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Instanton-meron hybrid in the background of gravitational instantons
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In the present work, perhaps the simplest and the most straightforward new algorithm for generating solu-
tions to the~anti-!self-dual Yang-Mills~YM ! equation in the typical gravitational instanton background is
proposed and then applied to find solutions to practically all the known gravitational instantons. The solutions
thus obtained turn out to be some kind of instanton-meron hybrids possessing mixed features of both. Namely,
they are rather exotic type configurations obeying a first order~anti-!self-dual YM equation which are every-
where nonsingular and have finite Euclidean YM actions on one hand while exhibiting meronlike large
distance behavior and carrying generallyfractional topological charge values on the other. Close inspection,
however, reveals that the solutions are more like instantons than merons in their generic nature.
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I. INTRODUCTION

Certainly the discovery of the topologically degenera
vacuum structure of non-Abelian gauge theories was
starting point from which we began to appreciate the fruit
but still mysterious nonperturbative regime of the theori
And central to this nonperturbative aspect of non-Abel
gauge theories are the pseudoparticles, dubbed ‘‘instanto
@1#. In a naive mathematical sense, they are the class
solutions to Euclidean field equations of non-Abelian gau
theories and, in a physical sense, they are the non-Abe
gauge field configurations interpolating between two hom
topically distinct but degenerate vacua. They thus can
thought of as saddle points which make a dominant con
bution to the intervacua tunneling amplitude in the path
tegral formulation of quantum gauge theory. Of course
stanton physics in pure non-Abelian gauge theories suc
Yang-Mills ~YM ! theory formulated in flat Euclidean spac
has been studied thoroughly thus far. Its study in nontriv
but physically meaningful gravitational fields, however, h
been extremely incomplete. Indeed, the strength of gra
well below the Planck scale is negligibly small compared
those of elementary particle interactions described by n
Abelian gauge theories. Thus one might overlook the effe
of gravity on the nonperturbative regime of non-Abeli
gauge theories such as the physics of the instanton. Ne
theless, no matter how weak the relative strength of the ba
ground gravity is, as long as the gravity carries a nontriv
topology, it may have profound effects on the structure
gauge theory instantons since these instantons are topo
cal objects linked to the topology-changing processes. Th
fore, in the present work, we would like to explore how t
topological properties of the YM theory~or more precisely,
of the YM instanton solution! are dictated by the nontrivia
topology of the gravitational field with which it interacts
Being an issue of great physical interest and importan
quite a few serious studies along this line have appeare
the literature but they were restricted to the backgrou
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gravitational field with a high degree of isometry such as
Euclideanized Schwarzschild geometry@2# or the Euclidean
de Sitter space@3#. Even the works involving more genera
background spacetimes including gravitational instant
~GI! were mainly confined to the case of asymptotically
cally Euclidean~ALE! spaces which is one particular suc
GI and employed rather indirect and mathematically-orien
solution generating methods such as the Atiyah-Drinfe
Hitchin-Manin ~ADHM ! construction@14#. Recently, we@4#
have proposed a ‘‘simply physical’’ and hence perhaps
most direct algorithm for generating the YM instanton so
tions in all species of known GI. Particularly, in@4# this new
algorithm has been applied to the construction of solution
~anti-!self-dual YM equation in the background of Tau
NUT ~Newman-Unti-Tamburino! and Eguchi-Hanson met
rics which are the best known such GI. In the present wo
we would like to complete our discussion on this issue
providing a detailed presentation of our algorithm and app
ing it to practically all the GI known. The careful physica
interpretation of the solutions obtained eventually to det
mine their nature will also be given in this work. The essen
of this method lies in writing the~anti-!self-dual YM equa-
tion by employing a truly relevant ansatz for the YM gau
connection and then directly solving it. To demonstrate h
simple in method and powerful in applicability it is, we the
apply this algorithm to the case of~anti-!self-dual YM equa-
tions in almost all known GI and find the YM instanto
solutions in their backgrounds. In particular, the actual Y
instanton solution in the background of Taub-NUT@which is
asymptotically locally flat~ALF! rather than ALE#, Fubini-
Study~on CP2), and de Sitter~on S4) metrics are constructed
for the first time in this work. Interestingly, the solutions
the ~anti-!self-dual YM equation turn out to be the rath
exotic type of instanton configurations which are everywh
nonsingular havingfinite YM action but sharing some fea
tures with meron solutions@11# such as their typical structur
and generallyfractional topological charge values carried b
them. Namely, the YM instanton solution that we shall d
cuss in the background of GI in this work exhibit charact
istics which are mixture of those of typical instanton a
typical meron. Thus at this point, it seems relevant to brie
review the essential nature of meron solution. For deta
©2001 The American Physical Society02-1
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description of meron, we refer the reader to some ear
works @10,11#. First, recall that the standard Belavin
Polyakov-Schwarz-Tyupkin~BPST! @1# SU~2! YM instanton
solution in flat space takes the formAm

a 52hmn
a @xn/(r 2

1l2)# with hmn
a andl being the ’t Hooft tensor@5# and the

size of the instanton respectively while the meron solut
which is another nontrivial solution to the second order Y
field equation found long ago by De Alfaro, Fubini, an
Furlan @10# takes the formAm

a 5hmn
a (xn/r 2). Since the pure

~vacuum! gauge having vanishing field strength is given
Am

a 52hmn
a (xn/r 2), the standard instanton solution interp

lates between the trivial vacuumAm
a 50 at r 50 and another

vacuum represented by this pure gauge above atr→` and
the meron solution can be thought of as a ‘‘half a vacu
gauge.’’ Unlike the instanton solution, however, the mer
solution only solves the second order YM field equation a
fails to solve the first order~anti-!self-dual equation. As is
apparent from their structures given above, the meron is
unstable solution in that it is singular at its centerr 50 and at
r 5` while the ordinary instanton solution exhibits no si
gular behavior. As was pointed out originally by De Alfa
et al. @10#, in contrast to instantons whose topological cha
density is a smooth function ofx, the topological charge
density of merons vanishes everywhere except at its ce
i.e., the singular point, such that its volume integral is h
unit of topological charge 1/2. And curiously enough, ha
integer topological charge seems to be closely related to
confinement in the Schwinger model@11#. It is also amusing
to note that a ‘‘time slice’’ through the origin, i.e.,x050 of
the meron configuration yields aSU(2) Wu-Yang monopole
@11#. Lastly, the Euclidean meron action diverges logarithm
cally and perhaps needs some regularization whereas
standard YM instanton has finite action.

We now recall some generic features of gravitational
stantons. In the loose sense, GI may be defined as a pos
definite metricsgmn on a complete and nonsingular manifo
satisfying the Euclidean Einstein equations and hence co
tuting the stationary points of the gravity action in Euclide
path integral for quantum gravity. But in the stricter sen
@5,6#, they are the metric solutions to the Euclidean Einst
equations having~anti-!self-dual Riemann tensor

R̃abcd5
1

2
eab

e fRe f cd56Rabcd ~1!

~say, with indices written in noncoordinate orthonormal b
sis! and include only two families of solutions in a rigorou
sense; the Taub-NUT metric@7# and the Eguchi-Hanson in
stanton@8#. In the loose sense, however, there are sev
solutions to Euclidean Einstein equations that can fall i
the category of GI.

