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We consider the noncommutative Abelian-Higgs theory and investigate general static vortex configurations
including recently found exact multivortex solutions. In particular, we prove that the self-dual Bogomol'nyi-
Prasad-Sommerfiel(BPS solutions cease to exist once the noncommutativity scale exceeds a critical value.
We then study the fluctuation spectra about the static configuration and show that the exact non-BPS solutions
are unstable below the critical value. We have identified the tachyonic degrees as well as massless moduli
degrees. We then discuss the physical meaning of the moduli degrees and construct exact time-dependent
vortex configurations where each vortex moves independently. We finally give the moduli description of the
vortices and show that the matrix nature of moduli coordinates naturally emerges.
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[. INTRODUCTION erties of the noncommutative vortices are striking even in
their static properties. The multivortex solutions are in gen-
The noncommutative solitons found in noncommutativeeral not BPS saturated states but their energy, nevertheless,
scalar theonf1] do not even exist in the commutative ver- scales linearly in the number of vortices. This seems to imply
sion of the theory. This indicates that the characteristic propthat there are no interactions between vortices even in this
erties of solitons in some noncommutative field theories mayon BPS case. We shall show that the self-dual BPS solu-
greatly differ from those of ordinary solitons. Of course, tions exist only wherdv?<1 wherev is the vacuum expec-
there are examples where the nature of noncommutative soliation value of the Higgs scalar. This property is also con-
tons and the corresponding ordinary solitons are quite similagrasted with the commutative Abelian-Higgs theory where
to each other in the sense that the properties of noncommugke self-dual BPS vortices exist for all vacuum expectation
tative solitons are given by just smooth deformation gov-values of the scalar. There is another aspect concerning the
erned by the noncommutativity scafe noncommutative vortex solitons; the theory allows exact
One such example is the () Bogomol'nyi-Prasad- time-dependent solutions of vortices, each of them moving in
Sommerfield BPS monopole discussed in Ref2-6]. The  an arbitrary velocity from an arbitrary initial location. In
energy and the charge of the BPS monopole do not dependew of generic complexity involved with soliton dynamics
on the noncommutativity scale. The effect of the noncommuof field theory, the existence of such time-dependent solu-
tativity appears as a tilting ob strings in the transverse tions is quite peculiar.
space giving the dipole nature of the magnetic charge distri- In these respects, the systematic approach toward the un-
bution. It can be argued that the interactions of thig)lBPS  derstanding of the noncommutative vortex solutions seems
monopoles are independent of the noncommutativity séale imminent on the following issues. First, the possible static
within the moduli space description of their dynamjés7]. solitonic configurations need to be mapped out including the
Contrary to the monopole case, the noncommutative scalaself-dual or anti-self-dual BPS branches. Second, the stabil-
solitons found in Ref{1] are genuinely noncommutative ob- ity of the non-BPS multivortices ig priori unclear. This
jects since they cannot exist in ordinary scalar theory. Adssue can be studied by turning on general perturbations
discussed in Ref[8], the shape deformation of the scalar around the static solutions. In case there are tachyonic de-
soliton is quite peculiar when moving with a constant veloc-grees possessing a negative mass squared, the static configu-
ity. Specifically, their deformation is not simply dictated by rations are necessarily unstable. Any small perturbations in
the Lorentz contraction but described by an area preservinthis direction will make the vortices collapse to a stable con-
ellipse exhibiting the UV/IR mixing phenomena of noncom- figuration. On the other hand, when fluctuation spectra do
mutative field theories. not possess any tachyonic degrees, any individual vortex
We here pursue a similar issue on the recently found exaatorks as a stable solitonic object. The massless fluctuation is
multivortex solutions[9] in the noncommutative Abelian- responsible for the moduli motions. Finally, one is interested
Higgs theory[10,11. (For soliton solutions of some other in the interactions between vortices especially when they are
models, see Ref$6] and[12-18.) Certain apparent prop- stable. The interaction can be studied by adopting the
scheme of the moduli space approximation. In fact, one may
go beyond the moduli space dynamics by identifying quartic

*Electronic mail: dshak@mach.uos.ac.kr potential depending on the moduli coordinates in our present
"Electronic mail: klee@kias.re.kr problem. Denoting the number of vortices by the U(m)
*Electronic mail: jhp@kias.re.kr matrix nature of the moduli coordinates emerges and the
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FIG. 1. The energy ofa) the
self-dual vortices an¢b) the anti-
stable non-BPS 1ot known ' self-dual vortices. We also deplgt
it — the energy of the non-BPS vorti-

BPS i ces that have a positive magnetic
E flux for A\=1.
: 9V2 ev2
1 0 %0
a) vortices with positive flux b) BPS vortices with negative flux
dynamics turn out to be described by the matrix model of D,b=0d,6—iA,*o. 2)

m DO branes. We remark here that certain qualitative prop-

erties of this soliton are similar to those arising in the adjointThe = product is defined by

Higgs theories. These include the matrix nature of moduli

coordinates, the fluctuation spectra, the tachyonic degrees, f —re (0299 ¢ / 3
and time-dependent solutiofs,6,15. (x)*g(x)=[e RALCEE R PR @

In this paper, we review first the exact solutions of NON\ here we taked to be positive without loss of generality.

