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We discuss the intrinsically nonperturbative probabifty for electron-positron production in the overlap
region of a pair of high-intensity lasers, by adapting the Fradkin representation for the logarithm of the fermion
determinant to several models defined as approximations to the exact problem. In each case wé fjraeh for
expression resembling Schwinger's 1951 expression for the vacuum persistence probability of pair production
in an external electric field, proportional to an exponential factor that contains an essential singularity, and
hence does not admit a perturbative expansion about zero coupling. Qualitative estimates of the best of these
models suggest that realistic yields fefe” production must await lasers of intensity?40W/m?, roughly
seven orders of magnitude more powerful than the highest intensity of currently known lasers. We comment on
the possibility of producing a quark-antiquark pair in this way, and note the possibility of achieving temporary,
but large separations of the produaqxﬁ
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[. INTRODUCTION and, if not, just how many more orders of magnitude of laser
intensity are required.

There are certain processes in quantum theory that are The present estimates are an outgrowth of previous work
intrinsically nonperturbative, and we here describe a new2] in which new functional representations for the electron
addition to that list. The most relevant example of thanre ~ Green’s functionG,[A] and the logarithm of the fermion
to our problem is surely Schwinger’s 1951 calculatighof ~ determinantL[A] were invented and approximated. Here,
P, the vacuum persistence probability/vol secdoe™ pro- ~ however, we take the more direct path of approximating the
duction in a constant electric field, given as a sum over disexact, well known 3] Fradkin representation fdt[A], and
crete terms(labr(]eqlzed by the integen) proportional to the Write the vacuum-to-vacuum amplitude in the form
factor exp—nwnr/eE], where e and m are the electron _ '
|chargé and mass, respectively, ads the constant electric (0]S|0)=e " TT2r10=gMexd, (1.9)

field. This _prot_)ablllty_|s _clearly nonperturbative because OfwhereAext is the vector potential corresponding to the over-
the essential singularity ig, which assures that no perturba-

tive expansion in the coupling constant can ever produce lapping laser beams, ariddenotes the elapsed tinfassum-
P piing . P ﬁ‘ng the beams were turned onBt0).
result other than zero for this quantity.

It is well known[1] that a single laser, however high its It should be noted immediately that EdL.1) as written

. . .. omits the radiative corrections of the quantized photon field,
intensity, cannot extract from the vacuum an oppositely hich are exactly incorporated as

charged pair, in contrast with the pairs that can be generatevc\f
in a constant glec_:tric field of suffipient strength. Thg situation (0|80)= oD AgLlA+Aqy] a0, (1.2
changes qualitatively, however, in the overlap region of two

lasers whose beams make a fixed angle to each other, fgfhere the linkage operator

here the conservation of energy and of momentum does not
rule out pair production. The relevant question is whether the
predicted rates of production are sufficiently large to make
this process of experimental interest; and to answer this
question, we have undertaken a series of calculations of threghereD_ ,, is the(barg photon propagator. The reason why
models which simplify and qualify the essence of the newsuch radiative corrections are neglected here is that any
physics considered. At once, we state that in this paper weharged particle so produced will find itself in the presence
are interested only in the qualitative orders of magnitude thatf intense laser beams, and its subsequent motion may be
appear in each model, as a way of understanding whethexpected to be essentially classi¢4]. This is not true for
current high-intensity lasers are capable of generating pairshe case of QCD, as discussed below.
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Before presenting the models and their estimates, it will
be useful to discuss the physics of the process we are con-
sidering. For a single laser, it is impossible to satisfy
momentum-energy conservation requirements for lifting a
pair out of vacuum fluctuations, because the conservation
laws nk,=p,+ p}’L cannot be satisfied; here, the four-
dimensional square of the left-hand sideHS) is zero, for
arbitrary integemn, while that of the RHS is necessarily non-
zero for a real electro(p) and positron f’). For an arrange-
ment of crossed lasers, the equation is changed to read
N1Ky,+NKy =P+ pl’L, and there are now solutions for a o,
variety of integersn, ,. For ease of calculation, we shall
suppose that both lasers are composed of photons of the
same=1 eV energy, that the lasers beams are oriented at a
relative angle of 90 °, with a zero angle between their polar-
ization vectors, and with an arbitrary phase difference be- "
tween their fields; for purposes of estimation, we assume th'é‘pp'ng lasers.
lasers to have identical intensities Bt 1072 W/m?, to pro-
duce a beam over a small area of length dimendibn
=10"°m, and to have a pulsed duration of?1f8ec. These
numbers define our “ideal” high-intensity laser and are use
in obtaining our numerical estimates fbrbelow.

FIG. 1. A virtuale*e™ pair absorbs photons from the two over-

multiple factors ofa" are effectively neutralized. By using a
functional representation fdr[ A], all such counting factors
dare automatically included.

The arrangement of these remarks is as follows. In the
. | ) next section, we state the basic, functional formulas of the

From a Feynman graph point of view, we are asking fory opiem with application to the external fields of crossed
the amplitude for a total of at least laser photons 10 be  |aqers and we define the three models that, in increasing
absorbed coherently, as in Fig. 1, where for leptons producegyjer of complexity, illustrate the physics contained in the
at ris_t in their c_m_p:2mc2/_ﬁw:105; this means a factor  gyact problem. In Sec. Ill, we consider requirements for a
of e" in the production amplitude, and a factor @t in the \japhje experiment; and in Sec. IV the application of such

cross section. What could possibly compensate such a My neriments to QCD is briefly discussed. A short summary,
nuscule factor? The fact that in the overlap volubteof the Sec. V, completes the paper.

crossed lasers there can Ne‘available” photons, and the
production probability must include a counting factor similar
to N!I/n!(N—n)!, the number of ways of selectingphotons
out of N available photons. IN/n=f>1, that factor is ap- We begin by recalling3] the exact Fradkin representation
proximatively f"; and in this way, as long a>a !, the for the L[A] of QED:

Il. FUNCTIONAL FORMULATION

1 (=ds
L[A]:_E 0 ?