II. NEW ALGORITHM FOR SOLUTIONS
TO „ANTI- …SELF-DUAL YM EQUATION

We now begin with the action governing our system, i.
the Einstein-Yang-Mills~EYM! theory given by
12500
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M

d4xAgF 21

16p
R1

1

4gc
2

Fmn
a FamnG

2E
]M

d3xAh
1

8p
K, ~2!

whereFmn
a is the field strength of the YM gauge fieldAm

a

with a51,2,3 being the SU~2! group index andgc being the
gauge coupling constant. The Gibbons-Hawking term on
boundary]M of the manifoldM is also added andh is the
metric induced on]M andK is the trace of the second fun
damental form on]M . Then by extremizing this action with
respect to the metricgmn and the YM gauge fieldAm

a , one
gets the following classical field equations respectively:

Rmn2
1

2
gmnR58pTmn ,

Tmn5
1

gc
2 FFma

a Fn
aa2

1

4
gmn~Fab

a Faab!G ,
Dm@AgFamn#50, Dm@AgF̃amn#50, ~3!

where we added Bianchi identity in the last line andFmn
a

5]mAn
a2]nAm

a 1eabcAm
b An

c , Dm
ac5]mdac1eabcAm

b and Am

5Am
a (2 iTa), Fmn5Fmn

a (2 iTa) with Ta5ta/2 (a51,2,3)

being the SU~2! generators and finallyF̃mn5 1
2 emn

abFab is
the ~Hodge! dual of the field strength tensor. We now se
solutions (gmn ,Am

a ) of the coupled EYM equations give
above in Euclidean signature obeying the~anti-!self-dual
equation in the YM sector

Fmn5gmlgnsFls56
1

2
ec

mnabFab , ~4!

whereec
mnab5emnab/Ag is the curved spacetime version o

totally antisymmetric tensor. As was noted in@2,3#, in Eu-
clidean signature, the YM energy-momentum tensor v
ishes identically for YM fields satisfying this~anti-!self-
duality condition. This point is of central importance and c
be illustrated briefly as follows. Under the Hodge dual tran
formation, Fmn

a →F̃mn
a , the YM energy-momentum tenso

Tmn given in Eq.~3! above is invariant normally in Lorent
zian signature. In Euclidean signature, however, its s
flips, i.e., T̃mn52Tmn . As a result, for YM fields satisfying
the ~anti-!self-dual equation in Euclidean signature such
the instanton solution,Fmn

a 56F̃mn
a , it follows that Tmn

52T̃mn52Tmn , namely the YM energy-momentum tens
vanishes identically,Tmn50. This, then, indicates that th
YM field now does not disturb the geometry while the g
ometry still does have effects on the YM field. Consequen
the geometry, which is left intact by the YM field, effective
serves as a ‘‘background’’ spacetime which can be cho
somewhat at our will~as long as it satisfies the vacuum Ei
stein equationRmn50) and here in this work, we take it to
be the gravitational instanton. Loosely speaking, all
2-2
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INSTANTON-MERON HYBRID IN THE BACKGROUND OF . . . PHYSICAL REVIEW D 63 125002
typical GI, including Taub-NUT metric and Eguchi-Hanso
solution, possess the same topologyR3S3 and similar met-
ric structures. Of course in a stricter sense, their exact top
gies can be distinguished, say, by different Euler numb
and Hirzebruch signatures@5,6#. Particularly, in terms of the
concise basis 1-forms, the metrics of these GI can be wri
as @5,6#

ds25cr
2dr21c1

2~s1
21s2

2!1c3
2s3

2

5cr
2dr21 (

a51

3

ca
2~sa!25eA

^ eA, ~5!

wherecr5cr(r ), ca5ca(r ), c15c2Þc3 and the orthonor-
mal basis 1-formeA is given by

eA5$e05crdr,ea5casa% ~6!

and$sa% (a51,2,3) are the left-invariant 1-forms satisfyin
the SU~2! Maurer-Cartan structure equation

dsa52
1

2
eabcsb`sc. ~7!

They form a basis on theS3 section of the geometry an
hence can be represented in terms of 3-Euler angles 0<u
<p, 0<f<2p, and 0<c<4p parametrizingS3 as

s152sincdu1cosc sinudf,

s25coscdu1sinc sinudf,

s352dc2cosudf. ~8!

Now in order to construct exact YM instanton solutions
the background of these GI, we now choose the relev
ansatz for the YM gauge potential and the SU~2! gauge fix-
ing. And in doing so, our general guideline is that the Y
gauge field ansatz should be endowed with the symm
inherited from that of the background geometry, the GI. Th
we first ask what kind of isometry these GI possess. As no
above, all the typical GI possess the topology ofR3S3. The
geometrical structure of theS3 section, however, is not tha
of perfectly ‘‘round’’ S3 but rather, that of ‘‘squashed’’S3.
In order to get a closer picture of this squashedS3, we notice
that ther 5const slices of these GI can be viewed as U~1!
fiber bundles overS2;CP1 with the line element

dV3
25c1

2~s1
21s2

2!1c3
2s3

25c1
2dV2

21c3
2~dc1B!2, ~9!

wheredV2
25(du21sin2udf2) is the metric on unitS2, the

base manifold whose volume formV2 is given byV25dB
as B5cosudf and c then is the coordinate on the U(1
;S1 fiber manifold. Now thenc15c2Þc3 indicates that the
geometry of this fiber bundle manifold is not that of roundS3

but that of squashedS3 with the squashing factor given b
(c3 /c1). And further, it is squashed along the U~1! fiber
direction. Thus this failure for the geometry to be that
exactly roundS3 keeps us from writing down the associat
ansatz for the YM gauge potential right away. Apparently
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the geometry were that of roundS3, one would write down
the YM gauge field ansatz asAa5 f (r )sa @3# with $sa% be-
ing the left-invariant 1-forms introduced earlier. The rati
nale for this choice can be stated briefly as follows. Fir
since ther 5const sections of the background space have
geometry of roundS3 and hence possess the SO~4! isometry,
one would look for the SO~4!-invariant YM gauge connec
tion ansatz as well. Next, noticing that both ther 5const
sections of the frame manifold and the SU~2! YM group
manifold possess the geometry of roundS3, one may natu-
rally choose the left-invariant 1-forms$sa% as the ‘‘com-
mon’’ basis for both manifolds. Thus this YM gauge conne
tion ansatz,Aa5 f (r )sa can be thought of as a hedgeho
type ansatz where the group-frame index mixing is realiz
in a simple manner@3#. Then coming back to our presen
interest, namely the GI given in Eq.~5!, in r 5const sections,
the SO~4! isometry is partially broken down to that of SO~3!
by the squashedness along the U~1! fiber direction to a de-
gree set by the squashing factor (c3 /c1). Thus now our task
became clearer and it is how to encode into the YM gau
connection ansatz this particular type of SO~4!-isometry
breaking coming from the squashedS3. Interestingly, a clue
to this puzzle can be drawn from the work of Eguchi a
Hanson@9# in which they constructed Abelian instanton s
lution in Euclidean Taub-NUT metric@namely the Abelian
gauge field with~anti-!self-dual field strength with respect t
this metric#. To get right to the point, the working ansa
they employed for the Abelian gauge field to yield~anti-
!self-dual field strength is to align the Abelian gauge conn
tion 1-form along the squashed direction, i.e., along the U~1!
fiber direction,A5g(r )s3. This choice looks quite natura
indeed. After all, realizing that embedding of a gauge field
a geometry with high degree of isometry is itself an isome
~more precisly isotropy!-breaking action, it would be natura
to put it along the direction in which part of the isometry
already broken. Finally therefore, putting these two pieces
observation carefully together, now we are in the position
suggest the relevant ansatz for the YM gauge connec
1-form in these GI and it is

Aa5 f ~r !sa1g~r !da3s3, ~10!

which obviously would need no more explanatory comme
except that, in this choice of the ansatz, it is implicitly u
derstood that the gauge fixingAr50 is taken. From this
point on, the construction of the YM instanton solutions
solving the ~anti-!self-dual equation given in Eq.~4! is
straightforward. To sketch briefly the computational alg
rithm, first we obtain the YM field strength 2-form~in ortho-
normal basis! via exterior calculus~since the YM gauge con
nection ansatz is given in left-invariant 1-forms! as Fa

5(F1,F2,F3) where

F15
f 8

crc1
~e0`e1!1

f @~ f 21!1g#

c2c3
~e2`e3!, ~11!

