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The response to a magnetic flux is considered of the vacuum state of charged Dirac fermions interacting with
a domain wall made of a neutral spinless field in13dimensions with the fermion mass term having a phase
variation across the wall. It is pointed out that as a result of sin@plearity arguments the spontaneous
magnetization for this system is necessarily zero, thus invalidating some claims to the contrary in the literature.
The cancellation of the spontaneous magnetization is explicitly demonstrated in a particular class of models.
The same calculation produces a general formula for the electric charge density induced by the magnetic
flux—an effect previously discussed in the literature for axionic domain walls. The distribution of the induced
charge is calculated in specific models.
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[. INTRODUCTION with u; and u, being, respectively, the real and imaginary
parts of u(z), and A standing for the electromagnetic field

The possibility that domain walls that could have existedpotential and absorbing the chargén the normalization of
in the early universe could also be related to the generatiothe field. The variation ojx, breaks the® and CP parities.
of a primordial magnetic field correlated at large distancesHowever, theC parity is manifestly conserved with bojiy,

[1] has been recently discussed in the literaj@e5]. The andu, beingC even. Therefore after the fermions are inte-
models discussed are based on the idea that fermiongrated out the energy of the system as a functioA of the
coupled to the field forming the wall, develop a spontaneoug-even background ofc(z) cannot contain odd powers of
magnetization perpendicular to the wall. Although it is athe C-odd fieldA. In particular the energy cannot be linear in
simple exercise in general physics to show that a uniformthe magnetic field. The same argument holds also for the
magnetization of an infinite domain wall does not produce ssituation where the fermions are assumed to possess an
magnetic field 6], the phenomenon of magnetization of the anomalous magnetic and/or electric dipole moment since
wall is interesting on its own. both such interactions also conserve @earity.

The claims to a nonzero magnetic moment of the ground This simple generdC parity argument is clearly sufficient
state of a fermion field coupled to the wall int3 dimen-  for excluding the possibility of spontaneous magnetization of
sions are inferred from the behavior i+-2-dimensional the fermion vacuum in a domain wall background. However,
QED of Dirac fermions with a definite sign of the mass termas a result of the existence in the literature of claims to the
m. Namely, in certain calculation®,7—9 of the energy of contrary[3,9], it is quite instructive to demonstrate explicitly
the ground state of the fermion field in an external magnetiche vanishing of the linear in magnetic fieRl,=B term in
field B, it is claimed that the total energy contains a linear inthe energy(as well as of all the odd termsat least in a
magnetic field term proportional tmB, which corresponds specific model. Moreover, th€ parity argument certainly
to a spontaneous magnetization proportional to the mass patlows a dependence of the energy evenpowers of the
rameterm (including the sigh For a Dirac fermion field electromagnetic field, which gives rise to the most interesting
coupled to a domain wall in-81 dimensions the quantiza- phenomenon of the appearance of an electric charge density
tion of the motion perpendicular to the wall splits the fer- once a magnetic flux is applied across the wall. This phe-
mion system into an infinite set of modes, each correspondaomenon is related to the well-known coupling of a pseudo-
ing to a(2+1)-dimensional QED with its own parameter. scalar field to the electromagnetic invariaBt B. For a
If the phase of the fermion mass term varies across the walklowly varying withz mass term, one can approximatéz)
the set of positive values oh differs from that of the nega- around a given point, as u(z) = u(zy) + du(z) and, treat-
tive values ofm. Therefore in this picture it might at least be ing the varying partSu.(z) as a small perturbation, find the
not obvious that the overall magnetization cancels after sumerm proportional tcE- B in the energy density from the
mation over modes corresponding to positive and negativevell-known triangle graph as
values ofm.