BPS mquyomces. We_ .also Qescrlt_)e the exact SOIUtlonsI'he theory can be equivalently presented by operators on the
where vortices are positioned in arbitrary locations. In SeCHiIbert space defined by

[ll, we study other static solutions focused on the self-dual
BPS branch. Our study will be summarized in Fig. 1 where ~ A )
the anti-self-dual branch discussed in Rigfl] is also in- [x.y]=-i6, (4)
cluded. In Sec. IV, we study the general fluctuation spectra ) )
around the static solutions identifying all the tachyonicWhere thes product between functions becomes the ordinary
modes and massless modes. Masses of the degrees conn®gduct between the operators. For a given function

ing the vortex to the vacuum can be identified by diagonal- )

izing the kinetic and quadratic potential terms simulta- f(x y):J d°k F (k) el ket k) (5)
neously. The remaining degrees will be shown to be ' (2)? '

equivalent to the fluctuation spectra about the vacuum of the

original Abelian-Higgs system. In Sec. V, we identify the the corresponding operator can be found by the Weyl-
moduli parameters appearing in the exact solutions by anardered form of

lyzing the translation and the momenfsonstructed with

help ofcovariant position operator We then construct exact N A %k - ok

time-dependent solutions describing vortices moving in arbi- f(XaY)ZJ (ZW)Zf(k)e'( k), (6)
trary velocities. The moduli space description is then worked

out and the relevant metric will be shown to be flat. We then . . -
describe how the matrix nature of the moduli Coordinatesone may then easily shoyv thﬁud"‘)ff 'S repl'aced by Z 61w f
emerges. The last section comprises the summary of our r@ndd;f corresponds to-(i/ ) €;;[x; ,f]. With the operator-

sults and concluding remarks. valued fields, the action can be written as
270 (1 N
II. EXACT MULTIVORTEX SOLUTIONS L=— 5 tr(ZFMVF/U/_’_ DM¢(DM¢)T+ §(¢¢T_v2)2 ,
We begin by recapitulating the properties of the exact 7)

multivortex solutions of the noncommutative Abelian-Higgs

theory found in Ref.[9]. The noncommutative Abelian- \here hats are dropped for simplicity and the derivative no-
Higgs model in 2-1 dimensions is described by the La- tation is understood agf=—(i/0)e;[x; f].

grangian At this point, we introduce the creation and annihilation
1 1 operators byc'=(1/y26)(x+iy) and by c=(1/1/26)(x
L=— _zf dzx(—F *FA' 4D d* (D )t —iy), which satisfy{ c,c']=1. To represent arbitrary opera-
4 Mmv M . . .
g tors in the Hilbert space we shall use the occupation number

N basis byG=2g,|k)(l| with the number operatar’c. We
+ =(p* ¢T_02)2), (1)  will_further denote A=A,—iA,, J_G=(d—id)G
2 =\2/6[¢c,G], andd, G=(x+i9,)G=—2/6[c',G].
where The system is invariant under the gauge transformation
: rt gt r—yt
Fu=0,A,—3d,A,—i(A*A,—AxA), A,=U'A,U+iUT9,U, ¢'=U'e, (8)
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where the gauge group elemeantsatisfies

uut=utu=lI. 9)
We introduce a covariant quantity defined by
2
A=—i \[g(c—K), (10)

which transforms a&’=U'KU under the gauge transfor-
mation in Eq.(8). Later it will be interpreted as a covariant

version of position operator up to humerical coefficient.
The Hamiltonian can be constructed as

270 [1
H= ?tr(5<E2+ B2)+ D$(D$)'+ D 4(D; )’

+ %(qs«zs*—vz)z (1)

using the time translational invariance of the system. On the

gauge choicdg=0, the equations of motion read

¢—DiDip+N(pdp"—v?) $=0,

Ai+€;D;B=J=i[4(Di¢)"'—Dipo'], (12
with the Gauss law constraint
DiA=Jo=i[¢¢'— po']. (13

The exact multivortex solutions found in Rd] are
given by
K=SncSh, ¢=0vSn, (14)

where S, denotes the shift operatorS,=3/_.[n
+m)(n| (m>0). The shift operator satisfies relations

StSn=1, SnSI=Pn=I-Pp, (15)
with the projection operatdP,,, defined by
m-1
Pn=2 [a)(al. (16)
a=0
The magnetic field of the solitons reads
1
B= 7 Pm. a7

The flux defined byP= @ tr B is m on the solution. Thus the

solution describesn vortices of the Abelian-Higgs theory

characterized by the topological quanti®y. The energy of
the vortices is evaluated as

m
N

1+)\6 8| =27
z >
0 v 9°

M(v,0)=7(;—r;| (18
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verify that the energy functional can be expressed as a com-
plete squared form plus a topological term by

76
H=Eftr{[stww—vz)]%2<Di¢>)<Di¢>*

+ EijDiinzsz}

27T02|q)|
g° "

=

(19

where we omitted the kinetic terms involviriey and Dy ¢.
The saturation of the bound occurs once the self-dual
Bogomol'nyi equations

D,¢=0, B=v’-¢¢' (20)
or the anti-self-dual equations
D_¢=0, —B=v’—¢¢" (21)

are satisfied. Whein=1, the bound in Eq(18) agrees with
the Bogomol'nyi bound that is an absolute energy bound for
m vortex solution. Hence whes?=1/6 and\ =1, the solu-
tion should be a BPS solution. Indeed for the specific value
of #v?, one can check that the solution satisfies the self-dual
BPS equations. This BPS solution is clearly stable because
they saturate the energy bound set by the topological quan-
tity.

Another obvious generalization of the static multivortex
solution is given by{17]

m—1

t 1
K=SmCSn+\/T—0 go Ndayal, ¢=vS,, (22

where\,’s are constant complex numbers. This solution has
the same flux and energy as the solution in &d). Hence

we see thab , is the moduli parameter of the multivortices.
Later we shall clarify the stability of the vortex solutions,
which isa priori not clear because they are not always BPS
saturated solutions. But before discussing this matter, we
will study the BPS solutions fox=1 and #v#1 or other
possible static solutions.

Ill. BPS SOLUTIONS OF MULTIVORTICES

In the last section, we have derived the BPS equations of
the Abelian-Higgs theory withh=1. The static multivortex
solutions are in general not BPS saturated. However, they
become self-dual BPS solutions for a special valueot
=1. In this section we focus on the BPS solutions. Some
analysis on the anti-BPS solutions is carried out in [RET]
and the comparison will follow at the end of this section. In
terms ofK the BPS equations become

%(1—[K,KT])=UZ—¢¢T, dct—KTp=0. (23

When\ =1, the theory allows so-called Bogomol'nyi bound
as discussed in Refll]. In fact it is straightforward to By virtue of the explicit form ofc’ the latter can be solved,
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1 2 1 quantized energy. The Appendixes contain our probér
b= T Z \/—_IKT”|¢0)<n|, (24)  6v?=1, the choicgZ|=1 leads to the exact solution with
¢ n=0 yn! a,=0 ork,=n.

