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Pair production via crossed lasers
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We discuss the intrinsically nonperturbative probabilityP0 for electron-positron production in the overlap
region of a pair of high-intensity lasers, by adapting the Fradkin representation for the logarithm of the fermion
determinant to several models defined as approximations to the exact problem. In each case we find forP0 an
expression resembling Schwinger’s 1951 expression for the vacuum persistence probability of pair production
in an external electric field, proportional to an exponential factor that contains an essential singularity, and
hence does not admit a perturbative expansion about zero coupling. Qualitative estimates of the best of these
models suggest that realistic yields fore1e2 production must await lasers of intensity 1029 W/m2, roughly
seven orders of magnitude more powerful than the highest intensity of currently known lasers. We comment on
the possibility of producing a quark-antiquark pair in this way, and note the possibility of achieving temporary,

but large separations of the producedq-q̄.

DOI: 10.1103/PhysRevD.63.125001 PACS number~s!: 11.15.Tk
a
e

is

o
a-
e

ts
el
at
io
w
,
n

th
k

th
hr
ew
w

th
th
ai

ser

ork
on

e,
the

r-

ld,

y
any
ce

y be
I. INTRODUCTION

There are certain processes in quantum theory that
intrinsically nonperturbative, and we here describe a n
addition to that list. The most relevant example of thatgenre
to our problem is surely Schwinger’s 1951 calculation@1# of
P0, the vacuum persistence probability/vol sec fore1e2 pro-
duction in a constant electric field, given as a sum over d
crete terms~labeled by the integern) proportional to the
factor exp@2npm2/eE#, where e and m are the electron
uchargeu and mass, respectively, andE is the constant electric
field. This probability is clearly nonperturbative because
the essential singularity ine, which assures that no perturb
tive expansion in the coupling constant can ever produc
result other than zero for this quantity.

It is well known @1# that a single laser, however high i
intensity, cannot extract from the vacuum an opposit
charged pair, in contrast with the pairs that can be gener
in a constant electric field of sufficient strength. The situat
changes qualitatively, however, in the overlap region of t
lasers whose beams make a fixed angle to each other
here the conservation of energy and of momentum does
rule out pair production. The relevant question is whether
predicted rates of production are sufficiently large to ma
this process of experimental interest; and to answer
question, we have undertaken a series of calculations of t
models which simplify and qualify the essence of the n
physics considered. At once, we state that in this paper
are interested only in the qualitative orders of magnitude
appear in each model, as a way of understanding whe
current high-intensity lasers are capable of generating p
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and, if not, just how many more orders of magnitude of la
intensity are required.

The present estimates are an outgrowth of previous w
@2# in which new functional representations for the electr
Green’s functionGc@A# and the logarithm of the fermion
determinantL@A# were invented and approximated. Her
however, we take the more direct path of approximating
exact, well known@3# Fradkin representation forL@A#, and
write the vacuum-to-vacuum amplitude in the form

^0uSu0&5e2GT/21 if5eL[Aext] , ~1.1!

whereAext is the vector potential corresponding to the ove
lapping laser beams, andT denotes the elapsed time~assum-
ing the beams were turned on atT50).

It should be noted immediately that Eq.~1.1! as written
omits the radiative corrections of the quantized photon fie
which are exactly incorporated as

^0uSu0&5eD AeL[A1Aext] uA→0 , ~1.2!

where the linkage operator

DA52~ i /2!E ~d/dAm!Dc,mn~d/dAn!,

whereDc,mn is the~bare! photon propagator. The reason wh
such radiative corrections are neglected here is that
charged particle so produced will find itself in the presen
of intense laser beams, and its subsequent motion ma
expected to be essentially classical@4#. This is not true for
the case of QCD, as discussed below.
©2001 The American Physical Society01-1
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Before presenting the models and their estimates, it
be useful to discuss the physics of the process we are
sidering. For a single laser, it is impossible to satis
momentum-energy conservation requirements for lifting
pair out of vacuum fluctuations, because the conserva
laws nkm5pm1pm8 cannot be satisfied; here, the fou
dimensional square of the left-hand side~LHS! is zero, for
arbitrary integern, while that of the RHS is necessarily non
zero for a real electron~p! and positron (p8). For an arrange-
ment of crossed lasers, the equation is changed to
n1k1m1n2k2m5pm1pm8 , and there are now solutions for
variety of integersn1,2. For ease of calculation, we sha
suppose that both lasers are composed of photons of
same.1 eV energy, that the lasers beams are oriented
relative angle of 90 °, with a zero angle between their po
ization vectors, and with an arbitrary phase difference
tween their fields; for purposes of estimation, we assume
lasers to have identical intensities ofF51022 W/m2, to pro-
duce a beam over a small area of length dimensionD
51025 m, and to have a pulsed duration of 102 fsec. These
numbers define our ‘‘ideal’’ high-intensity laser and are us
in obtaining our numerical estimates forG below.

From a Feynman graph point of view, we are asking
the amplitude for a total of at leastn laser photons to be
absorbed coherently, as in Fig. 1, where for leptons produ
at rest in their c.m.,n52mc2/\v5106; this means a facto
of en in the production amplitude, and a factor ofan in the
cross section. What could possibly compensate such a
nuscule factor? The fact that in the overlap volumeD3 of the
crossed lasers there can beN ‘‘available’’ photons, and the
production probability must include a counting factor simi
to N!/n!(N2n)!, the number of ways of selectingn photons
out of N available photons. IfN/n5 f @1, that factor is ap-
proximatively f n; and in this way, as long asf .a21, the
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multiple factors ofan are effectively neutralized. By using
functional representation forL@A#, all such counting factors
are automatically included.