It is nevertheless quite easy to argue that the cancellation
necessarily takes place and the magnetization of the fermion
field ground state at the wall in43L dimensions is strictly
zero. Indeed, the Lagrangian density for the fermions with
the phase of the mags depending on the coordinateper-
pendicular to the wall can be generally written as The charge density is then found from variation with respect

to the potentialAy. For the magnetic field in the direction,

LZJ[i(é’a_iAa)ya_Ml(Z)_iMZ(z)ys]wi (l) BZ:Bi one finds
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in two particular sample situations is considered in Sec. VI.
) Finally, a general discussion and a summary of results are
presented in Sec. VII.

- _éw B d m2(2)
<¢(z)v°w<z>>——T%—md_zamta’(mm

The total charge is then given by the total flux of the mag-
netic field through the wallF=fdxdyB,, and the differ- Il. THE MODEL AND THE RELEVANT OPERATORS
ence of the phases of the mass termti u, at two infinities

in 7, Ad = arctanfuy/uy), .« —arctangy/ )|, . ..: The simplifying assumption in the class of models to be

considered here is that the real part of the mass term is

_ FAD fixed and nonzero, while the imaginary part depends oz
Q=J dxdydZ ¥ (2)y°y(z)) = P (4)  To the best of the author’'s knowledge, a model of such type

with w, being proportional to a spinless field, uw,=gd,

The induced charge is a direct analogue of thenerally ~ With the field varying ash(z) =v tanh{n,z2) across the do-
fractiona) fermionic charge of a kink iri1+1)-dimensional  Main wall, was first suggested by Lee and W[dd] as a
models[10,11]. This phenomenon in-81 dimensions was Model of spontaneous breaking Gf° symmetry. The fer-
considered[12] in connection with a magnetic monopole Mion spectrum and scattering states in the presence of the
(dyon) traversing an axionic domain wall, in which process domain wall in this model were studied in ReL5].
the net changéreversal of the magnetic flux across the wall _In the generic case of a nonzero changggbetween the
results in charge exchange between the dyon and the' wallinfinities inzand a nonzero constapt, one can assume for

In the specific model considered in the present paper, théefiniteness without further loss of generality thatis posi-
calculation of the induced charge density automaticallytive and thatu,(z) changes from a negative value at-
comes along with the calculation of ttieventually vanish- — to a positive one at— +c. Also for definiteness it is
ing) spontaneous magnetization. It will be shown that, aggssumed here that a uniform positive magnetic fiélds
expected on genera| grounds, the re|at(db‘| between the applled in thez direction. In what follows the gauge for the
total induced charge and the total magnetic flux does noglectromagnetic field is fixed in a standard way such that the
depend on the specific shape of the dependence of the phaggctor potential for the field is given byA,=0, A,=BxX.
® onz However thedistribution of the induced charge den- Adopting also the standard representation for gmatrices,
sity in z does depend on the specific rate of variation of thethe one-particle Hamiltonian, corresponding to the Lagrang-
mass parameter(z), and generally differs from that given ian (1), takes the following form:
by Eq. (3), which is justified in the limit where the rate of

variation can be considered as slow. One can notice in this M1 0 iPT —iR
connection that the charge distribution may be of greater 0 w1 iRT iP
physical relevance than the total charge, since barring the H= _iP iR - o | )
existence of monopoles it is physically impossible to pro- K1
duce a net magnetic flux through an infinite or closed wall. iRT —iPT 0 —pu
Therefore the total charge has to be zero, while the distribu-
tion of the density of charge can be nontrivial. andH? has the diagonal form
The further material in this paper is organized as follows. o 2. ot P N
In Sec. Il the class of models considered is described as well ~ H*=diagu1+P'P+RR, ui+PP

as some properties of the relevant operators corresponding to
motion in thex-y plane in a magnetic field and to motion in

the z direction in the domain wall background are discussed.-l-
In Sec. Il the dependence dhof the energy of the ground