) ) . We have shown that, within the ansatz taken, there are no
where| ¢o) = /04|0) is an arbitrary constant vector. Substi- gps solutions possessing a positive flux fr?>1. With-

tuting this expression, the BPS equations are reduced 0 gt |imiting the discussions to the specific form, one may
single equation, prove that there are indeed no self-dual BPS solutions for
fv?>1 as an analytic perturbation of small parameter
around thedv?=1 BPS solution. For this purpose, we shall
take a generic perturbation around the solution and expand it
as a power series of the small parameter \/|e[ with e
To solve this equation we take an ansatz Koas =6v?—1. (The choicew= e will quickly lead to a contra-
diction) Namely, we consider the fluctuation around the ex-

1
o071+ [K,KT= 2, oK o) ol K™ (25)

°° act solution as
Kznzofn|n>(n+p|, (26)
¢=v(1l+¢)Sy,
wherep is any positive integer. Substituting this expression
into Eq. (25), one can show the following: BPS solutions K=Smc8f;+ h, (32
exist only when & 6v?. Furthermore, finite energy or flux
solutions exist only fop=1. Specifically we obtain with the expansions
m * joe] 0
K=, vVa(l—6v?)]a—1)al— >, kyn+m—1){n+m|,
aZl ( 0| )l nZl n A | 90221 w|90(|), hZIZl wlh(|), (33
l " keko - K, .
¢=—=| Im)(0|+ z —n|n+m)<n| , 27) and may show that there are no solutions fof>1. The
Jo A=t /n! proof is relegated to the Appendixes.

One could also try an expansion with respect to a param-
wherefe C, m corresponds to the flux number which is a eter w, defined by|e|*" for arbitrary non-negative integers.
non-negative integer, and the sequekgen=1,2, ... satis- Though a little complicated, one may show that the conclu-
fies the recurrence relation sion remains unchanged. Thus there are no solutions of the

BPS equations fofv?>1 that can be expanded in a power
dn 5 series ofw,,. Here we do not turn on the diagonal eniry of
Gn+1% 017200 =" (An = o1+ 07, (28 k. As will be explained later, the effect of nonzexq cor-
responds to locating each vortex &f=\3—i\j position.
with g,=|k,|?2—n. The initial data for the recurrence rela- Considering the case of one vortex, one can easily turn off
tion are this value by using the translation symmetry of the system.
Hence our proof above is strictly applicable to this case.
Qo=m(1—6v?), q;=m(1—6v?)+|{|?—6v? (290  Furthermorem vortices are an assembly of individual vorti-
ces, one naturally expects that the above proof goes through
where ¢ is an adjustable parameter. The magnetic field issvenm vortices with generic values of, .
given by Figure 1 summarizes our investigation of the static solu-
tions in the Abelian-Higgs theory fox=1. The self-dual
m-1 1 BPS solutions exist only fodv?<1. In the range the non-
B= > v?a)al +5 2 (Gn= 0o 1) [N+ m)(n+m], BPS exact solutions are unstable due to their higher energies.
a=o n=0 (30 When 6v?>1, the non-BPS branch alone continues to exist.
For the solutions of a negative flux, it is shown in Rfl]
that the anti-self-dual solutions exist fdv?>1 or 6v?
<1. In the intermediate values @b ?, the existence of the
d=m- limq,. (31) self-dual solutions is not known. The exact vortex solutions
N with positive magnetic flux exist even for#1. It will be
shown later that they are also stable only witert=1.

©

so that the flux is

Equation(27) satisfies the BPS equations for any valug of
ChoosingZ=0 or |Z|=6v? gives plus infinity or minus
infinity flux solution, respectively. Furthermore, 6, con-  lye here like to mention that we have also numerically verified
verges, the converging value must be zero. Thus by continunat the value of¢|, which makes the series to converge to zero up

ity, there existsf, 0<|{|< V6v?, which makesq, con-  to afew hundred terms, approaches a unique value for a given value
verge to zero, and hence BPS solutions have finite andf 9v?<{0.1,0.2...0.9 and form=1.
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IV. FLUCTUATION SPECTRA AROUND THE VORTICES squared greater thaxw?. We see that the gauge field ab-
In the last section, we have identified the possible stati(:Sorbs part of the scalar degrees and becomes massive. This

vortex solutions including BPS and non-BPS cases. In thgorresponds o the so-called Higgs mechanism of the ordi-

BPS case, the classical stability of the solution is quite cleangfuaslfge theory when the gauge symmetry is broken spon-
because the energy is saturating the bound set by the topo- To study the quadratic fluctuation around the exact solu-

logical quantity. For the case of non-BPS, however, it is nott. X .
. . ions, we turn on generic perturbation of the form
a priori clear whether the vortices are stable or not. When

#v?<1, we have shown that there exist solutions that have K=SncSI+A+K, ¢=v(1+¢)Sy (39)
lower energies than the exact non-BPS solutions. Thus we m ’ ’
expect naturally that there should be tachyqnlc m(Z)des. It ivith K and ¢ decomposed as
also shown that BPS solutions do not exist féw->1.
Hence in this case the issue of stability seems a different 5
matter. To resolve these issues clearly, we shall study, in this K=A+ VSL‘F SmWTJrSmICS%:(
section, the quadratic fluctuation spectra around the exact
solutions identifying the signature of mass squared for all
possible degrees. It turns out that the solutiend<1 are vt ot 0 X
indeed unstable by developing tachyonic modes in their ¢= XSyt SnhSy= 0 h/”
spectra. In case ofv?=1, the potential tachyonic degrees
become massless and the solution is indeed stableg#or Here we setpP,,=0 with out loss of generality since an
>1, solutions are classically stable because the tachyoniarbitrary 5¢ can be expressed lypS,,. Further introducing
degrees become massive. For all these three cases, the firsunitary operators
diagonal elements of the gauge field fluctuation are massless, .
which will be identified with the degrees of vortex positions. (et _