The arrangement of these remarks is as follows. In
next section, we state the basic, functional formulas of
problem, with application to the external fields of cross
lasers, and we define the three models that, in increa
order of complexity, illustrate the physics contained in t
exact problem. In Sec. III, we consider requirements fo
viable experiment; and in Sec. IV the application of su
experiments to QCD is briefly discussed. A short summa
Sec. V, completes the paper.

II. FUNCTIONAL FORMULATION

We begin by recalling@3# the exact Fradkin representatio
for the L@A# of QED:

FIG. 1. A virtuale1e2 pair absorbs photons from the two ove
lapping lasers.
L@A#52
1

2E0

`ds

s

3exp~2 ism2!E d4xE d4p

~2p!4 expF i E
0

s

ds8(
m

d2

dvm
2 ~s8!

G
3expS ip•E

0

s

ds8v~s8! D XexpF2 ieE
0

s

ds8vm~s8!AmS x2E
0

s8
v D G

3trH expFeE
0

s

ds8s•FS x2E
0

s8
v D G J

1

2~e→0!CU
vm→0

~2.1!

or the equivalent form, obtained by the use of the convenient relation

expS i E
0

s

ds8
d2

dv2D expS ip•E
0

s

ds8v~s8! DF~v !U
vm→0

5exp~2 isp2!expS i E
0

s

ds8
d2

dv2DF~v22p!U
vm→0

,

which gives
1-2
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L@A#52
1

2E d4xE d4p

~2p!4E
0

`ds

s
exp@2 is~m21p2!#expS i E

0

s

ds8
d2

dv2D XexpF2 ieE
0

s

ds8@vm~s8!22pm#

3AmS x12s8p2E
0

s8
v D G trH expFeE

0

s

ds8s•FS x12s8p2E
0

s8
v D G J

1

2~e→0!CU
vm→0

. ~2.2!
ti
ra

e
-
f
ic-
er
a

E

o
c

a-

dif-
t, to
g to

e

as
u-
of

tion

ns.
rrec-
m

Here, smn5 1
4 @gm ,gn#, Fmn5]mAn2]nAm , and tr indi-

cates the trace over Dirac indices of the ordered exponen
The entire problem reduces to the estimation of the integ
of Eq. ~2.2! for the case when the external fieldAm(x)
5em

(1) sin(k(1)
•x)1em

(2) sin(k(2)
•x1d), corresponding to the

vector potential of a pair of intersecting laser beams of w
defined frequencies and polarizations.~We are using plane
wave solutions of transverse ‘‘width’’D to represent each o
the laser beams.! As stated in the previous section, and p
tured in Fig. 1, we adopt the simplest theoretical and exp
mental setup, wherein two beams of the same frequency
polarization intersect perpendicularly, so thatê (1)5 ê (2)

5 ê, 05 k̂(1)
• k̂(2)5 ê• k̂(1)5 ê• k̂(2), and Am(x)5em@sind1

1sind2#, with d15k(1)
•x, d25k(2)

•x1d, and em→ ê•e.
For definiteness, we choose the unit vectorê to point in the
!̂ ı ~or x̂) direction, while k̂(1)5 ̂, and k̂(2)5 k̂; hence,d1
→v(y2t) andd2→v(z2t)1d. Until the very last step, we
shall use ‘‘natural units,’’ with\5c51; here,v ande have
units of mass, and the average energy densityU of each laser
is given bye2v2/8p.

There are three operations that must be performed in
~2.2!—the functional linkage operation, and thex and p
integrations—and the complexity of the result can depend
the order in which these operations are arranged. One
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begin by first performing the linkage operation~without ap-
proximation!, which is the natural approach for the calcul
tion of the correspondingGc@A# ~where there is no*dx
average over configuration space!; but it will be somewhat
more advantageous to consider these three operations in
fering sequences. However, it is most useful, and simples
realize at once that the fundamental process we are tryin
describe is such that a large number of~coherent! photons of
energyv!m are to be absorbed by the producede1 ande2

four-momenta p and p8. We therefore expect that th
vacuum persistence probabilityP05exp(2 ReL@A#) can be
well approximated by treating the absorbed photons
‘‘soft’’ compared to the lepton four-momenta; and this nat
rally suggests a simplifying, no-recoil approximation,
which several are available@5#.

For our problem, perhaps the simplest such approxima
is obtained by dropping the remainingv dependence inside
the argument of theAm andFmn of Eq. ~2.2!, for the function
of this dependence is to produce corrections to thep,p8 fer-
mion four-momenta as they absorb the soft laser photo
Hence, based on the reasonable expectation that soft co
tions to harde1,e2 momenta are irrelevant, we here perfor
the first simplification of the exact Eq.~2.2!, replacing the
latter by
of each

, the
.
very

ed
ssential
L@A#⇒2
1

2E0

`ds

s
exp~2 ism2!E d4xE d4p

~2p!4exp~2 isp2!expS i E
0

s

ds8
d2

dv2D
3H expS 2 ieE

0

s

ds8@vm~s8!22pm#Am~x12s8p! D trS expFeE
0

s

ds8s•F~x12s8p!G D
1

2~e→0!J U
vm→0

.

