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Noncommutative vortex solitons

Dongsu Bak*
Physics Department, University of Seoul, Seoul 130-743, Korea

Kimyeong Lee† and Jeong-Hyuck Park‡

School of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangryi-Dong, Dongdaemun-Gu, Seoul 130-012, Ko
~Received 7 December 2000; published 14 May 2001!

We consider the noncommutative Abelian-Higgs theory and investigate general static vortex configurations
including recently found exact multivortex solutions. In particular, we prove that the self-dual Bogomol’nyi-
Prasad-Sommerfield~BPS! solutions cease to exist once the noncommutativity scale exceeds a critical value.
We then study the fluctuation spectra about the static configuration and show that the exact non-BPS solutions
are unstable below the critical value. We have identified the tachyonic degrees as well as massless moduli
degrees. We then discuss the physical meaning of the moduli degrees and construct exact time-dependent
vortex configurations where each vortex moves independently. We finally give the moduli description of the
vortices and show that the matrix nature of moduli coordinates naturally emerges.
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I. INTRODUCTION

The noncommutative solitons found in noncommutat
scalar theory@1# do not even exist in the commutative ve
sion of the theory. This indicates that the characteristic pr
erties of solitons in some noncommutative field theories m
greatly differ from those of ordinary solitons. Of cours
there are examples where the nature of noncommutative
tons and the corresponding ordinary solitons are quite sim
to each other in the sense that the properties of noncom
tative solitons are given by just smooth deformation go
erned by the noncommutativity scaleu.

One such example is the U~2! Bogomol’nyi-Prasad-
Sommerfield~BPS! monopole discussed in Refs.@2–6#. The
energy and the charge of the BPS monopole do not dep
on the noncommutativity scale. The effect of the noncomm
tativity appears as a tilting ofD strings in the transvers
space giving the dipole nature of the magnetic charge di
bution. It can be argued that the interactions of the U~2! BPS
monopoles are independent of the noncommutativity scau
within the moduli space description of their dynamics@5,7#.
Contrary to the monopole case, the noncommutative sc
solitons found in Ref.@1# are genuinely noncommutative ob
jects since they cannot exist in ordinary scalar theory.
discussed in Ref.@8#, the shape deformation of the scal
soliton is quite peculiar when moving with a constant velo
ity. Specifically, their deformation is not simply dictated b
the Lorentz contraction but described by an area preser
ellipse exhibiting the UV/IR mixing phenomena of noncom
mutative field theories.

We here pursue a similar issue on the recently found e
multivortex solutions@9# in the noncommutative Abelian
Higgs theory@10,11#. ~For soliton solutions of some othe
models, see Refs.@6# and @12–18#.! Certain apparent prop

*Electronic mail: dsbak@mach.uos.ac.kr
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erties of the noncommutative vortices are striking even
their static properties. The multivortex solutions are in ge
eral not BPS saturated states but their energy, neverthe
scales linearly in the number of vortices. This seems to im
that there are no interactions between vortices even in
non BPS case. We shall show that the self-dual BPS s
tions exist only whenuv2<1 wherev is the vacuum expec
tation value of the Higgs scalar. This property is also co
trasted with the commutative Abelian-Higgs theory whe
the self-dual BPS vortices exist for all vacuum expectat
values of the scalar. There is another aspect concerning
noncommutative vortex solitons; the theory allows ex
time-dependent solutions of vortices, each of them moving
an arbitrary velocity from an arbitrary initial location. I
view of generic complexity involved with soliton dynamic
of field theory, the existence of such time-dependent so
tions is quite peculiar.

In these respects, the systematic approach toward the
derstanding of the noncommutative vortex solutions see
imminent on the following issues. First, the possible sta
solitonic configurations need to be mapped out including
self-dual or anti-self-dual BPS branches. Second, the sta
ity of the non-BPS multivortices isa priori unclear. This
issue can be studied by turning on general perturbati
around the static solutions. In case there are tachyonic
grees possessing a negative mass squared, the static co
rations are necessarily unstable. Any small perturbation
this direction will make the vortices collapse to a stable co
figuration. On the other hand, when fluctuation spectra
not possess any tachyonic degrees, any individual vo
works as a stable solitonic object. The massless fluctuatio
responsible for the moduli motions. Finally, one is interes
in the interactions between vortices especially when they
stable. The interaction can be studied by adopting
scheme of the moduli space approximation. In fact, one m
go beyond the moduli space dynamics by identifying qua
potential depending on the moduli coordinates in our pres
problem. Denoting the number of vortices bym, the U(m)
matrix nature of the moduli coordinates emerges and
©2001 The American Physical Society10-1
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FIG. 1. The energy of~a! the
self-dual vortices and~b! the anti-
self-dual vortices. We also depic
the energy of the non-BPS vorti
ces that have a positive magnet
flux for l51.
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dynamics turn out to be described by the matrix model
m D0 branes. We remark here that certain qualitative pr
erties of this soliton are similar to those arising in the adjo
Higgs theories. These include the matrix nature of mod
coordinates, the fluctuation spectra, the tachyonic degr
and time-dependent solutions@5,6,15#.

In this paper, we review first the exact solutions of no
BPS multivortices. We also describe the exact solutio
where vortices are positioned in arbitrary locations. In S
III, we study other static solutions focused on the self-d
BPS branch. Our study will be summarized in Fig. 1 whe
the anti-self-dual branch discussed in Ref.@11# is also in-
cluded. In Sec. IV, we study the general fluctuation spec
around the static solutions identifying all the tachyon
modes and massless modes. Masses of the degrees co
ing the vortex to the vacuum can be identified by diagon
izing the kinetic and quadratic potential terms simul
neously. The remaining degrees will be shown to
equivalent to the fluctuation spectra about the vacuum of
original Abelian-Higgs system. In Sec. V, we identify th
moduli parameters appearing in the exact solutions by a
lyzing the translation and the moments~constructed with
help ofcovariant position operator!. We then construct exac
time-dependent solutions describing vortices moving in a
trary velocities. The moduli space description is then work
out and the relevant metric will be shown to be flat. We th
describe how the matrix nature of the moduli coordina
emerges. The last section comprises the summary of ou
sults and concluding remarks.