Let us study first the quadratic fluctuation of the original Ua=ejg; "), (0=a=m-1), (40

theory about the vacuui=c+ K and¢=uv(1+h) without \ye parametrize the components deliberately as
any vortices. The Lagrangian is then reduced to

AV
wh

(39

m—1 o

m—-1 m—1
2 . . . 1 — b V= V U
L 2pu e el D - pglie AT Z Al V=2 Vada)(lue,

i

+[K,c"|?=20v7[c,hr]]*=2v?|KC+i[c,hy]]? v o
W= A n§=:O Wapla)(n|Ua, ngo n§=:o Xanl@)(n|Ua,

a

, (34) (42)

— 2\ 6v*h3

with the Gauss law constraint - C e

IC:E E Kkn|k><n|v hZE 2 hkn|k><n|'

H ot T k=0 n=0 k=0 n=0

[c",K]+[c,K']—2i6v°h,=0, (35

where hy=1/2(h+h') and h,=(1/Z)(h—h'). One may ¢ Unitary operatort/, satisfy

simplify this action by reintroducind\, field, which has a 1 1

role of imposing the Gauss law constraint. We then choose a UacU£=c+—>\a, UacTU£= ch+ _fa, (42)
260

gaugeA,=h,, at which K+i[c,h,]—K. The Lagrangian V26 V26

becomes which are helpful in identifying variables that diagonalize
2a [ . i 1 both the kinetic and potential terms.
L= —tr| |K|+ 6v?|hg|?— 2—0|[C,ICT]+[/C,CT]|2 Now we insert these into the original Lagrangian in the
g gaugeA,=0 and expand it to the quadratic terms of the
fluctuation. We get

—2v%(|[c,hg]|?+|K|?>+ N v2h3) |, (36)
27 : : INa—Np|? )
. . L _ + 2_ a4 O 2
with the gauge condition now quad™ g2 % ('Cab| |Gasl 7 |Canl
. : . . . : 2
[c".K]+[c,K]—i[c",[c,h]]-i[c,[c",h]]-2i fv*h,=0. ( L, =1 V] 27 -
+ - +—
37 2 | [Tal?= =5 ITal? | |+ 7 2 | IHad
This can be solved in terms &f for arbitrary I, on which oo s 2N+14 6v? 5 5
the Lagrangian does not depend. It is now clear that all the +[Yanl*+|Ganl“— T(|Han| +1Yanl?)
degrees are massive; the componentsKohave a mass
squared greater thanv2 while hgy components a mass +Lp, (43
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whereL  is same as the Lagrangi&dd) but  andhand are 32+ (2n+1/6), which is independent of the index This
replaced respectively bl andh. In this Lagrangian, we put spectrum can surely be understood from the underlying
D-brane perspective.

Finally, L describes the fluctuation spectra of the origi-

1 : :
Can= E[e a0 Agp— € "0 A gy ], nal system around its trivial vacuum configuration. This is no
coincidence because the degrees of the original system still
1 remain around vortices. At this point, we like to emphasize
Gap=——=[e %av A +eav g ;b], (44) again that they are all massive controlled by the mass scale
V2 and\\v.

whered,, is the argument ok ,— \, or an arbitrary constant

for A\;=\p. We also sefl,, Han, Yan, andG,, as V. LOW ENERGY DYNAMICS

From the analysis of the fluctuation spectra, it is clear that

Ta=Vao. the vortices are unstable due to the tachyonic modes for
\/F fv?<1. On the other hand, the vortices do not exhibit any
= v tachyonic instabilities fov?=1. For all ranges of param-
Han= ————| Xan/2n+1
& Jov2+2n+1 ) @" eter gv?, the vortex solutions depend upomadimensional
free parameters whena is the topological number corre-
1 sponding to the total number of vortices. We shall first con-
N \/m( Vn+1Vaniat ‘/ﬁwa,n—l) ' sider the stable case whefe?=1 and begin by clarifying
the physical interpretation of these parameters. In short, these
1 parameters\, are positions of vortices on the plane where
Yan= (\/ﬁva,n+l_ /n+1Wa,n71), the noncommutative gauge theory is defined. For the gauge
v2n+1 group element defined by
1 UpUL=1 (47)
an~ o —— _ _
fv°+2n+1 with P ,Up=UpP,,=P,, the corresponding gauge transfor-

(002X + N+ 1V +JnW. - ). (45 mation affects only the firainXm andmXc component of
(60 Xan et NWaoy). (45 K and¢. Utilizing this gauge freedom, we have diagonalized

To this order, the Gauss law constraints férand the off the mXm part of K by
diagonal degrees become

1
Gap=0 (onlyfor Ny#\,), Gan=0, (46) PmKPmIEdla@\o,M,---J\mfl] (48)

and, forLp, it takes the same form in E¢35) where/C and

: i - ~ in the solution(22). Any permutations of the eigenvalurg
h are again replaced respectively kyandh.