d4p s 52
X exp(—ism? fd"'xf ex ifds’ —_—
X ) (2m)* 0 % Su2(s')
S S s/
Xexp{ip-f ds’v(s’)) ex;{—iej ds’vﬂ(s’)A#(x—J' v”
0 0 0
S s’
xtr[ex;{ef ds’o~F<x—f v)
0 0
or the equivalent form, obtained by the use of the convenient relation
s 52 s
exp(if ds’—z)exp{ipj ds’v(s’))]—'(v)
o Ov 0

which gives

] —(e—>0))‘ (2.1

0
v,

s 52
=exp(—isp2)exp< [ f ds’—z) Flv—2p)
0 )

UMHO UMHO
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L[A]= 1fd4fd4pfwds is(m?+ p? 'fsd'52 'Jsd’ "2
[A]= > X 2m)? O?exp[ is(m“+p“)lexp i . Sgg exg —ie . s'[vu(s")—2p,]

X+2s'p— J:Iv) tr{exp{ef:ds’a-F x+25’p—J’:/v)H —(e—>0))‘ : (2.2

U”‘HO

XA,

Here, U,w:zl‘t[?’w%]y F.=d,A,—d,A,, and tr indi- begin by first performing the linkage operatiémithout ap-
cates the trace over Dirac indices of the ordered exponentigbroximatior), which is the natural approach for the calcula-
The entire problem reduces to the estimation of the integralon of the correspondings [A] (where there is nofdx

of Eg. (2.2 for the case when the external fiell,(x)  average over configuration spaceut it will be somewhat

= eﬁj)sin(k(l)-x)+e§f)sin(k(2)-x+ ), corresponding to the more advantageous to consider these three operations in dif-
vector potential of a pair of intersecting laser beams of welkering sequences. However, it is most useful, and simplest, to
defined frequencies and polarizatiofig/e are using plane- realize at once that the fundamental process we are trying to
wave solutions of transverse “widthD to represent each of describe is such that a large numbefa@sherent photons of

the laser beamgAs stated in the previous section, and pic- energyo<m are to be absorbed by the produesdande™
tured in Fig. 1, we adopt the simplest theoretical and eXperifour-momentap and p’. We therefore expect that the
mentfall s.etup,. wherein two beams of the same Afrequ?ncy aqpacuum persistence probabili§,=exp(2 R&L[A]) can be
polarization intersect perpendicularly, so thatV=e®  \ye|l approximated by treating the absorbed photons as
—e, 0=kM.kP=¢.kM=¢-k®, and A, (x)=¢€,[sind  “soft’ compared to the lepton four-momenta; and this natu-
+sins,], with 8;=k®.x, 8,=k®.x+ 5, and fu_’;'f- rally suggests a simplifying, no-recoil approximation, of
For definiteness, we choose the unit vedtdo point in the ~ Which several are availab[&]. o

i1 (or ;() direction. while R(1)=j, and k@ =Fk: hence, &, _ For our problem, p_erhaps the S|_m_plest such apprO_X|rr_1at|on
— w(y—t) and&,— w(z—1t) + 6. Until the very last step, we is obtained by dropping the remainingdependence |n.3|de
shall use “natural units,” withi =c=1: here,» ande have (e argumentof thé, andF,, of Eq.(2.2), for the function

units of mass, and the average energy densiof each laser of this dependence is to produce corrections toph® fer-
is given by e?w?/8. mion four-momenta as they absorb the soft laser photons.

There are three operations that must be performed in Edience, based on the reasonable expectation that soft correc-
(2.2—the functional linkage operation, and theand p  tionsto harce*,e” momenta are irrelevant, we here perform

integrations—and the complexity of the result can depend oithe first simplification of the exact Eq2.2), replacing the
the order in which these operations are arranged. One cdatter by

1focds , ZJd4Jd4p . 'Jsd'52
L[A]:—E 0?exp(—|sm) X Wexq—lsp)ex i . SW

x[exp( —iefsds’[vu(s’)—ZpM]AM(erZS’p))tr(ex;{erds’m F(x+2s'p)
0 0

) —(e—>0)]

v,—0

(2.3

In the Schwinger model, the only function of the ordered exponential is to provide a contribution to the normalization of each
of the sequence of essential singularities that compitise¢hose singularities arise from the functional operation uporithe
dependence, followed by an approprigp. In the present problem, complicated by the necessity of spatial averaging, the
essential singularity will also arise from the correspondingfactor, with theos-F term contributing to the normalization.

Since we are interested only in the order of magnitud€ ofienerated by the essential singularity, and since we have every
confidence that a complete calculation that includessthié term will provide a positivd™ (that is, a negative RegA]), we

shall simply drop thesr-F ordered exponential, replacing its trace b¥. In principle, the entire analysis can be organized
without this approximation; but this adds nothing but complication to the extraction of the order of magnitude of the essential
singularity. Thus, we further simplify the expression fdrA],
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L[A 2Fds [ 2fd4fd4p isp? 'Fd'gz
[A]l=— O?exg—lsm) X Wexp(—lsp)ex i . ng

, (2.9

U”’ﬂo

and we now consider, in sequence, three models for its estimation, in order of increasing complexity.

These models are, in essence, approximations to a full, cluster decomposition/cumulant summation of the integrals and
functional operation stated in ER.4). Model A is defined by first performing the elementary functional operation, inserting
a useful representation of the momentum-space integrals, and subsequently approximating the configuration-space integrals in
the simplest possible way. In model B, the spatial averaging and the functional operation are performed exactly, while the
results of the exact momentum-space integrals are approximated in an analogous, first-cumulant way. The essential singulari-
ties that result in models A and B are the same. Model C attempts to include the most relevant contributions of all terms in the
representation appearing in the analysis of model B, in contrast to the latter's retention of only its first, nonzero, cluster
coefficient. Most interestingly, the essential singularity of model C is weaker than that of models A and B.

