number is well known to be given byBS/(2p), whereS is
the normalization area in thex-y plane. In what follows this
degeneracy factor will be explicitly accounted for and t
value ofpy set topy50 in the definition of the operators~7!.
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MORE REMARKS ON THE ELECTROMAGNETIC . . . PHYSICAL REVIEW D 63 125012
According to Eq.~6! the spectrum of one-particle energi
is determined by eigenvalues of the operatorsR†R, RR†,
P†P, andPP†. These spectra exhibit two separate structu
found in supersymmetric quantum mechanics, well kno
for the operatorsR andR† and also recently used forP-type
operators in connection with kinks in~111!-dimensional
models@16#. Namely, if the issue of boundary conditions
z is ignored, one would naively conclude that the spectra
eigenvalues ofP†P and PP† coincide except for an extra
zero eigenvalue~under the adopted sign conventions! of
P†P. Indeed, letvk , k51, 2, . . . , be thenormalized eigen-
function corresponding to the~necessarily positive! eigen-
valuelk

2 of the positive operatorPP†, so that

PP†vk5lk
2vk . ~9!

Applying the operatorP† to both sides of this equation, on
finds that the function

uk5P†vk /lk ~10!

is the normalized eigenfunction of the operatorP†P with the
same eigenvaluelk

2 . Applying the operatorP to both sides
of the latter relation and using Eq.~9!, one finds the inverse
of the relation~10!:

vk5Puk /lk . ~11!

This construction does not work, however, for the zero mo
u0 of P†P, satisfying the equationPu050 @Bogomol’nyi-
Prasad-Sommerfield~BPS! state#. The explicit form of the
normalizable functionu0(z) is readily found from the defi-
nition ~8!:

u0~z!5const3expS 2Ez

m2~ z̃!dz̃D . ~12!

The operatorsR† andR coincide, up to normalization, with
the creation and annihilation operators for a harmonic os
lator, and their spectra are the textbook ones: the spectru
eigenvalues ofRR† is given by 2Bn with n51, 2, . . . ,while
that ofR†R is given by the same simple expression, howe
also includingn50.

This discussion of the properties of the operators involv
in the Hamiltonian in Eq.~5! is helpful in considering the
spectrum of the one-particle energies. In particular, one
separately consider each eigenmode of the motion in thz
direction as a~211!-dimensional fermion system. Then th
eigenmodes of the operatorP†P correspond to such system
with positive mass parameterm, m5AP†P1m1

2, while the
eigenmodes of PP† correspond to negativem, m5

2APP†1m1
2. For the former modes the negative ener

spectrum of Landau levels is given by2AP†P1m1
212Bn

and includesn50, while for the latter ones the negativ
energies are given by2APP†1m1

212Bn excludingn50.
Since all the nonzero eigenvalues ofP†P andPP† coincide,
one might very naively conjecture that their effects in ma
netization cancel and the net result is given by only o
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‘‘unpaired’’ zero mode of the operatorP†P. Such a conjec-
ture, however, would be false, since the summation over
modes is generally divergent, and one should perform
proper calculation with a proper regularization. Also the d
cretization of the continuum spectra of the operatorsP†P
andPP† requires imposing conditions at the boundaries o
large but finite bounding box inz. These conditions generall
are not satisfied by the relations~10! and ~11!, and there
arises a splitting of the spectra of continuum modes of
operatorsP†P andPP† which should be accounted for in
proper calculation.

III. DEPENDENCE OF THE FERMION VACUUM
ENERGY ON B

For a full regularized calculation of the energy of th
ground state of the fermion field we use here the stand
four-dimensional technique with the Pauli-Villars regulariz
tion procedure. The latter regularization preserves gauge
variance and, importantly for the discussed problem, Lore
covariance.2 This amounts to introducing the regulator fe
mion fieldC with large but finite mass, so that the mass te
for C can be written asM1 im2g5 instead ofm11 im2g5 for
the ‘‘physical’’ fermion c, and treat the loop with the regu
lator field with an extra minus sign.3 The regularized expres
sion for the total energyW then reads as

W5 i E
2`

` dp0

2p
$Tr ln@ iD aga2m12 im2~z!g5#

2Tr ln@ iD aga2M2 im2~z!g5#%

5 i E
2`

` dp0

2p
TrE

m1

M

dm@ iD aga2m2 im2~z!g5#21,

~13!

where iD aga5g0p02g•(p1A) with the spatial momen-
tum p understood as the operator, and the trace running o
the spinor indices and the spatial variables.