II. EXACT MULTIVORTEX SOLUTIONS

We begin by recapitulating the properties of the ex
multivortex solutions of the noncommutative Abelian-Hig
theory found in Ref.@9#. The noncommutative Abelian
Higgs model in 211 dimensions is described by the L
grangian

L52
1

g2E d2xS 1

4
Fmn* Fmn1Dmf* ~Dmf!†

1
l

2
~f* f†2v2!2D , ~1!

where

Fmn5]mAn2]nAm2 i ~Am* An2An* Am!,
12501
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Dmf5]mf2 iAm* f. ~2!

The * product is defined by

f ~x!* g~x![@e2 i (u/2)e i j ] i] j8 f ~x!g~x8!#ux5x8 , ~3!

where we takeu to be positive without loss of generality
The theory can be equivalently presented by operators on
Hilbert space defined by

@ x̂,ŷ#52 iu, ~4!

where the* product between functions becomes the ordin
product between the operators. For a given function

f ~x,y!5E d2k

~2p!2 f̃ ~k!ei (kxx1kyy), ~5!

the corresponding operator can be found by the We
ordered form of

f̂ ~ x̂,ŷ!5E d2k

~2p!2 f̃ ~k!ei (kxx̂1kyŷ). ~6!

One may then easily show that*d2x f is replaced by 2pu tr f̂

and] i f corresponds to2( i /u)e i j @ x̂ j , f̂ #. With the operator-
valued fields, the action can be written as

L52
2pu

g2 trS 1

4
FmnFmn1Dmf~Dmf!†1

l

2
~ff†2v2!2D ,

~7!

where hats are dropped for simplicity and the derivative
tation is understood as] i f [2( i /u)e i j @xj , f #.

At this point, we introduce the creation and annihilatio
operators byc†[(1/A2u)(x1 iy) and by c[(1/A2u)(x
2 iy), which satisfy@c,c†#51. To represent arbitrary opera
tors in the Hilbert space we shall use the occupation num
basis byG5(gkluk&^ l u with the number operatorc†c. We
will further denote A5Ax2 iAy , ]2G[(]x2 i ]y)G
5A2/u@c,G#, and]1G[(]x1 i ]y)G52A2/u@c†,G#.

The system is invariant under the gauge transformatio

Am8 5U†AmU1 iU †]mU, f85U†f, ~8!
0-2
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NONCOMMUTATIVE VORTEX SOLITONS PHYSICAL REVIEW D63 125010
where the gauge group elementU satisfies

UU†5U†U5I . ~9!

We introduce a covariant quantityK defined by

A52 iA2

u
~c2K !, ~10!

which transforms asK85U†KU under the gauge transfor
mation in Eq.~8!. Later it will be interpreted as a covarian
version of position operator up to numerical coefficient.

The Hamiltonian can be constructed as

H5
2pu

g2 trS 1

2
~E21B2!1Dtf~Dtf!†1Dif~Dif!†

1
l

2
~ff†2v2!2D ~11!

using the time translational invariance of the system. On
gauge choiceA050, the equations of motion read

f̈2DiDif1l~ff†2v2!f50,

Äi1e i j D jB5Ji[ i @f~Dif!†2Diff†#, ~12!

with the Gauss law constraint

DiȦi5J0[ i @fḟ†2ḟf†#. ~13!

The exact multivortex solutions found in Ref.@9# are
given by

K5SmcSm
† , f5vSm , ~14!

where Sm denotes the shift operatorSm5(n50
` un

1m&^nu (m.0). The shift operator satisfies relations

Sm
† Sm5I , SmSm

† 5 P̄m[I 2Pm , ~15!

with the projection operatorPm defined by

Pm5 (
a50

m-1

ua&^au. ~16!

The magnetic field of the solitons reads

B5
1

u
Pm . ~17!

The flux defined byF[u tr B is m on the solution. Thus the
solution describesm vortices of the Abelian-Higgs theor
characterized by the topological quantityF. The energy of
the vortices is evaluated as

M ~v,u!5
pm

g2 S 1

u
1luv4D>

2pm

g2 Alv2. ~18!

Whenl51, the theory allows so-called Bogomol’nyi boun
as discussed in Ref.@11#. In fact it is straightforward to
12501
e

verify that the energy functional can be expressed as a c
plete squared form plus a topological term by

H5
pu

g2 tr$@B6~ff†2v2!#212~D6f!~D6f!†

6e i j DiJj62v2B%

>
2pv2

g2 uFu, ~19!

where we omitted the kinetic terms involvingEi and Dtf.
The saturation of the bound occurs once the self-d
Bogomol’nyi equations

D1f50, B5v22ff† ~20!

or the anti-self-dual equations

D2f50, 2B5v22ff† ~21!

are satisfied. Whenl51, the bound in Eq.~18! agrees with
the Bogomol’nyi bound that is an absolute energy bound
m vortex solution. Hence whenv251/u andl51, the solu-
tion should be a BPS solution. Indeed for the specific va
of uv2, one can check that the solution satisfies the self-d
BPS equations. This BPS solution is clearly stable beca
they saturate the energy bound set by the topological qu
tity.

Another obvious generalization of the static multivort
solution is given by@17#

K5SmcSm
† 1

1

A2u
(
a50

m21

laua&^au, f5vSm , ~22!

wherela’s are constant complex numbers. This solution h
the same flux and energy as the solution in Eq.~14!. Hence
we see thatla is the moduli parameter of the multivortice
Later we shall clarify the stability of the vortex solution
which is a priori not clear because they are not always B
saturated solutions. But before discussing this matter,
will study the BPS solutions forl51 anduv25” 1 or other
possible static solutions.

III. BPS SOLUTIONS OF MULTIVORTICES

In the last section, we have derived the BPS equation
the Abelian-Higgs theory withl51. The static multivortex
solutions are in general not BPS saturated. However, t
become self-dual BPS solutions for a special value ofuv2

51. In this section we focus on the BPS solutions. So
analysis on the anti-BPS solutions is carried out in Ref.@11#
and the comparison will follow at the end of this section.
terms ofK the BPS equations become

1

u
~12@K,K†# !5v22ff†, fc†2K†f50. ~23!