A. First-cumulant approximation

The linkage operation of Ed2.4) can be carried through immediately, yielding

s 52 s s
ex if ds'—=|ex —ief ds'v,(s")A, (x+2s'p) =ex —iezf ds'A%(x+2s'p) |,
0 ov 0 s # 0 0
v,

and one is then left with
J d*p exr( —isp?+ 2ieJ:ds’p-A(x+ Zs’p)—ieZJ:ds’Az(H— Zs’p))
which has the form
f d*pe 5P Fp- e p. €@, p- kM), p. k@) (2.5

where we(temporarily, and for maximum generaﬂtyeinstateeﬁ}) and eﬁf) as independent and distinct polarizations. The
integral of Eq(2.5 can be rewritten in the form

(277)”‘] duaf dubf ducf dud}‘(ua,ub,uc,ud)f dwaf dwa' dwcf dogexgi(Uyws+ Upwp+ Uswe+Ugwg) ]

X f d*pexp(—isp?)exp —ip-[w,eM)+ wpe®+ w kP + wk®]), (2.6)
where the range of eaaly, . .. ,wq4 integration is from—o to + .
All the integrals of Eq(2.6), exceptfdu.fduy, can be performed immediately, leaving
P2
a2 Kz 2s 1 . 2
J d4pe isp fﬁ—?(?) ﬂj ducf dUdGZISUCud/ eS(xluC,ud), 2.7

where S= —ie2e?s[{d\[S?—(S)?] and S=sin(§,+2\sy)  10) than the laser wavelength,, so that the averaging pro-
+sin(8,+2\suy). Here, the variable changg=\s has been cedure adopted here and in the two subsequent models is
made, we have returned to the simplest case of identicaensible. The simplest sort of averaging replaces the spatial
polarization vectors, and the notatié8)=[3d\S has been average of the exponential (@7) [ d*xe™ by the exponen-
used. tial of the average: eXfl/D3) [d3xS(x)], and is perhaps the
The configuration-space dependence of E2j7) must simplest of the approximations used in statistical problems to
now be integrated, or averaged over the overlap region of thestimate a full, cluster expansion.
two laser beams. We assume that the linear dimerBiof It is straightforward to see that the present approximation
this volumeD? is significantly larger(at least by a factor of generates
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FIG. 2. Full line: Pictorial representation of the exak{A).
Dashed line: The approximation used in the text.

515 f d3xS(x)

_ _in2 2 _E ! ’
=—ie‘e’s{ 1 drdh'{
2) Jo

><cos{2()\—)\’)A]+CO&{2(?\—)\')KJ}]

whereA =su; andA = SuUy. The integrals ovex and\’ can
be done exactly, and yield
262

1 e —
FJ d3xS(x)= —i 5 [P(A)+D(A)]

with ®(A)=1—(sinA/A)? so that, with [d*x written as
D3cT,

LA m*D3T) [ m? focdt L

A= —om 1) ), e
T — A2 2

Xjf dAdAeZIAAm lw“t

e?e? _
X ex;{—itW[CD(A)-l-q)(A)])—l], (2.8

where we have introduced the dimensionless varigble

=m?s.

PHYSICAL REVIEW B3 125001

Figure 2 displays a graph d#(A), (full line) and a graph
of the approximation we will use to simplify th&,A inte-
grals of Eq.(2.8) (dashed ling this approximation corre-
sponds to the replacement df(A) by 6(7—|A|)A?/ x?
+ 6(|A|— 7). One could use a more detailed approximation
for ®(A), and one could take into account the fact that
®(A)#1 for|A|>r; but our approximation should give the
essence of the behavior of these integrals. A similar approxi-
mation will be employed for the more complex, and realistic,
models B and C.

By breaking up theA, A integrations into the regions
(JZI+[%72) and (f77), and adding(to [ZZ+[1%) and
substracting(from [*7) a contribution with®=1 in the
region (f£7), with A pay= (V27r/\t) (M/ @), one obtains

(D3%T) 2dt

tle 2
La=>i m* g it —(1—ex S )
AT 22m? T o B 2\ m

1 f JJF)\maxd d TN ( . tz}\i Eew 2
_ 1N\2 Y
+ o= | Aqdhye ex 12 |\ 2

)‘max
t[ee\? )( .t2>\§ eew\?
‘exf{"z(ﬁ) ex "E(W)
)} (2.9

o35

Consider now the first term in the curly bracket of £2.9),
independent ol 5. This integrand is analytic in in the
lower half t plane, vanishing there as Im— —, and as
such may be rotated to a contour that runs down the imagi-
nary t axis, from 0 to—io. Then, simple inspection shows
that its contribution is purely imaginary, and hence it cannot
contribute to R&[A]; and we discard it. The remaining
Amaxdependent terms of E@2.9) define a function of two
variablesF ,(ee/m,w/m), variables that arrange themselves
in three ways: asn/w in Apay, as @ew/m?)? in one set of
exponential factors, and ad/m)? in another. As they
stand, the\ ; , integrals generate the so-called error function
®(x) combined with the SK) function, and it is tedious to
write them down in detail. But it is surely not necessary,
because—by inspection—the order of magnitude of the
variable can never be much larger than unity, white/ &)
=10P, so that\ ., 1. In other words, the physics should
not be drastically changed if the limit,,,,— < is taken, in
which case the integrals are trivial—the @xit(ee/m)?/2]
terms now cancel against the discarded terms in the curly
bracket of Eq(2.9—and yield

2

Lﬁ'@.g—CT) 4 xg *it;_l (2.10
A |2(27T)2m o 13 - ()" :

where y=eew/m?\/6. Thus, in this limit of arbitrarily large
m/w, but fixed eew/m?, Lyo—Fa(y). The same behavior
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Imt since they integrand effectively cuts off ay~1/tp<1.
Hence
RelL = — (DS—CT)m“ S~y (2.12
A 2(277)2 Y ’ .

which clearly displays the essential singularityjin

Ret B. A modified cumulant model

We now return to Eq.(2.4), denote the combination
v,(s')—2p, byV,(s"), and observe that if the spatifid®x
is attempted before the linkage operation of the Fradkin rep-
resentation, then the spatial averages gwdy and [dz, for
. the individual laser beams, can be performed independently.
We adopt the notation

%f dxf dyf dz)HDs(-"MF

FIG. 3. Cuts of the functiof1—(y7)*]"*2 in the  plane, ~Where the symbol. --),7 signifies independent averages
beginning atr= = 1/y, =i/~. The solid line represents the original over the factors sii®-x+2s'k®. p)=sin #+u(s’)], and over
direction of 7 integration; the dashed line, the rotated-contour di-the factors si{®-x+ 6+2s'k®-p)=sin 6+u(s')], where ¢

rection. —k® . x—w(y—t), 0=k@.x+5-w(z-t)+35, u(s')

will be seen in all three models, and its relation to the=2s'kM-p, u(s’)=2s"k®.p.
Schwinger constant-field result will be discussed in the Sum- We therefore considg- - - ), as given by
mary.