+R'R,u2+PPT+RR, 12+ PTP+R'R).  (6)

hese formulas make use of the following notation for the

tate of the fermion field i lculated and th shi foperators describing, respectively, the Landau quantization
Slf‘ edgt € e.rmt'r?n 1eld 1S ca %J.a S an ¢ (?[VO?U'S |mo§|] O%f the motion in thex-y plane and the quantization of motion
all odd terms in the expansion Biis demonstrated, includ- glong thez axis:

ing the vanishing of the spontaneous magnetization. In Sec.
IV a general expression for the induced charge density is R=d,+Bx+p R'=—d,+Bx+p 7)
presented, and Sec. V contains the calculation of this density X v X Y

in the limit of a slowly varying phase as well as a discussiongng

of the topological nature of the total induced charge. An

explicit calculation of the distribution of the induced charge P=0,+uy(2), PT=—0d,+u2). (8)

The quantityp, is the value of the conserved momentum in

'Referencd12] contains a reference to an unpublished communi-the_ y direction (as a consequence of the chose_n gauge con-
cation with H. Georgi and J. Polchinski, who apparently had alsod'}'on)' The eTnergy levels, determined by the eigenvalues of
interpreted the effect of the triangle graph in terms of an induced® R @nd RR', do not depend orp, and the degeneracy
charge in a magnetic field. However, as they both kindly corre-number is well known to be given bBS/(27), whereSis
sponded to me, they had never pursued this issue beyond an unwrile normalization area in the'y plane. In what follows this
ten remark. The monopole-axion wall charge exchange was alsgegeneracy factor will be explicitly accounted for and the
later discussed by Kogdr3]. value ofp, set top,=0 in the definition of the operatof§).
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According to Eq(6) the spectrum of one-particle energies “unpaired” zero mode of the operatd®'P. Such a conjec-
is determined by eigenvalues of the operatB'R, RR', ture, however, would be false, since the summation over the
PTP, andPP". These spectra exhibit two separate structuresnodes is generally divergent, and one should perform a
found in supersymmetric quantum mechanics, well knowrproper calculation with a proper regularization. Also the dis-
for the operator® andR" and also recently used f&-type  cretization of the continuum spectra of the operat®i®
operators in connection with kinks ifiL+1)-dimensional  andpP' requires imposing conditions at the boundaries of a
models[16]. Namely, if the issue of boundary conditions in |arge but finite bounding box in These conditions generally
zis ignored, one would naively conclude that the spectra ofyre not satisfied by the relatiori¢0) and (11), and there

- t t cninei

eigenvalues of’P and PP coincide except for an extra gses g splitting of the spectra of continuum modes of the
Zero eigenvalugunder the adopted sign conventionst oo atorptp and PP which should be accounted for in a
P'P. Indeed, letv,, k=1, 2, ..., be thenormalized eigen- proper calculation.

function corresponding to thénecessarily positiyeeigen-
value)\ﬁ of the positive operatoP P', so that

) , Ill. DEPENDENCE OF THE FERMION VACUUM
PP'v=N\uy. C) ENERGY ON B

Applying the operatoP™ to both sides of this equation, one

finds that the function For a full regularized calculation of the energy of the

ground state of the fermion field we use here the standard

+ four-dimensional technique with the Pauli-Villars regulariza-
k=P o/ 10 tion procedure. The latter regularization preserves gauge in-
variance and, importantly for the discussed problem, Lorentz

same eigenvaluﬁﬁ. Applying the operatoP to both sides covariancé€. This amounts to introducing the regulator fer-

of the latter relation and using E¢g), one finds the inverse mion field' ¥ with large but finite mass, so that the mass term
of the relation(10): for ¥ can be written adl +i u,7y® instead ofu, +iu,y° for

the “physical” fermion ¢, and treat the loop with the regu-
lator field with an extra minus sighThe regularized expres-
sion for the total energWV then reads as

is the normalized eigenfunction of the opera®diP with the

vk:Puk/)\k- (ll)

This construction does not work, however, for the zero mode
up of PTP, satisfying the equatio®u,=0 [Bogomol'nyi-