S oF _ and\, are achieved through the gauge transformation by the
From this it is clear thafyy, is massless whek, andhy  \wey| subgroup elements. So they are physically equivalent

coincide. In particular the diagonal compone€ifg andGaa  configurations. Thus the moduli space is in faB2(™/S,,

are always massless; they are associated with the translayares is the permutation group.

tional motion of the vortices. The nature of this motion will i)

. ) _ In order to identify the meaning of the moduli parameters,
be exploited when we discuss the low energy dynamics Ofgt s first study the effect caused by the overall translation

the vortices. When6v®<1, T, has a negative mass . the yortex solutions. For this, we note that the infinitesi-
squared. Hence we see that the vortices are unstable even {QL transiation is given by

the case of a vortex. On the other hand, far’=1, the

instability disappears and the vortex solutions are stable. SA=—[£,A—Di(§A)]=Be; &,

This is also quite consistent with the fact that there are no

BPS solutions fodv?>1. If there were such solutions, there Sp=—[£0,0—1(§A) dl=—£D;, (49)
must be tachyonic modes because the BPS solution should

have lower energy than the non-BPS solutions. where we have added the infinitesimal gauge transformation

Especially wherdv2=1, the potential tachyonic degrees by the gauge functio;A; . On the solution, this produces
become massless and may patrticipate in the low energy dy- L
namics as will be discussed later. The remaining of diagonal
components arél,, andY,,. TheG,, degrees are dropped el AL §Pm,  04=0. (50
out of the physical space spectrum once the Gauss law con-
straint is imposed. Here we were be able to diagonalize thesehe magnetic field and the Higgs gradiend;¢ are un-
infinite dimensional degrees, which is in general not an easghanged by the translation and, consequently, one may con-
task to achieve. The spectrum of these physical degrees &ruct easily the fields translated by a finite amount. Namely,
particularly simple; they are all massive with the same masshe Higgs change idA ¢=0 while the change of gauge field
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in terms of theK variable is given byAK=(1/\/260)¢P,,  takingA,=0. This gauge choice is achieved from the above
whereé=¢,—i&,. Hence we see here that the total transla-solution by the gauge transformation with

tion leads to a uniform shift of eackh, by the amount. L o

This is of course quite consistent with the interpretation that U=e (WD 'S -SeSh (&’ (55

the moduli parameters represent positions of the vortices. Of

course due to the W) gauge symmetry, the effect of trans- where we define

lation does not quite look like a translation of profile in the

case of ordinary field theory where a densitfx), for ex- - ﬁx—iy(\/;)*l

ample, is merely shifted by as inp(x— &) as a result of the c= T

translation. In this respect whether local informations such as

positions of vortices is well defined in noncommutative "

gauge theory is not obvious at first sight. There is another B L1V nl =8t EEh -1

way to get the above result of translation. The global trans- S ngo [n+1)"(nl"=c¥(ech ™, (56)

lation generator can be alternatively expressed as
and £= B,t. Here|n)' is the number eigenstate constructed

by the number operatoc’c. The form of the solution
become$

T=e 4P, (51)

where p; is the translation generatqy;=—(1/6)[ €;;X; , - .

In noncommutative field theory, the operation of translation \/5

. - ; o i
on a field can be expressed as a similarity transformation, Al = —iT(C—SmCSTn)JF Eﬂxtpma
0
Tf(x)=Uf (U7, (52)
whereUs is a unitary matrix defined bg(hZD(E’=&) | ¢'=vSm, (57

our case, we add a gauge transformatioroy U ; after the

translation. Then the resulting gauge and scalar fields rea with Ag=0. The map frome = (x—iy)/ /26 to the new ba-

sis ¢=(1/y26)[x\y—iy(\y) 1] belongs to the area pre-
serving diffeomorphism. Except for some overall numerical

i
A'=A+ ¢, coefficients, the solution apparently represents a configura-
tion that has an elliptic shape; for example, the magnetic
b= ¢U$. (53) field of a moving vortex appears in the function representa-

tion as 2~ WOCr+y*™  Uilizing the U(e) gauge sym-
The gauge field is shifted only by a constant piece. We seetry, the solutior(57) can be further mapped to
also that¢ ¢! is invariant. If the scalar were in the adjoint
representation, it would be invariant under the transforma- ) \/5 oo
tion. In order to obtain the previous result in E§0), we A'= —IT(C—SmCSmH Tgﬁxtpm,
further perform a gauge transformation byU 0
f L . . .
=e(1’\‘.m°f°m £Cm) with Cm=5mcS.. Using the explicit ex- &' =vS,, (59)
pression of the solutions, one may easily check that results
agree with Eq(50). _ o by the gauge transformation with the unitary matrix
One could also study the exact solutions moving in a con-
stant velocity as discussed in R¢8]. The theory is not m-1
Lorentz invariant because theprodu_ct does n_ot respect the U s=~5m5:q+ E la)’(al. (59)
Lorentz symmetry. However, as discussed in R8f, one a=0

may still construct moving soliton solutions once the static ) ) ] . )
solution is given. The construction is achieved by Lorentzinserting Eq.(58) into the time-dependent field equations,

boosting of the static solution followed by the change/dfy ~ ©ne may directly check that it is indeed a solution. Actually,
v6 where y is the Lorentz dilation factor defined by ON€ may even construct solutions representing more general

1/J1— & with velocity 8. Constructed this way, the solu- motion of vortices. The time-dependent solutions read

tion moving inx direction reads explicitly Cme1

2 i
P i (A~ F _ a a.
Ao=—TBAX Y3 70), A= yA(X Y v0), SRR S 2 Dk playal,
A=Ay (XY v0), b =Xy v0), (54) b =vS,,. (60)
assumingA,=0 for the static solution. Here the arguments
are given byx' = y(x— B4t) andy’=y and the fields with-

out prime denote any static solutions. In the present case, onéThe appearance of instead ofc in the gauge field is not a
may further simplify the form of the moving solution again typographical mistake.
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with g2= ﬁi—i[g’;. The motion of each vortex takes place tative field theory. To show that the eigenvalugsrepresent
independently to an arbitrary direction. The magnetic fieldpositions of vortices, let us consider the following moments:
and electric field are now

L =2m ot XK(XT)'H]. (65)
1 m—1
B'=%Pm. EilzeijaZO Bila)(al. (61)  These quantities are gauge invariant and measure the local
distribution of matters in noncommutative gauge theory. For
example,l ; corresponds to the moment of inertia for the

The ener f the moving vorti is eval : ; X :
e energy of the moving vortices is evaluated as configurations of the ordinary field theory.