F25
f 8

crc2
~e0`e2!1

f @~ f 21!1g#

c3c1
~e3`e1!,
2-3
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F35
~ f 81g8!

crc3
~e0`e3!1

@ f ~ f 21!2g#

c1c2
~e1`e2!

from which we can read off the~anti-!self-dual equation to
be

6
f 8

crc1
5

f @~ f 21!1g#

c2c3
, 6

~ f 81g8!

crc3
5

@ f ~ f 21!2g#

c1c2
,

~12!

where the prime denotes the derivative with respect tor.
After some manipulation, these~anti-!self-dual equations can
be cast to a more practical form

~ ln f !91F S c3

cr
D 8S cr

c3
D6S crc3

c1c2
D G~ ln f !85S cr

c1
D 2

@ f 221#,

~13!

h5F16S c3

cr
D ~ ln f !8G , ~14!

whereh(r )5 f (r )1g(r ) and ‘‘1 ’’ for self-dual and ‘‘2 ’’
for anti-self-dual equation and we have only a set of t
equations asc15c2. Now the remaining computational algo
rithm is, for each GI corresponding to particular choice
eA5$e05crdr,ea5casa%, first Eqs.~13! and ~14!, if admit
solutions, givef (r ) and g(r ) respectively and from which
next the YM instanton solutions in Eq.~10! and their~anti-!
self-dual field strength in Eq.~11! can be obtained. At this
point, it is interesting to realize that actually there are ot
avenues to constructing the YM instanton solutions of diff
ent species from that given in Eq.~10! in these GI. To state
once again, inr 5const sections of GI, since the SO~4! isom-
etry is partially broken by the squashedness ofS3 along the
U~1! fiber direction set bys3 in Eq. ~9!, this particular di-
rection set bys3 can be thought of as a kind ofprincipal
axis. Note also that exactly to the same degree this U~1! fiber
direction set bys3 stands out, the other two directions set
s1 and s2, respectively, may be regarded as being spec
Thus one might as well want to align the YM gauge conn
tion solely along the direction set bys3 or along the direc-
tion set bys1 or s2. And this can only be done when on
abandons the non-Abelian structure in the YM gauge fi
and writes its ansatz in the form

Aa5g~r !da3s3 or Aa5g~r !da1(2)s1(2),

respectively. Then YM instanton solutions of these spec
should essentially be equivalent to the Abelian instanton
the Eguchi-Hanson-type mentioned earlier and as such t
if they exist, should clearly be totally different kinds of in
stanton solutions that cannot be related to the standard
instantons given in Eq.~10! via any gauge transformatio
whatsoever. For this reason, we shall call them ‘‘Abelia
ized’’ YM instanton solutions and attempt to construct the
in this work as well. The field strength and the~anti-!self-
dual equations associated with these Abelianized YM ins
tons are then given respectively by
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Fa5F g8

crc3
~e0`e3!2

g

c1c2
~e1`e2!Gda3,

6~ ln g!8

52S crc3

c1c2
D for Aa5g~r !da3s3 ~15!

and

Fa5F g8

crc1
~e0`e1!2

g

c2c3
~e2`e3!Gda1,

6~ ln g!8

52S cr

c3
D for Aa5g~r !da1s1 ~16!

and similarly for Aa5g(r )da2s2. And in the above equa
tions, ‘‘1 ’’ for self-dual and ‘‘2 ’’ for anti-self-dual equa-
tion. We now present both the ‘‘standard’’ and ‘‘Abelian
ized’’ YM instanton solutions of the forms given in Eqs
~10!, ~15!, and~16! for each of the GI.

III. APPLICATION OF THE ALGORITHM TO VARIOUS
GI BACKGROUNDS

In this section, in order to exhibit how simple in metho
and how powerful in applicability this new algorithm of ou
really is, we shall apply the algorithm to the cases of Tau
NUT ~TN!, Eguchi-Hanson~EH!, Fubini-Study~FS!, Taub-
bolt ~TB!, and de Sitter GI backgrounds and find the so
tions to ~anti-!self-dual YM equations in these GI.

A. YM instanton in Taub-NUT „TN… metric background

The TN GI solution written in the metric form given in
Eq. ~5! amounts to

cr5
1

2 F r 1m

r 2mG1/2

, c15c25
1

2
@r 22m2#1/2,

c35mF r 2m

r 1mG1/2

and it is a solution to Euclidean vacuum Einstein equat
Rmn50 for r>m with self-dual Riemann tensor. The appa
ent singularity atr 5m can be removed by a coordinate r
definition and is a ‘‘nut’’ ~in terminology of Gibbons and
Hawking @6#! at which the isometry generated by the Killin
vector (]/]c) has a zero-dimensional fixed point set. T
boundary of TN metric atr→` is S3. And this TN instanton
is an asymptotically locally flat~ALF! metric.

1. Standard YM instanton solution

It turns out that only the anti-self-dual equationFa

52F̃a admits a nontrivial solution and it isAa

5(A1,A2,A3) where
2-4



he
a

on

ns

ad

n,
it

ua-

or-

at

es
e
lly

INSTANTON-MERON HYBRID IN THE BACKGROUND OF . . . PHYSICAL REVIEW D 63 125002
A1562
~r 2m!1/2

~r 1m!3/2
e1, A2562

~r 2m!1/2

~r 1m!3/2
e2,

A35
~r 13m!

m

~r 2m!1/2

~r 1m!3/2
e3 ~17!

andFa5(F1,F2,F3) where

F156
8m

~r 1m!3 ~e0`e12e2`e3!,

F256
8m

~r 1m!3 ~e0`e22e3`e1!,

F35
16m

~r 1m!3 ~e0`e32e1`e2!. ~18!

It is interesting to note that this YM field strength and t
Ricci tensor of the background TN GI are proportional
uFau52uRa

0u except for opposite self-duality, i.e.,

R1
052R3

25
4m

~r 1m!3 ~e0`e11e2`e3!,

R2
052R1

35
4m

~r 1m!3 ~e0`e21e3`e1!,

R3
052R2

152
8m

~r 1m!3 ~e0`e31e1`e2!. ~19!

2. Abelianized YM instanton along the direction set bys3

Both the self-dual and anti-self-dual equations admit n
trivial solutions and they are, in orthonormal basis,

Aa5kS r 1m

r 2mD da3s35
k

m S r 1m

r 2mD 3/2

da3e3,

Fa52
4k

~r 2m!2 @~e0`e3!1~e1`e2!#da3

~20!

for the solution to self-dual equation and

Aa5kS r 2m

r 1mD da3s35
k

m S r 2m

r 1mD 1/2

da3e3,

Fa5
4k

~r 1m!2 @~e0`e3!2~e1`e2!#da3 ~21!

for the solution to anti-self-dual equation. In these solutio
k is an arbitrary constant.