One now sees that alimprope) perturbative expansion 1 2m 2m (s, ,
of the square root of Eq2.10 in powers ofy will generate WJO dafo daexp| —|ef0ds Vu(s")
a sequence of imaginary contributionsltg, for the integral
[odttr*4ne't is real for every integen. Hence, Ré& , does
not have an expansion in powers of the coupling; it is intrin-
sically nonperturbative. Its value can be most easily obtained
by remembering that the path of thantegration of the origi-
nal Schwinger/Fradkin representation is to rurelow the
positive4 tllzaxis (because m—m—ig). Because [1 = (—ie)" (s .
—(t/tp)"] 4, \INIth.t():l/'y, ha; a cut str_ucture t.hat may be E | J' ds,(V(sy)eD). - f ds,(V(s,) - D)
expressed as in Fig. 3, a rotation of the integration contourto n=0 N Jo 0

— = <
run ast—e—ir, O<r7<om, is permissible, so that X (S 6+ u(sy)]- - - Sin{ 6+ u(s) 1)

3 e j:dE(le)-e(Z))--- J:«Em

m=o0 m!

f d3X—>D3

x{eDsino+u(s')]+e? sir{%i(s’)]}]

0T

. (D3%T) 4f°cdr ] 1 1
S>—i;5—0—m'| me 7| ——=—
22w ’ 1—(1lte)*

and X (V(sp) - €@)

ReL .o (DD (dr e T (2.1 X (sin 0+ u(s;)]- - - sin{ 0+ u(sm) 1)7.
AT 22m? T )y 7 g1
Consider the first average; it can be rewritten as

where the branch of the square root has been chosen to yield
a negative value for Re[A]. Under the variable change (
2i

n

=1/ty— 1, the integral of Eq(2.11) becomes ([P0l — gmilo+ulsply. . .[gl[6+ulsy)]

| e*yto -
tgze"OJ Y 5 —e ilorusly,
0 (1+y)” J(1+y)*—1
~to [.-1g and the only nonzero contributions ¢e- - ), come from the
~1;28 fto Y i3t (21)!/(11)? terms independent df; here,n=2l. By symme-
° 2o \/9 ° try, these terms can be rearranged into a “standard” form
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(=)' 2! | For simplicity, we now return to the case of identical
Py W(_Z) cog u(sy)—u(sy)] polarizations and frequencies, and perform the Fradkin link-
' ages to obtain
X coqu(sz)—U(sy)] - -codu(sy 1) —U(sy)] (D3%T)[ 1 \2(o*dty
H 1 LB:_2—4 - f —etl
to which one must append thfgds'[V(s') ] factors. The m* \27i] J_xty
same analysis holds for tHe - - )5, with the result that the q
exact spatial averages can be written as JO s f “Zgism J dpe isp?
Lt
- (e2A1/2)' - (e2A2/2)'
2 () Y () = 1 . -
=0 ) —o ) X ex 2Trln(1+2K) expip-Q-p)—1
A A
EJo<e\/71>Jo(e\/72), (213 219
where
where
1
b utn- oo ) 2 ) [
A1=f dsaj dso[V(sa) €M ]cog u(s,) —u(sp) I V(sp) €] : 0 0 142K/,
0 0
and
and

2

cog2p-kM(s;—s
<Sl|KMV|SZ>:ize,u€V i p ( - 2)]

ty

- f ds, f s V(s €@ ]cog u(s,) — u(sy)]

’ ’ cog2p-k@®(s;—s,)]

+ . L2 .
t;

X[V(sp)e®)].

To perform the linkage operation, it is most convenient to

introduce the representatidl] Here, bothK ,, andQ,, depend orp; and so we intro-

duce
1 (o+dt
Jo(2)= f 0 —el P F(2p-kW, 2p- k@)

1
where the contour is specified as approaching the origin from f f duydu, F(uy,Up) X —— (2m)?
—oo underneath the negatiteaxis, swinging in a half circle
around the origin, and moving out te above the negative +oo U O 0n)

t axis. In this way, XJ f dQ;dQ e (2t u202)

(s, , . , —2ip- kM, -2ip-k@q
<exp[—|eJ0ds V()P sif o+u(s')] xe ' %
where F(u;,u,) represents all the 2 k(*? dependence in

+ 6(2) si 6+ u(s ]}} > the curly bracket of Eq(2.14).
0 Then we need

1 \2 [o+dt dt
=(ﬁ) fo t—letifo t2€t J d4pe—isp-(1—Q/s)-pe—2ip-(01k(1)+ﬂzk(2))
—w [y - 12
i S S 772 .2
X ex Ef dslf dSZV,u(Sl)K,u,V(Sl!SZ)VM(SZ) :_i?ef(lIZ)trln(lfQ/S)efﬁw Qlﬂzlsl
0 0
with with k. k(@)= — 2. The integrals ovef), , are immediate,
and yield
je?[ eV Y
KMV(Sl’SZ):T t COE{ZP k(l)(sl S2)] IS ] 5
(271_)( 2) elu1u28/2w
FONE 20
S cog2p-k®(s .
to 12p- s2)] so that