m-1 For the exact vortex solutiong¢?=1), we have
E _Yam > 2, TN 1+>\04 62
B)=5 9%8) & |Bal AT (62 _—
|k,,=|\/|oneag0 AT (66)

where no approximation is made. The energy behaves pre-
cisely as free nonrelativistic particles with a mass/g26. o o
One striking fact in the moving solutions lies in the fact IN the case of commutative field theory limit, the same mo-
that there seems to be no limit in the velocisee Ref[20] ~ Ments can be found only when the Hamlltonlan density is the
for the earlier investigation of this aspidt can apparently Sum of the delta function abl(x)==7"gM gned”(X—Na).
exceed the light velocity.On the other hand, in the original Thus we show that the relatively local information of non-
construction by the Lorentz boost followed by the change incommutative gauge theory can be obtained from the mo-
the scales, the construction itself loses its validity when the ments defined above and that the eigenvalugare repre-
velocity exceeds the light velocity. Specifically, the facfor Senting the positions of vortices up to the permutation
becomes imaginary. Nonetheless, the final form of the solusSymmetry. Considering, for example, vortices located at the
tion in this range of velocity does solve the time-dependen®rigin, the size information of the vortex configuration can
equations of motion. Our system lacks the Lorenz invarianc&€ extracted by the moment of inertia. The “sizéfieasured
and thus this seems not a serious problem. Without goingy the covariant position operajds finite for the BPS vor-
into detail, we like to mention the fact that, when the velocityfices (fu?<1). In fact it decreases within the BPS branch as
exceeds the light velocity, part of once stable degrees bef gets larger and becomes zero for the stable non-BPS vor-
come tachyonic and instabilities are necessarily set in. Hendéces (fv°=1).
the solutions seems not to have much physical significance The moduli dynamics of the noncommutative solitons
when the velocity exceeds the light velocity. Further inves-may be pursued in a similar manner as solitons in an ordi-
tigation is required on this issue. nary field theory. As stated before, we shall consider first the
Let us now turn to the moduli dynamics of vortices. The case whereduv®=1. We proceed by giving the time depen-
study of translation justifies that's faithfully represent the dence to the moduli parameters and adding an appropriate
overall position of vortices. Let us consider the following gauge freedom so that the motion respects the Gauss law
operator: constraint. But in our present case, it is enough to simply
give the time dependence without adding any gauge degrees
Xi=x;— 0€;A;, (63 because they already satisfy the Gauss law constraint.
Namely we insert
which may be rewritten equivalently a¥X=X;—iX, . .
= \/26K. This transforms covariantly under the gauge trans- K=KM\,(1)), ¢é=p(\(1)) (67)
formation, i.e.,.X—UTXU. Since the operator reducesxp
in the commutative limit and is gauge covariant, we shall callto the full Lagrangian where quantities with a bar denote the
it the covariant position operatorAnother justification for vortex solutions.(This ansatz is quite consistent with the
the terminology comes as follows. It transforms as moving solutions constructed befor&he resulting effective
Lagrangian is given by
Xi=Xi+§ (64)
a
under the translation of E¢52) followed by the gauge trans- Lett=—MMonet 75 > Aaka. (68)
formation byU=U+. This is precisely the required property 970 azo

as apositionoperator under translation up to gauge freedom. . . .
It will be used to measure local properties of the noncommuiConsequentIy, the moduli space metric &F)"/Sy, is flat,

m-1
3f the moving solution were not exact, we would have easily ds?= >, d\ad\,. (69

missed this point. This is similar to the case of the noncommutative a=0

scalar field theory with a quartic interaction. The two particle bound

state energy is unbounded from below, which was observed in th&he inertia mass here is different from the rest mass but there

exact nonperturbative computation of the bound state erfd@y  is no physical reason why these two masses agree, not to
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mention that this effective Lagrangian can be easily quanthere were terms of ordé@(.42Z,), these would contribute
tized and wave functions are thoseroffree nonrelativistic  to the potential a®(e*). However, there are no such terms
bosons with mass 2/g*6. _ as stated previously. Hence the massive degrees are effec-
For the present model, one may in fact go beyond theively decoupled from the massless degrees to the quartic
moduli space description in discussing the relevant low enorder in the low energies. Hence we may consistently drop
ergy dynamics. In the previous section, we studied full fluc-a|| the massive degrees consistently. Ignoring all the massive
tuation spectra around the static solutions. We find that offnodes, we are led to
diagonal degree®V,j, V,; (j#0), and PhePy, [with ¢ ) .
_ ; . o sl
v(1+ zp)S,d are massive Wlth_a mass squarmﬁ (2j Lor=—g | tr AAT— —tr[ A, A2 (73)
+1/6)+v? (j=0). FurthermoreP,KP,, components have g 20

a mass squared at least ordendf The real part oP,,¢P,,
has a mass order afv? while its imaginary part is a gauge
degree of freedom that will be absorbed into the gauge field [AAT+[ AT A]=0 (74)
P.,KP,, by the Higgs mechanism. The alternative descrip- ’ ’ '
tion of low energy dynamics is obtained by ignoring all theseThijs Lagrangian is precisely the matrix model, which coin-
massive degrees of freedom and focusing on all the remairtides with the bosonic part of an effective Lagrangian for
ing fluctuations around the,=0 solution. Namely we only mDO branes moving in two dimensional target space.
consider the fluctuation of the gauge field nmxXm sector The vacuum moduli of this effective action is the vortex
and the potential tachyonic mode defined by moduli described previously by the coordinate, on
- (RH™S,,. We see clearly that the singularity when vortices
A=PuPum, are overlapping is resolved in this description. Moreover, the
m—1 commutative moduli coordinates are replaced by noncom-
I7)= E T.a) (70) mutative matrix degrees whose structure is especially rel-
o ¥ evant when vortices are nearly coincident. Hence a legiti-
mate approach toward the quantization of the low energy

with a constraint

The full Lagrangian is then reduced to dynamics is also quite clear.
1 1 One might ask at this point about the nature of the coor-
™ o : dinates of vortex positions. Since the noncommutative space
_ T 12 2 T .y|2
=— - = + - = > o o ;
L e 9°6 ot AA 2tr[A,A I+ el )l 2(|A |7 underlies in defining the noncommutative field theories, one