~2.3!

In the Schwinger model, the only function of the ordered exponential is to provide a contribution to the normalization
of the sequence of essential singularities that compriseP0; those singularities arise from the functional operation upon theAm
dependence, followed by an appropriate*d4p. In the present problem, complicated by the necessity of spatial averaging
essential singularity will also arise from the correspondingAm factor, with thes•F term contributing to the normalization
Since we are interested only in the order of magnitude ofG, generated by the essential singularity, and since we have e
confidence that a complete calculation that includes thes•F term will provide a positiveG ~that is, a negative ReL@A#), we
shall simply drop thes•F ordered exponential, replacing its trace by14. In principle, the entire analysis can be organiz
without this approximation; but this adds nothing but complication to the extraction of the order of magnitude of the e
singularity. Thus, we further simplify the expression forL@A#,
1-3
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L@A#⇒22E
0

`ds

s
exp~2 ism2!E d4xE d4p

~2p!4exp~2 isp2!expS i E
0

s

ds8
d2

dv2D
3H expS 2 ieE

0

s

ds8@vm~s8!22pm#Am~x12s8p! D 21J U
vm→0

, ~2.4!

and we now consider, in sequence, three models for its estimation, in order of increasing complexity.
These models are, in essence, approximations to a full, cluster decomposition/cumulant summation of the integ

functional operation stated in Eq.~2.4!. Model A is defined by first performing the elementary functional operation, inser
a useful representation of the momentum-space integrals, and subsequently approximating the configuration-space i
the simplest possible way. In model B, the spatial averaging and the functional operation are performed exactly, w
results of the exact momentum-space integrals are approximated in an analogous, first-cumulant way. The essential
ties that result in models A and B are the same. Model C attempts to include the most relevant contributions of all term
representation appearing in the analysis of model B, in contrast to the latter’s retention of only its first, nonzero,
coefficient. Most interestingly, the essential singularity of model C is weaker than that of models A and B.

A. First-cumulant approximation

The linkage operation of Eq.~2.4! can be carried through immediately, yielding

expS i E
0

s

ds8
d2

dv2D expS 2 ieE
0

s

ds8vm~s8!Am~x12s8p! DU
vm→0

5expS 2 ie2E
0

s

ds8A2~x12s8p! D ,

and one is then left with

E d4p expS 2 isp212ieE
0

s

ds8p•A~x12s8p!2 ie2E
0

s

ds8A2~x12s8p! D
which has the form

E d4pe2 isp2F~p•e (1),p•e (2),p•k(1),p•k(2)! ~2.5!

where we~temporarily, and for maximum generality! reinstateem
(1) and em

(2) as independent and distinct polarizations. T
integral of Eq~2.5! can be rewritten in the form

~2p!24E duaE dubE ducE dudF~ua ,ub ,uc ,ud!E dvaE dvbE dvcE dvd exp@ i ~uava1ubvb1ucvc1udvd!#

3E d4pexp~2 isp2!exp~2 ip•@vae (1)1vbe (2)1vck
(1)1vdk(2)# !, ~2.6!

where the range of eachua , . . . ,vd integration is from2` to 1`.
All the integrals of Eq.~2.6!, except*duc*dud , can be performed immediately, leaving

E d4pe2 isp2F→2
ip2

s2 S 2s

v2D 1

2pE ducE dude2isucud /v2
eS(xuuc ,ud), ~2.7!
tic

th

-
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s to

ion
where S52 ie2e2s*0
1dl@S22^S&2# and S5sin(d112lsuc)

1sin(d212lsud). Here, the variable changes85ls has been
made, we have returned to the simplest case of iden
polarization vectors, and the notation^S&5*0

1dlS has been
used.

The configuration-space dependence of Eq.~2.7! must
now be integrated, or averaged over the overlap region of
two laser beams. We assume that the linear dimensionD of
this volumeD3 is significantly larger~at least by a factor of
12500
al

e

10! than the laser wavelengthlg , so that the averaging pro
cedure adopted here and in the two subsequent mode
sensible. The simplest sort of averaging replaces the sp
average of the exponential (1/D3)*d3xeS(x) by the exponen-
tial of the average: exp@(1/D3)*d3xS(x)#, and is perhaps the
simplest of the approximations used in statistical problem
estimate a full, cluster expansion.

It is straightforward to see that the present approximat
generates
1-4
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1

D3E d3xS~x!

52 ie2e2sH 12
1

2E E
0

1

dldl8$

3cos@2~l2l8!L#1cos@2~l2l8!L̄#%J
whereL5suc andL̄5sud . The integrals overl andl8 can
be done exactly, and yield

1

D3E d3xS~x!52 i
e2e2s

2
@F~L!1F~L̄!#

with F(L)[12(sinL/L)2, so that, with*d4x written as
D3cT,

L@A#⇒ i
m4~D3cT!

~2p!3 S m2

v2D E
0

`dt

t4 e2 i t

3E E
2`

1`

dLdL̄e2iLL̄m2/v2t

3H expS 2 i t
e2e2

2m2 @F~L!1F~L̄!# D21J , ~2.8!

where we have introduced the dimensionless variablt
5m2s.