3. Abelianized YM instanton along the direction set bys1

Again, both the self-dual and anti-self-dual equations
mit nontrivial solutions and they are
12500
s

-
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-

Aa5
k

~r 2m!
e2r /2mda1s15

2k

~r 1m!1/2~r 2m!3/2
e2r /2mda1e1,

Fa52
2k

m

e2r /2m

~r 2m!2
@~e0`e1!1~e2`e3!#da1 ~22!

for the solution to the self-dual equation and

Aa5k~r 2m!er /2mda1s152kS r 2m

r 1mD 1/2

er /2mda1e1,

Fa5
2k

m
er /2m@~e0`e1!2~e2`e3!#da1 ~23!

for the solution to the anti-self-dual equation. This solutio
however, isnot physical and hence should be dropped as
blows up asr→`.

B. YM instanton in Eguchi-Hanson „EH… metric background

The EH GI solution amounts to

cr5F12S a

r D 4G21/2

, c15c25
1

2
r , c35

1

2
r F12S a

r D 4G1/2

and again it is a solution to Euclidean vacuum Einstein eq
tion Rmn50 for r>a with self-dual Riemann tensor.r 5a is
just a coordinate singularity that can be removed by a co
dinate redefinition provided that nowc is identified with
period 2p rather than 4p and is a ‘‘bolt’’ ~in terminology of
Gibbons and Hawking@6#! where the action of the Killing
field (]/]c) has a two-dimensional fixed point set. Note th
for an ordinaryS3, the range for the Euler anglec would be
0<c<4p. Thus demanding 0<c<2p instead to remove
the bolt singularity atr 5a amounts to identifying points
antipodal with respect to the origin and this, in turn, impli
that the boundary of EH atr→` is the real projective spac
RP35S3/Z2. Besides, this EH instanton is an asymptotica
locally Euclidean~ALE! metric.

1. Standard YM instanton solution

In this time, only the self-dual equationFa51F̃a admits
a nontrivial solution and it isAa5(A1,A2,A3) where

A156
2

r F12S a

r D 4G1/2

e1, A256
2

r F12S a

r D 4G1/2

e2,

A35
2

r

F11S a

r D 4G
F12S a

r D 4G1/2e3 ~24!

andFa5(F1,F2,F3) where

F156
4

r 2 S a

r D 4

~e0`e11e2`e3!, ~25!
2-5
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F256
4

r 2 S a

r D 4

~e0`e21e3`e1!,

F352
8

r 2 S a

r D 4

~e0`e31e1`e2!.

Again it is interesting to realize that this YM field streng
and the Ricci tensor of the background EH GI are prop
tional asuFau52uRa

0u, i.e.,

R1
052R3

25
2

r 2 S a

r D 4

~2e0`e11e2`e3!,

R2
052R1

35
2

r 2 S a

r D 4

~2e0`e21e3`e1!,

R3
052R2

152
4

r 2 S a

r D 4

~2e0`e31e1`e2!. ~26!

It is also interesting to note that this YM instanton soluti
particularly in EH background~which is ALE! obtained by
directly solving the self-dual equation can also be ‘‘co
structed’’ by simply identifying Aa562va

0 @where va
0

5(eabc/2)vbc is the spin connection of EH metric# and
henceFa562Ra

0 as was noticed by@13# but in the string
theory context with different motivation. This constructio
of solution via a simple identification of gauge field conne
tion with the spin connection, however, works only in AL
backgrounds such as EH metric and generally fails a
manifest in the previous TN background case~which is ALF,
not ALE! in which AaÞ62va

0 but still Fa562Ra
0 . Thus

the method presented here by first writing@by employing a
relevant ansatz for the YM gauge connection given in E
~10!# and directly solving the~anti-!self-dual equation looks
to be the algorithm for generating the solution with gene
applicability to all species of GI in a secure and straightf
ward manner. In this regard, the method for generating Y
instanton solutions to~anti-!self-dual equation in all known
GI backgrounds proposed here in this work can be contra
to earlier works in the literature@15# discussing the construc
tion of YM instantons mainly in the background of ALE G
via indirect methods such as that of ADHM@14#.

2. Abelianized YM instanton along the direction set bys3

Both the self-dual and anti-self-dual equations admit n
trivial solutions and they are

Aa5
k

r 2 da3s35
2k

r 3 F12S a

r D 4G21/2

da3e3,

Fa52
4k

r 4 @~e0`e3!1~e1`e2!#da3 ~27!

for the solution to self-dual equation and

Aa5kr2da3s352krF12S a

r D 4G21/2

da3e3, ~28!
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Fa54k@~e0`e3!2~e1`e2!#da3

for the solution to the anti-self-dual equation. In these so
tions,k is an arbitrary constant. Note, however, that this s
lution to the anti-self-dual equation isunphysicaland thus
should be dropped as it fails to represent a localized sol
configuration.

3. Abelianized YM instanton along the direction set bys1

Again, both the self-dual and anti-self-dual equations
mit nontrivial solutions and they are

Aa5
k

Ar 42a4
da1s15

2k

rAr 42a4
da1e1,

Fa52
4k

~r 42a4!
@~e0`e1!1~e2`e3!#da1 ~29!

for the solution to the self-dual equation and

Aa5kAr 42a4da1s15
2k

r
Ar 42a4da1e1,

Fa54k@~e0`e1!2~e2`e3!#da1 ~30!

for the solution to the anti-self-dual equation. Again, th
solution isnot physical and hence should be discarded a
fails to represent a localized soliton configuration.

C. YM instanton in Fubini-Study „FS… metric on CP2

background

Lastly, the FS~on complex projective plane CP2) gravi-
tational instanton solution corresponds to

cr5F11
1

6
Lr 2G21

, c15c25
r

2 F11
1

6
Lr 2G21/2

,

c35
r

2 F11
1

6
Lr 2G21

whereL is the ~positive! cosmological constant and it is
solution to the Euclidean Einstein equationRmn58pLgmn .
As such, this FS metric is a ‘‘compact’’ gravitational insta
ton ~i.e., instanton of finite volume! with no boundary and is
everywhere regular up to the fact that a close inspection@5,6#
reveals that atr 50, there is a removable nut singularit
while at r→`, we have a bolt singularity which is remov
able provided 0<c<4p. Besides, unlike the previous TN
and EH instantons which have self-dual Riemann tens
Rmnab5R̃mnab , this FS instanton possesses self-dual W
tensorCmnab5C̃mnab .

1. Standard YM instanton solution

Only the self-dual equationFa51F̃a admits a nontrivial
solution and the corresponding solution and the associ
self-dual field strength are given by
2-6
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A156
2

r
e1, A256

2

r
e2, A35

2

r S 11
1

12
Lr 2De3

~31!

andFa5(F1,F2,F3) where

F156
L

3
~e0`e11e2`e3!, F256

L

3
~e0`e21e3`e1!,

F352
L

3
~e0`e31e1`e2!. ~32!

Again it is interesting to contrast this YM field strength wi
the Ricci tensor of the background FS GI given by

R1
052R3

25
L

6
~e0`e12e2`e3!,

R2
052R1

35
L

6
~e0`e22e3`e1!,

R3
05

L

3
~2e0`e31e1`e2!,

R2
15

L

3
~e0`e312e1`e2! ~33!

which, unlike the TN and EH cases,fails to obey the relation
uFau52uRa

0u presumably because the FS solution fails
have self-dual Riemann tensor. Here it seems worthy of n
that since the background FS metric is a compact instan
and hence has a finite volume, one need not worry abou
possible divergence of the field energy upon integration o
the volume. Namely, this instanton solution is a legitima
physical solution.