By virtue of the explicit form ofc† the latter can be solved
0-3
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f5
1

Au
(
n50

`
1

An!
K†nuf0&^nu, ~24!

whereuf0&5Aufu0& is an arbitrary constant vector. Subs
tuting this expression, the BPS equations are reduced
single equation,

uv2211@K,K†#5 (
n50

`
1

n!
K†nuf0&^f0uKn. ~25!

To solve this equation we take an ansatz forK as

K5 (
n50

`

f nun&^n1pu, ~26!

wherep is any positive integer. Substituting this expressi
into Eq. ~25!, one can show the following: BPS solution
exist only when 1>uv2. Furthermore, finite energy or flu
solutions exist only forp51. Specifically we obtain

K5 (
a51

m

Aa~12uv2!ua21&^au2 (
n51

`

knun1m21&^n1mu,

f5
z

Au
S um&^0u1 (

n51

`
k̄1k̄2••• k̄n

An!
un1m&^nu D , ~27!

wherezPC, m corresponds to the flux number which is
non-negative integer, and the sequencekn ,n51,2, . . . satis-
fies the recurrence relation

qn111qn2122qn5
qn

n
~qn2qn211uv2!, ~28!

with qn[uknu22n. The initial data for the recurrence rela
tion are

q05m~12uv2!, q15m~12uv2!1uzu22uv2, ~29!

where z is an adjustable parameter. The magnetic field
given by

B5 (
a50

m21

v2ua&^au1
1

u (
n50

`

~qn2qn11!un1m&^n1mu,

~30!

so that the flux is

F5m2 lim
n→`

qn . ~31!

Equation~27! satisfies the BPS equations for any value ofz.
Choosingz50 or uzu5Auv2 gives plus infinity or minus
infinity flux solution, respectively. Furthermore, ifqn con-
verges, the converging value must be zero. Thus by cont
ity, there existsz, 0,uzu<Auv2, which makesqn con-
verge to zero, and hence BPS solutions have finite
12501
a

s

u-

d

quantized energy. The Appendixes contain our proof.1 For
uv251, the choiceuzu51 leads to the exact solution wit
qn50 or kn5An.

We have shown that, within the ansatz taken, there are
BPS solutions possessing a positive flux foruv2.1. With-
out limiting the discussions to the specific form, one m
prove that there are indeed no self-dual BPS solutions
uv2.1 as an analytic perturbation of small parameterv
around theuv251 BPS solution. For this purpose, we sha
take a generic perturbation around the solution and expan
as a power series of the small parameterv[Aueu with e
[uv221. ~The choicev5e will quickly lead to a contra-
diction.! Namely, we consider the fluctuation around the e
act solution as

f5v~11w!Sm ,

K5SmcSm
† 1h, ~32!

with the expansions

w5(
l 51

`

v lw ( l ) , h5(
l 51

`

v lh( l ) , ~33!

and may show that there are no solutions foruv2.1. The
proof is relegated to the Appendixes.

One could also try an expansion with respect to a para
etervn defined byueu1/n for arbitrary non-negative integers
Though a little complicated, one may show that the conc
sion remains unchanged. Thus there are no solutions of
BPS equations foruv2.1 that can be expanded in a pow
series ofvn . Here we do not turn on the diagonal entryla of
K. As will be explained later, the effect of nonzerola cor-
responds to locating each vortex atla5lx

a2 ily
a position.

Considering the case of one vortex, one can easily turn
this value by using the translation symmetry of the syste
Hence our proof above is strictly applicable to this ca
Furthermore,m vortices are an assembly of individual vort
ces, one naturally expects that the above proof goes thro
evenm vortices with generic values ofla .

Figure 1 summarizes our investigation of the static so
tions in the Abelian-Higgs theory forl51. The self-dual
BPS solutions exist only foruv2<1. In the range the non
BPS exact solutions are unstable due to their higher energ
Whenuv2.1, the non-BPS branch alone continues to ex
For the solutions of a negative flux, it is shown in Ref.@11#
that the anti-self-dual solutions exist foruv2@1 or uv2

!1. In the intermediate values ofuv2, the existence of the
self-dual solutions is not known. The exact vortex solutio
with positive magnetic flux exist even forl5” 1. It will be
shown later that they are also stable only whenuv2>1.

1We here like to mention that we have also numerically verifi
that the value ofuzu, which makes the series to converge to zero
to a few hundred terms, approaches a unique value for a given v
of uv2P$0.1,0.2, . . . 0.9% and form51.
0-4
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IV. FLUCTUATION SPECTRA AROUND THE VORTICES

In the last section, we have identified the possible st
vortex solutions including BPS and non-BPS cases. In
BPS case, the classical stability of the solution is quite cl
because the energy is saturating the bound set by the t
logical quantity. For the case of non-BPS, however, it is
a priori clear whether the vortices are stable or not. Wh
uv2,1, we have shown that there exist solutions that h
lower energies than the exact non-BPS solutions. Thus
expect naturally that there should be tachyonic modes.
also shown that BPS solutions do not exist foruv2.1.
Hence in this case the issue of stability seems a diffe
matter. To resolve these issues clearly, we shall study, in
section, the quadratic fluctuation spectra around the e
solutions identifying the signature of mass squared for
possible degrees. It turns out that the solutionsuv2,1 are
indeed unstable by developing tachyonic modes in th
spectra. In case ofuv251, the potential tachyonic degree
become massless and the solution is indeed stable. Foruv2

.1, solutions are classically stable because the tachy
degrees become massive. For all these three cases, the fim
diagonal elements of the gauge field fluctuation are mass
which will be identified with the degrees of vortex position

Let us study first the quadratic fluctuation of the origin
theory about the vacuumK5c1K andf5v(11h) without
any vortices. The Lagrangian is then reduced to

Lv5
2p

g2 trF uK̇u21uv2~ uḣRu21uḣI u2!2
1

2u
u@c,K †#

1@K,c†#u222v2u@c,hR#u222v2uK1 i @c,hI #u2

22luv4hR
2 G , ~34!

with the Gauss law constraint

@c†,K̇#1@c,K̇†#22iuv2ḣI50, ~35!

where hR[1/2(h1h†) and hI[(1/2i )(h2h†). One may
simplify this action by reintroducingA0 field, which has a
role of imposing the Gauss law constraint. We then choos
gaugeA05ḣI , at which K1 i @c,hI #→K. The Lagrangian
becomes

L5
2p

g2 trF uK̇u1uv2uḣRu22
1

2u
u@c,K†#1@K,c†#u2

22v2~ u@c,hR#u21uKu21luv2hR
2 !G , ~36!

with the gauge condition now

@c†,K̇#1@c,K̇†#2 i †c†,@c,hI #‡2 i †c,@c†,hI #‡22iuv2ḣI50.
~37!