FIG. 2. Full line: Pictorial representation of the exactF(L).
Dashed line: The approximation used in the text.
12500
Figure 2 displays a graph ofF(L), ~full line! and a graph
of the approximation we will use to simplify theL,L̄ inte-
grals of Eq.~2.8! ~dashed line!; this approximation corre-
sponds to the replacement ofF(L) by u(p2uLu)L2/p2

1u(uLu2p). One could use a more detailed approximati
for F(L), and one could take into account the fact th
F(L)[” 1 for uLu.p; but our approximation should give th
essence of the behavior of these integrals. A similar appr
mation will be employed for the more complex, and realist
models B and C.

By breaking up theL,L̄ integrations into the regions
(*2`

2p1*1p
1`) and (*2p

1p), and adding~to *2`
2p1*1p

1`) and
substracting~from *2p

1p) a contribution withF51 in the
region (*2p

1p), with lmax5(A2p/At)(m/v), one obtains

LA⇒ i
~D3cT!

2~2p!2 m4E
0

`dt

t3 e2 i t H 2X12expF2 i
t

2 S ee

m D 2GC2

1
1

2pE E
2lmax

1lmax
dl1dl2eil1l2XexpF2 i

t2l1
2

12 S eev

m2 D 2G
2expF2 i

t

2 S ee

m D 2GCXexpF2 i
t2l2

2

12 S eev

m2 D 2G
2expF2 i

t

2 S ee

m D 2GCJ . ~2.9!

Consider now the first term in the curly bracket of Eq.~2.9!,
independent oflmax. This integrand is analytic int in the
lower half t plane, vanishing there as Imt→2`, and as
such may be rotated to a contour that runs down the im
nary t axis, from 0 to2 i`. Then, simple inspection show
that its contribution is purely imaginary, and hence it cann
contribute to ReL@A#; and we discard it. The remainin
lmax-dependent terms of Eq.~2.9! define a function of two
variables,FA(ee/m,v/m), variables that arrange themselv
in three ways: asm/v in lmax, as (eev/m2)2 in one set of
exponential factors, and as (ee/m)2 in another. As they
stand, thel1,2 integrals generate the so-called error functi
F(x) combined with the Si(x) function, and it is tedious to
write them down in detail. But it is surely not necessa
because—by inspection—the order of magnitude of tht
variable can never be much larger than unity, while (m/v)
.106, so thatlmax@ 1. In other words, the physics shou
not be drastically changed if the limitlmax→` is taken, in
which case the integrals are trivial—the exp@2it(ee/m)2/2#
terms now cancel against the discarded terms in the c
bracket of Eq.~2.9!—and yield

LA⇒ i
~D3cT!

2~2p!2 m4E
0

`dt

t3 e2 i tF 1

A12~gt !4
21G ~2.10!

whereg5eev/m2A6. Thus, in this limit of arbitrarily large
m/v, but fixed eev/m2, LA→FA(g). The same behavio
1-5
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will be seen in all three models, and its relation to t
Schwinger constant-field result will be discussed in the Su
mary.

One now sees that an~improper! perturbative expansion
of the square root of Eq.~2.10! in powers ofg will generate
a sequence of imaginary contributions toLA , for the integral
*0

`dtt114neit is real for every integern. Hence, ReLA does
not have an expansion in powers of the coupling; it is intr
sically nonperturbative. Its value can be most easily obtai
by remembering that the path of thet integration of the origi-
nal Schwinger/Fradkin representation is to run« below the
positive t axis ~because m→m2 i«). Because @1
2(t/t0)4#21/2, with t051/g, has a cut structure that may b
expressed as in Fig. 3, a rotation of the integration contou
run ast→«2 i t, 0<t<`, is permissible, so that

LA⇒2 i
~D3cT!

2~2p!2 m4E
0

`dt

t3 e2tF 1

A12~t/t0!4
21G

and

ReLA⇒2
~D3cT!

2~2p!2 m4E
t0

`dt

t3

e2t

A~t/t0!421
, ~2.11!

where the branch of the square root has been chosen to
a negative value for ReL@A#. Under the variable changey
5t/t021, the integral of Eq.~2.11! becomes

t0
22e2t0E

0

` dy

~11y!3

e2yt0

A~11y!421

.t0
22 e2t0

2 E
0

t0
21dy

Ay
5t0

23e2t0

FIG. 3. Cuts of the function@12(gt)4#21/2 in the t plane,
beginning att561/g, 6 i /g. The solid line represents the origina
direction of t integration; the dashed line, the rotated-contour
rection.
12500
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since they integrand effectively cuts off aty;1/t0!1.
Hence

ReLA.2
~D3cT!

2~2p!2 m4g3e21/g, ~2.12!

which clearly displays the essential singularity ing.

B. A modified cumulant model

We now return to Eq.~2.4!, denote the combination
vm(s8)22pm by Vm(s8), and observe that if the spatial*d3x
is attempted before the linkage operation of the Fradkin r
resentation, then the spatial averages over*dy and*dz, for
the individual laser beams, can be performed independe
We adopt the notation

E d3x→D3S 1

D3E dxE dyE dzD→D3^•••&u,ū

where the symbol̂ •••&u,ū signifies independent average
over the factors sin(k(1)

•x12s8k(1)
•p)5sin@u1u(s8)#, and over

the factors sin(k(2)
•x1d12s8k(2)

•p)5sin@ū1ū(s8)#, where u

5k(1)
•x→v(y2t), ū5k(2)

•x1d→v(z2t)1d, u(s8)
52s8k(1)

•p, ū(s8)52s8k(2)
•p.