Prasad-Sommerfiel(BPS statd. The explicit form of the W=i fm % TrInMiD v — wn—i 5
normalizable functioruy(z) is readily found from the defi- ! _oo27r{ FID oy = u1=ina(2)7’]
nition (8): . .
—TrIn[iD ,y*~M —ius(2)y°1}
z ~ ~
uo(z)=const><ex;<—J’ ,uz(z)dz). (12 _.Jw dpo Mo o 51-1
ol =l mdm[lD“y m—iua(2)y’] ",

The operatorfR' and R coincide, up to normalization, with (13)

the creation and annihilation operators for a harmonic oscil-
lator, and their spectra are the textbook ones: the spectrum of
eigenvalues oRR' is given by Bnwithn=1, 2, . . . ,while
that ofR'R is given by the same simple expression, howeve
also includingn=0.

This discussion of the properties of the operators involve
in the Hamiltonian in Eq(5) is helpful in considering the
spectrum of the one-particle energies. In particular, one ca
separately consider each eigenmode of the motion irnzthe
direction as a2+1)-dimensional fermion system. Then the
eigenmodes of the operatBf P correspond to such systems
with positive mass parameten, m= \/PTP+/.L21, while the
eigenmodes of PPT correspond to negativem, m=
— PP+ ,uzl. For the former modes the negative energy , o o _

L Sfo . 250~ The vanishing of spontaneous magnetization can in fact be
spec'Frum of Landau Ie_vels is given byP P+,u1+28n_ viewed as due to the possibility of using a regularization preserving
and includesn=0, while for the latter ones the negative .o | orentz symmetry.
energies are given by \PP'+u7+2Bn excludingn=0. 30nly one regulator field is indicated here for simplicity of ex-
Since all the nonzero eigenvaluesRfP andP P coincide,  pressions, whereas the full regularization of the vacuum energy
one might very naively conjecture that their effects in mag-requires additional regulator fields. However, for the considered
netization cancel and the net result is given by only onehere effects in the energy one regulator is in fact sufficient.

whereiD ,y*=7"po— v-(p+A) with the spatial momen-
fum p understood as the operator, and the trace running over
&he spinor indices and the spatial variables.

The inverse of the Dirac operator in the last expression in
Eq. (13) can be readily found by the usual multiplication of
the numerator and the denominator b\D ,y*+m
—iup(2)y°. After taking into account the previously men-
tioned degeneracy in the momentymy, the result can be
written as
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"BS = dpy M odd powers in its expansion Biand thus that the expansion
W=is— [ 5=Tr| dm in B of the vacuum energy described by E@6) contains
27) 2 “ . . -
1 only even powers, as required by tleinvariance. Indeed,
Potm 0 —ipt iR applying the formula™ = [5exp(—8X)dB3 and using the de-
0 potm —iR" —iP scribed spectra of the operatd®®R" andR'R, one can per-
| —ip —iR  —pgt+tm 0 form the trace over the space of the latter operators and find
iRt —ipT 0 —Pot+m the expressiori17) in the form
X[pg—HA(m)] ™, (14 o
. . o . f dg coth BB) Tr exp( — BX), (18)
whereH?(m) is the same diagonal matrix as in H) with 0

w1 being replaced byn. The trace over the spinor variables _ .
leaves only the contribution of the diagonal factors in Eq.which is manifestly odd irB.

