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Instanton-meron hybrid in the background of gravitational instantons
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In the present work, perhaps the simplest and the most straightforward new algorithm for generating solu-
tions to the(anti-)self-dual Yang-Mills(YM) equation in the typical gravitational instanton background is
proposed and then applied to find solutions to practically all the known gravitational instantons. The solutions
thus obtained turn out to be some kind of instanton-meron hybrids possessing mixed features of both. Namely,
they are rather exotic type configurations obeying a first ofdeti-)self-dual YM equation which are every-
where nonsingular and have finite Euclidean YM actions on one hand while exhibiting meronlike large
distance behavior and carrying generdligctional topological charge values on the other. Close inspection,
however, reveals that the solutions are more like instantons than merons in their generic nature.
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[. INTRODUCTION gravitational field with a high degree of isometry such as the
Euclideanized Schwarzschild geomef8} or the Euclidean
Certainly the discovery of the topologically degeneratede Sitter spac¢3]. Even the works involving more general
vacuum structure of non-Abelian gauge theories was théackground spacetimes including gravitational instantons
starting point from which we began to appreciate the fruitful(Gl) were mainly confined to the case of asymptotically lo-
but still mysterious nonperturbative regime of the theoriescally Euclidean(ALE) spaces which is one particular such
And central to this nonperturbative aspect of non-AbelianGl and employed rather indirect and mathematically-oriented
gauge theories are the pseudoparticles, dubbed “instantonssolution generating methods such as the Atiyah-Drinfeld-
[1]. In a naive mathematical sense, they are the classicaditchin-Manin (ADHM) construction/14]. Recently, we4]
solutions to Euclidean field equations of non-Abelian gaugeéhave proposed a “simply physical” and hence perhaps the
theories and, in a physical sense, they are the non-Abeliamost direct algorithm for generating the YM instanton solu-
gauge field configurations interpolating between two homotions in all species of known Gl. Particularly, [id] this new
topically distinct but degenerate vacua. They thus can balgorithm has been applied to the construction of solutions to
thought of as saddle points which make a dominant contrianti-)self-dual YM equation in the background of Taub-
bution to the intervacua tunneling amplitude in the path in-NUT (Newman-Unti-Tamburinpand Eguchi-Hanson met-
tegral formulation of quantum gauge theory. Of course in-rics which are the best known such GI. In the present work,
stanton physics in pure non-Abelian gauge theories such age would like to complete our discussion on this issue by
Yang-Mills (YM) theory formulated in flat Euclidean space providing a detailed presentation of our algorithm and apply-
has been studied thoroughly thus far. Its study in nontriviaing it to practically all the GI known. The careful physical
but physically meaningful gravitational fields, however, hasinterpretation of the solutions obtained eventually to deter-
been extremely incomplete. Indeed, the strength of gravitynine their nature will also be given in this work. The essence
well below the Planck scale is negligibly small compared toof this method lies in writing théanti-)self-dual YM equa-
those of elementary particle interactions described by nontion by employing a truly relevant ansatz for the YM gauge
Abelian gauge theories. Thus one might overlook the effectsonnection and then directly solving it. To demonstrate how
of gravity on the nonperturbative regime of non-Abelian simple in method and powerful in applicability it is, we then
gauge theories such as the physics of the instanton. Neveapply this algorithm to the case @nti-)self-dual YM equa-
theless, no matter how weak the relative strength of the backions in almost all known GI and find the YM instanton
ground gravity is, as long as the gravity carries a nontrivialsolutions in their backgrounds. In particular, the actual YM
topology, it may have profound effects on the structure ofinstanton solution in the background of Taub-NQAhich is
gauge theory instantons since these instantons are topologisymptotically locally flattALF) rather than ALH, Fubini-
cal objects linked to the topology-changing processes. ThereStudy(on CF), and de Sittefon S*) metrics are constructed
fore, in the present work, we would like to explore how thefor the first time in this work. Interestingly, the solutions to
topological properties of the YM theorpr more precisely, the (anti-)self-dual YM equation turn out to be the rather
of the YM instanton solutionare dictated by the nontrivial exotic type of instanton configurations which are everywhere
topology of the gravitational field with which it interacts. nonsingular havindinite YM action but sharing some fea-
Being an issue of great physical interest and importanceures with meron solutiond 1] such as their typical structure
quite a few serious studies along this line have appeared iand generallyractional topological charge values carried by
the literature but they were restricted to the backgroundhem. Namely, the YM instanton solution that we shall dis-
cuss in the background of Gl in this work exhibit character-
istics which are mixture of those of typical instanton and
*Email address: hongsu@hepth.hanyang.ac.kr typical meron. Thus at this point, it seems relevant to briefly
TEmail address: cem@hepth.hanyang.ac.kr review the essential nature of meron solution. For detailed

0556-2821/2001/632)/12500214)/$20.00 63 125002-1 ©2001 The American Physical Society



HONGSU KIM AND YONGSUNG YOON PHYSICAL REVIEW D63 125002

description of meron, we refer the reader to some earlier

works [10,11. First, recall that the standard Belavin- IEYM:f d*x\g
Polyakov-Schwarz-TyupkitBPST) [1] SU(2) YM instanton M
solution in flat space takes the form‘”-\f‘L:27;;"W[x”/(r2 1
+\?)] with %, and\ being the 't Hooft tensof5] and the —j d3xh a-K. 2)
size of the instanton respectively while the meron solution M .

which is another nontrivial solution to the second order YM a ' .
field equation found long ago by De Alfaro, Fubini, and WNe'€F ., is the field strength of the YM gauge fiel,
Furlan[10] takes the formA? = nj‘w(xV/rZ). Since the pure with a=1,2,3 being the S(2) group index andj. being the
(vacuum gauge having vanishing field strength is given bygauge coupling constant: The G_lbbons-Hawkmg te_rm on the
A2=272 (x*/r?), the standard instanton solution interpo- boundarydM of the manifoldM is also added antl is the

| N b my h' vial AR —0 _0 and h metric induced orvM andK is the trace of the second fun-
ates between the trivial vacuuAf, =0 atr =0 and another

: damental form oM. Then by extremizing this action with
vacuum represented by this pure gauge abovwe-at and

; ; a
the meron solution can be thought of as a “half a vacuumreSpeCt o the metrig,,, and the YM gauge field,, one

gauge.” Unlike the instanton solution, however, the merorlgets the following classical field equations respectively:
solution only solves the second order YM field equation and