2. Abelianized YM instanton along the direction set bys3

Again, both the self-dual and anti-self-dual equations
mit nontrivial solutions and they are

Aa5
6k

Lr 2 S 11
1

6
Lr 2D da3s35

12k

Lr 3 S 11
1

6
Lr 2D 2

da3e3,

Fa52
24k

Lr 4 S 11
1

6
Lr 2D 2

@~e0`e3!1~e1`e2!#da3

~34!

for the solution to self-dual equation and

Aa5
kL

6
r 2S 11

1

6
Lr 2D 21

da3s35
k

3
Lrda3e3,

Fa5
2kL

3
@~e0`e3!2~e1`e2!#da3 ~35!

for the solution to the anti-self-dual equation. In these so
tions,k is again an arbitrary constant.
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3. Abelianized YM instanton along the direction set bys1

Aa5
k

r 2 da1s15
2k

r 3 S 11
1

6
Lr 2D 1/2

da1e1,

Fa52
4k

r 4 S 11
1

6
Lr 2D 3/2

@~e0`e1!1~e2`e3!#da1

~36!

for the solution to self-dual equation and

Aa5kr2da1s152krS 11
1

6
Lr 2D 1/2

da1e1,

Fa54kS 11
1

6
Lr 2D 3/2

@~e0`e1!2~e2`e3!#da1.

~37!

for the solution to anti-self-dual equation.
And this completes the presentation of all nontrivial Y

instanton solutions in three families of gravitational insta
tons. We discussed earlier in the introduction the classifi
tion of gravitational instantons@5,6#. And the three families
of gravitational instantons, TN, EH, and FS metrics fall in
the class of instanton solutions in the stricter sense as
have~anti-!self-dual Riemann or Weyl tensor. In this class
fication, all the other gravitational instantons discovered th
far can be thought of as being instanton solutions in the lo
sense as they all fail to satisfy~anti-!self-dual condition for
Riemann or Weyl tensor although still are the solutions
the Euclidean Einstein equation with or without the cosm
logical constant. Therefore, for the sake of completenes
our study, here we also provide explicit YM instanton so
tions in the background of other species of gravitational
stantons in the loose sense. And particularly, we consider
Taub-bolt metric@10# and the de Sitter metric onS4 @5,6#.

D. YM instanton in Taub-bolt „TB… metric background

This TB GI solution written in the metric form given in
Eq. ~5! corresponds to

cr5F 2~r 22N2!

2r 225Nr12N2G1/2

, c15c25@r 22N2#1/2,

c352NF2r 225Nr12N2

2~r 22N2! G1/2

and it is a solution to Euclidean vacuum Einstein equat
Rmn50 for r>2N. Again, in terminology of Gibbons and
Hawking @5,6#, r 52N is a ‘‘bolt’’ singularity that can be
removed by a coordinate redefinition. As stated, althou
neither its Riemann nor Weyl tensor is~anti-!self-dual, it is,
like the TN metric, another asymptotically locally-flat~ALF!
instanton.

1. Standard YM instanton solution

Unlike the ones belonging to the class of instanton so
tions in the stricter sense, i.e., TN, EH, and FS metrics, n
2-7
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ther self-dual nor anti-self-dual equationFa56F̃a in this
TB-metric background admits any nontrivial solution.

2. Abelianized YM instanton along the direction set bys3

Both the self-dual and anti-self-dual equations admit n
trivial solutions and they are

Aa5kS r 1N

r 2ND da3s3

5
k

2N S r 1N

r 2ND F 2~r 22N2!

2r 225Nr12N2G1/2

da3e3,

Fa52
k

~r 2N!2 @~e0`e3!1~e1`e2!#da3 ~38!

for the solution to self-dual equation and

Aa5kS r 2N

r 1ND da3s3

5
k

2N S r 2N

r 1ND F 2~r 22N2!

2r 225Nr12N2G1/2

da3e3,

Fa5
k

~r 1N!2 @~e0`e3!2~e1`e2!#da3 ~39!

for the solution to anti-self-dual equation and wherek is an
arbitrary constant.

3. Abelianized YM instanton along the direction set bys1

Again, both the self-dual and anti-self-dual equations
mit nontrivial solutions and they are

Aa5
k

~2r 2N!1/4~r 22N!
e2r /2Nda1s1

5
k

~2r 2N!1/4~r 22N!~r 22N2!1/2
e2r /2Nda1e1,

Fa52
k

A2N

1

~2r 2N!3/4~r 22N!3/2
e2r /2N@~e0`e1!

1~e2`e3!#da1 ~40!

for the solution to the self-dual equation and

Aa5k~2r 2N!1/4~r 22N!er /2Nda1s1

5k
~2r 2N!1/4~r 22N!

~r 22N2!1/2
er /2Nda1e1,

Fa5
k

A2N
~2r 2N!21/4~r 22N!1/2er /2N@~e0`e1!

2~e2`e3!#da1 ~41!
12500
-

-

for the solution to the anti-self-dual equation. Note, howev
that this last solution isunphysicaland hence should be dis
carded as it fails to represent a localized soliton configu
tion.

E. YM instanton in the de Sitter metric on S4 background

This de Sitter~on S4) gravitational instanton solution cor
responds to

cr5F11S r

2aD 2G21

, c15c25c35
r

2 F11S r

2aD 2G21

,

~42!

wherea is the radius ofS4 and it is a solution to Euclidean
Einstein equationRmn58pLgmn . Thus the radiusa of S4 is
related to the inverse ofAL as a5A3/8pL. Like the FS
metric we studied earlier, this de Sitter metric onS4 is an-
other compactgravitational instanton having no bounda
and hence is everywhere regular. As is well known, de Si
space is a space of constant curvature and hence is co
mally flat. Thus this de Sitter metric onS4 has a vanishing
Weyl tensor,Cmnab50. This point is already evident from
the fact that c15c25c3 which indicates that ther 5const
slices of this de Sitter metric onS4 geometry areround S3’s
with isometry groupSO(4). Thus the relevant ansatz fo
YM gauge connection is simply

Aa5 f ~r !sa

for reasons stated earlier and the associated field strength
the ~anti-!self-dual equation read

Fa5
f 8

crca
~e0`ea!1

1

2
eabc

f ~ f 21!

cbcc
~eb`ec!,

6
f 8

f ~ f 21!
5S cr

c1
D ~43!

where ‘‘1 ’’ indicates self-dual and ‘‘2 ’’ indicates anti-self-
dual equations. Obviously, this is the special case w
g(r )50 in the more general case in Eq.~10! we have been
discussing. Then the standard YM instanton solutions~the
physical one! can be constructed in a quite straightforwa
manner and they are

Aa5F11S r

2aD 2G21

sa5
2

r
ea,

Fa52
1

a2 F ~e0`ea!1
1

2
eabc~eb`ec!G ~44!

for the solution to the self-dual equation and

Aa5F11S 2a

r D 2G21

sa5
r

2a2 ea,

Fa5
~4a!2

r 4 F ~e0`ea!2
1

2
eabc~eb`ec!G ~45!
2-8
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for the solution to the anti-self-dual equation. Note that th
solutions in de Sitter~on S4) instanton background are legit
mate instanton solutions, namely, one need not worry ab
the seemingly divergent field energy upon integration o
all space since the background de Sitter metric is a ‘‘co
pact’’ instanton with finite proper volume.