This can be solved in terms ofhI for arbitraryK, on which
the Lagrangian does not depend. It is now clear that all
degrees are massive; the components ofK have a mass
squared greater than 2v2 while hR components a mas
12501
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squared greater thanlv2. We see that the gauge field ab
sorbs part of the scalar degrees and becomes massive.
corresponds to the so-called Higgs mechanism of the o
nary gauge theory when the gauge symmetry is broken sp
taneously.

To study the quadratic fluctuation around the exact so
tions, we turn on generic perturbation of the form

K5SmcSm
† 1L1K, f5v~11w!Sm , ~38!

with K andw decomposed as

K5A1VSm
† 1SmW†1SmK̃Sm

† 5S A V

W† K̃D ,

w5XSm
† 1Smh̃Sm

† 5S 0 X

0 h̃
D . ~39!

Here we setwPm50 with out loss of generality since a
arbitrarydf can be expressed byvwSm . Further introducing
unitary operators

Ua[e
1

A2u
(l̄ac2lac†), ~0<a<m21!, ~40!

we parametrize the components deliberately as

A5 (
a50

m21

(
b50

m21

Aabua&^bu, V5 (
a50

m21

(
n50

`

Vanua&^nuUa ,

W5 (
a50

m21

(
n50

`

Wanua&^nuUa , X5 (
a50

m21

(
n50

`

Xanua&^nuUa ,

~41!

K̃5 (
k50

`

(
n50

`

Kknuk&^nu, h̃5 (
k50

`

(
n50

`

h̃knuk&^nu.

The unitary operatorsUa satisfy

UacUa
†5c1

1

A2u
la , Uac†Ua

†5c†1
1

A2u
l̄a , ~42!

which are helpful in identifying variables that diagonaliz
both the kinetic and potential terms.

Now we insert these into the original Lagrangian in t
gaugeA050 and expand it to the quadratic terms of t
fluctuation. We get

Lquad5
2p

g2 F(
ab

S uĊabu1uĠabu22
ula2lbu2

u2 uC abu2D
1(

a
S uṪau22

uv221

u
uTau2D G1

2p

g2 (
a,n

F uḢanu2

1uẎanu21uĠanu22
2n111uv2

u
~ uHanu21uYanu2!G

1LD , ~43!
0-5
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whereLD is same as the Lagrangian~34! butK andh and are
replaced respectively byK̃ andh̃. In this Lagrangian, we pu

Cab[
1

A2
@e2 iuabAab2eiuabA ab

† #,

Gab[
1

A2
@e2 iuabAab1eiuabA ab

† #, ~44!

whereuab is the argument ofla2lb or an arbitrary constan
for la5lb . We also setTa , Han , Yan , andGan as

Ta[Va0 ,

Han[
Auv2

Auv212n11
S XanA2n11

2
1

A2n11
~An11Va,n111AnWa,n21!D ,

Yan[
1

A2n11
~AnVa,n112An11Wa,n21!,

Gan[
1

Auv212n11

3~uv2Xan1An11Va,n111AnWa,n21!. ~45!

To this order, the Gauss law constraints forA and the off
diagonal degrees become

Ġab50 ~only for la5” lb!, Ġan50, ~46!

and, forLD , it takes the same form in Eq.~35! whereK and
h are again replaced respectively byK̃ and h̃.

From this it is clear thatCab is massless whenla andlb
coincide. In particular the diagonal componentsCaa andGaa
are always massless; they are associated with the tra
tional motion of the vortices. The nature of this motion w
be exploited when we discuss the low energy dynamics
the vortices. Whenuv2,1, Ta has a negative mas
squared. Hence we see that the vortices are unstable eve
the case of a vortex. On the other hand, foruv2>1, the
instability disappears and the vortex solutions are sta
This is also quite consistent with the fact that there are
BPS solutions foruv2.1. If there were such solutions, the
must be tachyonic modes because the BPS solution sh
have lower energy than the non-BPS solutions.

Especially whenuv251, the potential tachyonic degree
become massless and may participate in the low energy
namics as will be discussed later. The remaining of diago
components areHan andYan . TheGan degrees are droppe
out of the physical space spectrum once the Gauss law
straint is imposed. Here we were be able to diagonalize th
infinite dimensional degrees, which is in general not an e
task to achieve. The spectrum of these physical degree
particularly simple; they are all massive with the same m
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v21(2n11/u), which is independent of the indexa. This
spectrum can surely be understood from the underly
D-brane perspective.

Finally, LD describes the fluctuation spectra of the orig
nal system around its trivial vacuum configuration. This is
coincidence because the degrees of the original system
remain around vortices. At this point, we like to emphas
again that they are all massive controlled by the mass scav
andAlv.

V. LOW ENERGY DYNAMICS

From the analysis of the fluctuation spectra, it is clear t
the vortices are unstable due to the tachyonic modes
uv2,1. On the other hand, the vortices do not exhibit a
tachyonic instabilities foruv2>1. For all ranges of param
eteruv2, the vortex solutions depend upon 2m-dimensional
free parameters wherem is the topological number corre
sponding to the total number of vortices. We shall first co
sider the stable case whereuv2>1 and begin by clarifying
the physical interpretation of these parameters. In short, th
parametersla are positions of vortices on the plane whe
the noncommutative gauge theory is defined. For the ga
group element defined by

UPUP
† 5I ~47!

with P̄mUP5UPP̄m5 P̄m , the corresponding gauge transfo
mation affects only the firstm3m andm3` component of
K andf. Utilizing this gauge freedom, we have diagonaliz
the m3m part of K by

PmKPm5
1

A2u
diag@l0 ,l1 ,...,lm21# ~48!

in the solution~22!. Any permutations of the eigenvaluesla
andlb are achieved through the gauge transformation by
Weyl subgroup elements. So they are physically equiva
configurations. Thus the moduli space is in fact (R2)m/Sm
whereSm is the permutation group.