125001-7



FRIED, GABELLINI, McKELLAR, AND AVAN

. _ (D%T)( 1 2J0+dt1 .
B~ 167 \2mi1) ) outy ©

0+dt1 des .o S
% “Let2 | I gism
J‘foc t2 0 SS 2(1)2
+ X 2
X f J du,du,e't1tzs2e

X

exr{ - %Tr In(1+2K)e~ (/2 '”(1Q’S)) - 1]

(2.195

where

<Sl|2KMV(u1!u2)|SZ>

2.2
—ie €[ €,€,

n cog u,(s;—Sy)]
to

cog u;(S;—S,)]
t;

E( Eff) (s1/2K(uy,uy)[sy).
€

Q»/s may be written aS](S)(eME,,lez), and we henceforth
suppress the factorsrgevlez).
We now estimate

S
TrIn(1+2K)=f ds;| 2K(s;,S;)
0

1 (s
_EJ ds,2K(s;,8;)2K(s,,81) + }
0

and adopt the notation KXs;,S,)=¢&(s;—S,). Note that

2K(s1,51)=¢£(0), which quantity would be the only one ap-
pearing weraw set equal to zero. Replacing each cosine term

of Eq.(2.19 by 1 corresponds to the limid— 0. But, physi-

cally, for o—0 at fixede, L must vanish; and therefore we

must find that the curly bracket of E¢2.15 will vanish
when eaché(s;—s,) factor is replaced by(0). This sug-
gests expanding Tr In(@2K) and tf 1 —q(s)] in terms of the
relevant quantitysé(s; —s,) = &(0)— &(s1—S,). To first or-
der in 8¢, one obtains

1 1
Trin(1+2K)—s&(0)— E[sg(O)]2+ §[S§(0)]3+ e

L
3

><[s§(0)]2+-~~}5(1)(s)

+

1
52)[s§<0>]—

or

PHYSICAL REVIEW D 63125001

Trln(1+2K)—>In[1+s§(0)]+—Sg(o) E)(s)
1+sg(0) ~ W7
(2.19

whereE 1)(s)=(1/s) [ [3ds1ds,6¢(s1—S,).
In a similar spirit,

Quv

S

€,€,
—><7> (SE(0)—[s£(0)1?+ - - - —{1—2s&(0)
+3[s£(0)]%+ - -}E()(8)
or

s&(0) 1 3
1+s£(0) [1+s£(0)]? Ew(s)|,

S

-
——
so that

trin(1—Q/s)— —In[1+s&(0)]+ E1)(9).

(2.1

1
1+s£(0)

Adding Egs.(2.16 and (2.17), we see that that the terms
independent ofv do indeed cancel, leaving

1 1
ex% - ETr In(1+2K)— Etr In(1-Q/s)

1)—1
=eX _Eﬂ(l)(S)

%1 s
—exp[—| 7 Ef fodsldsz

X
The integrals oves, , can be done exactly, and generate for
this factor

N )]
(2.18

1
H(l_ coguy(s;—s,)])

1
n E(1—cos{u2(sl—82)])

where® (A) is the same function found in model A, and the
u; , have been rescaled accordingug,= (v2w/\/S)A4 5.
This “modified first-cumulant approximation” thus pro-
duces
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(D CT)( fwdtl IlJo dt, t »ds im* 3 wdt ee —\1?
T Py B L)%, Lg—g2(D cT)f0 &1 (1% EJE
—isn? o iNgA 1 A ma ' cew N
Xe f Jim di dh,e1t2 +—f f d\ 10N ,eM 102 3, _2\/I‘_l
2m ~Mmax m \/5

X[eXp(_iﬁé (wAjEJg) —Jo(fnf” Jo(e—a;ff) Jo %Jﬁ) ]
+%q>($ffﬂ)—1}. (2.19 (2.29

We again make the same heuristic argument as that follow-
ing EQ.(2.9), in which the limit\ ,,,,— % was taken, so that

This is a “modified first cumulant” in the sense that the

spatial averages are done exactly, and the “first cumulant” im 3 =dt
adjective refers to the simplest approximatidinst order in Lg—gz(D7cT) fo P
6€) of the determinental factors’ cluster expansion, involv-

ing the s, , proper-time dependence. In contrast, model C +oo ok
will be defined by extracting and summing a portion of every X f f tdh dA et

cluster coefficient representing these factors.

Equation(2.19 can be put into a simpler form by again X{Jo(y\/ﬁ)\l)\]o(y\/ﬁ)\z)—l}, (2.22
using the representation fal, introduced following Eg.
(2.13, so that, withm’s=t, where, again,y=(eew/m?\6), andLg— Lg(y). Because

the J, are even functions of\;,, the replacement

(1/27) [ fEZdN1dN,— (2/) [ f5dN,dN, can be made; and
then a change of contour of theintegration is allowed,

it & iNghs wheret is to run from the origin along a straight line at an

(D CT)[ e f f dhydAze angle of /4 below the positive real axis; this corresponds
to the replacement— (—i)Y?r, with 7 running from 0 to

ee | W\ +c0. In this way, Eq.(2.22 can be rewritten as
X4 Jo| —\/it® t
m \/Em
m* =d7 .
e . [0 LB_’__z(DBCT)J’ —3677/““77'7/“‘?
XJo| —\/ it® t]|—1¢. 2.2 8m 0T
e e } @29

2 +oo
x{—f f dhjdN\; cOg N 1N ,)

) Jo
It immediately follows from Eq(2.20 that an expansion in
powers of ge/m) will generate a sequence of terms, each XJO(yT)\l)JO(yr)\Z)—l’. (2.23
proportional toe* each of whose coefficients is purely
imaginary. This is true becaude(x) can be expressed as an
infinite sequence of powers af, while the\ , integrations ~ We next use the integral§]
require that the powdr, of )\i'l must be the same as the

2l
power of 5%, and becausé, must equal, for a nonzero

O(yT—N\

result, the overall power of in the resulting expansion is f dh, COg N N p)Jo(yTh,) = (7—21)2
even:t?N*2 N=1, generating the imaginary coefficient of 0 (y7)°— A%
et.