We therefore consider̂•••&u,ū as given by

1

~2p!2E
0

2p

duE
0

2p

dū expH 2 ieE
0

s

ds8Vm~s8!

3$em
(1) sin@u1u~s8!#1em

(2) sin@ ū1ū~s8!#%J
or

(
n50

`
~2 ie!n

n! E
0

s

ds1„V~s1!e (1)
…•••E

0

s

dsn„V~sn!•e (1)
…

3^sin@u1u~s1!#•••sin@u1u~sn!#&u

3 (
m50

`
~2 ie!m

m! E
0

s

ds̄1„V~ s̄1!•e (2)
…•••E

0

s

ds̄m

3„V~ s̄m!•e (2)
…

3^sin@ ū1ū~ s̄1!#•••sin@ ū1ū~ s̄m!#&ū .

Consider the first average; it can be rewritten as

S 1

2i D
n

^@ei [u1u(s1)]2e2 i [u1u(s1)] #•••@ei [u1u(sn)]

2e2 i [u1u(sn)] #&u

and the only nonzero contributions to^•••&u come from the
(2l )!/( l !) 2 terms independent ofu; here,n52l . By symme-
try, these terms can be rearranged into a ‘‘standard’’ form

-

1-6
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~2 ! l

22l

~2l !!

~ l ! !2 ~22! l cos@u~s1!2u~s2!#

3cos@u~s3!2u~s4!#•••cos@u~s2l 21!2u~s2l !#

to which one must append the*0
sds8@V(s8)e (1)# factors. The

same analysis holds for thê•••&ū , with the result that the
exact spatial averages can be written as

(
l 50

`

~2 ! l
~e2A1 /2! l

~ l ! !2
•(

l̄ 50

`

~2 ! l̄
~e2A2/2! l̄

~ l̄ ! !2

[J0S eAA1

2 D J0S eAA2

2 D , ~2.13!

where

A15E
0

s

dsaE
0

s

dsb@V~sa!e (1)#cos@u~sa!2u~sb!#@V~sb!e (1)#

and

A25E
0

s

dsaE
0

s

dsb@V~sa!e (2)#cos@u~sa!2u~sb!#

3@V~sb!e (2)#.

To perform the linkage operation, it is most convenient
introduce the representation@6#

J0~z!5
1

2p i E2`

01dt

t
et2z2/4t

where the contour is specified as approaching the origin f
2` underneath the negativet axis, swinging in a half circle
around the origin, and moving out to2` above the negative
t axis. In this way,

K expH 2 ieE
0

s

ds8Vm~s8!$em
(1) sin@u1u~s8!#

1em
(2) sin@ ū1ū~s8!#%J L

u,ū

5S 1

2p i D
2E

2`

01dt1
t1

et1E
2`

01dt2
t2

et2

3expS i

2E0

s

ds1E
0

s

ds2Vm~s1!Kmn~s1 ,s2!Vm~s2! D
with

Kmn~s1 ,s2!5
ie2

4 Fem
(1)en

(1)

t1
cos@2p•k(1)~s12s2!#

1
em

(2)en
(2)

t2
cos@2p•k(2)~s12s2!#G .
12500
m

For simplicity, we now return to the case of identic
polarizations and frequencies, and perform the Fradkin li
ages to obtain

LB⇒22
~D3cT!

~2p!4 S 1

2p i D
2E

2`

01dt1
t1

et1

3E
2`

01dt2
t2

et2E
0

`ds

s
e2 ism2E d4pe2 isp2

3H expS 2
1

2
Tr ln~112K ! Dexp~ ip•Q•p!21J

~2.14!

where

Qmn~s!5E
0

s

ds1E
0

s

ds2K s1US 2K
1

112K D
mn
Us2L

and

^s1uKmnus2&5 i
e2

4
emenFcos@2p•k(1)~s12s2!#

t1

1
cos@2p•k(2)~s12s2!#

t2
G .

Here, bothKmn and Qmn depend onp; and so we intro-
duce

F~2p•k(1),2p•k(2)!

5E E
2`

1`

du1du2F~u1 ,u2!3
1

~2p!2

3E E
2`

1`

dV1dV2ei (u1V11u2V2)

3e22ip•k(1)V122ip•k(2)V2,

whereF(u1 ,u2) represents all the 2p•k(1,2) dependence in
the curly bracket of Eq.~2.14!.

Then we need

E d4pe2 isp•(12Q/s)•pe22ip•(V1k(1)1V2k(2))

52 i
p2

s2 e2(1/2)tr ln(12Q/s)e22iv2V1V2 /s,

with k(1)
•k(2)52v2. The integrals overV1,2 are immediate,

and yield

~2p!S s

2v2Deiu1u2s/2v2

so that
1-7



-
rm

e

s

or

e

-

FRIED, GABELLINI, McKELLAR, AND AVAN PHYSICAL REVIEW D 63 125001
LB5 i
~D3cT!