(14), which thus can be rewritten as This concludes the proof by an explicit calculation of the
absence of odd powers of the magnetic fiBlth the expan-
. BS (= dpy (M Py’ sion of the energy of the fermion vacuum.
27 ) 27 ) 4y po—H(m)
m IV. FERMION CHARGE DENSITY INDUCED BY
+Tr _ (15) MAGNETIC FIELD
pg—H2(m) )

We now proceed to a calculation of the electric charge
The first term in the braces is manifestly oddpig thus the ~ induced by the external magnetic fieRl The general for-
integration ovem, from — to « yields zero.(The integral mula for the charge densiif(z) =((2) y°¢(z)) is obtained
can be verified to be finite; thus no further regularization,from the variational derivative of the energy in E3) with
which potentially could invalidate the symmetry argument, isrespect toA,(z) at A;=0 and reads as
needed. The second term after explicitly performing the

trace over the spinor variables takes the form i (= dpo
P(Z)=—§f o
W _BSF dpo Md T ( 1 i
=—iz—| 55— mmTr
2m) -2 Juy ~Po+m*+PTP+RR X(ZTr{yoliD wy"~ 1 =i 2(2) ¥ H2).
N 1 N 1 (19
—pg+m?+PTP+RR/ " | —p§+m>+PP"+RR

The charge density is finite, thus eliminating the need for
considering the contribution of the Pauli-Villars regulator.
: (16)  The trace here runs over the spinor indices and over the
space of the operatoR and R". The z dependence is thus

Here in braces are grouped together the terms with the sani@ft “untraced,” as is indicated in Eq(19) by the diagonal
ordering ofP and P and different order oR andR'. Each ~ Matrix element of the remainingafter “tracing out” the

of the two expressions in the braces has the general form Spinor variables and the motion in the-y plang
z-dependent operator in the coordinate representation. Per-

1 1 forming also the trace over ttedependence, i.e., calculating
XTRR T X+RR/) 17 the integral over, would yield the total induced chardg.

Using the inverse of the Dirac operator as in Egl) one can
where the operatoX does not depend on the magnetic field. calculate the trace over the spinor indices and rewrite the
It is now easy to show that the expressidd) contains only latter formula forp as

1
+
—p5+m?+PPT+ RTR)

Tr

B [~ dpg
P(Z)=M1§j_xﬁ

e

Tr]

1 1
P2+ u2+PTP+RR  p2+ui+PTP+ RRT) -

1 1
P2+ u2+PPT+RR  p2+u?+PPT+ RRT)HZ> '
(20

“Clearly the first term of the expansion of the expression in @8&), proportional toB™%, results in a divergent expression, which
corresponds to the divergence of the vacuum enerdg=ad. This is the only place where additional Pauli-Villars regulators are formally
required. The subsequent terms of the expansion, however, give a finite diffék€Bge- W(0) that is even irB.
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In the latter expression also the Wick rotatipg—ipg is
done and the part of the integrand that is oddjnis dis-
carded. The trace over the space of the oper&asdR" in
Eq. (20) is finite and trivial:

T ! ! = ! 21
'R X+RR~ X+RR| X' @D
Using this formula in Eq(20) one finds
B foo dpg
p(Z)_Mlz’]T _00271_
X ! 22
AR L e

One can notice the absence of higher than linear terms in the

expansion of the charge density in powersBpfwhich is a
consequence of the relatig®l). It can be also observed that
up to the factoB/(27) the expressiori22) coincides with
similarly calculated fermionic charge in a(l+1)-
dimensional theory with zdependent mass termu,
+ium,(2)y°. This relates the present calculations to the prob
lem of the fermion charge of kinkg0,11].

V. CHARGE DENSITY FOR SLOWLY VARYING PHASE
AND THE TOPOLOGICAL NATURE
OF THE TOTAL CHARGE

We now consider a few specific cases of the dependenc
of u, on z in which the charge density can be calculated

from Eq.(22) either in a closed form or, at least, “in quadra-
tures.” Also the topological nature of the total charge is to
be addressed in this section.