In order to identify the meaning of the moduli paramete
let us first study the effect caused by the overall translat
of the vortex solutions. For this, we note that the infinite
mal translation is given by

dAi52@j j] jAi2Di~j jAj !#5Be i j j j ,

df52@j j] jf2 i ~j jAj !f#52j jD jf, ~49!

where we have added the infinitesimal gauge transforma
by the gauge functionj jAj . On the solution, this produces

dAi5
1

u
e i j j j Pm , df50. ~50!

The magnetic fieldB and the Higgs gradientDif are un-
changed by the translation and, consequently, one may
struct easily the fields translated by a finite amount. Nam
the Higgs change isDf50 while the change of gauge fiel
0-6
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NONCOMMUTATIVE VORTEX SOLITONS PHYSICAL REVIEW D63 125010
in terms of theK variable is given byDK5(1/A2u)jPm
wherej5j12 i j2. Hence we see here that the total trans
tion leads to a uniform shift of eachla by the amountj.
This is of course quite consistent with the interpretation t
the moduli parameters represent positions of the vortices
course due to the U(̀) gauge symmetry, the effect of tran
lation does not quite look like a translation of profile in th
case of ordinary field theory where a densityr(x), for ex-
ample, is merely shifted byj as inr(x2j) as a result of the
translation. In this respect whether local informations such
positions of vortices is well defined in noncommutati
gauge theory is not obvious at first sight. There is anot
way to get the above result of translation. The global tra
lation generator can be alternatively expressed as

T5e2 i j i pi. ~51!

where pi is the translation generatorpi52(1/u)@e i j xj ,•#.
In noncommutative field theory, the operation of translat
on a field can be expressed as a similarity transformatio

T f~x!5UTf ~x!UT
† , ~52!

whereUT is a unitary matrix defined bye(1/A2u)(jc†2 j̄c). In
our case, we add a gauge transformation byU5UT after the
translation. Then the resulting gauge and scalar fields re

A85A1
i

u
j,

f85fUT
† . ~53!

The gauge field is shifted only by a constant piece. We
also thatff† is invariant. If the scalar were in the adjoin
representation, it would be invariant under the transform
tion. In order to obtain the previous result in Eq.~50!, we
further perform a gauge transformation byU

5e(1/A2u)(jcm
†

2 j̄cm) with cm[SmcSm
† . Using the explicit ex-

pression of the solutions, one may easily check that res
agree with Eq.~50!.

One could also study the exact solutions moving in a c
stant velocity as discussed in Ref.@8#. The theory is not
Lorentz invariant because the* product does not respect th
Lorentz symmetry. However, as discussed in Ref.@8#, one
may still construct moving soliton solutions once the sta
solution is given. The construction is achieved by Lore
boosting of the static solution followed by the change ofu by
gu where g is the Lorentz dilation factor defined b
1/A12b2 with velocity b. Constructed this way, the solu
tion moving inx direction reads explicitly

A0852gbxAx~x8,y8;gu!, Ax85gAx~x8,y8;gu!,

Ay85Ay~x8,y8;gu!, f85f~x8,y8;gu!, ~54!

assumingA050 for the static solution. Here the argumen
are given byx85g(x2bxt) andy85y and the fields with-
out prime denote any static solutions. In the present case,
may further simplify the form of the moving solution aga
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takingA0850. This gauge choice is achieved from the abo
solution by the gauge transformation with

U5e2(1/A2u)(jS̃mc̃†S̃m
†

2 j̄S̃mc̃S̃m
† )e(1/A2u)(j c̃†2 j̄ c̃), ~55!

where we define

c̃5
Agx2 iy~Ag!21

A2u
,

S̃[ (
n50

`

un11&8^nu85 c̃†~ c̃c̃†!21, ~56!

andj5bxt. Here un&8 is the number eigenstate construct
by the number operatorc̃†c̃. The form of the solution
becomes2

A852 i
A2

Au
~c2S̃mcS̃m

† !1
i

u
bxt P̃m ,

f85vS̃m , ~57!

with A0850. The map fromc5(x2 iy)/A2u to the new ba-

sis c̃5(1/A2u)@xAg2 iy(Ag)21# belongs to the area pre
serving diffeomorphism. Except for some overall numeric
coefficients, the solution apparently represents a config
tion that has an elliptic shape; for example, the magne
field of a moving vortex appears in the function represen
tion as 2e2(1/u)(x2g1y2g21). Utilizing the U(̀ ) gauge sym-
metry, the solution~57! can be further mapped to

A852 i
A2

Au
~c2SmcSm

† !1
i

u
bxtPm ,

f85vSm , ~58!

by the gauge transformation with the unitary matrix

US5S̃mSm
† 1 (

a50

m21

ua&8^au. ~59!

Inserting Eq.~58! into the time-dependent field equation
one may directly check that it is indeed a solution. Actual
one may even construct solutions representing more gen
motion of vortices. The time-dependent solutions read

A852 i
A2

Au
~c2SmcSm

† !1
i

u (
a50

m21

@la1bat#ua&^au,

f85vSm , ~60!

2The appearance ofc instead of c̃ in the gauge field is not a
typographical mistake.
0-7
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DONGSU BAK, KIMYEONG LEE, AND JEONG-HYUCK PARK PHYSICAL REVIEW D63 125010
with ba[bx
a2 iby

a . The motion of each vortex takes plac
independently to an arbitrary direction. The magnetic fi
and electric field are now

B85
1

u
Pm , Ei85e i j (

a50

m21

b j
aua&^au. ~61!

The energy of the moving vortices is evaluated as

E~b!5
1

2S 2p

g2u D (
a50

m21

ubau21
pm

g2 S 1

u
1luv4D , ~62!

where no approximation is made. The energy behaves
cisely as free nonrelativistic particles with a mass 2p/g2u.