16p3 S 1

2p i D
2E

2`

01dt1
t1

et1

3E
2`

01dt1
t2

et2E
0

`ds

s3 e2 ism2S s

2v2D
3E E

2`

1`

du1du2eiu1u2s/2v2

3H expS 2
1

2
Tr ln~112K !e2 ~1/2!tr ln(12Q/s)D21J

~2.15!

where

^s1u2Kmn~u1 ,u2!us2&

5 i
e2e2

2 S emen

e2 D Fcos@u1~s12s2!#

t1

1
cos@u2~s12s2!#

t2
G

[S emen

e2 D ^s1u2K~u1 ,u2!us2&.

Qmn /s may be written asq(s)(emen /e2), and we henceforth
suppress the factors (emen /e2).

We now estimate

Tr ln~112K !5E
0

s

ds1F2K~s1 ,s1!

2
1

2E0

s

ds22K~s1 ,s2!2K~s2 ,s1!1 •••G
and adopt the notation 2K(s1 ,s2)[j(s12s2). Note that
2K(s1 ,s1)[j(0), which quantity would be the only one ap
pearing werev set equal to zero. Replacing each cosine te
of Eq. ~2.15! by 1 corresponds to the limitv→0. But, physi-
cally, for v→0 at fixede, L must vanish; and therefore w
must find that the curly bracket of Eq.~2.15! will vanish
when eachj(s12s2) factor is replaced byj(0). This sug-
gests expanding Tr ln(112K) and tr@12q(s)# in terms of the
relevant quantitydj(s12s2)5j(0)2j(s12s2). To first or-
der in dj, one obtains

Tr ln~112K !→sj~0!2
1

2
@sj~0!#21

1

3
@sj~0!#31•••

1F S 1

2
2D @sj~0!#2S 1

3
3D

3@sj~0!#21•••GJ (1)~s!

or
12500
Tr ln~112K !→ ln@11sj~0!#1
sj~0!

11sj~0!
J (1)~s!,

~2.16!

whereJ (1)(s)5(1/s)**0
sds1ds2dj(s12s2).

In a similar spirit,

Qmn

s
→S emen

e2 D „sj~0!2@sj~0!#21•••2$122sj~0!

13@sj~0!#21•••%J (1)~s!…

or

Q

s
→H sj~0!

11sj~0!
2

1

@11sj~0!#2 J (1)~s!J ,

so that

tr ln~12Q/s!→2 ln@11sj~0!#1
1

11sj~0!
J (1)~s!.

~2.17!

Adding Eqs.~2.16! and ~2.17!, we see that that the term
independent ofv do indeed cancel, leaving

expS 2
1

2
Tr ln~112K !2

1

2
tr ln~12Q/s!

⇒expS 2
1

2
J (1)~s! D D

5expH 2 i
e2e2

4

1

sE E
0

s

ds1ds2

3F 1

t1
„12cos@u1~s12s2!#…

1
1

t2
„12cos@u2~s12s2!#…G J .

The integrals overs1,2 can be done exactly, and generate f
this factor

expH 2 i
e2e2s

4 F 1

t1
FS vL1As

A2
D 1

1

t2
FS vL2As

A2
D G J ,

~2.18!

whereF(L) is the same function found in model A, and th
u1,2 have been rescaled according tou1,25(A2v/As)L1,2.
This ‘‘modified first-cumulant approximation’’ thus pro
duces
1-8
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LB→ i
~D3cT!

16p3 S 1

2p i D
2E

2`

01dt1
t1

et1E
2`

01dt1
t2

et2E
0

`ds

s3

3e2 ism2E E
2`

1`

dl1dl2eil1l2

3H expS 2 i
e2e2

4 F 1

t1
FS vL1As

A2
D

1
1

t2
FS vL2As

A2
D G D 21J . ~2.19!

This is a ‘‘modified first cumulant’’ in the sense that th
spatial averages are done exactly, and the ‘‘first cumula
adjective refers to the simplest approximation~first order in
dj) of the determinental factors’ cluster expansion, invo
ing the s1,2 proper-time dependence. In contrast, mode
will be defined by extracting and summing a portion of eve
cluster coefficient representing these factors.

Equation~2.19! can be put into a simpler form by aga
using the representation forJ0 introduced following Eq.
~2.13!, so that, withm2s5t,

LB→ im4

8p2 ~D3cT!E
0

`dt

t3 e2 i t
1

2pE E
2`

1`

dl1dl2eil1l2

3H J0Fee

m
Ai tFS vl1

A2m
At D G

3J0Fee

m
Ai tFS vl2

A2m
At D G21J . ~2.20!

It immediately follows from Eq.~2.20! that an expansion in
powers of (ee/m) will generate a sequence of terms, ea
proportional to e4, each of whose coefficients is pure
imaginary. This is true becauseF(x) can be expressed as a
infinite sequence of powers ofx2, while thel1,2 integrations
require that the powerl 1 of l1

2l 1 must be the same as thel 2

power of l2
2l 2; and becausel 1 must equall 2 for a nonzero

result, the overall power oft in the resulting expansion i
even: t2N12, N>1, generating the imaginary coefficient o
e4.