The first case to be considered is the one where the rate
variation of the parametei, can be considered as slow. In
this case in order to calculate the charge density at a pgint
one can approximatgw,(z) nearz, by the linear depen-
dence:u,(z) ~ uo(zo) +(z—2p) w5(z0) and also expand the
difference of the Green'’s functions in E@2) to linear order

in wy(zo):

—> , B (= de
p(Zo)= Mlﬂz(zo)z o
X(2ol[ = 95+ Pt mi+ ud(20)]~%20)
B ,,_ . B [~ dpydp,
_2’U“1’“2(Z°)Zf,w—(27r)2
X[pZ+pg+ ps+ pu3(20)] 2

B maps(zo)
- 2 2 2
Ame i+ us(2o)

g oot

= m d_Z arcta

2
z

H2(2Z)
M1

|

(23

Z=Zy
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where the final expression matches that in E). in the
considered case of a constant. Clearly, for this calculation
to be justified the characteristic length of variationof(z)
should be much longer than the “local” Compton wave-
lengthl u}+ p5(20)]

Let us address now the statement that the total integral
over the densityQ= [~ .p(z)dz is in fact topological; i.e.,
it is determined only by the limiting values @f,(z) at the
infinities and does not depend on the specific shape of the
function w(z) at finitez. From Eq.(22) the total integral can
be written as a trace:

(24)

- BSJ . 1 1
Q=mzr| 2 P2 25 PTP P2+ pl+ PP

T |

In the latter expression the traces of the individual opera-
tor terms in the braces are infinite. For this reason one cannot
calculate them separately, each in its own basis. If each trace
were finite, one could calculate the trace of the first operator
in the basis of the eigenfunctiong of the operatoP P and

= dpg

. BS
_I'L1477

1 1
VT P Julr PP

the trace of the second operator in the basis of the eigenfunc-
tionsv, of the operatoP P [cf. Egs.(9)—(11)]. In that case
the difference would arise only from the “extra” zero mode
(12) of the operatoP'P. In view of the divergence of each
of the traces only the trace of the whole operator in braces in
Eq. (24) can be calculated in an arbitrary complete basis.
%Iso the continuum spectrum of the operators should be dis-
cretized by choosing a large bounding boxzirconvention-
ally from —L/2 to +L/2, whereL is sufficiently large for the
asymptotic values ofu,(z) to set in, and by imposing
boundary conditions at= *=L/2. Consider, for instance, the
fpse where the trace in E@4) is calculated in the basis of

e eigenfunctions, of the operatoP P' with an (anti)pe-
riodic condition at the boundaries of the box. Then the eigen-
functionsu, of the operatoP P found from Eq.(10) do not
satisfy the same condition singe, takes different values at
the infinities. This effect thus gives rise to a splitting of the
eigenvalues in the two terms in the braces in &4). The
latter effect, however, vanishes;if,(z) takes the same value
at both infinities. Also in this case the operat®fP no
longer has the zero mode described by EtR), and the
spectra of the two discussed terms in Ef}) coincide in the
same basis ofantiperiodic eigenfunctions. Thus the total
charge vanishes if there is no net variationtof: w,(— =)
= po(%).

The latter observation in combination with E@3) is in
fact sufficient to conclude that the total charge depends only
on the difference of the limiting values ¢f,. Indeed, con-
sider a large box, defined by the lendthand let the differ-
enceA = u,(L/2)— u(—L/2) be nonzero. Consider now an
extendedsystem, where the box is continued fram L/2 to
z=L, in such a way that the length of the extensibn
—L/2 is arbitrarily large and the behavior @f,(z) in the
extension is chosen “by hand” such that it is a slow function
smoothly interpolatingu, from its fixed value atz=L/2
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back tou,(—L/2) atz=L. In other words, the net variation €xpression forp(z) finite. This illustrates the behavior dis-

over the extensiod = uy(T) — up(L/2) isA=—A. The net cussed in general terms irj_the.pre\_/ious section.

change ofu, over the entire extended box is then zero. Thus A?other class g]; spelcn‘llc ;'t“?‘“"”s Iwhedref the Grget?]s

the total charge of the extended system is also zero. The tot nctions aré readily caculable in a closed form an €

charge, however, is a sum of the one inside the original box'1arge density can be found explicitly is presented by the
q :[h tin th ' tensiod. ThusO= — 8. On the oth Lee-Wick model[14]. In this model the termu, in the fer-

Q and that in © ex ensioQ. USQ__ -Q. _ n. € O mion mass arises from the interaction with a neutral figid

hand, the charg® can be calculated in the limit of slowly ,,,—g¢, with g being the Yukawa coupling. The* self-

varying u,(z) from the formula(23). Therefore one arrives jnteraction of the fieldp is assumed to lead to the domain
at Eq. (4) for chargeQ, independently of the details of the \yall solution

behavior of u,(z) at intermediatez within the original
bounding box.