Lot L pe par
o 2

C

fails to solve the first ordefanti-)self-dual equation. As is R~ EgWR=8wTW,

apparent from their structures given above, the meron is an

unstable solution in that it is singular at its centerO and at

r=o while the ordinary instanton solution exhibits no sin- T :i a paa_ Eg (F2 Faeh)

gular behavior. As was pointed out originally by De Alfaro mr g2l * v 4 pi T ap '

et al.[10], in contrast to instantons whose topological charge

density is a smooth function of, the topological charge DM[\/EFE"“’]=O, DH[\/EFaMV]:O, )

density of merons vanishes everywhere except at its center,
e, the smgulgr point, such that its vollume integral is half, nere we added Bianchi identity in the last line aﬁﬁy
unit of topological charge 1/2. And curiously enough, half- — 9 AB— g A%+ gabcpbaC  pac_y sacy abopb gog A
integer topological charge seems to be closely related to the %5, " .—ay “= &, 2t B o 4. H
4 X . . . =A5(—iT?), F,=F (—iT% with T*=7%2 (a=1,2,3)
confinement in the Schwinger moddll]. It is also amusing e s my o L ap ]
to note that a “time slice” through the origin, i.ex,=0 of ~ Peing the SW2) generators and finallf ,,=3z¢€,,""F 4 is
[11]. Lastly, the Euclidean meron action diverges logarithmi-solutions @,,,A;) of the coupled EYM equations given

cally and perhaps needs some regularization whereas ti@ove in Euclidean signature obeying ttenti-)self-dual

standard YM instanton has finite action. equation in the YM sector

We now recall some generic features of gravitational in-
stantons. In the loose sense, Gl may be defined as a positive- Fir=gihgPoF, = ifeﬂmglz @)
definite metricg,,,, on a complete and nonsingular manifold 7 2°¢ ap

satisfying the Euclidean Einstein equations and hence consti-

tuting the stationary points of the gravity action in Euclideanwhere e4”*#= e#**f|\[g is the curved spacetime version of
path integral for quantum gravity. But in the stricter sensetotally antisymmetric tensor. As was noted[®,3], in Eu-
[5,6], they are the metric solutions to the Euclidean Einsteirclidean signature, the YM energy-momentum tensor van-

equations havinganti-self-dual Riemann tensor ishes identically for YM fields satisfying thiganti-)self-
duality condition. This point is of central importance and can

be illustrated briefly as follows. Under the Hodge dual trans-

formation, Fj‘w—>|~:j‘w, the YM energy-momentum tensor
T,, given in Eq.(3) above is invariant normally in Lorent-
zian signature. In Euclidean signature, however, its sign

(say, with indices written in noncoordinate orthonormal ba-flips, i.e.,'Nl'Wz —T,,. As aresult, for YM fields satisfying
sig) and include only two families of solutions in a rigorous the (anti-)self-dual equation in Euclidean signature such as
sense; the Taub-NUT metr[@] and the Eguchi-Hanson in- the instanton solutionF2 ==+F2 it follows that T,
stanton[8]. In the loose sense, however, there are several = e * "

. ; . ) . = =-T,,, namely the YM energy-momentum tensor
mv Mmoo
solutions to Euclidean Einstein equations that can fall intq , .cfac identicallyT,,=0. This, then, indicates that the
the category of Gl. K

YM field now does not disturb the geometry while the ge-
ometry still does have effects on the YM field. Consequently
the geometry, which is left intact by the YM field, effectively
serves as a “background” spacetime which can be chosen
somewhat at our willas long as it satisfies the vacuum Ein-
We now begin with the action governing our system, i.e.,stein equatiorR,,,=0) and here in this work, we take it to
the Einstein-Yang-MillSEYM) theory given by be the gravitational instanton. Loosely speaking, all the

~ 1
RabcdzieabEfRefcd: * Rabed (1)

II. NEW ALGORITHM FOR SOLUTIONS
TO (ANTI- )SELF-DUAL YM EQUATION

125002-2



INSTANTON-MERON HYBRID IN THE BACKGROUND CF . ..

typical Gl, including Taub-NUT metric and Eguchi-Hanson
solution, possess the same topold®y S® and similar met-
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the geometry were that of rour®f, one would write down
the YM gauge field ansatz &&= f(r)o?® [3] with {?} be-

ric structures. Of course in a stricter sense, their exact topolang the left-invariant 1-forms introduced earlier. The ratio-
gies can be distinguished, say, by different Euler numbergsale for this choice can be stated briefly as follows. First,

and Hirzebruch signaturg$,6]. Particularly, in terms of the
concise basis 1-forms, the metrics of these GI can be writte
as[5,6]

ds?=c2dr?+c2(o2+ o3)+ 303
3
2 2
=c2dr?+ 21 cA(o?)?=erwet (5)
a=

wherec,=c,(r), ca ca(r), cg=cy,#c5 and the orthonor-
mal basis 1-forne”* is given by

er={e’=c,dr,e?=c,0%} (6)
and{c?} (a=1,2,3) are the left-invariant 1-forms satisfying
the SU2) Maurer-Cartan structure equation

do?=—

()

%eabca'b/\ ot

They form a basis on th&® section of the geometry and
hence can be represented in terms of 3-Euler angte®g 0
<, 0<¢=<2, and O< y<4m parametrizingS® as

—sinyd 6+ cosy sinfd ¢,
=cosydo+sinygsindde,

®)

Now in order to construct exact YM instanton solutions in

—d¢—cosfd .

since ther = const sections of the background space have the
geometry of round®® and hence possess the @Disometry,
one would look for the S@)-invariant YM gauge connec-
tion ansatz as well. Next, noticing that both the const
sections of the frame manifold and the @JYM group
manifold possess the geometry of routf one may natu-
rally choose the left-invariant 1-formss?} as the “com-
mon” basis for both manifolds. Thus this YM gauge connec-
tion ansatz A?=f(r)o® can be thought of as a hedgehog-
type ansatz where the group-frame index mixing is realized
in a simple mannef3]. Then coming back to our present
interest, namely the Gl given in E¢p), in r = const sections,
the SA4) isometry is partially broken down to that of $&)

by the squashedness along thél)JJfiber direction to a de-
gree set by the squashing factai(c,). Thus now our task
became clearer and it is how to encode into the YM gauge
connection ansatz this particular type of @Bisometry
breaking coming from the squash&gl Interestingly, a clue

to this puzzle can be drawn from the work of Eguchi and
Hanson[9] in which they constructed Abelian instanton so-
lution in Euclidean Taub-NUT metritnamely the Abelian
gauge field with(anti-)self-dual field strength with respect to
this metrid. To get right to the point, the working ansatz
they employed for the Abelian gauge field to yiglanti-
)self-dual field strength is to align the Abelian gauge connec-
tion 1-form along the squashed direction, i.e., along tk&) U
fiber direction,A=g(r)o®. This choice looks quite natural
indeed. After all, realizing that embedding of a gauge field in
a geometry with high degree of isometry is itself an isometry
(more precisly isotropybreaking action, it would be natural

the background of these GI, we now choose the relevario put it along the direction in which part of the isometry is

ansatz for the YM gauge potential and the(8JUgauge fix-
ing. And in doing so, our general guideline is that the YM

already broken. Finally therefore, putting these two pieces of
observation carefully together, now we are in the position to

gauge field ansatz should be endowed with the symmetrguggest the relevant ansatz for the YM gauge connection
inherited from that of the background geometry, the GI. Thusl-form in these Gl and it is

we first ask what kind of isometry these GI possess. As note
above, all the typical G| possess the topologyRof S3. The
geometrical structure of thg® section, however, is not that
of perfectly “round” S® but rather, that of “squashed3°.
In order to get a closer picture of this squasi$&dwe notice
that ther =const slices of these Gl can be viewed ad)U
fiber bundles oveB>~ CP* with the line element
dQ3=ci(o2+ 03)+c505=c2dO5+c5(dy+B)%, (9)
wheredQ3=(d#?+ sirfed¢?) is the metric on units?, the
base manifold whose volume forfa, is given by(Q,=dB
as B=cosfd¢ and ¢ then is the coordinate on the U(1)
~ St fiber manifold. Now therc, = c,# ¢ indicates that the
geometry of this fiber bundle manifold is not that of rousid
but that of squashe8® with the squashing factor given by
(c3/cqy). And further, it is squashed along the(l) fiber
direction. Thus this failure for the geometry to be that of
exactly roundS® keeps us from writing down the associated
ansatz for the YM gauge potential right away. Apparently, if