One striking fact in the moving solutions lies in the fa
that there seems to be no limit in the velocity~see Ref.@20#
for the earlier investigation of this aspect!. It can apparently
exceed the light velocity.3 On the other hand, in the origina
construction by the Lorentz boost followed by the change
the scaleu, the construction itself loses its validity when th
velocity exceeds the light velocity. Specifically, the factorg
becomes imaginary. Nonetheless, the final form of the s
tion in this range of velocity does solve the time-depend
equations of motion. Our system lacks the Lorenz invaria
and thus this seems not a serious problem. Without go
into detail, we like to mention the fact that, when the veloc
exceeds the light velocity, part of once stable degrees
come tachyonic and instabilities are necessarily set in. He
the solutions seems not to have much physical significa
when the velocity exceeds the light velocity. Further inve
tigation is required on this issue.

Let us now turn to the moduli dynamics of vortices. T
study of translation justifies thatl ’s faithfully represent the
overall position of vortices. Let us consider the followin
operator:

Xi[xi2ue i j Aj , ~63!

which may be rewritten equivalently asX5X12 iX2

5A2uK. This transforms covariantly under the gauge tra
formation, i.e.,X→U†XU. Since the operator reduces toxi
in the commutative limit and is gauge covariant, we shall c
it the covariant position operator. Another justification for
the terminology comes as follows. It transforms as

Xi85Xi1j ~64!

under the translation of Eq.~52! followed by the gauge trans
formation byU5UT . This is precisely the required proper
as apositionoperator under translation up to gauge freedo
It will be used to measure local properties of the noncomm

3If the moving solution were not exact, we would have eas
missed this point. This is similar to the case of the noncommuta
scalar field theory with a quartic interaction. The two particle bou
state energy is unbounded from below, which was observed in
exact nonperturbative computation of the bound state energy@19#.
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tative field theory. To show that the eigenvaluesla represent
positions of vortices, let us consider the following momen

I k,l[2pu tr@Xk~X†! lH#. ~65!

These quantities are gauge invariant and measure the
distribution of matters in noncommutative gauge theory. F
example,I 1,1 corresponds to the moment of inertia for th
configurations of the ordinary field theory.

For the exact vortex solutions (uv2>1), we have

I k,l5Mone(
a50

m21

la
kl̄a

l . ~66!

In the case of commutative field theory limit, the same m
ments can be found only when the Hamiltonian density is
sum of the delta function asH(x)5(a50

m21Moned
2(x2la).

Thus we show that the relatively local information of no
commutative gauge theory can be obtained from the m
ments defined above and that the eigenvaluesla are repre-
senting the positions of vortices up to the permutat
symmetry. Considering, for example, vortices located at
origin, the size information of the vortex configuration ca
be extracted by the moment of inertia. The ‘‘size’’~measured
by the covariant position operator! is finite for the BPS vor-
tices (uv2,1). In fact it decreases within the BPS branch
u gets larger and becomes zero for the stable non-BPS
tices (uv2>1).

The moduli dynamics of the noncommutative solito
may be pursued in a similar manner as solitons in an o
nary field theory. As stated before, we shall consider first
case whereuv2>1. We proceed by giving the time depen
dence to the moduli parameters and adding an approp
gauge freedom so that the motion respects the Gauss
constraint. But in our present case, it is enough to sim
give the time dependence without adding any gauge deg
because they already satisfy the Gauss law constra
Namely we insert

K5K̄„la~ t !…, f5f̄„la~ t !… ~67!

to the full Lagrangian where quantities with a bar denote
vortex solutions.~This ansatz is quite consistent with th
moving solutions constructed before.! The resulting effective
Lagrangian is given by

Leff52mMone1
p

g2u (
a50

m-1

l̇alG a . ~68!

Consequently, the moduli space metric on (R2)m/Sm is flat,
i.e.,

ds25 (
a50

m21

dladl̄a . ~69!

The inertia mass here is different from the rest mass but th
is no physical reason why these two masses agree, no

e
d
e
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NONCOMMUTATIVE VORTEX SOLITONS PHYSICAL REVIEW D63 125010
mention that this effective Lagrangian can be easily qu
tized and wave functions are those ofm free nonrelativistic
bosons with mass 2p/g2u.

For the present model, one may in fact go beyond
moduli space description in discussing the relevant low
ergy dynamics. In the previous section, we studied full flu
tuation spectra around the static solutions. We find that
diagonal degreesWa j , Va j ( j 5” 0), and Pmw P̄m @with f
5v(11w)Sm# are massive with a mass squaredmj

25(2 j

11/u)1v2 ( j >0). Furthermore,P̄mKP̄m components have
a mass squared at least order ofv2. The real part ofP̄mw P̄m
has a mass order oflv2 while its imaginary part is a gaug
degree of freedom that will be absorbed into the gauge fi
P̄mKP̄m by the Higgs mechanism. The alternative descr
tion of low energy dynamics is obtained by ignoring all the
massive degrees of freedom and focusing on all the rem
ing fluctuations around thela50 solution. Namely we only
consider the fluctuation of the gauge field inm3m sector
and the potential tachyonic mode defined by

A[PmKPm ,

ut&[ (
a50

m21

Taua&. ~70!

The full Lagrangian is then reduced to

Leff5
2p

g2u Fu tr ȦȦ†2
1

2
tr@A,A †#21uuu ṫ&u22

1

2
~ uA †ut&u2

1uAut&u2!2
3

2
^tu@A,A †#ut&2~uv221!u ut&u2

2uut&u4G1L resa, ~71!

where the Gauss law constraint

@A,Ȧ†#2@Ȧ,A†#1ut&^ṫu2u ṫ&^tu50,

Ȧ†ut&2A†u ṫ&50 ~72!

is still in effect on the Lagrangian. The residual part of t
Lagrangian can be organized as follows. Denoting all
remaining massive modes collectively byZp , there are
terms ofO(Zp

2), O(AZp
2), O(tZp

2), O(tAZp), O(t2Zp),
O(Zp

3), and quartic terms including at least one massive
greesZp . One should note that there are no terms of or
O(A 2Zp).