To determine the nonperturbative form bf, we can and
proceed as fok 5, following Eq.(2.18), by rescahng they ,
variables intoA andA, and breaklng up thd, A range of yr Jo(y7TA1) 7 [ (y7)
integration into the regions/CZ+ [12) and (f*7), as one M =53 (T)
introduces  the  simplified ®(x)=6(7— 2 2 V(Y7)"= A
+ 6(|x| — ). After changing back to tha, , variables, the
result takes on a form analogous to that of Ej9): and the convenient rescaling- 27 to obtain
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m* odr 5 tion with the omittedo-F dependence, as in Schwinger’s
ReLBHW(D%T)‘f ;ge_TCOST[l—Jo((VT)Z)]- model; and the overall sign must be negative. The appear-
0 (2.24 ance of the oscillatory factors of E@.27) is also a function
' of the crudeness of the approximation procedures used to
One can see directly from the perturbative expansion of Ecgvaluate Eq(2.24), and such factors may or may not arise in
(2.24) that the coefficient of every terfproportional toe*") a better evaluation. We now argue that an alternative estima-

is identically zero tion of Eq. (2.24 can indeed yield a result of correct sign
and no oscillatory dependence ag) by noting that the value
edr of 7 at which the integrand of Eq(2.24 is replaced—
— e "cosr=0, n=12,..., discontinuously—by the sum of those of Eq2.25 and
o7 (2.26 is really not well defined. We have '>>1, but

instead of simply choosing,=y ! let us set the upper limit
of Eq. (2.25 and the lower limit of Eq(2.26 equal to 27N,
whereN is that(very large integer closest to (2y) L. [In
other words, the limits of these integrals need not(ddi-
t%’rarily) set equal toy” ! but can be very close to that valjie.
The result will be that the square bracket of EB.27) is
replaced by+1. But if we usery=2m(N+ 1/2) the bracket
of Eq. (2.27) becomes— 1. Which form should be used? If
we write 7= 27N+ X, what should be the value assigned to
x? One does not know; and therefore one might be tempted
to average over all values of between 0 andr, thereby
replacing[ cosx—sinx] by — 2/, a result that has no oscil-
lation and the correct sign. But the deeper answer to these
questions is simply that if one has any choiéer an exact
evaluation of these integrals, supposing that such were pos-
and that part obtained by integratingirom 7, to o, where  sible), that choice(as in model A, where there are two pos-
we employ the asymptotic form Q]%<1 to write sible branches of a square rpatust be taken so that Rg
is negative. Further, because we have neglectedosttfe

edr contributions, we cannot know whether or not a real choice
(D3cT)f —e 7cost. (2.26 is possible. What we must accept, in this approximate calcu-

0T lation which is concerned only with the order of magnitude
) ) ) of I', is that there is, according to our approximations, an
Equation (2.2 can certainly be improved upon, e.9., by jhapility to derive the correct sign—although there is always
making a Gaussian approximation g¢x) so that the latter ¢ east one path to the correct sign—but that the final sign of

equals unity only at everfcusp value ofx,, the square root Ra| must be negative. We therefore write
of one of the zeros of this Bessel functidithis resembles

the original Schwinger model, where there is a sequence of

such essential singularities labeled by an integehere, m*(D3c)
(x,,)¥? replaces than.] In effect, we are using only the first I'g= (41)2
zero, the simplest approximation to that sequence, of form

eXF[—(}(l)l/z_/Y], wherexi is the first zero oflo(x?); and our  and, again, we emphasize that it is only the order of magni-
approximation will be sufficiently crude so that our result tude of this result which we believe to be a correct prediction
will replacex, by unity. We are, however, only interested in of model B. Comparison with Eq2.12) shows that this is

the order of magnitude of the largest possible contributioressentially the same result as obtained for model A.
corresponding to the first essential singularity; this is con-

tained in Eq.(2.25—which can be evaluated exactly—and
in Eq. (2.26, which can be exhibited in terms of an
asymptotic expansion of the Ei(x) function. To leading We now return to Eq(2.19 and ask if a better approxi-
order (that is, proportional toy®, with higher-ordery* cor- ~ mation can be found for

rectiong, the sum of Eqs(2.25 and(2.26) generates

so that the nonperturbative aspect of [Rehas been main-
tained.

We are able to evaluate E(.24 only in an approximate
way. The method we use takes advantage of the dissimilari
of scales inherent in anf(r) andg(y7), wheny<1, as is
the case here. The functiog(x)=1—Jy(x?) resembles
®(x), Fig. 3, and our simple approximation will be similar:
for r<1ly, g(y7)~%(y7)* We then separate the integral
of Eq. (2.29 into two parts, that contribution obtained by
integratingr over the region from 0 tay=1/y,

m4

1)

A
(D®°cT) 5 drre”"cosr, (2.29
0

m4

(4m)*

RelL®—

yle (2.28

C. An approximate nonperturbative cluster sum

Trin(1+2K)+trin(1—Q/s),
4 ,y3
ReLB:W(D%T)7e‘70[c0570—sin70], 70=%.  an approximation that contains all the powers of the cou-

(2.27) pling, rather than just its quadratic dependence, as in the
equation following Eq(2.17). Further, any such approxima-
The sign of Eq(2.27) is apparently related to its oscilla- tion must be simple enough to permit its evaluation.
tory dependence, but this connection can be misleading. Ba- We begin by calculatings,|(2K)?|s,), a straightforward
sically, the sign of Eq(2.27 must be determined in conjunc- computation; withy=ie?e?/2 ands;,=s;—S,, one finds
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S sin(u;s)| s sin(u,s)
s1|(2K)?[s,) = x?{ —=|coqu;S1,) + ————|+ —| COLUsSyp) + ————
< 1|( ) | 2> X t% qU;1S12) (UyS) tg SIPSPY (U,S)

A{ug—u, _[|urtu;