12500

d

A2=f(r)o?+g(r) 63, (10)
which obviously would need no more explanatory comments
except that, in this choice of the ansatz, it is implicitly un-
derstood that the gauge fixing,=0 is taken. From this
point on, the construction of the YM instanton solutions by
solving the (anti-self-dual equation given in Eq4) is
straightforward. To sketch briefly the computational algo-
rithm, first we obtain the YM field strength 2-forfn ortho-
normal basisvia exterior calculugsince the YM gauge con-
nection ansatz is given in left-invariant 1-formas F?2
=(F',F2 F%) where

' fl(f-1)+g]
Fl_m(eo/\el)-f- T(ez/\es), 11
F2= (eO/\ 2) M(e3/\el),

CC C3Cy

2-3
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f'+g’ f(f—1)— !
F3=—( g )(eo/\e3)+—[ ( ) g](el/\ez) Fa= g (eo/\eg’)——g (et\e?) |62,
CC3 1C2 CiC3 CiC2
from which we can read off théanti-self-dual equation to *(Ing)’
be C/Ca
=—< 4 ) for A2=g(r)s*3s° (15)
P flf-1+gl  (F'+g) _[f(f-1)-g] €1C2
Tccp c,cs |~ ¢C3 ciC,
(12 and
where the prime denotes the derivative with respect.to Fa— g’ (e°/\eh) (e2/\e3) | 52
After some manipulation, theganti-)self-dual equations can CCy1 2C3 '
be cast to a more practical form . ,
*=(Ing)
C3),(Cr (CrCS) (Cr>2 2 C
Inf)"+|—=| |—|= Inf)'=|—| [f°—1], - a_ 151
IO+ 2] e Tleg,) NP =lg) -1 <c3> for Al=g(r)s*e (16)
and similarly for A2=g(r)8*2¢2. And in the above equa-
h= 1i(%)(ln )], (14) t?ons, “+" for self-dual and “—”“for anti-s?lf—dua‘l‘ equa-
C, tion. We now present both the “standard” and “Abelian-
ized” YM instanton solutions of the forms given in Egs.
whereh(r)=f(r)+g(r) and “+” for self-dual and “—" (10), (15), and(16) for each of the GI.
for anti-self-dual equation and we have only a set of two
equations as; =c,. Now the remaining computational algo- |,  AppLICATION OF THE ALGORITHM TO VARIOUS
rithm is, for each Gl corresponding to particular choice of Gl BACKGROUNDS
er={e’=c,dr,e?=c,0%}, first Eqs.(13) and(14), if admit
solutions, givef(r) andg(r) respectively and from which, In this section, in order to exhibit how simple in method

next the YM instanton solutions in ELO) and their(anti)  and how powerful in applicability this new algorithm of ours
self-dual field strength in Eq11) can be obtained. At this really is, we shall apply the algorithm to the cases of Taub-
point, it is interesting to realize that actually there are otheNUT (TN), Eguchi-HansorEH), Fubini-Study(FS), Taub-
avenues to constructing the YM instanton solutions of differ-bolt (TB), and de Sitter Gl backgrounds and find the solu-
ent species from that given in E€LO) in these GI. To state tions to (anti-)self-dual YM equations in these Gl.

once again, im = const sections of Gl, since the 8)isom-

etry is partially broken by tg‘e_ squashedngs§%§long the A. YM instanton in Taub-NUT (TN) metric background
U(1) fiber direction set by in Eq. (9), this particular di- ) ) ) _ ) )
rection set by can be thought of as a kind gincipal The TN GI solution written in the metric form given in
axis Note also that exactly to the same degree thi® iber ~ Ed- (5 amounts to
direction set by stands out, the other two directions set by 101 +m]2 1

1 2 & i i _ _ — 2 211/2
o and o, respectively, may be regarded as being special. Cc, == C1=C,==[r*—m

. . r 2 r—m 1 1 2 2 [ ] 1

Thus one might as well want to align the YM gauge connec-
tion solely along the direction set hy® or along the direc-
tion set bya* or o2, And this can only be done when one ~[r=m]*?
abandons the non-Abelian structure in the YM gauge field Cg=m r+m

and writes its ansatz in the form

o s 3 o 12)-1(2) and it is a solution to Euclidean vacuum Einstein equation
A?=g(r)6* o or A%=g(r)s* %ot R,,,=0 for r=m with self-dual Riemann tensor. The appar-

) . ) ~ ent singularity atr =m can be removed by a coordinate re-
respectively. Then YM instanton solutions of these speciegefinition and is a “nut” (in terminology of Gibbons and
should essentially be equivalent to the Abelian instantons Olf-lawking [6]) at which the isometry generated by the Killing

the Eguchi-Hanson-type mentioned earlier and as such theyector (9/94) has a zero-dimensional fixed point set. The

if they exist, should clearly be totally different kinds of in- boundary of TN metric at— = is S°. And this TN instanton
stanton solutions that cannot be related to the standard YN} g, asymptotically locally flatALF) metric.

instantons given in Eq(10) via any gauge transformation
whatsoever. For this reason, we shall call them “Abelian-

. ; . 1. Standard YM instanton solution
ized” YM instanton solutions and attempt to construct them

in this work as well. The field strength and thenti-)self- It turns out that only the anti-self-dual equatidf’
dual equations associated with these Abelianized YM instan=—F? admits a nontrivial solution and it isA?
tons are then given respectively by =(A1,A2 A%) where

125002-4
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r-m 1/2 r-m 1/2
A1=i2(—)3/2e1, 2=i2(—)3/262, Aa:LefrIZm 11— 1/22k 3/2e7r/2m5alell
(r+m) (r+m) (r—m) (r+m)~4r—m)
(r+3m) (r—m)*? ~r/2m
3_ 3 2k e
AT rmt 17 Fa:—m(r_m)z[(eo/\e1)+(e2/\e3)]8a1 (22)

— 123
andF*=(F",F*,F*) where for the solution to the self-dual equation and

8m )12
-+ T m? (e9Net—e?/\ed), A2=K(r—m)e’Msalyl= 2k( :: - 2) er/2m salgl.
F2=+ 8m (eo/\ez—e3/\el) 2k
(e ' Fo=—e"M(e%/\e") — (e*/\e%)] 6™ (23)
3_ 16m (9Ne3— elNe?). (18) for the sol_ution to th_e anti-self-dual equation. This solution_,
(r+m)3 however, isnot physical and hence should be dropped as it

blows up ag — .
It is interesting to note that this YM field strength and the

Ricci tensor of the background TN Gl are proportional as gy instanton in Eguchi-Hanson (EH) metric background
|F3|=2|RY| except for opposite self-duality, i.e., _
The EH Gl solution amounts to