The inverse of the Dirac operator in the last expression
Eq. ~13! can be readily found by the usual multiplication
the numerator and the denominator byiD aga1m
2 im2(z)g5. After taking into account the previously men
tioned degeneracy in the momentumpy , the result can be
written as

2The vanishing of spontaneous magnetization can in fact
viewed as due to the possibility of using a regularization preserv
the Lorentz symmetry.

3Only one regulator field is indicated here for simplicity of e
pressions, whereas the full regularization of the vacuum ene
requires additional regulator fields. However, for the conside
here effects in the energy one regulator is in fact sufficient.
2-3
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M. B. VOLOSHIN PHYSICAL REVIEW D 63 125012
W5 i
BS

2pE2`

` dp0

2p
TrE

m1

M

dm

3S p01m 0 2 iP† iR
0 p01m 2 iR† 2 iP

2 iP 2 iR 2p01m 0
iR† 2 iP† 0 2p01m

D
3@p0

22H2~m!#21, ~14!

whereH2(m) is the same diagonal matrix as in Eq.~6! with
m1 being replaced bym. The trace over the spinor variable
leaves only the contribution of the diagonal factors in E
~14!, which thus can be rewritten as

W5 i
BS

2pE2`

` dp0

2p E
m1

M

dmH TrF p0g0

p0
22H2~m!G

1TrF m

p0
22H2~m!G J . ~15!

The first term in the braces is manifestly odd inp0; thus the
integration overp0 from 2` to ` yields zero.~The integral
can be verified to be finite; thus no further regularizatio
which potentially could invalidate the symmetry argument
needed.! The second term after explicitly performing th
trace over the spinor variables takes the form

W52 i
BS

2pE2`

` dp0

2p E
m1

M

dmmTrF S 1

2p0
21m21P†P1RR†

1
1

2p0
21m21P†P1R†RD 1S 1

2p0
21m21PP†1RR†

1
1

2p0
21m21PP†1R†RD G . ~16!

Here in braces are grouped together the terms with the s
ordering ofP andP† and different order ofR andR†. Each
of the two expressions in the braces has the general for

TrS 1

X1RR† 1
1

X1R†RD , ~17!

where the operatorX does not depend on the magnetic fie
It is now easy to show that the expression~17! contains only
12501
.

,
s

e

.

odd powers in its expansion inB and thus that the expansio
in B of the vacuum energy described by Eq.~16! contains
only even powers, as required by theC invariance. Indeed,
applying the formulax215*0

`exp(2bx)db and using the de-
scribed spectra of the operatorsRR† andR†R, one can per-
form the trace over the space of the latter operators and
the expression~17! in the form

E
0

`

db coth~bB!Tr exp~2bX!, ~18!

which is manifestly odd inB.4

This concludes the proof by an explicit calculation of t
absence of odd powers of the magnetic fieldB in the expan-
sion of the energy of the fermion vacuum.

IV. FERMION CHARGE DENSITY INDUCED BY
MAGNETIC FIELD

We now proceed to a calculation of the electric char
induced by the external magnetic fieldB. The general for-
mula for the charge densityr(z)5^c̄(z)g0c(z)& is obtained
from the variational derivative of the energy in Eq.~13! with
respect toA0(z) at A050 and reads as

r~z!52
i

SE2`

` dp0

2p

3^zuTr$g0@ iD aga2m12 im2~z!g5#21%uz&.

~19!

The charge density is finite, thus eliminating the need
considering the contribution of the Pauli-Villars regulato
The trace here runs over the spinor indices and over
space of the operatorsR and R†. The z dependence is thu
left ‘‘untraced,’’ as is indicated in Eq.~19! by the diagonal
matrix element of the remaining~after ‘‘tracing out’’ the
spinor variables and the motion in thex-y plane!
z-dependent operator in the coordinate representation.
forming also the trace over thez dependence, i.e., calculatin
the integral overz, would yield the total induced chargeQ.
Using the inverse of the Dirac operator as in Eq.~14! one can
calculate the trace over the spinor indices and rewrite
latter formula forr as
h
ally
r~z!5m1

B

2pE2`

` dp0

2p

3K zUTrF S 1

p0
21m1

21P†P1R†R
2

1

p0
21m1

21P†P1RR†D 2S 1

p0
21m1

21PP†1R†R
2

1

p0
21m1

21PP†1RR†D GUzL .

~20!