¢(z)=v tanh(Avz/2), (27)
VI. CHARGE DENSITY IN SAMPLE MODELS

Here we consider explicit calculations pfz) from the
formula (22) in sample models of the dependencewaf z)
on zin order to illustrate that the distribution of charge gen-
erally does not follow the slow variation limit described by
Eq. (23) while the total charge is of course given by the
universal formula4).

A limit that is maximally opposite to that of a slow varia-
tion is whereu, changes as a step function at a pointin
Here we consider the situation whegre changes az=0
from a negative constant valye,(z)=—pu, at z<0 to a
positive one,u,(z)=u, at z>0. The Green’s functions in
Eq. (22) can be found explicitly by the standard method of
matching atz=0:

which interpolates between the two vacuum stétiesnaing
with ¢=*v, and where\ is the constant of the self-
interaction, such that the mass of tibebosons in either of
the vacua isn,=Av.

The behavior of the fermion states in such a background
depends on the ratig/\ [15]. Clearly, the casg>\ corre-
sponds to the limit of a slow variation qf,, while the op-
posite caseg<<\, corresponds to the approximation of an
abrupt change inu,, provided that in the latter case; is
also assumed to be small in comparison witf). For a
generic value of the ratig/\ the operator®'P and PP"
correspond to the solvable potentials of the form
const/cosH(Avz/2), and the Green’s functions can be found
in terms of hypergeometric functions. In the situation where

1 17 ) T 2g/\ is an integer; 8/A =N, both potentials are nonreflect-
< z> =—|1+ exp(—2q|z|) ing, and the algebra is greatly simplified, since the relevant
24| q—#2 : hypergeometric functions collapse(ttacobj polynomials in
tanhq.vz/2) of the powerN for PTP andN—1 for PP'. It
can be also noted that the caseM# 2 in the considered
<z . i z> _ i 1— M2 exp(— 2q|z) class of models would correspond to a supersymmetric
p5+ui+PP! 2 Qqtus ] model, albeit withu;=0, which would take us beyond the
assumptions adopted in the present paper. Here for illustra-
(25) tive purposes we consider only the most algebraically simple
case ofN=1.
o ) For \=2g, the operatoP P" corresponds to a constant
whereq=ypy+ ui+ uz. The charge density is then given potential,PP'= — g2+ g%?2, and the corresponding Green’s
“in quadratures” by the formula function is especially simple:

: (28)

Z ——
Po+ui+P'P

B f dpo exp( —2\/pg+ pi+ ulz))

P(Z):Mlﬂzz .2 (pg-‘r,u,i)

cn2 2y
G(ppT)(Zl,Zz,po+M1)=<Zl W

(26)
_ exp(—q|z,—2,|)
which, as one could expect, describes an exponential distri- 29
bution around the discontinuity poimt=0 over the range

(uf+ u3) 2 which is the Compton wavelength of the fer- N e , .
mion. For the total charge the integration oweand then with g=ypo+#1+0°v". The Green's function for the op-

over py is elementary, and the result matches the gener ratorPTP can then pe foungi16] using relations(10) and
formula (). 12) for its eigenfunctions