3 would also expect that the nhoncommutative solitons should
2y_ > -\ (9,2 2 see directly the noncommutative nature of the underling
A 2<T|[A'A Im) ="~ D)l [7)] space through their forms of interactions. But the above de-
scription does not show directly the noncommutative nature.
+ L osar (71  Namely, the interactions do not show any particular structure
depending upon the nhoncommutativity scéleStated again,
nothing particular happens at the separafion~ /6. None-
theless, the vortex positions are truly described not by
c-number eigenvalues but by matrices. In this respect, the
locations of vortices still possess a noncommutative nature
- - that is originated from the matrix properties.
Allry-A'[r)=0 (72) Next, we consider the case whete’=1. In this case the
o , ) potential tachyonic modes become massless. But there exist
is still in effect on the Lagrangian. The residual part of theq,aric contributions, so it is not a moduli degree as defined
Lagrangian can be organized as follows. Denoting all thg, the configuration space of the constant energy. But we
remaining massive n120des coI2IeCt|ver 1, there are jyqjde it because its contribution is of the same orderlof
term33 ofO(Zy), O(AZy), O(7Zp), O(7AZy), O(Tzzp_)- when A is small. Hence, to study interaction between the
O(Z;), and quartic terms including at least one massive demassless modes and the massive modes, wd td r be
greesZ,. One should note that there are no terms of ordegne order ofe as before. Therz, may be allowed to the
O(Azzp)- order of €2 to have a well defined low energy description.
When 6v*>1, the tachyonic modes become massive toogyt this time, there are interaction terms of the forméz,,
To truncate the Lagrangian consistently, we consider gnd TZZp, whose contribution to the Lagrangian @ €%).
~O(e). The the A terms contribute to the Lagrangian as Hence the massless degrees are not decoupling from massive
O(€%). Now if one turns on any massive degrees, it shouldjegrees. One could write down the consistent effective La-
be O(€?) due toZ; or 7* terms in order to have a valid grangian for this case too. But it turns out that the effective
approximation of dropping the massive degrees. Then theagrangian involves an infinite number of massive degrees.
interaction terms between the massive and the massless dastead of giving a detailed analysis, we here briefly com-
grees are of higher order, i.€Q(e") with n=5. For ex- ment on the nature of the resulting motion involving the
ample, we see that the terms(b(AZf,) is of orderO(e°). If potential tachyonic modes. First note that one may effec-

— Il

where the Gauss law constraint

[A AT = [A AT +| 77| = | 7)(7|=0,
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tively describe the motion byl and = once all the massive indeed flat by evaluation of the low energy effective La-
modes are integrated out. One may then easily verify thagrangian within the moduli space description. In fact, one
amongO(.A27?) terms, only the term of7|[.4,.4T]|7) re-  may go beyond the moduli space description in this case by
mains out of Eq(71). This is quite consistent with the trans- identifying quartic order interaction terms of the massless
lational invariance of the underlying system, whose action iglegrees of freedom. It is nothing but the matrix model of
replacingA by A+ £l . The motion along the direction =~ MDO branes moving in a two-dimensional target space. Thus
is controlled by two terms|7|[.4,.A1]|7) and7*. This mo-  We have shown that the low energy dynamics are faithfully
tion excites other components of the magnetic field out of thélescribed not by positions of individual vortices but by ma-
static solution (1#)P,,, while the flux ® is preserved. trices.
Hence the motion represents an Osci”atory dispersion of The exact time-dependent solutions describe vortices with
magnetic field to other components. If the tachyonic modegonstant Velocity. What is striking in the solution is not that
are small enough, the part of matrix mechanics responsiblgortices are moving freely but that the velocity is not limited
for the vortex positions is little affected for fixed energies. by the light velocity. The solution exists even for the velocity
Now we turn to the case whem2<1. In this case the greater than the light velocity. We argued that the fluctuation
fluctuations include the tachyonic modes. Small fluctuationdecomes tachyonic when the velocity exceeds the light ve-
will trigger the vortex to run into a more stable lower energylocity. Therefore the solution seems not to have much physi-
configuration that corresponds to BPS states. As shown pr&al meaning when the velocity exceeds the light velocity.
viously, the BPS state has the same flux as the original urfFurther detailed study is required on whether or not the so-
stable static configuration. Thus during the process, the flufition in the region is consistent with special relativity.
should be conserved while the difference in energy is evenIhough the system lacks the Lorentz symmetry, the special
tually dissipated away. The tachyonic instability is presentelativity should be still in effect because one may regard the
even for the case of a single vortex. So it can be interpretegystem as a Lorentz invariant system with a specific back-
as a collapse of each individual vortex to a more stable oneground field(a constanNS-NS two form background field
i.e., the BPS state. The detailed study of the collapse will bén string theory is turned on.
quite interesting in relation with a recent discussion of the We expect that our investigations can be generalized to
tachyon condensation in string theory. the N=2 supersymmetric version of the noncommutative
Abelian-Higgs theory. In particular, supersymmetries will
not be preserved even partially for the sector of nonvanishing
flux with 6v?>1. We like to finally mention that our inves-
In this paper, we have first investigated general static solitigations may be applicable to other exact solutions recently
ton solutions in the noncommutative Abelian-Higgs theory.found[15-18.
There are exact multivortex solutions found in Rd] for
general values of parametevsand 6v 2. These are in general ACKNOWLEDGMENTS
non-BPS excepk = fv?=1. We extend these solutions by
finding exact solutions describing vortices positioned at ar- This work is supported in part by KOSEF 1998 Interdis-
bitrary locations. We have shown that these solutions ar€iplinary Research Grant 98-07-02-07-01£.B. and K.L)
unstable only wherdv?<1. It is therefore expected that and by a UOS Academic Research GréediB.).
lower energy non-BPS solutions exist fep?=1 and \
=1. We confirm this by considering a self-dual BPS branch APPENDIX A: SELF-DUAL BPS SOLUTIONS
for A\=1. For fv2<1, the self-dual BPS branch develops,
which has a lower energy than the exact unstable vortices. Here we demonstrate how to obtain the BPS solutions.
The BPS branch ended at the poitt? and there no longer Substituting the ansatz fdt [Eq. (26)] into the master Eq.
exist BPS solutions fofv2>1. Instead, the exact non-BPS (25 gives
configurations become stable configurations. We also illus-
trated the case of anti-self-dual BPS solutions that have g~
negative flux{11]. The solutions are shown to exist fép? >, (Go?=1+[f[>=[f_p|?)[n)(n|
<1 or #v?>1. For the intermediate region, the existence of
the BPS solutions are not clear yet. C o s SiS—— _
We then discussed the general fluctuation spectra around =E 2 2 —fifiipfir e
the exact static vortices with general moduli paramexers i=0 j=on=0 N:
It is shown that there are tachyonic instabilities only when X4 p - Fianonypli +NPY +npl, (A1)
Hv2<1. We have identified the massless degrees of freedom
and masses of all the off diagonal degrees. With help of the