X < ug+u, sin 5[ . Uy u sin 5 IS .
t1t2 CO 2 312 1_U2 Co 2 312 U1+U2 ( ' g
2 |° 2 |°
|
In comparison, (s1](2K)"|sp) = F" Ks1|2K]sy),

one easily calculates
cogU;S1p)  COU3S1o)
+

ty ty

(s1]2K]sz)=x
Trin(1+2K)=In(1+F)

where, as in Eq.2.29, we have suppressed the trivial
(e,€,/€?) factors. Upon subsequemt; , integrations, the and
terms sif[ (u; = Uu,)/2]s}H[ (u, + u,)/2]s will take appreciable
values only foru; = u,=0, where they become unity, so that

the cof[(U;+Uy)/2]s}/2 factors multiplying them can be re-  IN(1=Q/s)=—In(1+F)
placed by cos(;s) or cos(,s), precisely the terms that ap-

pear in{s;|2K|s,). This suggests that we define a model by +In
the statement

1+xs

#(uys/2) ¢’(U25/2))
ty * ty '

so that the combination ekp3Trin(1+2K)—3trin(l

(81](2K)?[sp) = F(s| 2K]s7) (2.30  —Q/9)] becomes
with F= ys[ 1/t,+ 1/t,] [which quantity was called&(0) in B(ussl2)  ¢(uysl2)) | 2
Eq. (2.16]. This model neglects the sin(;s)/(u, ;S) parts 1+Xxs t, + t, -1

of (s,](2K)?|s,) above; but it does correspond to an order-
by-order extraction of what are probably the most significant
pieces of every perturbative term. Note that our neglect ofvhich can be rewritten as
such oscillatory behavior is not associated with the expecta-
tion that theulyzs~0(w\/7-/m) are small, for anyw/m—0
limit here will bring about the cancellations described in 2 fwd 2 2 1
model A; rather, we here keep only the terms that are ex- /], 94¢ | & su :
pected to be significant upon subsequent integration over
fluctuatingu, , dependence.

With Eq. (2.30, and the arbitrary number of iterations Upon again using th@, representation following Eq2.13),
that can be formed from it, we obtain

S(UrSI2)  (Uy8/2)
LG

0

im* odt 2 (= .o 1 +oo .
3 —it —Uu/2 iN{Ao
LC—>—287T (D cT)J0 el e \/;J’o due 277J J_m dn.dh,e

X[JO{%\/HQ) %ﬁ”%{% itd
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and comparison with Eq2.20 shows that the only dif;‘er- terms, the ex]i)—l/y]:exp[—\/é(m/ee)()\y/hc)] of I'g is

ence betweerLg and L¢ is the latters 2/mf5due /2  here replaced by e{(p\/é(m/ee)()\y/uo)\c)], where ugh\ ¢

together with thes dependence inside eadf Reserving the is perhaps 19-10° times larger than ., and which can be

u integration for the very last step, one can therefore write interpreted as the qualitative distance over which coherent
laser photon absorption takes place.

2 (= 2 I1l. MAGNITUDES
Le(y)— —f due “"g(uy) _ _
mJo Predictions of the half-lives of the three models found in

Sec. Il tend to be quite small, due mainly to their essential

m4(D30) 3 2 (= —u2/2, 35— 1/ i lariti d h consider these quantities in nu-
"y _f due Y23~y singularities, and we here q
(4) 7)o merical detail.
(2.32 We begin by calculating the size of the dimensionless
' parameteee/m:
We now approximately evaluate this last integral by writin
it as PP Y g y g ee 2_ eew\? 1 (Ama)(4wU) )
m  \m/| o mc? <ty

2

= u
fo duexd f(u)], f(u)= _3_3_,U+3 Inu, whereU represents the laser energy density (d/& w?, and

we have reinserted all relevant dimensional constants. Since
searching for the maximum df(u) at thatu, defined by we are interested only in orders of magnitude, we replace
f'(upg)=0, and then calculate in the standard Gaussian mar(47)?a=158/137 by unity. The average laser fléx=cU
ner, with f(u)~f(ug)+ 3(u—ug)?f”(uy), and theu—u,  then provides

=u’ integration running from—c to +. The equation eel2 A2
defined byf'(ug) =0 is cubic; and because<1 its solution (_) SO
is to leading ordefin y) equivalent to that which would be m c(mc?)
obtained by considering and sinceF is conventionally quoted in MKS units as W/m
o 21 we adopt those units, so that, for our “ideal” laser B}
f duddef™, fuy=— - — =107 W/m?, (ee/m)2~5F,x 10 2'=50, or (ee/m)~7.
0 2y With (o/m)=10"%, y=(eew/m?)(1/y6)~10"°. There-

fore, for a laser of flux intensitff, y=10"S(F/Fq)*>

. 3 3 .
and replacing thes® factor byug. Either procedure leads to The multiplicative factorsn®D3c may be represented as

up~vy Y3 and - : : ;
oY D3c/)\‘c", a relatively large number with the dimensions of
> (o 5 inverse seconds, of size (193(3x10%)/(10 ¥4
\/:f duld e v2-ty~ = o-312v*9) =3x 10", We arbitrarily decrease this number by two or-
m™Jo V3 ders of magnitude, to take into account the 2actors of
eachI', as well as possible weightings of the neglected
so that o-F terms, so that
4 3
Fczi m*(Dc) ,yze—sl(zyz’a) (2.33 9., 3.—10°5(F o IF) V2 1 312 o 108(Fg IF) 2
3 amZ , I'pg~10%y% o/ =107 FIF,)%%e /P,

(3.

which represents a significant increase in magnitude over theurther, if these lasers are pulsed, with a duratipthen the
result forI'g, because there is one less factoryoin the  vacuum persistence probability at the end of each laser burst
numerator, but more importantly because the form of thés Py=exd —71'5s], and the probability?; of producing one
essential singularity has been changed to[ e8#(2y%9)], or more pairs during each pulse is given By=1—-P,
compared to the exp-1/y] of I'y. =71lpp, if 7I'sp<1.