4m

0_ _p2_ 0Nl @2 A a3 a\4] 12 1 1 a| 42
Ri= R~ rm)3(® Ne+ete), ¢ =|1-|— , C1=Cp==r, Cg==r[l—|=
r 2 2 r
Rg: _ sz S (e°/\e?+e3/\et), e_md againitis a solutic_)n to Euclidea_n vacuum Einstein_ equa-
(r+m) tion R,,=0 for r=a with self-dual Riemann tensor=a is
just a coordinate singularity that can be removed by a coor-
8m dinate redefinition provided that now is identified with
0_ _pl_ _ 0N a3 al A a2 c ) : X
Re=—Rz= (r+m)3(e Ne“+er/\ed). (19 period 2 rather than 4 and is a “bolt” (in terminology of

Gibbons and Hawking6]) where the action of the Killing

2. Abelianized YM instanton along the direction set lay? field (9/94) has a two-dimensional fixed point set. Note that
) ) ) for an ordinaryS?, the range for the Euler angle would be
Both the self-dual and anti-self-dual equations admit nong < y<4. Thus demanding € <27 instead to remove
trivial solutions and they are, in orthonormal basis, the bolt singularity atr=a amounts to identifying points
antipodal with respect to the origin and this, in turn, implies

r+m k [r+m)3? ; iacti
Ald=k 52853 =— 5%3e3, that the boundary of EH at— e is the real projective space
r-m mir—m RP3*=5%Z,. Besides, this EH instanton is an asymptotically

locally Euclidean(ALE) metric.
Fa=— —z4k [(e°A\e®) + (elN\e?)]s6%
(r—m (e7/Ae7)]

) 1. Standard YM instanton solution
(20 In this time, only the self-dual equatidi?= +F?2 admits
for the solution to self-dual equation and a nontrivial solution and it i#\*=(A*, A%, A%) where
12 2 411/2 2 a 41172
Ad—k r-m 5‘33o3=£ r—m 5833 Al=+— 1—(—) el, A?=+—|1-|— e?,
r+m m\r+m ’ r r r r
4
4k OA a3 1A a2 3 1+ —
Fa= ——[(e%\e%) - (e/\e?)]5° (1) 2
(r+m) A3=" e (24)
r a 47172
for the solution to anti-self-dual equation. In these solutions, [1_ T
k is an arbitrary constant.
andF2=(F! F? F3) where
3. Abelianized YM instanton along the direction set loy*
. 3 . 3 . ) 4 [a 4
.Agam,. poth the'self dual and anti-self-dual equations ad S (9Ael+ e2/\ed), (25)
mit nontrivial solutions and they are re\r
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4 a_ 0 3 1 2 3

ol i%(;) (N1 e AeD), Fa=4k[(e°\e’)—(e'N\e?)]s6?
for the solution to the anti-self-dual equation. In these solu-
al? tions, k is an arbitrary constant. Note, however, that this so-
(—) (e9Ne3+elN\e?). lution to the anti-self-dual equation isnphysicaland thus

8
2
r should be dropped as it fails to represent a localized soliton

r

F3=—

Again it is interesting to realize that this YM field strength configuration.

a_lnd the R';:C' ten%or_of the background EH Gl are propor- 3. Abelianized YM instanton along the direction set ly*

tional as|F?=2|Ry], i.e., ' ' '
Again, both the self-dual and anti-self-dual equations ad-

0 , 2|a 4 mit nontrivial solutions and they are

RI=-R3=1|— (—eNet+e?/N\e?),

Ad= k 5""1012—2k set
2 (a4 ri—at ryri-a* '
Rg:_szr—z(F> (—e°\e?+e3/\el),
4k
4 (a)* Fi=— ram g (A H@Ned)]o  (29)

for the solution to the self-dual equation and
It is also interesting to note that this YM instanton solution .
particularly in EH backgroundwhich is ALE) obtained by 2
directly solving the self-dual equation can also be “con- Aa:kVr4_a45a1‘71:TVr4_a45alel'
structed” by simply identifying A%=+202 [where w?
=(eapd2)wC is the spin connection of EH metlicand Fa=4Kk[(e°\el) —(e?/\e®)]6* (30)
henceF2=+2R? as was noticed by13] but in the string
theory context with different motivation. This construction for the solution to the anti-self-dual equation. Again, this
of solution via a simple identification of gauge field connec-solution isnot physical and hence should be discarded as it
tion with the spin connection, however, works only in ALE fails to represent a localized soliton configuration.
backgrounds such as EH metric and generally fails as is
manifest in the previous TN background caéssich is ALF, C. YM instanton in Fubini-Study (FS) metric on CP?
not ALE) in which A%+ =202 but still F3=+2R?. Thus background
the method presented here by first writiflly employing a
relevant ansatz for the YM gauge connection given in eqati
(10)] and directly solving the&anti-)self-dual equation looks

Lastly, the FS(on complex projective plane GPgravi-
onal instanton solution corresponds to

to be the algorithm for generating the solution with general 1 -1 r -12
applicability to all species of Gl in a secure and straightfor- c=|1+ gAr2 , C1=C=5 1+ gArz} ,
ward manner. In this regard, the method for generating YM
instanton solutions tdanti-)self-dual equation in all known _1
Gl backgrounds proposed here in this work can be contrasted _r 1+ EArZ}
to earlier works in the literaturfel5] discussing the construc- 32 6
tion of YM instantons mainly in the background of ALE Gl
via indirect methods such as that of ADHNA4]. where A is the (positive cosmological constant and it is a
solution to the Euclidean Einstein equatiBy,=8wAg,, .
2. Abelianized YM instanton along the direction set lay® As such, this FS metric is a “compact” gravitational instan-

Both the self-dual and anti-self-dual equations admit non-te?/nes'e'F]gzt?gtzrllaﬁzﬂntlct)etr\]/glé T?tetj\r/:gt] gzlggg?g:r)é gﬁr{%s
trivial solutions and they are yw 9 P P

reveals that ar =0, there is a removable nut singularity

K 2k a\41-112 while atr—o, we have a bolt singularity which is remov-
Al= —58g3=—|1-| - 6%3e?, able provided 6 y<4. Besides, unlike the previous TN
r r r and EH instantons which have self-dual Riemann tensors
Ak R#m[,zﬁﬂmﬁ, this FS instanton possesses self-dual Weyl
Fa=— r—4[(e°/\e3) +(etN\e?)]8%3 (27)  tensorC,,,s=C,pap-

for the solution to self-dual equation and 1. Standard YM instanton solution

1 Only the self-dual equatioR?= +F?2 admits a nontrivial
a solution and the corresponding solution and the associated
— o83, (29 P 9

a_ | 2523 3_
AT=KrE 0% o= 2kr self-dual field strength are given by

1_
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3. Abelianized YM instanton along the direction set ly*

2 2 1
Al=r—e!, A’=x-€? A’=—|1+_SAr?|e
r 12 k 2k 1 1/2
(31) Aa:r—zaalo'lzrg 1+ EAI'Z) 5alel,
andF3=(F! F? F3) where
4k 3r
1D ol a2 nes 2 DN o2 el Fa:_r_4(1+§/\r2> [(e2\el) +(e?/\e?)] 5%
F :ig(e Net+e/\e’), F :ig(e ANes+e’/\er), (36)

for the solution to self-dual equation and

-

3_ _ 0N @3 Al A2
F 3 (e°Ne’+e /\ed). (32 "

Al=kr?51gl=2kr 5Mel,

11A2
+6r

Again it is interesting to contrast this YM field strength with

the Ricci tensor of the background FS Gl given by . 3
Fa=4k 1+—Ar2> [(e°\eh)—(e?/N\ed) 8%t