covariant position operator and studying translation of vorti-vhere we selbo) = ZiZosi|i) andf;=0 for anyj <0. Com-

ces, we were able to identify the physical meaning of theP2n9 |0><'|’_'>_l components of the I_eft gnd rlght sides
moduli parameters; they are positions of the vortices. WeVe S€e G=ss;, i=1. Now by mathematical induction, one
were able to construct exact moving solutions of vorticescan show easily &s;s;, i#j. Hence we may pul¢o)
where each vortex is moving freely in a arbitrary constant=¢|m) for some complex numbef and a non-negative in-
velocity. We then show that the metric in the moduli space igeger,m. This simplifies Eq(Al) as

VI. CONCLUSIONS
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ngo (Bv2=1+f 2= |fo_pl) N}

_|§| E |fm| |fm+p|2 | m+(n— l)p| |m+np>
X{(m+np|. (A2)
Hence
Ov?—1+|f,|>=|f,_pl2=0, (A3)
for 0SN<mor m<n,n#m mod p, and
602_1+|fm+np|2_|fm+(n—l)p|2
|fm| |fm+p| |fm+(n71)p| (A4)

for 0O<n. With o,=|fm:m_1)p/>—N—60*(p—1)(n—1),

the magnetic field is expressed as

=03 ny(n|
+5 2,10

ccll—‘

n—On+1— Ov%(p—1)]Inp+m)(np+m|,

(A5)

where X' is the sum over &n<m and m<n, n
#m mod p. The flux is then given by

d=mbv’+qo— limq,,

n—oo

(AB)

where if we write m=pk+r, 0=<k,0Osr=p-1, (g
=k(1—6v?)+(p—1)6v2. In order to have a finite energy
g, ought to converge. IZ=0, we find that|fnp+,|2 (1
—6v?)(n+1), 0=<n,0<r<p, and g,=— fv’pn+ Bv?(p

—k—1)+k. For this solution, the energy diverges. On the
other hand, iff# 0 thenq, satisfies the following recurrence

relation:

Un+1— On+poV?

1
m=1+(p—1)002+ ~lan=(p—1)6v?].
n~ YUn-1

(A7)

We take then— o limit of the above equation and conclude

thatp=1 is a necessary condition fq, to converge. Now
for p=1 let us assume that lioy,= «. This implies that, for
any ¢>0, there exists larg&l such thata—e<q,<a+e
for n=N. Equation(A7) implies

(A8)

Furthermore, we have
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- ate

14
n

e SN IE DI

(A9)

However, for anyp #0

©

11

)— exp( EN In(n+9)—|nn), (A10)

n=

which is either infinity or zero depending on the signature of
¢. Thus, Eqs(A8)—(A9) implies thata must be zero.
With p=1, Eq.(A7) gives a recurrence relation

q
On+1~9n=0n—0On-1t Fn(qn_qn—l"_ 002)1 (A11)

with two initial data,qo=m(1— 6v?) and g;=m(1— 6v?)
+|¢|?— 6v?. Therefore if||>> 6v?, theng, is monotoni-
cally increasing. As the only possible converging value is

zero, it must diverge. In cagé|=0, it can be easily solved
by g,=m(1— 6v?)—nov?.

APPENDIX B: NONEXISTENCE OF SELF-DUAL BPS
SOLUTIONS FOR #VZ>1

We shall work in a gaugk;; =0 fori>j. The BPS equa-

tions can be written as

(Pc;rn: I’]Tsm"_ CL‘PEm—i_ hT‘PEmv (B1)
ePn=(1+ E)(¢Em+5m€0T+ (Psm(PT)
—([cm,"]+[h,cp]+[h,h]), (B2

wherec,,= SmcS[Q1 andEmz 1-P,,. The relevant part of the
first order equations im reads

I:)m‘P(l)pm: - thgl)cm"' th(l)clw

Pm@()Cm=Prh(1)Prm- (B3)
SincePh{;,P,=0 for our gauge choice, we find thaf;,
hglr)nﬂ, h(l) can be arbitrary but all the remaining com-
ponents should vanish. Now we investigate the second order
equations obtained from the perturbation equati®®). Let
us multiply P, to the left and to the right of the equation at

the same time. We obtain

. _
e Pt Pm¢(0)Pm®(1)Pm=[Pmh(1)Pm: Pmh({1yPm]
+Pahy)Prh(1)Pm- (B4)

Using the result of the first order equations and taking trace
of the above equation, one finds

meS, W
a=0

(B5)

Hence we get a contradiction whet>0.
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