Whenuv2.1, the tachyonic modes become massive t
To truncate the Lagrangian consistently, we considerA
;O(e). The theA 4 terms contribute to the Lagrangian a
O(e4). Now if one turns on any massive degrees, it sho
be O(e2) due to Zp

2 or t2 terms in order to have a valid
approximation of dropping the massive degrees. Then
interaction terms between the massive and the massles
grees are of higher order, i.e.,O(en) with n>5. For ex-
ample, we see that the terms ofO(AZp

2) is of orderO(e5). If
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there were terms of orderO(A 2Zp), these would contribute
to the potential asO(e4). However, there are no such term
as stated previously. Hence the massive degrees are e
tively decoupled from the massless degrees to the qua
order in the low energies. Hence we may consistently d
all the massive degrees consistently. Ignoring all the mas
modes, we are led to

Leff5
2p

g2 S tr ȦȦ†2
1

2u
tr@A,A †#2D ~73!

with a constraint

@A,Ȧ†#1@A†,Ȧ#50. ~74!

This Lagrangian is precisely the matrix model, which co
cides with the bosonic part of an effective Lagrangian
mD0 branes moving in two dimensional target space.

The vacuum moduli of this effective action is the vorte
moduli described previously by the coordinatela on
(R2)m/Sm . We see clearly that the singularity when vortic
are overlapping is resolved in this description. Moreover,
commutative moduli coordinates are replaced by nonco
mutative matrix degrees whose structure is especially
evant when vortices are nearly coincident. Hence a leg
mate approach toward the quantization of the low ene
dynamics is also quite clear.

One might ask at this point about the nature of the co
dinates of vortex positions. Since the noncommutative sp
underlies in defining the noncommutative field theories, o
would also expect that the noncommutative solitons sho
see directly the noncommutative nature of the underl
space through their forms of interactions. But the above
scription does not show directly the noncommutative natu
Namely, the interactions do not show any particular struct
depending upon the noncommutativity scaleu. Stated again,
nothing particular happens at the separationDl;Au. None-
theless, the vortex positions are truly described not
c-number eigenvalues but by matrices. In this respect,
locations of vortices still possess a noncommutative na
that is originated from the matrix properties.

Next, we consider the case whereuv251. In this case the
potential tachyonic modes become massless. But there
quartic contributions, so it is not a moduli degree as defin
by the configuration space of the constant energy. But
include it because its contribution is of the same order oA
when A is small. Hence, to study interaction between t
massless modes and the massive modes, we letA andt be
the order ofe as before. ThenZp may be allowed to the
order of e2 to have a well defined low energy descriptio
But this time, there are interaction terms of the formstAZp
and t2Zp , whose contribution to the Lagrangian isO(e4).
Hence the massless degrees are not decoupling from ma
degrees. One could write down the consistent effective
grangian for this case too. But it turns out that the effect
Lagrangian involves an infinite number of massive degre
Instead of giving a detailed analysis, we here briefly co
ment on the nature of the resulting motion involving t
potential tachyonic modes. First note that one may eff
0-9
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DONGSU BAK, KIMYEONG LEE, AND JEONG-HYUCK PARK PHYSICAL REVIEW D63 125010
tively describe the motion byA andt once all the massive
modes are integrated out. One may then easily verify t
amongO(A 2t2) terms, only the term of̂tu@A,A †#ut& re-
mains out of Eq.~71!. This is quite consistent with the trans
lational invariance of the underlying system, whose action
replacingA by A1jI m3m . The motion along thet direction
is controlled by two terms,̂tu@A,A †#ut& andt4. This mo-
tion excites other components of the magnetic field out of
static solution (1/u)Pm , while the flux F is preserved.
Hence the motion represents an oscillatory dispersion
magnetic field to other components. If the tachyonic mo
are small enough, the part of matrix mechanics respons
for the vortex positions is little affected for fixed energies

Now we turn to the case whereuv2,1. In this case the
fluctuations include the tachyonic modes. Small fluctuatio
will trigger the vortex to run into a more stable lower ener
configuration that corresponds to BPS states. As shown
viously, the BPS state has the same flux as the original
stable static configuration. Thus during the process, the
should be conserved while the difference in energy is ev
tually dissipated away. The tachyonic instability is pres
even for the case of a single vortex. So it can be interpre
as a collapse of each individual vortex to a more stable o
i.e., the BPS state. The detailed study of the collapse wil
quite interesting in relation with a recent discussion of
tachyon condensation in string theory.

VI. CONCLUSIONS

In this paper, we have first investigated general static s
ton solutions in the noncommutative Abelian-Higgs theo
There are exact multivortex solutions found in Ref.@3# for
general values of parametersl anduv2. These are in genera
non-BPS exceptl5uv251. We extend these solutions b
finding exact solutions describing vortices positioned at
bitrary locations. We have shown that these solutions
unstable only whenuv2,1. It is therefore expected tha
lower energy non-BPS solutions exist foruv251 and l
51. We confirm this by considering a self-dual BPS bran
for l51. For uv2<1, the self-dual BPS branch develop
which has a lower energy than the exact unstable vorti
The BPS branch ended at the pointuv2 and there no longe
exist BPS solutions foruv2.1. Instead, the exact non-BP
configurations become stable configurations. We also il
trated the case of anti-self-dual BPS solutions that hav
negative flux@11#. The solutions are shown to exist foruv2

!1 or uv2@1. For the intermediate region, the existence
the BPS solutions are not clear yet.

We then discussed the general fluctuation spectra aro
the exact static vortices with general moduli parametersla .
It is shown that there are tachyonic instabilities only wh
uv2,1. We have identified the massless degrees of freed
and masses of all the off diagonal degrees. With help of
covariant position operator and studying translation of vo
ces, we were able to identify the physical meaning of
moduli parameters; they are positions of the vortices.
were able to construct exact moving solutions of vortic
where each vortex is moving freely in a arbitrary const
velocity. We then show that the metric in the moduli space
12501
t,

is

e

of
s
le

s

e-
n-
x

n-
t
d

e,
e
e

li-
.

r-
re

h

s.

s-
a

f

nd

m
e
-
e
e
,
t
s

indeed flat by evaluation of the low energy effective L
grangian within the moduli space description. In fact, o
may go beyond the moduli space description in this case
identifying quartic order interaction terms of the massle
degrees of freedom. It is nothing but the matrix model
mD0 branes moving in a two-dimensional target space. T
we have shown that the low energy dynamics are faithfu
described not by positions of individual vortices but by m
trices.