6
(37)

A
RI=— R§=€(e°/\e1— e?/\ed),

A for the solution to anti-self-dual equation.
RY= —Rf=g(e0/\e2—e3/\e1), And this completes the presentation of all nontrivial YM

instanton solutions in three families of gravitational instan-

tons. We discussed earlier in the introduction the classifica-
Rg: %(Zeo/\e3+e1/\e2), tion of _gra_vitati(_)nal instantonkb,6]. And the three_ familie_s

of gravitational instantons, TN, EH, and FS metrics fall into
the class of instanton solutions in the stricter sense as they
have (anti-)self-dual Riemann or Weyl tensor. In this classi-
fication, all the other gravitational instantons discovered thus
far can be thought of as being instanton solutions in the loose
which, unlike the TN and EH casegijls to obey the relation sense as they all fail to satisfanti-)self-dual condition for
||:a|:2|Rg| presumably because the FS solution fails toRiemann or Weyl tensor although still are the solutions to
have self-dual Riemann tensor. Here it seems worthy of notée Euclidean Einstein equation with or without the cosmo-
that since the background FS metric is a compact instantol®gical constant. Therefore, for the sake of completeness of
and hence has a finite volume, one need not worry about theur study, here we also provide explicit YM instanton solu-
possible divergence of the field energy upon integration ovetions in the background of other species of gravitational in-
the volume. Namely, this instanton solution is a legitimate,stantons in the loose sense. And particularly, we consider the

A
R§=§(e°/\e3+ 2elN\e?) (33

physical solution. Taub-bolt metrid10] and the de Sitter metric o0& [5,6].
2. Abelianized YM instanton along the direction set oy’ D. YM instanton in Taub-bolt (TB) metric background
Again, both the self-dual and anti-self-dual equations ad- This TB Gl solution written in the metric form given in
mit nontrivial solutions and they are Eq. (5) corresponds to
6k 1 12k 1 2 2(r’—=N?) 7
a_ " [ 14 T A2 33:_< LT Ar2 343 _ o~ _[y2_ N2712
A INZ 1 6Ar )5a0' INE 1 6Ar 5*°e’, C=| 5z sNraaNE| ¢ C1TCe [re—N<]"%,
X 2 1A 5\ 07 o3 17 g2)15%3 N 2r2—5Nr+2N2%|12
F ——m 1+6 r [(e e)+(e e)] C3= W
(34)
and it is a solution to Euclidean vacuum Einstein equation
for the solution to self-dual equation and R,,=0 for r=2N. Again, in terminology of Gibbons and
. Hawking [5,6], r=2N is a “bolt” singularity that can be
Aa:ﬂrz 1+EAr2 59 3:5Ar5a3e3 removed by a coordinate redefinition. As stated, although
6 6 7 ’ neither its Riemann nor Weyl tensor (anti-)self-dual, it is,
like the TN metric, another asymptotically locally-figgLF)
2kA instanton.
FazT[(eo/\eg)—(el/\ez)]ﬁ"’13 (35

1. Standard YM instanton solution

for the solution to the anti-self-dual equation. In these solu- Unlike the ones belonging to the class of instanton solu-
tions, k is again an arbitrary constant. tions in the stricter sense, i.e., TN, EH, and FS metrics, nei-
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ther self-dual nor anti-self-dual equatidif=+F?2 in this
TB-metric background admits any nontrivial solution.

2. Abelianized YM instanton along the direction set oy

Both the self-dual and anti-self-dual equations admit non-

trivial solutions and they are

r+N
Aazk(_

3.3
r_N5acr

L
2N

2(r’—=N?)
2r2—5Nr+2N?

r+N
r—N

1/2
} 523e8

Fo=— ﬁf[(eo/\e%+(e1/\ez)]6a3 (38)

for the solution to self-dual equation and

r—N
a_ 3 3
A k(r+N)5acr
:L r—N 2(r?—N?) 1/25a3e3
2N\r+N/|2r2—5Nr+2N? ’

a

F =m[(e0/\e3)— (et\e?)]6%3 (39

for the solution to anti-self-dual equation and whéris an
arbitrary constant.

3. Abelianized YM instanton along the direction set loy*

Again, both the self-dual and anti-self-dual equations ad-

mit nontrivial solutions and they are

A= K e—r/2N 6a10_1
(2r—N)Y4(r—2N)

k
SN e
k 1
Fa=— efrlzN eO/\el
V2N (2r —N)34(r —2N)372 L )
+(e?/\e%)]6%t (40)

for the solution to the self-dual equation and
A2=K(2r —N)Y4(r —2N)e"Ns1s1

(2r—N)Y4(r—2N)
=k (12— N2)12

er/2N 5a1e1

Fa: L(zr _ N)—1/4(r_2N)1/2er/2N[(80/\el)

V2N
—(e?/\e%)]6%! (41)

PHYSICAL REVIEW D63 125002

for the solution to the anti-self-dual equation. Note, however,
that this last solution isinphysicaland hence should be dis-
carded as it fails to represent a localized soliton configura-
tion.

E. YM instanton in the de Sitter metric on S* background

This de Sitterfon S*) gravitational instanton solution cor-
responds to

271-1 21-1

r

2a

r

+
12a

r
s Cl:CZZCSI_

+
1 2

C =

(42

wherea is the radius ofS* and it is a solution to Euclidean
Einstein equatioR ,,=8mAg,, . Thus the radiug of Stis
related to the inverse of/A asa=3/8wA. Like the FS
metric we studied earlier, this de Sitter metric 8his an-
other compactgravitational instanton having no boundary
and hence is everywhere regular. As is well known, de Sitter
space is a space of constant curvature and hence is confor-
mally flat. Thus this de Sitter metric 08" has a vanishing
Weyl tensor,C,,,.s=0. This point is already evident from
the fact that ¢,=c,=c5 which indicates that the=const
slices of this de Sitter metric o0& geometry argound S’s

with isometry groupSQ(4). Thus the relevant ansatz for
YM gauge connection is simply

AZ=f(r)o?

for reasons stated earlier and the associated field strength and
the (anti-)self-dual equation read

f’ 1 f(f—1)

a_ 0 a — _abc b c

F CrCa(e /\e)+25 oote (e’/\e®),
. f’ _(cr ”
“f(f-1) \c (43

where “+ " indicates self-dual and * " indicates anti-self-
dual equations. Obviously, this is the special case when
g(r)=0 in the more general case in E§.0) we have been
discussing. Then the standard YM instanton solutithe
physical ong can be constructed in a quite straightforward
manner and they are

21-1 2
Al=|1+|— o?=—¢e?,
2a
a_ O/\ a 1 abc b/\ c
F——;(e e)+§e (e”/\e%) (44
for the solution to the self-dual equation and
Aa_ 1+ Za 2 a_ a
B r 7282
47 L abc o
Fa= 7 (e /\e"")—zea “(e’\e% (45)