4Clearly the first term of the expansion of the expression in Eq.~18!, proportional toB21, results in a divergent expression, whic
corresponds to the divergence of the vacuum energy atB50. This is the only place where additional Pauli-Villars regulators are form
required. The subsequent terms of the expansion, however, give a finite differenceW(B)2W(0) that is even inB.
2-4
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In the latter expression also the Wick rotationp0→ ip0 is
done and the part of the integrand that is odd inp0 is dis-
carded. The trace over the space of the operatorsR andR† in
Eq. ~20! is finite and trivial:

Tr(R)S 1

X1R†R
2

1

X1RR†D5
1

X
. ~21!

Using this formula in Eq.~20! one finds

r~z!5m1

B

2pE2`

` dp0

2p

3K zU 1

p0
21m1

21P†P
2

1

p0
21m1

21PP† UzL . ~22!

One can notice the absence of higher than linear terms in
expansion of the charge density in powers ofB, which is a
consequence of the relation~21!. It can be also observed tha
up to the factorB/(2p) the expression~22! coincides with
similarly calculated fermionic charge in a~111!-
dimensional theory with z-dependent mass termm1
1 im2(z)g5. This relates the present calculations to the pr
lem of the fermion charge of kinks@10,11#.

V. CHARGE DENSITY FOR SLOWLY VARYING PHASE
AND THE TOPOLOGICAL NATURE

OF THE TOTAL CHARGE

We now consider a few specific cases of the depende
of m2 on z, in which the charge density can be calculat
from Eq.~22! either in a closed form or, at least, ‘‘in quadr
tures.’’ Also the topological nature of the total charge is
be addressed in this section.

The first case to be considered is the one where the ra
variation of the parameterm2 can be considered as slow. I
this case in order to calculate the charge density at a poinz0,
one can approximatem2(z) near z0 by the linear depen-
dence:m2(z)'m2(z0)1(z2z0)m28(z0) and also expand the
difference of the Green’s functions in Eq.~22! to linear order
in m28(z0):

r~z0!52m1m28~z0!
B

2pE2`

` dp0

2p

3^z0u@2]z
21p0

21m1
21m2

2~z0!#22uz0&

52m1m28~z0!
B

2pE2`

` dp0dpz

~2p!2

3@pz
21p0

21m1
21m2

2~z0!#22

5
B

4p2

m1m28~z0!

m1
21m2

2~z0!

5
B

4p2

d

dz
arctanS m2~z!

m1
D U

z5z0

, ~23!
12501
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where the final expression matches that in Eq.~3! in the
considered case of a constantm1. Clearly, for this calculation
to be justified the characteristic length of variation ofm2(z)
should be much longer than the ‘‘local’’ Compton wav
length @m1

21m2
2(z0)#21/2.

Let us address now the statement that the total inte
over the density,Q5*2`

` r(z)dz, is in fact topological; i.e.,
it is determined only by the limiting values ofm2(z) at the
infinities and does not depend on the specific shape of
functionm(z) at finitez. From Eq.~22! the total integral can
be written as a trace:

Q5m1

BS

2pE2`

` dp0

2p
TrS 1

p0
21m1

21P†P
2

1

p0
21m1

21PP†D
5m1

BS

4p
TrS 1

Am1
21P†P

2
1

Am1
21PP†D . ~24!

In the latter expression the traces of the individual ope
tor terms in the braces are infinite. For this reason one can
calculate them separately, each in its own basis. If each t
were finite, one could calculate the trace of the first opera
in the basis of the eigenfunctionsuk of the operatorP†P and
the trace of the second operator in the basis of the eigenf
tionsvk of the operatorPP† @cf. Eqs.~9!–~11!#. In that case
the difference would arise only from the ‘‘extra’’ zero mod
~12! of the operatorP†P. In view of the divergence of each
of the traces only the trace of the whole operator in brace
Eq. ~24! can be calculated in an arbitrary complete bas
Also the continuum spectrum of the operators should be
cretized by choosing a large bounding box inz: convention-
ally from 2L/2 to 1L/2, whereL is sufficiently large for the
asymptotic values ofm2(z) to set in, and by imposing
boundary conditions atz56L/2. Consider, for instance, th
case where the trace in Eq.~24! is calculated in the basis o
the eigenfunctionsvk of the operatorPP† with an ~anti!pe-
riodic condition at the boundaries of the box. Then the eig
functionsuk of the operatorP†P found from Eq.~10! do not
satisfy the same condition sincem2 takes different values a
the infinities. This effect thus gives rise to a splitting of th
eigenvalues in the two terms in the braces in Eq.~24!. The
latter effect, however, vanishes ifm2(z) takes the same valu
at both infinities. Also in this case the operatorP†P no
longer has the zero mode described by Eq.~12!, and the
spectra of the two discussed terms in Eq.~24! coincide in the
same basis of~anti!periodic eigenfunctions. Thus the tota
charge vanishes if there is no net variation ofm2 : m2(2`)
5m2(`).