The exact time-dependent solutions describe vortices w
constant velocity. What is striking in the solution is not th
vortices are moving freely but that the velocity is not limite
by the light velocity. The solution exists even for the veloc
greater than the light velocity. We argued that the fluctuat
becomes tachyonic when the velocity exceeds the light
locity. Therefore the solution seems not to have much ph
cal meaning when the velocity exceeds the light veloc
Further detailed study is required on whether or not the
lution in the region is consistent with special relativit
Though the system lacks the Lorentz symmetry, the spe
relativity should be still in effect because one may regard
system as a Lorentz invariant system with a specific ba
ground field~a constantNS-NS two form background field
in string theory! is turned on.

We expect that our investigations can be generalized
the N52 supersymmetric version of the noncommutati
Abelian-Higgs theory. In particular, supersymmetries w
not be preserved even partially for the sector of nonvanish
flux with uv2.1. We like to finally mention that our inves
tigations may be applicable to other exact solutions rece
found @15–18#.
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APPENDIX A: SELF-DUAL BPS SOLUTIONS

Here we demonstrate how to obtain the BPS solutio
Substituting the ansatz forK @Eq. ~26!# into the master Eq.
~25! gives

(
n50

`

~uv2211u f nu22u f n2pu2!un&^nu

5(
i 50

`

(
j 50

`

(
n50

`
si s̄j

n!
f̄ i f̄ i 1p••• f̄ i 1(n21)p

3 f j f j 1p••• f j 1(n21)pu i 1np&^ j 1npu, ~A1!

where we setuf0&5( i 50
` si u i & and f j50 for any j ,0. Com-

paring u0&^ i u, i>1 components of the left and right side
we see 05s0s̄i , i>1. Now by mathematical induction, on
can show easily 05si s̄j , i 5” j . Hence we may putuf0&
5zum& for some complex numberz and a non-negative in
teger,m. This simplifies Eq.~A1! as
0-10
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(
n50

`

~uv2211u f nu22u f n2pu2!un&^nu

5uzu2(
n50

`
1

n!
u f mu2u f m1pu2•••u f m1(n21)pu2um1np&

3^m1npu. ~A2!

Hence

uv2211u f nu22u f n2pu250, ~A3!

for 0<n,m or m,n,n5” m mod p, and

uv2211u f m1npu22u f m1(n21)pu2

5
uzu2

n!
u f mu2u f m1pu2•••u f m1(n21)pu2 ~A4!

for 0<n. With qn[u f m1(n21)pu22n2uv2(p21)(n21),
the magnetic field is expressed as

B5v2( 8
n

un&^nu

1
1

u (
n50

`

@qn2qn112uv2~p21!#unp1m&^np1mu,

~A5!

where (8 is the sum over 0<n,m and m,n, n
Þm mod p. The flux is then given by

F5muv21q02 lim
n→`

qn , ~A6!

where if we write m5pk1r , 0<k,0<r<p21, q0
5k(12uv2)1(p21)uv2. In order to have a finite energ
qn ought to converge. Ifz50, we find thatu f np1r u25(1
2uv2)(n11), 0<n,0<r ,p, and qn52uv2pn1uv2(p
2k21)1k. For this solution, the energy diverges. On t
other hand, ifz5” 0 thenqn satisfies the following recurrenc
relation:

qn112qn1puv2

qn2qn211puv2
511~p21!uv21

1

n
@qn2~p21!uv2#.

~A7!

We take then→` limit of the above equation and conclud
that p51 is a necessary condition forqn to converge. Now
for p51 let us assume that limqn5a. This implies that, for
any «.0, there exists largeN such thata2«,qn,a1«
for n>N. Equation~A7! implies

uv2

qN2qN211uv2
5 )

n5N

` S 11
qn

n D . ~A8!

Furthermore, we have
12501
)
n5N

` S 11
a2«

n D, )
n5N

` S 11
qn

n D, )
n5N

` S 11
a1«

n D .

~A9!

However, for any%5” 0

)
n5N

` S 11
%

n D5 expS (
n5N

`

ln~n1% !2 lnnD , ~A10!

which is either infinity or zero depending on the signature
%. Thus, Eqs.~A8!–~A9! implies thata must be zero.

With p51, Eq. ~A7! gives a recurrence relation

qn112qn5qn2qn211
qn

n
~qn2qn211uv2!, ~A11!

with two initial data,q05m(12uv2) and q15m(12uv2)
1uzu22uv2. Therefore if uzu2.uv2, then qn is monotoni-
cally increasing. As the only possible converging value
zero, it must diverge. In caseuzu50, it can be easily solved
by qn5m(12uv2)2nuv2.

APPENDIX B: NONEXISTENCE OF SELF-DUAL BPS
SOLUTIONS FOR uV2Ì1

We shall work in a gaugeKi j 50 for i . j . The BPS equa-
tions can be written as

wcm
† 5h†P̄m1cm

† w P̄m1h†w P̄m , ~B1!

ePm5~11e!~w P̄m1 P̄mw†1w P̄mw†!

2~@cm ,h†#1@h,cm
† #1@h,h†# !, ~B2!

wherecm[SmcSm
† andP̄m512Pm . The relevant part of the

first order equations inv reads

Pmw (1)P̄m52Pmh(1)
† cm1Pmh(1)cm

† ,

Pmw (1)cm
† 5Pmh(1)

† P̄m . ~B3!

SincePmh(1)
† P̄m50 for our gauge choice, we find thatwam

(1)

5ha,m11
(1) , ham

(1) can be arbitrary but all the remaining com
ponents should vanish. Now we investigate the second o
equations obtained from the perturbation equation~B2!. Let
us multiply Pm to the left and to the right of the equation
the same time. We obtain

2
e

ueu
Pm1Pmw (1)P̄mw (1)

† Pm5@Pmh(1)Pm ,Pmh(1)
† Pm#

1Pmh(1)P̄mh(1)
† Pm . ~B4!

Using the result of the first order equations and taking tr
of the above equation, one finds

2
me

ueu
5 (

a50

m-1

uham
(1)u2. ~B5!

Hence we get a contradiction whene.0.
0-11
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