IV. ANALYSIS OF THE NATURE OF SOLUTIONS TO
„ANTI- …SELF-DUAL YM EQUATION

We now would like to examine the nature of the solutio
to the ~anti-!self-dual YM equation in the background o
various GI discussed in the previous section. Among ot
things, an interesting lesson we learned from this study
that, although expected to some extent, the chances fo
existence of standard YM instanton solutions@to ~anti-!self-
dual equations# get smaller as the degree of isometry own
by each gravitational instanton gets lower from, say, the
Sitter GI to the ones with self-dual Riemann or Weyl tens
and then next to the ones without. Next, concerning the
covered structure of theSU(2) YM instanton solutions sup
ported by these typical GI, there appears to be an interes
point worthy of note. First, recall that the relevant ansatz
the YM gauge connection is of the formAa5 f (r )sa in the
highly symmetric de Sitter instanton background with top
ogy of R3(round)S3 and of the form Aa5 f (r )sa

1g(r )da3s3 in the less symmetric GI backgrounds with t
pology ofR3(squashed)S3. Here, however, the physical in
terpretation of the nature of YM gauge potential solutionsAa

is rather unclear when they are expressed in terms of
left-invariant 1-forms$sa% or the orthonormal basiseA in
Eq. ~6!. Thus in order to get a better insight into the physic
meaning of the structure of these YM connection ansatz,
now try to reexpress the left-invariant 1-forms$sa% forming
a basis onS3 in terms of more familiar Cartesian coordina
basis. And this can be achieved by first relating the po
coordinates (r ,u,f,c) to Cartesian (t,x,y,z) coordinates
~note, here, thatt is not the usual ‘‘time’’ but just anothe
spacelike coordinate! given by @5#

x1 iy5r cos
u

2
expF i

2
~c1f!G ,

z1 i t 5r sin
u

2
expF i

2
~c2f!G , ~46!

wherex21y21z21t25r 2 which is the equation forS3 with
radiusr. From this coordinate transformation law, one no
can relate the noncoordinate basis to the Cartesian coord
basis as

S dr

rsx

rsy

rsz

D 5
1

r S x y z t

2t 2z y x

z 2t 2x y

2y x 2t z

D S dx

dy

dz

dt

D , ~47!

where$sx52s1/2,sy52s2/2,sz52s3/2%. Still, however,
the meaning of YM gauge connection ansatz rewritten
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terms of the Cartesian coordinate basisdxm

5(dt,dx,dy,dz) as above does not look so apparent. Th
we next introduce the so-called’t Hooft tensor@1,11# defined
by

hamn52hanm5S e0amn1
1

2
eabcebcmnD . ~48!

Then the left-invariant 1-forms can be cast to a more conc
form sa52hmn

a (xn/r 2)dxm. Therefore, the YM instanton so
lution, in Cartesian coordinate basis, can be written as

Aa5Am
a dxm52@ f ~r !1g~r !da3#hmn

a xn

r 2
dxm ~49!

in the background of TN, EH, FS, and TB GI with topolog
of R3(squashed)S3. Now in order to appreciate the meanin
of this structure, we go back to the flat space situation. A
well known, the standard BPST@1# SU~2! YM instanton so-
lution in flat space takes the formAm

a 52hmn
a @xn/(r 21l2)#

with l being the size of the instanton. Recall, however, t
separately from this BPST instanton solution, there is
other nontrivial solution to the YM field equation of the form
Am

a 5hmn
a (xn/r 2) found long ago by De Alfaro, Fubini, and

Furlan @10#. @Note that the pure gauge is given byAm
a

52hmn
a (xn/r 2). Thus the ordinary instanton solution interp

lates between the trivial vacuumAm
a 50 at r 50 and another

vacuum represented by the pure gauge above atr→` and
the meron solution can be thought of as a ‘‘half a vacu
gauge.’’# This second solution is called ‘‘meron’’@11# as it
carries a half unit of topological charge and is known to p
a certain role concerning the quark confinement@11#. It,
however, exhibits singularity at its centerr 50 and hence has
a diverging action and falls like 1/r as r→`. Thus we are
led to the conclusion that the YM instanton solution in typ
cal GI backgrounds possess the structure of~curved space
version of! meron at larger. As is well known, in flat space-
time meron does not solve the first order~anti-!self-dual
equation although it does the second order YM field eq
tion. Thus in this sense, this result seems remarkable sin
implies that in the GI backgrounds, the~anti-!self-dual YM
equation admits solutions which exhibit the configuration
meron solution at larger in contrast to the flat spacetim
case. And we only conjecture that when passing from the
(R4) to GI (R3S3) geometry, the closure of the topology o
part of the manifold appears to turn the structure of the
stanton solution from that of standard BPST into that
meron. The concrete form of the YM instanton solutions
each of these GI backgrounds written in terms of Cartes
coordinate basis as in Eq.~49! will be given below after we
comment on one more thing.

Finally, we turn to the investigation of other physic
quantities such as the topological charge of each of th
solutions and the estimate of the instanton contributions
the intervacua tunneling amplitude which can serve as c
cial indicators in determining the true physical natures
these solutions. It has been pointed out in the literature
both in the background of Euclidean Schwarzschild geo
2-9
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HONGSU KIM AND YONGSUNG YOON PHYSICAL REVIEW D63 125002
etry @2# and in the Euclidean de Sitter space@3#, the ~anti-!
instanton solutions have the Pontryagin index ofn@A#5
61 and hence give the contribution to the~saddle point ap-
proximation to! intervacua tunneling amplitude of ex
@28p2/gc

2#, which, interestingly, are the same as their fl
space counterparts even though these curved space YM
stanton solutions do not correspond to gauge transformat
of any flat space instanton solution@1#. This unexpected and
hence rather curious property, however, turns out not to
sist in YM instantons in these GI backgrounds we stud
here. In order to see this, we begin with the careful definit
of the Pontryagin index or second Chern class in the p
ence of the nontrivial background geometry of GI.

Consider that we would like to find an index theorem f
the manifold ~M! with boundary (]M ). Namely, we now
need an extended version of index theorem with bound
To this question, an appropriate answer has been provide
Atiyah, Patodi, and Singer~APS! @12#. According to their
extended version of index theorem, the total index, say,
given geometry and of a gauge field receives contributio
in addition to that from the usual bulk term@V(M )#, from a
local boundary term@S(]M )# and from a nonlocal boundar
term @j(]M )#. The bulk term is the usual term appearing
the ordinary index theorem without boundary and involv
the integral overM of terms quadratic in curvature tensor
the geometry and in field strength tensor of the gauge fi
The local boundary term is given by the integral over]M of
the Chern-Simons forms for both the geometry and the ga
field while the nonlocal boundary term is given by a const
times the ‘‘APSh-invariant’’ @5# of the boundary. And this
last nonlocal boundary term becomes relevant and mean
ful when Dirac spinor field is present and interacts with t
geometry and the gauge field. Now turning to the case
hand, the evaluation of the instanton number or the sec
Chern class of the YM gauge fieldalone, we only need to
pick up the terms in the gauge sector in this APS ind
theorem which reads@5#

n@A#5Ch2~F !

5
21

8p2F E
M5R3S3

tr~F`F !2E
]M5S3

tr~a`F !U r 5r 0G ,
~50!

wherea[(A2A8) is the ‘‘second fundamental form’’at the
boundaryr 5r 0 and by definition@5# A8 has onlytangential
components on the boundary]M5S3. Recall, however, tha
our choice of ansatz for the YM gauge connection involv
the gauge fixingAr50 as we mentioned earlier. Namel
both A andA8 possess only tangential components~with re-
spect to ther 5r 0 boundary! at any r 5r 0 and hencea
[(A2A8)50 identically there. As a result, even in the pre
ence of the boundaries, the terms in the YM gauge secto
the APS index theorem remain the same as in the cas
index theorem with no boundary, namely, only the bulk te
survives in Eq.~50! above. Thus what remains is just
straightforward computation of this bulk term and it becom
easier when performed in terms of orthonormal basiseA

5$e05crdr,ea5casa%, in which case,
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tr~F`F !5
1

2
~Fa`Fa!