This change of form, and magnitude, of the essential sin- Let us arbitrarily choosé;~0.1 as a minimum realiza-
gularity has a physical interpretation that may be of interesttion of this process—roughly one pair produced for every ten
Elementary QED processes, suched®™ pair creation, are pulses—for a typical 7~10 ** sec. This means 106
usually thought of as taking place over distances on the order 10-131 ?Y(F/F ;)32e~ 1P(Fo /P o 107 9x32= g~ (1°R)
of A¢, the electron’s Compton wavelength. Here, howeverynerex=(F,/F). Settingx=10"", it is not difficult to see
we expect coherent absorption of the laser photons by thgat p~8.6 and
incipient, still virtual pair, over distances larger than,
perhaps as large as some fraction of the laser photons’ wave- FIF,=10°%~4x 10 (3.2
length\ ,, because there are so many photons that must be
absorbed. This coherence is made explicit by uhategra-  so that for pair production at the rate of one pair per ten
tion, as the parametervaries over distances centered aboutpulses, as given by models A and B, the available laser flux
uo~7 2 which is considerably larger than 1. In physical must be increased by 8 to 9 orders of magnitude.
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V. SUMMARY
On the other hand, the model C requirement for the same
rate is significantly less, for the above calculations are re- These estimates of pair production, via a calculation of
placed by the vacuum persistence probability, are examples of intrisi-
cally nonperturbative quantities in quantum field theory. Our
I~ 10%0y2e~¥2r"° (3.3  estimates for models A and B show an essential singularity
analogous to that of the 1951 Schwinger calculation, while

and the improved model C generates a related, but weaker, es-
T e~0.1~ 107810~ 4 F/F)e (15 10(Fo /P2 (3.4) sential singularity.
As noted above, these probabilities are strictly functions
With the same definition ok andp, one here finds of two dimensionless variablesew/m? and w/m; but for
reasons of calculational practicability, we have dropped all
F/Fo=10"~2.5x10, (3.5  dependence on the second variable. In so doing, we have

arrived at forms quite similar to Schwinger’s; and it is worth

\évglig '2? at least an order of magnitude improvement c’Vermentioning that—once such calculational approximations

If further improvements in the model calculations could have been performed—there is a strong reason to expect a

be found, one would expect a further increase in the paiFeSgIt S|m|Iartrt]othhv¥|n%er?.. i i ¢ right les. th
production rate. uppose that, instead of intersecting at right angles, the

two laser beams overlap in an antiparallel way; that is, they

IV. APPLICATION TO QCD fire in equal and opposite_directions, Wii?la=—R2. (Su_ch
geometry would of course increase the yields, assuming that
If sufficiently high-intensity lasers can be made thatthe machinery did not destroy itsglin this case, it is also
achievee"e” and evenu " u~ pair production, there is then possible to find a nonzero Re although the spatial averag-
no reason why one cannot contemplate laser-induced quarisig over the beams becomes more difficult. However, it is
antiquark production. Here one cannot neglect the QCD ragasy to see for model A that if a time average is included
d|at|ie corrections, since it is the gluon clouds surroundjng along with the spatial average the expression for the aver-
andq that form a flux tube/string, and produce quark con-agedL , will be unchanged. This is significant because the
finement. But one can idealize what may happen in terms ojscillating magnetic fields of overlapping, in-phase laser
two extreme, and differing, possibilitie§l) g andq appear beams moving in opposite directions, whose electric polar-
with their flux tube/string in place, so that we have producedijzation vectors are in the same direction, exactly cancel,
in effect, an®, Whic_h the laser fields are incapable of tearingleaving only the enhanced electric fields, of magnitude pro-
apart; or(2) q andg materialize each surrounded by its vir- portional to€~we. In the limit of decreasing frequencw
tual gluonic structure, which immediately begins to form it- —0 bute—oc such that their product is finite, we are in the
self into a tube/string joiningy to g. The formation of the Situation of a constant electric field. For such head-on laser
tube/string is surely not an instantaneous effect, but one th&eams we would expect that the limit af—0 and finite
can be characterized in terms of a “string formation veloc-we~¢& should reproduce, at least qualitatively, the
ity” v¢. As a physical process, one expects thatannot be ~ Schwinger result; and it does. Of course, our calculations are
larger thanc, while it is perfectly possible for thg andq to approximate, and cannot reproduce the preqise forms of an
be accelerated away from each other by the crossed Iasers,@éa(.:t result; but the correspondence is .phy5|cally clear. .
that their relative velocity of separatian, could equal or Flnglly, we comment on the shortcomings of this anal_ly5|s,
. . . — which invents a sequence of models to bypass the difficult
exceedvs. This suggests that, by this mechanisgandq

) . ; i task of solving for the relevant function(s;|2K(1
might temporarily reach separation distances greater than

tews fermis. (Of tter the | b h QZK)*1|52>. An effort should be made to obtain this quan-
ew fermis. (Of course, after the laser beams pass oveqthe tity to an accuracy better than those of the models presented

andg, deceleration occurs, and the tube/string wins. here, especially in light of the difference between the essen-
What could be a signal of this second possibility? Largetja| singularities of models B and C. And, it might be noted,

energy deposition in a small spatial region, perhaps leadinghere are other ways of approaching the constructidr{ &f]

to a pair of hadronic jets, built around the outgoimgndq for this two-laser situation, such as the “infrared” approxi-

lines, and arranged so as to maintain an overall color-singlahation appearing in Chapters 12 and 13 of the book in Ref.

property. Other structures are also possible, such agaimel  [3]. Nevertheless, we believe that our results, approximate

q falling back together and annihilating like positronium, butand model dependent as they are, do point the way to a new
with a relatively large energgabsorbed from the intersecting and interesting method of particle production, which should
lasers when the beams pulled theandaapart and con- become available with lasers of just a few more orders of

. . — . . magnitude of intensity8].
verted into potential energy @fq separatiopconverted into 9 ¥8]
a few high-energy gammas, or into a “fireball” of x rays.
Much more theoretical work needs to be done on this ques-
tion; but the qualitative way in which theq pair materialize
should be amenable to experimental determination. J.A. was supported in part by a CNRS/Brown Accord.
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