The latter observation in combination with Eq.~23! is in
fact sufficient to conclude that the total charge depends o
on the difference of the limiting values ofm2. Indeed, con-
sider a large box, defined by the lengthL, and let the differ-
enceD5m2(L/2)2m(2L/2) be nonzero. Consider now a
extendedsystem, where the box is continued fromz5L/2 to
z5L̃, in such a way that the length of the extensionL̃
2L/2 is arbitrarily large and the behavior ofm2(z) in the
extension is chosen ‘‘by hand’’ such that it is a slow functi
smoothly interpolatingm2 from its fixed value atz5L/2
2-5
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M. B. VOLOSHIN PHYSICAL REVIEW D 63 125012
back tom2(2L/2) atz5L̃. In other words, the net variatio
over the extensionD̃5m2(L̃)2m2(L/2) is D̃52D. The net
change ofm2 over the entire extended box is then zero. Th
the total charge of the extended system is also zero. The
charge, however, is a sum of the one inside the original
Q and that in the extensionQ̃. ThusQ52Q̃. On the other
hand, the chargeQ̃ can be calculated in the limit of slowly
varying m2(z) from the formula~23!. Therefore one arrives
at Eq. ~4! for chargeQ, independently of the details of th
behavior of m2(z) at intermediatez within the original
bounding box.

VI. CHARGE DENSITY IN SAMPLE MODELS

Here we consider explicit calculations ofr(z) from the
formula ~22! in sample models of the dependence ofm2(z)
on z in order to illustrate that the distribution of charge ge
erally does not follow the slow variation limit described b
Eq. ~23! while the total charge is of course given by th
universal formula~4!.

A limit that is maximally opposite to that of a slow varia
tion is wherem2 changes as a step function at a point inz.
Here we consider the situation wherem2 changes atz50
from a negative constant valuem2(z)52m2 at z,0 to a
positive one,m2(z)5m2 at z.0. The Green’s functions in
Eq. ~22! can be found explicitly by the standard method
matching atz50:

K zU 1

p0
21m1

21P†P UzL 5
1

2q F11
m2

q2m2
exp~22quzu!G ,

K zU 1

p0
21m1

21PP† UzL 5
1

2q F12
m2

q1m2
exp~22quzu!G ,

~25!

whereq5Ap0
21m1

21m2
2. The charge density is then give

‘‘in quadratures’’ by the formula

r~z!5m1m2

B

2pE2`

` dp0

2p

exp~22Ap0
21m1

21m2
2uzu!

~p0
21m1

2!
,

~26!

which, as one could expect, describes an exponential di
bution around the discontinuity pointz50 over the range
(m1

21m2
2)21/2, which is the Compton wavelength of the fe

mion. For the total charge the integration overz and then
over p0 is elementary, and the result matches the gen
formula ~4!.

It can be also noted, in connection with this example, t
the nonexponential term in individual Green’s functions
Eq. ~25! would lead to a divergence upon integration ov
p0. However, this term cancels in the difference, leaving
12501
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expression forr(z) finite. This illustrates the behavior dis
cussed in general terms in the previous section.

Another class of specific situations where the Gree
functions are readily calculable in a closed form and
charge density can be found explicitly is presented by
Lee-Wick model@14#. In this model the termm2 in the fer-
mion mass arises from the interaction with a neutral fieldf:
m25gf, with g being the Yukawa coupling. Thef4 self-
interaction of the fieldf is assumed to lead to the doma
wall solution

f~z!5v tanh~lnz/2!, ~27!

which interpolates between the two vacuum states~domains!
with f56v, and wherel is the constant of the self
interaction, such that the mass of thef bosons in either of
the vacua ismf5lv.

The behavior of the fermion states in such a backgrou
depends on the ratiog/l @15#. Clearly, the caseg@l corre-
sponds to the limit of a slow variation ofm2, while the op-
posite case,g!l, corresponds to the approximation of a
abrupt change inm2, provided that in the latter casem1 is
also assumed to be small in comparison withmf . For a
generic value of the ratiog/l the operatorsP†P and PP†

correspond to the solvable potentials of the fo
const/cosh2(lnz/2), and the Green’s functions can be foun
in terms of hypergeometric functions. In the situation whe
2g/l is an integer; 2g/l5N, both potentials are nonreflec
ing, and the algebra is greatly simplified, since the relev
hypergeometric functions collapse to~Jacobi! polynomials in
tanh(lnz/2) of the powerN for P†P and N21 for PP†. It
can be also noted that the case ofN52 in the considered
class of models would correspond to a supersymme
model, albeit withm150, which would take us beyond th
assumptions adopted in the present paper. Here for illus
tive purposes we consider only the most algebraically sim
case ofN51.