It can be also noted, in connection with this example, that
the nonexponential term in individual Green’s functions in
Eq. (25 would lead to a divergence upon integration over °The individual Green’s functions are finite; thus each can be
po- However, this term cancels in the difference, leaving theexpanded in the basis of the corresponding eigenfunctions.
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G(pr)(Zl.Zzinger) the manifest Lorentz invariance of the regularized theory,

since a nonzero spontaneous magnetization would certainly
1
E<zl

p2+u2+ PP words, neither theC symmetry nor the Lorentz one are

anomalous. The same symmetries preclude the appearance of

, > imply a breaking of the Lorentz symmetif\8]. In other
2

U(Z1) U (25) a spontaneous magnetization also in models where the fer-
:k:O —p2+,u2+)\2 mions are assumed to have anomalous magnetic and/or elec-
0Tk tric dipole moments, including the casgl where the fer-
) vi(Z1)vE (2)) Ug(Zy) Ug(2Zp) mions are neutron like, i.e., with zero charge and nonzero
= P dipole moments.

2,322 22 P2 72
O R A The really existing effect, allowed by both these symme-

1 tries, is the fermion charge density induced by an external

= ﬁ[PTG(ppr)(zl,zz;O)P magnetic field applied across the domain wall, which can be

Pot #1 traced to the well-known anomaly in the axial current. The

_ PTG(ppT)(Zl,Zz: p§+,u§)P] toFaI induced c_harge is of a topological nature anc! is deter-
mined, according to Eq(4), by the total magnetic flux

Ug(Z1)Ug(2Z5) through the wall and the asymptotic values of the fields in

(29 the model far from the wall. The distribution of the induced
charge, however, given by the general form{@2), depends
Applying in this formula the operator®' and P to the  on the details of the profile of the wall, as discussed in Secs.
Green’s function(28) and using the zero mode from Eqg. V and VI. This effect, in principle, can be relevant in detailed
(12), uo(2) = Jgul2/coshfuz), one finds that at coinciding analyses of phenomena at the walls in the early universe—

Po+ m1

points the Green’s functio29) is given by either for flat domain walls, which could exist during some
epoch, or for dynamics near the walls of bubbles during a
. g%v? first order phase transition.
Gepte)(Z.Z:p0+ 1) = 2q° 2q(p2+ p2)cosi(guz)’ The arguments, based @hparity and/or Lorentz symme-

(30 do not directly apply to an asymmetric state with a net
overall fermion charge, e.g., to the early universe with the
where, againg= \/p02+ ,u12+ g%v°. baryon asymmetry, that is neith€rnor Lorentz symmetric.
Upon substitution of the results from Eq88) and(30) to  In this case a spontaneous magnetization of the wall is gen-
Eg. (22) for the charge density, and after the integration overerally allowed and is proportional to the asymmetry param-
Po, the final expression for the distribution of charge in thiseter of the considered std®]. It should, however, be clearly

model is found in a remarkably simple explicit form: understood that even a magnetized domain wall does not
produce a magnetic field, which is a simple consequence of
gu Q the classical Maxwell equatioi§]. Therefore domain walls

(32) could not be a source of a magnetic field correlated at cos-

mological distances in the early universe, although their elec-
where Q=B Sarctafigv/(u5+g?v?))(27°) is the total in- tromagnetic properties, like the charge distribution induced
duced charge, in agreement with the general forndila by a magnetic field, could generally be of importance in
other aspects of dynamics of the early universe.

p(2)=3 cosf(guz) S’

VIl. DISCUSSION

The explicit calculation described in Secs. Il and Ill illus-
trates the implementation of the general statement about the
absence of spontaneous magnetization based parity. In | am thankful to A. Larkin, M. Shifman, and A. Vainsh-
the concrete calculation the expected cancellation occurs duein for illuminating discussions and to H. Georgi and J.
the fact that it is possible to regularize the theory while mani-Polchinski for correspondence related to the hitory of the
festly preserving charge conjugation symmetry. Alterna-problem of the induced charge. This work is supported in
tively, as already noted, this cancellation can be viewed apart by the DOE under grant DE-FG02-94ER40823.
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