5
1

2 S 1

4D eABCDFAB
a FCD

a Agd4x

5~F01
1 F23

1 1F02
2 F31

2 1F03
3 F12

3 !Agd4x,

E
M5R3S3

d4xAg5E
R
dr~crc1c2c3!

3E
0

4p

dcE
0

2p

dfE
0

p

du sinu

516p2E
R
dr~crc1c2c3!, ~51!

where we usedAg5udeteu5crc1c2c3 sinu. The period for
the U(1) fiber coordinatec for the EH metric, however, is
2p rather than 4p to remove the bolt singularity atr 5a as
we mentioned earlier. This completes the description of
method for computing the topological charge of each so
tion. Our next job, then, is the estimate of the instanton c
tributions to the intervacua tunneling amplitudes. Genera
the saddle point approximation to the intervacua tunnel
amplitude is given by

GGI;exp@2I GI~ instanton!#, ~52!

where the subscript ‘‘GI’’ denotes corresponding quantit
in the GI backgrounds andI GI(instanton) represents the Eu
clidean YM theory action evaluated at the YM instanton s
lution, i.e.,

I GI~ instanton!5E
R3S3

d4xAgF 1

4gc
2

Fmn
a FamnG

5S 8p2

gc
2 D un@A#u, ~53!

where we used 4tr (F`F)5Fmn
a F̃amnAgd4x and the

~anti-!self-duality relationFa56F̃a. The calculation of the
Pontryagin indices and hence the Euclidean YM actions
just described is indeed quite straightforward.

In the following, as we promised, we now provide th
expression for the YM instanton solutions in each of the
GI backgrounds written in terms of Cartesian coordinate
sis to study its structure one by one in detail and also
demonstrate the explicit evaluation of the topological cha
values and the estimate of the contributions to the interva
tunneling amplitude in order to eventually determine t
physical nature of each solution.

A. YM instanton in Taub-NUT metric background

In terms of the ansatz functionsf (r ) andg(r ) for the YM
gauge connection in GI backgrounds given in Eq.~10!, the
standard instanton solutions in TN metric amount to
2-10
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f ~r !5S r 2m

r 1mD , g~r !5S 2m

r 1mD S r 2m

r 1mD ,

f ~r !52S r 2m

r 1mD , g~r !52S r 12m

r 1m D S r 2m

r 1mD
~54!

for self-dual and anti-self-dual YM equations, respective
Therefore, when expressed in Cartesian coordinate bas
in Eq. ~49!, the solutions take the forms

Am
a 52S r 2m

r 1mD F11S 2m

r 1mD da3Ghmn
a xn

r 2
,

Am
a 52S r 2m

r 1mD F2112S r 12m

r 1m D da3Ghmn
a xn

r 2
~55!

for the self-dual and anti-self-dual case, respectively. So
comments regarding the features of these solutions are
in order.~i! They appear to be singular at the centerr 50 but
it should not be a problem asr>m for the background TN
metric and hence the pointr 50 is absent.~ii ! It is interesting
to note that the solutions become vacuum gaugeAm

a 50 at
the boundaryr 5m which has the topology ofS3. ~iii ! For
r→`, the solutions asymptote to another vacuum ga
uAm

a u52hmn
a (xn/r 2).

We now turn to the computation of the topologic
charge, i.e., the Pontryagin index of these YM solutions. T
relevant quantities involved in this computation are the o
in Eq. ~51! and they, for the case at hand, are

~crc1c2c3!5
m

8
~r 22m2!,

Fmn
a F̃amn54~F01

1 F23
1 1F02

2 F31
2 1F03

3 F12
3 !

5224
~8m!2

~r 1m!6 . ~56!

Thus we have

n@A#5S 21

32p2D16p2E
m

`

dr
m

8
~r 22m2!F224

~8m!2

~r 1m!6G51.

~57!

Then next the Euclidean YM action evaluated at these
stanton solutions and hence the saddle point approxima
to the intervacua tunneling amplitude are given, respectiv
by

I GI~ instanton!5S 8p2

gc
2 D un@A#u5

8p2

gc
2

,

GGI;exp@2I GI~ instanton!#5exp~28p2/gc
2!. ~58!
12500
.
as

e
w

e

e
s

-
on
y,

B. YM instanton in Eguchi-Hanson metric background

The standard instanton solutions in EH metric amount

f ~r !5F12S a

r D 4G1/2

, g~r !5F11S a

r D 4G2F12S a

r D 4G1/2

,

f ~r !52F12S a

r D 4G1/2

, g~r !5F11S a

r D 4G1F12S a

r D 4G1/2

~59!

for self-dual and anti-self-dual YM equations, respective
Thus in Cartesian coordinate basis, the solutions take
forms

Am
a 52H F12S a

r D 4G1/2

1S F11S a

r D 4G
2F12S a

r D 4G1/2D da3J hmn
a xn

r 2
,

Am
a 52H 2F12S a

r D 4G1/2

1S F11S a

r D 4G
1F12S a

r D 4G1/2D da3J hmn
a xn

r 2
~60!

for self-dual and anti-self-dual cases, respectively. So
comments regarding the features of these solutions are
in order. ~i! Again, they appear to be singular at the cen
r 50 but it should not be a problem asr>a for the back-
ground EH metric and hence the pointr 50 is absent.~ii !
The solutions becomeAm

a 54hmn
a da3(xn/r 2) at the boundary

r 5a which has the topology ofS3/Z2. ~iii ! For r→`, the
solutions asymptote to the vacuum gaugeuAm

a u
52hmn

a (xn/r 2).
We turn now to the computation of the Pontryagin ind

of these YM solution. For the case at hand, the relev
quantities involved in this computation are

~crc1c2c3!5
1

8
r 3, Fmn

a F̃amn524S 4a4

r 6 D 2

. ~61!

Thus we have

n@A#5S 21

32p2D8p2E
a

`

dr
1

8
r 3F24S 4a4

r 6 D 2G52
3

2
, ~62!

where we set the range for theU(1) fiber coordinate as 0
<c<2p rather than 0<c<4p for the reason stated earlie
Note particularly that it is precisely this point that renders t
Pontryagin index of this solutionfractional because other-
wise, it would come out as23 instead. Then next the Eu
clidean YM action evaluated at these instanton solutions
hence the saddle point approximation to the intervacua
neling amplitude are given, respectively, by
2-11
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I GI~ instanton!5S 8p2

gc
2 D un@A#u5

12p2

gc
2

,

GGI;exp@2I GI~ instanton!#5exp~212p2/gc
2!. ~63!

C. YM instanton in Fubini-Study metric on CP 2 background

The standard instanton solutions in FS metric amount

f ~r !5F11
1

6
Lr 2G21/2

,

g~r !5
@11Lr 2/12#

@11Lr 2/6#
2

1

@11Lr 2/6#1/2
,

f ~r !52F11
1

6
Lr 2G21/2

,

g~r !5
@11Lr 2/12#

@11Lr 2/6#
1

1

@11Lr 2/6#1/2
~64!

for self-dual and anti-self-dual YM equations, respective
Then in terms of Cartesian coordinate basis, the soluti
take the forms

Am
a 5

2

@11Lr 2/6#1/2H 11F ~11Lr 2/12!

~11Lr 2/6!1/2
21Gda3J hmn

a xn

r 2
,

Am
a 5

2

@11Lr 2/6#1/2

3H 211F ~11Lr 2/12!