To determine the nonperturbative form ofLB , we can
proceed as forLA , following Eq.~2.18!, by rescaling thel1,2

variables intoL andL̄, and breaking up theL, L̄ range of
integration into the regions (*2`

2p1*1p
1`) and (*2p

1p), as one
introduces the simplified F(x)5u(p2uxu)x2/p2

1u(uxu2p). After changing back to thel1,2 variables, the
result takes on a form analogous to that of Eq.~2.9!:
12500
’’

-

LB→ im4

8p2 ~D3cT!E
0

`dt

t3 H 2F12J0S ee

m
Ai t D G2

1
1

2pE E
2lmax

1lmax
dl1dl2eil1l2FJ0S eev

m2 Ai
tl1

A6
D

2J0S ee

m
Ai t D GFJ0S eev

m2 Ai
tl2

A6
D 2J0S ee

m
Ai t D G J .

~2.21!

We again make the same heuristic argument as that foll
ing Eq. ~2.9!, in which the limitlmax→` was taken, so tha

LB→ im4

8p2 ~D3cT!E
0

`dt

t3 e2 i t
1

2p

3E E
2`

1`

!dl1dl2eil1l2

3$J0~gAi tl1!J0~gAi tl2!21%, ~2.22!

where, again,g5(eev/m2A6), and LB→LB(g). Because
the J0 are even functions ofl1,2, the replacement
(1/2p)**2`

1`dl1dl2→(2/p)**0
`dl1dl2 can be made; and

then a change of contour of thet integration is allowed,
wheret is to run from the origin along a straight line at a
angle ofp/4 below the positive realt axis; this corresponds
to the replacementt→(2 i )1/2t, with t running from 0 to
1`. In this way, Eq.~2.22! can be rewritten as

LB→2
m4

8p2 ~D3cT!E
0

`dt

t3 e2t/A22 i t/A2

3H 2

pE E
0

1`

dl1dl2 cos~l1l2!

3J0~gtl1!J0~gtl2!21J . ~2.23!

We next use the integrals@7#

E
0

1`

dl2 cos~l1l2!J0~gtl2!5
u~gt2l1!

A~gt!22l1
2

and

E
0

gt

dl1

J0~gtl1!

A~gt!22l1
2

5
p

2
J0

2S ~gt!2

2 D
and the convenient rescalingt→A2t to obtain
1-9
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ReLB→ m4

~4p!2 ~D3cT!E
0

`dt

t3 e2t cost@12J0
2
„~gt!2

…#.

~2.24!

One can see directly from the perturbative expansion of
~2.24! that the coefficient of every term~proportional toe4n)
is identically zero

E
0

`dt

t3 t4ne2t cost[0, n51,2, . . . ,

so that the nonperturbative aspect of ReLB has been main-
tained.

We are able to evaluate Eq.~2.24! only in an approximate
way. The method we use takes advantage of the dissimila
of scales inherent in anyf (t) andg(gt), wheng!1, as is
the case here. The functiong(x)512J0(x2) resembles
F(x), Fig. 3, and our simple approximation will be simila
for t,1/g, g(gt); 1

2 (gt)4. We then separate the integr
of Eq. ~2.24! into two parts, that contribution obtained b
integratingt over the region from 0 tot051/g,

ReLB
(1)→ m4

~4p!2 ~D3cT!
g4

2 E
0

t0
dtte2t cost, ~2.25!

and that part obtained by integratingt from t0 to `, where
we employ the asymptotic form ofJ0

2,1 to write

ReLB
(2)→ m4

~4p!2 ~D3cT!E
t0

`dt

t3 e2t cost. ~2.26!

Equation ~2.26! can certainly be improved upon, e.g., b
making a Gaussian approximation tog(x) so that the latter
equals unity only at every~cusp! value ofxn , the square root
of one of the zeros of this Bessel function.@This resembles
the original Schwinger model, where there is a sequenc
such essential singularities labeled by an integern; here,
(xn)1/2 replaces thatn.# In effect, we are using only the firs
zero, the simplest approximation to that sequence, of fo
exp@2(x1)

1/2/g#, wherex1
2 is the first zero ofJ0(x2); and our

approximation will be sufficiently crude so that our res
will replacex1 by unity. We are, however, only interested
the order of magnitude of the largest possible contribut
corresponding to the first essential singularity; this is c
tained in Eq.~2.25!—which can be evaluated exactly—an
in Eq. ~2.26!, which can be exhibited in terms of a
asymptotic expansion of the Ei(2x) function. To leading
order ~that is, proportional tog3, with higher-orderg4 cor-
rections!, the sum of Eqs.~2.25! and ~2.26! generates

ReLB.
m4

~4p!2 ~D3cT!
g3

2
e2t0@cost02sint0#, t05g21.

~2.27!

The sign of Eq.~2.27! is apparently related to its oscilla
tory dependence, but this connection can be misleading.
sically, the sign of Eq.~2.27! must be determined in conjunc
12500
q.