125002-8



INSTANTON-MERON HYBRID IN THE BACKGROUND CF . .. PHYSICAL REVIEW D 63 125002

for the solution to the anti-self-dual equation. Note that theséerms of the Cartesian coordinate basisix*
solutions in de Sittefon S*) instanton background are legiti- = (dt,dx,dy,dz) as above does not look so apparent. Thus
mate instanton solutions, namely, one need not worry aboute next introduce the so-callédHooft tensor[1,11] defined
the seemingly divergent field energy upon integration oveby
all space since the background de Sitter metric is a “com-
pact” instanton with finite proper volume. = — v | ooy %Eabcebcw . (48)
IV. ANALYSIS OF THE NATURE OF SOLUTIONS TO

(ANTI-)SELF-DUAL YM EQUATION Then the left-invariant 1-forms can be cast to a more concise

W Id like t ine th t fth luti form aa=2niv(x”/r2)dx“. Therefore, the YM instanton so-
€ now wou'd lik€ 1o examine the nature of the solu IonsIution, in Cartesian coordinate basis, can be written as

to the (anti-)self-dual YM equation in the background of
various Gl discussed in the previous section. Among other N

things, an interesting lesson we learned from this study is A2=A2dx“=2[f(r)+g(r) 53] 72 X_qu (49)
that, although expected to some extent, the chances for the K KVy2

existence of standard YM instanton solutidits (anti-)self-

dual equationkget smaller as the degree of isometry ownedin the background of TN, EH, FS, and TB Gl with topology
by each gravitational instanton gets lower from, say, the def Rx (squashed3®. Now in order to appreciate the meaning
Sitter Gl to the ones with self-dual Riemann or Weyl tensorof this structure, we go back to the flat space situation. As is
and then next to the ones without. Next, concerning the diswell known, the standard BPYT] SU(2) YM instanton so-
covered structure of thBU(2) YM instanton solutions sup- lution in flat space takes the forme:Zn/‘iv[x”/(err)\z)]
ported by these typical Gl, there appears to be an interestingith A being the size of the instanton. Recall, however, that
point worthy of note. First, recall that the relevant ansatz forseparately from this BPST instanton solution, there is an-
the YM gauge connection is of the for&f=f(r)o® in the  other nontrivial solution to the YM field equation of the form
highly symmetric de Sitter instanton background with topoI-Aiz nzy(x”/rz) found long ago by De Alfaro, Fubini, and
ogy of Rx(round)S® and of the form A®=f(r)o®  Furlan [10]. [Note that the pure gauge is given Y
+9(r)8*°¢ in the less symmetric GI backgrounds with t0- — 2,2 (x¥/r?). Thus the ordinary instanton solution interpo-
pology of RX (squashed)°. Here, however, the physical in- |05 hetween the trivial vacuuAf,=0 atr=0 and another
fcerpretatlon of the nature of YM gauge potentlgl solutidds vacuum represented by the pure gauge above-at and

IS rgther_ unclear when they are expressed in te_rn;s_ of e meron solution can be thought of as a “half a vacuum
left-invariant 1-forms{c?} or the orthonormal basie™ in 7,46 ] This second solution is called “meron11] as it

Eq. (6). Thus in order to get a better insight into the physicalcrieg 4 half unit of topological charge and is known to play
meaning of the structure of these YM connection ansatz, W§ .artain role concerning the quark confinemght]. It,

now try to reexpress the left-invariant 1-foris®} forming 1, ever, exhibits singularity at its center 0 and hence has

a basis or6® in terms of more familiar Cartesian coordinate diverging action and falls like d/asr—o. Thus we are
basis. And this can be achieved by first relating the polajgq 5 the conclusion that the YM instanton solution in typi-
coordinates i, 0, ¢,4) to Cartesian {x,y,z) coordinates ;5 G| packgrounds possess the structurecnived space
(note, here, that is not the usual “time” but just another orsion of meron at large. As is well known, in flat space-
spacelike coordinajegiven by([5] time meron does not solve the first ord@nti-self-dual
equation although it does the second order YM field equa-
tion. Thus in this sense, this result seems remarkable since it
implies that in the GI backgrounds, tlienti-)self-dual YM
equation admits solutions which exhibit the configuration of
meron solution at large in contrast to the flat spacetime
case. And we only conjecture that when passing from the flat
(R* to GI (RXS®) geometry, the closure of the topology of
wherex?+y?+ z2+t?=r2 which is the equation fo8® with  part of the manifold appears to turn the structure of the in-
radiusr. From this coordinate transformation law, one nowstanton solution from that of standard BPST into that of
can relate the noncoordinate basis to the Cartesian coordinateeron. The concrete form of the YM instanton solutions in

X+iy=r cosgexr{lz(x,w )

: (46)

. .6 i
z+it=r smzex;{z((p— b)

basis as each of these Gl backgrounds written in terms of Cartesian
coordinate basis as in E¢9) will be given below after we
dr X y z t| [dx comment on one more thing.
ro | 1/ -t —z 'y x||dy Finally, we turn to the investigation of other physical
=— , (47) guantities such as the topological charge of each of these
roy| ri z -t —-x yf|dz solutions and the estimate of the instanton contributions to

ro, -y x -t z/\dt the intervacua tunneling amplitude which can serve as cru-

cial indicators in determining the true physical natures of

where{o,= —0'1/2,<Ty=—02/2,oz= —o°/2}. Still, however, these solutions. It has been pointed out in the literature that
the meaning of YM gauge connection ansatz rewritten irboth in the background of Euclidean Schwarzschild geom-
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etry [2] and in the Euclidean de Sitter spd&d, the (anti-) 1

instanton solutions have the Pontryagin index 1pfA]= tr(FAF) =5 (F¥AF?)

+1 and hence give the contribution to tfeaddle point ap-

proximation t9 intervacua tunneling amplitude of exp 1/1 a —a 4
[—8772/95], which, interestingly, are the same as their flat ~5la EABCDFABFCD\/ad X
space counterparts even though these curved space YM in-

stanton solutions do not correspond to gauge transformations = (F3F 3t Fo P2+ FaF3) Jod'x,

of any flat space instanton solutiph]. This unexpected and
hence rather curious property, however, turns out not to per-
sist in YM instantons in these Gl backgrounds we studied
here. In order to see this, we begin with the careful definition
of the Pontryagin index or second Chern class in the pres- 4m 27 w )
ence of the nontrivial background geometry of GlI. X fo d‘ﬂfo d‘ﬁfo désin6

Consider that we would like to find an index theorem for
the manifold (M) with boundary ¢M). Namely, we now )
need an extended version of index theorem with boundary. =167 fRdr(crcchCS)u (51)
To this question, an appropriate answer has been provided by

Atiyah, Patodi, and SingefAPS) [12]. According to their where we used/g=|dete =c,c,c,c5sin 6. The period for

extended version of index theorem, the total index, say, of #he U(1) fiber coordinatey for the EH metric, however, is
given geometry and of a gauge field receives contributions, -0 than 4 to remove the bolt singularity at=a as

in addition to that from the usual bulk terffivV(M)], from a0 entioned earlier. This completes the description of the
local boundary termiS(oM)] a_nd from a nonlocal bOU”P'aVY method for computing the topological charge of each solu-
term[£(dM)]. The bulk term is the usual term appearing in ion Our next job, then, is the estimate of the instanton con-
the ordinary index theorem without boundary and involVeS;p, tions to the intervacua tunneling amplitudes. Generally,

the integral oveM of terms quadratic in curvature tensor of y,o saqdie point approximation to the intervacua tunneling
the geometry and in field strength tensor of the gauge f'eldamplitude is given by