For l52g, the operatorPP† corresponds to a constan
potential,PP†52]z

21g2v2, and the corresponding Green
function is especially simple:

G(PP†)~z1 ,z2 ;p0
21m1

2![K z1U 1

p0
21m1

21PP† Uz2L
5

exp~2quz12z2u!
2q

, ~28!

with q5Ap0
21m1

21g2v2. The Green’s function for the op
eratorP†P can then be found@16# using relations~10! and
~12! for its eigenfunctions5:

5The individual Green’s functions are finite; thus each can
expanded in the basis of the corresponding eigenfunctions.
2-6
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G(P†P)~z1 ,z2 ;p0
21m1

2!

[K z1U 1

p0
21m1

21P†P Uz2L
5 (

k50

` uk~z1!uk* ~z2!

p0
21m1

21lk
2

5 (
k51

`

Pz1

†
vk~z1!vk* ~z2!

lk
2~p0

21m1
21lk

2!
Pz2

1
u0~z1!u0~z2!

p0
21m1

2

5
1

p0
21m1

2 @P†G(PP†)~z1 ,z2 ;0!P

2P†G(PP†)~z1 ,z2 ; p0
21m1

2!P#

1
u0~z1!u0~z2!

p0
21m1

2 . ~29!

Applying in this formula the operatorsP† and P to the
Green’s function~28! and using the zero mode from Eq
~12!, u0(z)5Agv/2/cosh(gvz), one finds that at coinciding
points the Green’s function~29! is given by

G(P†P)~z,z;p0
21m1

2!5
1

2q
1

g2v2

2q~p0
21m1

2!cosh2~gvz!
,

~30!

where, again,q5Ap0
21m1

21g2v2.
Upon substitution of the results from Eqs.~28! and~30! to

Eq. ~22! for the charge density, and after the integration o
p0, the final expression for the distribution of charge in th
model is found in a remarkably simple explicit form:

r~z!5
gv

2 cosh2~gvz!

Q

S
, ~31!

where Q5BSarctan@gv/(m1
21g2v2)#/(2p2) is the total in-

duced charge, in agreement with the general formula~4!.

VII. DISCUSSION

The explicit calculation described in Secs. II and III illu
trates the implementation of the general statement abou
absence of spontaneous magnetization based onC parity. In
the concrete calculation the expected cancellation occurs
the fact that it is possible to regularize the theory while ma
festly preserving charge conjugation symmetry. Altern
tively, as already noted, this cancellation can be viewed
12501
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the manifest Lorentz invariance of the regularized theo
since a nonzero spontaneous magnetization would certa
imply a breaking of the Lorentz symmetry@8#. In other
words, neither theC symmetry nor the Lorentz one ar
anomalous. The same symmetries preclude the appearan
a spontaneous magnetization also in models where the
mions are assumed to have anomalous magnetic and/or
tric dipole moments, including the cases@4# where the fer-
mions are neutron like, i.e., with zero charge and nonz
dipole moments.

The really existing effect, allowed by both these symm
tries, is the fermion charge density induced by an exter
magnetic field applied across the domain wall, which can
traced to the well-known anomaly in the axial current. T
total induced charge is of a topological nature and is de
mined, according to Eq.~4!, by the total magnetic flux
through the wall and the asymptotic values of the fields
the model far from the wall. The distribution of the induce
charge, however, given by the general formula~22!, depends
on the details of the profile of the wall, as discussed in Se
V and VI. This effect, in principle, can be relevant in detail
analyses of phenomena at the walls in the early univers
either for flat domain walls, which could exist during som
epoch, or for dynamics near the walls of bubbles durin
first order phase transition.

The arguments, based onC parity and/or Lorentz symme
try, do not directly apply to an asymmetric state with a n
overall fermion charge, e.g., to the early universe with
baryon asymmetry, that is neitherC nor Lorentz symmetric.
In this case a spontaneous magnetization of the wall is g
erally allowed and is proportional to the asymmetry para
eter of the considered state@6#. It should, however, be clearly
understood that even a magnetized domain wall does
produce a magnetic field, which is a simple consequenc
the classical Maxwell equations@6#. Therefore domain walls
could not be a source of a magnetic field correlated at c
mological distances in the early universe, although their e
tromagnetic properties, like the charge distribution induc
by a magnetic field, could generally be of importance
other aspects of dynamics of the early universe.
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