~11Lr 2/6!1/2
11Gda3J hmn

a xn

r 2
~65!

for the self-dual and anti-self-dual cases, respectively. N
note that~i! the solution to the self-dual YM equationAm

a

52hmn
a (xn/r 2) looks singular at the centerr 50 since 0<r

,` for the background FS metric and hence the poinr
50 is present. But this is just a pure gauge representin
vacuum and thus should not be a problem. Next, the solu
to the anti-self-dual YM equation,uAm

1,2u522hmn
1,2(xn/r 2)

and uAm
3 u52hmn

3 (xn/r 2) is again a pure gauge having a va
ishing field strength.~ii ! For r→`, the solutions asymptote
to uAm

1,2u52A6/Lhmn
1,2(xn/r 3)→0 and uAm

3 u5hmn
3 (xn/r 2)

which is a component of flat space meron solution.
Turning now to the calculation of the Pontryagin index

these YM solutions, again the relevant quantities involved
this computation are

~crc1c2c3!5
r 3

8S 11
1

6
Lr 2D 3 , Fmn

a F̃amn5
4

3
L2.

Thus
12500
.
s

,

a
n

n

n@A#5S 21

32p2D16p2E
0

`

dr
r 3

8S 11
1

6
Lr 2D 3 F4

3
L2G52

3

4
.

~66!

Next the Euclidean YM action and the saddle point appro
mation to the intervacua tunneling amplitude are given
spectively by

I GI~ instanton!5S 8p2

gc
2 D un@A#u5

6p2

gc
2

,

GGI;exp@2I GI~ instanton!#5exp~26p2/gc
2!. ~67!

D. YM instanton in the de Sitter metric on S4 background

In terms of the ansatz functionsf (r ) for the YM gauge
connection given earlier asAa5 f (r )sa, the standard instan
ton solutions in de Sitter metric amount to

f ~r !5F11S r

2aD 2G21

, f ~r !5F11S 2a

r D 2G21

~68!

for self-dual and anti-self-dual YM equations, respective
Then in terms of Cartesian coordinate basis, the soluti
take the forms

Am
a 5

2

@11~r /2a!2#
hmn

a xn

r 2
, Am

a 5
2

@11~2a/r !2#
hmn

a xn

r 2

~69!

for self-dual and anti-self-dual cases, respectively. Now, n
that ~i! the solution to the self-dual YM equationAm

a

52hmn
a (xn/r 2) is again a pure gauge representing a vacu

and thus should not be a problem although the pointr 50 is
present in the background de Sitter space. The solution to
anti-self-dual YM equation also approaches the vacuum,
Am

a .(1/2a2)hmn
a xn→0. ~ii ! For r→`, the solutions asymp-

tote to Am
a 58a2hmn

a (xn/r 4);0 for the self-dual case an
Am

a 52hmn
a (xn/r 2) which is the pure gauge for the anti-sel

dual case.
Lastly, turning to the calculation of the Pontryagin inde

of these YM solutions, we first obtain the relevant quantit
involved in this computation which are

~crc1c2c3!5
r 3

8@11~r /2a!2#4 ,

Fmn
a F̃amn5

1

2
eABCDFAB

a FCD
a 5

12

a4 . ~70!

Thus

n@A#5S 21

32p2D16p2E
0

`

dr
r 3

8@11~r /2a!2#4 F12

a4G521.

~71!
2-12
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Then the Euclidean YM action and the saddle point appro
mation to the intervacua tunneling amplitude are given
spectively by

I GI~ instanton!5S 8p2

gc
2 D un@A#u5

8p2

gc
2

,

GGI;exp@2I GI~ instanton!#5exp~28p2/gc
2!. ~72!

Let us now discuss the behavior of these solutions asr→0
once again to stress that they really do not exhibit singu
behaviors there. For TN, EH, and TB instantons, the ran
for radial coordinates arem<r ,`, a<r ,`, and 2N<r
,` respectively. Since the pointr 50 is absent in these
manifolds, the solutions in these GI are everywhere regu
For the rest of the ‘‘compact’’ gravitational instantons, i.
FS on CP2 and de Sitter onS4, however, the radial coordi
nate runs 0<r ,`. Thus the pointr 50 indeed is present in
these compact instantons. The solutions in FS and de S
backgrounds, however, seem to have no trouble eithe
they are essentially vacuum gauges having vanishing fi
strength there atr 50. At larger, on the other hand, all the
solutions appear to take the structure close to that of me
solution in flat space. Another interesting point worthy
note is that the solutions in TN and de Sitter backgrou
exhibit a generic property of the instanton solution in th
they do interpolate between a vacuum atr 5m (r 50) and
another vacuum atr→`. Namely, the solutions in these G
backgrounds appear to exhibit features of both meron suc
their large r behavior and instanton such as interpolati
configurations between two vacua in some cases. Next
analyze the meaning of the topological charge values of
solutions and their contributions to the intervacua tunnel
amplitudes. Except for the solutions in the background of
metric and de Sitter metric, generally the solutions in ot
GI backgrounds such as EH and FS carryfractional topo-
logical charges smaller or greater than unity in magnitu
Here, however, the solution in EH metric background carr
the half-integer Pontryagin index actually because the ra
for the U(1) fiber coordinate is 0<c<2p and hence the
boundary of EH space isS3/Z2. For the FS~on CP2) case, it
is unclear what is the true origin for the fractional Pontryag
index. Therefore the fact that solutions in GI backgroun
generally carry fractional topological charges appears to
another manifestation for mixed instanton-meron nature
the solutions. Thus to summarize, the solutions in TN and
Sitter backgrounds particularly display features generic
the standard instanton while in the case of those in EH
FS backgrounds, such generic features of the instanton
somewhat obscured by meron-type natures. There, howe
is one obvious consensus. All the solutions in these GI ba
.
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grounds are nonsingular at their centers and have finite
clidean YM action. And this last point allows us to suspe
that these solutions are more like instantons in their gen
nature although rather like merons in their structures.

V. CONCLUDING REMARKS

We now summarize the results and close with some co
ments. As we stressed earlier in the Introduction, when
comes to the topological aspect, gravity may have mar
effects even at the level of elementary particle physics
spite its negligibly small relative strength well below th
Planck scale. Although this intriguing possibility has be
pointed out long ago, surprisingly little attempt has be
made toward the demonstration of this phenomenon in
evant physical systems. Thus, in the present work, we too
concrete step in this direction. Namely, we attempted to c
struct in an explicit and precise manner theSU(2) YM in-
stanton solutions practically in all known gravitational i
stanton backgrounds. And in doing so, the task of solv
coupled Einstein-Yang-Mills equations for the metric a
YM gauge field has been greatly simplified by the fact that
Euclidean signature, the YM field does not disturb the geo
etry as its energy-momentum tensor vanishes identically
long as one looks only for the YM instanton solutions havi
~anti-!self-dual field strength. Among other things, an inte
esting lesson we learned from this study is that, althou
expected to some extent, the chances for the existenc
standard YM instanton solutions@to ~anti-!self-dual equa-
tions# get smaller as the degree of isometry owned by e
gravitational instanton gets lower from, say, the de Sitter
to the ones with self-dual Riemann or Weyl tensor and th
next to the ones without. As demonstrated, it is also inter
ing to note that the solutions turn out to take the structure
merons at larger and generally carry fractional topologica
charge values. Nevertheless, it seems more appropriat
conclude that the solutions still should be identified w
~curved space version of! instantons as they are solutions
first order~anti-!self-dual equation and are everywhere reg
lar having finite YM action. However, these curious mixe
characteristics of the solutions to~anti-!self-dual YM equa-
tion in GI backgrounds appear to invite us to take them m
seriously and further explore potentially interesting phys
associated with them.
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