The local boundary term is given by the integral ovét of
the Chern-Simons forms for both the geometry and the gauge I'ei~exd — g (instanton], (52)
field while the nonlocal boundary term is given by a constant

times the “"APSy-invariant” [5] of the boundary. And this where the subscript “GI” denotes corresponding quantities
last nonlocal boundary term becomes relevant and meaningn the GI backgrounds anig;(instanton) represents the Eu-
ful when Dirac spinor field is present and interacts with theclidean YM theory action evaluated at the YM instanton so-
geometry and the gauge field. Now turning to the case dtion, i.e.,

hand, the evaluation of the instanton number or the second

Chern class of the YM gauge fiemlong we only need to

pick up the terms in the gauge sector in this APS index IG|(instantor)=j 3d“x\/§
theorem which readgs] RxS

d4x\/§=f dr(c,c,CyC3)
R

M=RxS3

1 Fa Fa/.LV
20 My
49¢

2
V[A]=Chy(F) _(87
2 = —2 |V[A]|, (53)
1 9c
=82 f 3tr(F/\F)_J tr(a/\F) rroy -
T | JM=Rxs m=s’ where we used t4(F/\F)=F2VFa’”\/§d4x and the

(500 (anti-)self-duality relationF®==F2, The calculation of the

Pontryagin indices and hence the Euclidean YM actions we
just described is indeed quite straightforward.

In the following, as we promised, we now provide the
expression for the YM instanton solutions in each of these
- X ) Sl backgrounds written in terms of Cartesian coordinate ba-
the gauge fixingA; =0 as we mentioned earlier. Namely, gjq 15 stydy its structure one by one in detail and also we
both A andA’ possess only tangential componefwsth re-  yomonstrate the explicit evaluation of the topological charge
spect to ther=r, boundary at anyr=ro and hencea 51 e and the estimate of the contributions to the intervacua

=(A—A')=0 identically there. As a result, even in the pres- nnejing amplitude in order to eventually determine the
ence of the boundaries, the terms in the YM gauge sector 'Ehysical nature of each solution
! :

the APS index theorem remain the same as in the case

index theorem with no boundary, namely, only the bulk term
survives in Eq.(50) above. Thus what remains is just a
straightforward computation of this bulk term and it becomes In terms of the ansatz functiorigér) andg(r) for the YM
easier when performed in terms of orthonormal basls gauge connection in Gl backgrounds given in EtD), the
={e%=c,dr,e?=c,0?}, in which case, standard instanton solutions in TN metric amount to

wherea=(A—A’) is the “second fundamental formét the
boundaryr =r, and by definition5] A’ has onlytangential
components on the bounda#i = S°. Recall, however, that
our choice of ansatz for the YM gauge connection involve

A. YM instanton in Taub-NUT metric background
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_ 2m \/r—=m B. YM instanton in Eguchi-Hanson metric background
f(r)= r+m)j’ g(r)= r+m r+m)' The standard instanton solutions in EH metric amount to
o om fr—m (- 1_<§)4r/2, ar=| 14 a 4}_ L a 4 1/2’
fO==lrm) 90=2 75y m) ' r r
(54 2| 412 a4 2\ 4712
for self-dual and anti-self-dual YM equations, respectively. f(r):_[l_<F> } 9= 1+(F e

Therefore, when expressed in Cartesian coordinate basis as (59
in Eqg. (49), the solutions take the forms
for self-dual and anti-self-dual YM equations, respectively.

a r-m 2m o o X Thus in Cartesian coordinate basis, the solutions take the
Au=2 T m P & Tav 5 forms
a 47172 a 4
r—m r+2m X" AZ=2H1— - +( 1+ -
a— — 3|8 r r
n=2 r+m +2 r+m & n“”rZ (55)
471/2 v
(2 )5a3 a X
for the self-dual and anti-self-dual case, respectively. Some r n“”rZ’

comments regarding the features of these solutions are now

in order.(i) They appear to be singular at the centerO but

it should not be a problem as=m for the background TN A2=2
metric and hence the point=0 is absent(ii) It is interesting .

to note that the solutions become vacuum gaAQeco at

the boundaryr =m which has the topology o8°. (iii) For +
r—oo, the solutions asymptote to another vacuum gauge

A% =275, (x"Ir?).

We now turn to the computation of the topological for self-dual and anti-self-dual cases, respectively. Some
charge, i.e., the Pontryagin index of these YM solutions. Th&eomments regarding the features of these solutions are now
relevant quantities involved in this computation are the ones order. (i) Again, they appear to be singular at the center
in Eq. (51) and they, for the case at hand, are r=0 but it should not be a problem as=a for the back-

ground EH metric and hence the point0 is absent(ii)

4 4

a

1+

=

1/2
+ (

563] U

1/2 x”
- (60)

r

m The solutions becoma? =473 ,6*%(x"/r?) at the boundary
(€;C1C5C5) = g (r"—m"), r=a which has the topology 08%/Z,. (iii) For r—w, the
solutions asymptote to the vacuum gaugfAj|
a V2
a Tauv_ 11 2 -2 33 =27, (X"Ir?).
FlF 4(ForF2at FoFart Fodf 1) We turn now to the computation of the Pontryagin index
(8m)? of these YM solution. For the case at hand, the relevant
= —ZW- (56)  quantities involved in this computation are
1 ~ 4a*\?
Thus we have (C,C1CxC3) = §r3, Ff‘wFa"”zzﬂ(r—s) . (6]
| 3 LN (8m)? _
V[A]— 32772 167 mdl’g(r —m ) _24(r+—m)6 =1. Thus we have
(57
Al=[ 58 2fcdl32 nl I P
Then next the Euclidean YM action evaluated at these in- AI= 3272)°7 a rgr 7S 2 (62)

stanton solutions and hence the saddle point approximation
to the intervacua tunneling amplitude are given, respectivelyyhere we set the range for thé(1) fiber coordinate as 0
by < <2 rather than 6 <41 for the reason stated earlier.
Note particularly that it is precisely this point that renders the
) 8 8m? Pontryagin index of this solutiofractional because other-
IG,(lnstantor)z(? [v[All= ? wise, it would come out as-3 instead. Then next the Eu-
¢ ¢ clidean YM action evaluated at these instanton solutions and

2

) 0 2 hence the saddle point approximation to the intervacua tun-
I'gi~exf —lg (instanton]=exp(—87°/gc). (58 neling amplitude are given, respectively, by
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2 2

127 R -1 16 ijd r3 4A2_ 3
2 A= gz )16m | A1 =3 |77
¢ 8 1+EAI’

I'g~exd — I g (instanton]= exp( — 1272/g?). (63 (66)

[v[A]l=

| g (instanton=

2

c

, , - i ) Next the Euclidean YM action and the saddle point approxi-
C. YMinstanton in Fubini-Study metric on CP* background mation to the intervacua tunneling amplitude are given re-

The standard instanton solutions in FS metric amount tospectively by

—1/2 2

8m? 6
f(r)=|1+ g/\rz ; I(;,(instantor)=(l2 |v[A]|=lz,
Cc C
2 .

g(r)= [1+Ar 2{12] _ 1 FG|~exq—IG,(mstanton]=exp(—67-r2/g§). (67

[1+Ar</6] [1+Ar?/6]Y%

_1 D. YM instanton in the de Sitter metric on S* background
f(ry=—[1+ gArz} , In terms of the ansatz functiorf{r) for the YM gauge
connection given earlier a&?=f(r)o?, the standard instan-
(14 Ar212) 1 ton solutions in de Sitter metric amount to
+Ar

g(r)= TSI (64) 1211 0q\2]-1

[1+Ar</6]  [1+Ar2/6]"? f(r)=|1+ 5) . f()=|1+ T) } (69)

for self-dual and anti-self-dual YM equations, respectively. _ _ _
Then in terms of Cartesian coordinate basis, the solutionfr self-dual and anti-self-dual YM equations, respectively.
take the forms Then in terms of Cartesian coordinate basis, the solutions

take the forms

. (1+Ar?/12) sl a X

- Y 2 x” 2 X"
1+ Ar?/6)Y? K¥y2 a a_ a 7
( ) 20 AT (2ain?] Tev 2

(69

a __
A“_[1+Ar2/6]1/2[ r Ad— .
“ 1+ (r/2a)?] e

(1+Ar?/12)

XV
_— +1 J—
(1+Ar?/6)H? 2

(65)
r

e [1+ Ar?/6]Y? for self-dual and anti-self-dual cases, respectively. Now, note
and thus should not be a problem although the pioin® is
note that(i) the solution to the self-dual YM equatioh;, Ai=(1/2a2) 75,,x"—0. (i) Forr—oe, the solutions asymp-
=0 is present. But this is just a pure gauge representing dual case.
p
to |AL=2VBA nL2(x"Ir3)—0 and |A3[=n3 (x"Ir?) r’

a 2
that (i) the solution to the self-dual YM equatioA‘;
— a YA H H
x{ 1+ 533] 7721/ =2n,,(x"/r?) is again a pure gauge representing a vacuum
present in the background de Sitter space. The solution to the
for the self-dual and anti-self-dual cases, respectively. Nowanti-self-dual YM equation also approaches the vacuum, i.e.,
=27%,(x"/r?) looks singular at the center=0 since 6<r  tote to A =8a%7], (x"/r)~0 for the self-dual case and
<o for the background FS metric and hence the point Ai=2nzy(x”/r2) which is the pure gauge for the anti-self-
vacuum and thus should not be a problem. Next, the solution Lastly, turning to the calculation of the Pontryagin index
to the anti-self-dual YM equationl,AllL'2| =—27-%x"Ir?)  of these YM solutions, we first obtain the relevant quantities
and|Ai|=2ﬂiy(XV/r2) is again a pure gauge having a van- involved in this computation which are
ishing field strength(ii) For r— o, the solutions asymptote
N ; C/C1CoC3) = orr——77 7"
which is a component of flat space meron solution. (€:C1C2Cs) 8[1+(r/2a)?]*
Turning now to the calculation of the Pontryagin index of

these YM solutions, again the relevant quantities involved in a ~aus L a ca 12

this computation are FuF™""= 5 €eacoFasFco= 22 (70)
3
r ~ 4

(C,C1CyC3) = T Ff‘wFa’“’=§A2. Thus
8| 1+ EArz) -1 e r3 12
”[A]:<327T2)16” fo T (2| |
Thus (72)
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Then the Euclidean YM action and the saddle point approxigrounds are nonsingular at their centers and have finite Eu-
mation to the intervacua tunneling amplitude are given re<lidean YM action. And this last point allows us to suspect
spectively by that these solutions are more like instantons in their generic
, , nature although rather like merons in their structures.

8w

2
C

[v[A]l=

) 8
| gi(instanton={ —-
C

V. CONCLUDING REMARKS

I',~exfd — | g (instanton]=exp( — 872/ g?). (72) We now summarize the results and close with some com-
ments. As we stressed earlier in the Introduction, when it

Let us now discuss the behavior of these solutions-a®)  comes to the topological aspect, gravity may have marked
once again to stress that they really do not exhibit singulaeffects even at the level of elementary particle physics de-
behaviors there. For TN, EH, and TB instantons, the rangespite its negligibly small relative strength well below the
for radial coordinates aren<r <o, asr <o, and N=<r Planck scale. Although this intriguing possibility has been
<o respectively. Since the point=0 is absent in these pointed out long ago, surprisingly little attempt has been
manifolds, the solutions in these Gl are everywhere regulammade toward the demonstration of this phenomenon in rel-
For the rest of the “compact” gravitational instantons, i.e., evant physical systems. Thus, in the present work, we took a
FS on CP and de Sitter or8*, however, the radial coordi- concrete step in this direction. Namely, we attempted to con-
nate runs 6r <. Thus the point =0 indeed is present in struct in an explicit and precise manner 8&)(2) YM in-
these compact instantons. The solutions in FS and de Sittétanton solutions practically in all known gravitational in-
backgrounds, however, seem to have no trouble either &&fanton backgrounds. And in doing so, the task of solving
they are essentially vacuum gauges having vanishing fiel@oupled Einstein-Yang-Mills equations for the metric and
strength there at=0. At larger, on the other hand, all the YM gauge field has been greatly simplified by the fact that in
solutions appear to take the structure close to that of meroRuclidean signature, the YM field does not disturb the geom-
solution in flat space. Another interesting point worthy of etry as its energy-momentum tensor vanishes identically as
note is that the solutions in TN and de Sitter backgroundsong as one looks only for the YM instanton solutions having
exhibit a generic property of the instanton solution in that(anti-)self-dual field strength. Among other things, an inter-
they do interpolate between a vacuumratm (r=0) and  esting lesson we learned from this study is that, although
another vacuum at—o. Namely, the solutions in these GI expected to some extent, the chances for the existence of
backgrounds appear to exhibit features of both meron such &andard YM instanton solutiongo (anti-self-dual equa-
their larger behavior and instanton such as interpolatingtions| get smaller as the degree of isometry owned by each
configurations between two vacua in some cases. Next, w@ravitational instanton gets lower from, say, the de Sitter Gl
analyze the meaning of the topological charge values of thtéo the ones with self-dual Riemann or Weyl tensor and then
solutions and their contributions to the intervacua tunnelingi€xt to the ones without. As demonstrated, it is also interest-
amplitudes. Except for the solutions in the background of TNING to note that the solutions turn out to take the structure of
metric and de Sitter metric, generally the solutions in otheimerons at large and generally carry fractional topological
Gl backgrounds such as EH and FS cafngctional topo-  charge values. Nevertheless, it seems more appropriate to
logical charges smaller or greater than unity in magnitudecondude that the solutions still should be identified with
Here, however, the solution in EH metric background carriedcurved space version pinstantons as they are solutions to
the half-integer Pontryagin index actually because the rangfrst order(anti-)self-dual equation and are everywhere regu-
for the U(1) fiber coordinate is & <2 and hence the lar having finite YM action. However, these curious mixed
boundary of EH space i8%/Z,. For the FSon CP) case, it characteristics of the solutions tanti-)self-dual YM equa-
is unclear what is the true origin for the fractional Pontryagintion in Gl backgrounds appear to invite us to take them more
index. Therefore the fact that solutions in GI backgroundsseriously and further explore potentially interesting physics
generally carry fractional topological charges appears to bassociated with them.
another manifestation for mixed instanton-meron nature of
the solutions. Thus to su_mmarlze,_the solutions in TN and (_:ie ACKNOWLEDGMENTS
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