ity

of

m

n
-

a-

tion with the omitteds•F dependence, as in Schwinger
model; and the overall sign must be negative. The app
ance of the oscillatory factors of Eq.~2.27! is also a function
of the crudeness of the approximation procedures use
evaluate Eq.~2.24!, and such factors may or may not arise
a better evaluation. We now argue that an alternative esti
tion of Eq. ~2.24! can indeed yield a result of correct sig
and no oscillatory dependence ont0, by noting that the value
of t at which the integrand of Eq.~2.24! is replaced—
discontinuously—by the sum of those of Eqs.~2.25! and
~2.26! is really not well defined. We haveg21.@1, but
instead of simply choosingt05g21 let us set the upper limit
of Eq. ~2.25! and the lower limit of Eq.~2.26! equal to 2pN,
whereN is that ~very large! integer closest to (2pg)21. @In
other words, the limits of these integrals need not be~arbi-
trarily! set equal tog21 but can be very close to that value#
The result will be that the square bracket of Eq.~2.27! is
replaced by11. But if we uset052p(N11/2) the bracket
of Eq. ~2.27! becomes21. Which form should be used? I
we writet052pN1x, what should be the value assigned
x? One does not know; and therefore one might be temp
to average over all values ofx between 0 andp, thereby
replacing@cosx2sinx# by 22/p, a result that has no oscil
lation and the correct sign. But the deeper answer to th
questions is simply that if one has any choice~for an exact
evaluation of these integrals, supposing that such were
sible!, that choice~as in model A, where there are two po
sible branches of a square root! must be taken so that ReLB
is negative. Further, because we have neglected thes•F
contributions, we cannot know whether or not a real cho
is possible. What we must accept, in this approximate ca
lation which is concerned only with the order of magnitu
of G, is that there is, according to our approximations,
inability to derive the correct sign—although there is alwa
at least one path to the correct sign—but that the final sign
ReL must be negative. We therefore write

GB.
m4~D3c!

~4p!2 g3e21/g ~2.28!

and, again, we emphasize that it is only the order of mag
tude of this result which we believe to be a correct predict
of model B. Comparison with Eq.~2.12! shows that this is
essentially the same result as obtained for model A.

C. An approximate nonperturbative cluster sum

We now return to Eq.~2.15! and ask if a better approxi
mation can be found for

Tr ln ~112K !1tr ln ~12Q/s!,

an approximation that contains all the powers of the c
pling, rather than just its quadratic dependence, as in
equation following Eq.~2.17!. Further, any such approxima
tion must be simple enough to permit its evaluation.

We begin by calculatinĝs1u(2K)2us2&, a straightforward
computation; withx5 ie2e2/2 ands125s12s2, one finds
1-10
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^s1u~2K !2us2&5x2H s

t1
2 Fcos~u1s12!1

sin~u1s!

~u1s! G1
s

t2
2 Fcos~u2s12!1

sin~u2s!

~u2s! G

1
s

t1t2F cosS Fu11u2

2 Gs12D sinS Fu12u2

2 GsD
Fu12u2

2 Gs 1cosS Fu12u2

2 Gs12D sinS Fu11u2

2 GsD
Fu11u2

2 Gs G J . ~2.29!
al

at
-
-
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e
v

s

In comparison,

^s1u2Kus2&5xFcos~u1s12!

t1
1

cos~u2s12!

t2
G

where, as in Eq.~2.29!, we have suppressed the trivi
(emen /e2) factors. Upon subsequentu1,2 integrations, the
terms sin$@(u16u2)/2#s%/@(u16u2)/2#s will take appreciable
values only foru16u2.0, where they become unity, so th
the cos$@(u16u2)/2#s%/2 factors multiplying them can be re
placed by cos(u1s) or cos(u2s), precisely the terms that ap
pear in^s1u2Kus2&. This suggests that we define a model
the statement

^s1u~2K !2us2&5F^s1u2Kus2& ~2.30!

with F5xs@1/t111/t2# @which quantity was calledsj(0) in
Eq. ~2.16!#. This model neglects the sin(u1,2s)/(u1,2s) parts
of ^s1u(2K)2us2& above; but it does correspond to an ord
by-order extraction of what are probably the most signific
pieces of every perturbative term. Note that our neglec
such oscillatory behavior is not associated with the expe
tion that theu1,2s;O(vAt/m) are small, for anyv/m→0
limit here will bring about the cancellations described
model A; rather, we here keep only the terms that are
pected to be significant upon subsequent integration o
fluctuatingu1,2 dependence.

With Eq. ~2.30!, and the arbitrary number of iteration
that can be formed from it,
12500
-
t
f

a-

x-
er

^s1u~2K !nus2&5F n21^s1u2Kus2&,

one easily calculates

Tr ln~112K !5 ln~11F!

and

tr ln~12Q/s!52 ln~11F!

1 lnF11xsS f~u1s/2!

t1
1

f~u2s/2!

t2
D G ,

so that the combination exp@21
2 Tr ln(112K)21

2 tr ln(1
2Q/s)# becomes

F11xsS f~u1s/2!

t1
1

f~u2s/2!

t2
D G21/2

21,

which can be rewritten as

2

Ap
E

0

`

due2u2H expS 2xsu2Ff~u1s/2!

t1
1

f~u2s/2!

t2
G D21J .

Upon again using theJ0 representation following Eq.~2.13!,
we obtain
LC→ im4

8p2 ~D3cT!E
0

`dt

t3 e2 i t
A2

Ap
E

0

`

due2u2/2
1

2pE E
2`

1`

dl1dl2eil1l2

3H J0Feeu

m
Ai tFS vl1

A2m
At D GJ0Feeu

m
Ai tFS vl2

A2m
At D G21J ~2.31!
1-11
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and comparison with Eq.~2.20! shows that the only differ-
ence betweenLB and LC is the latter’sA2/p*0

`du e2u2/2

together with theu dependence inside eachJ0. Reserving the
u integration for the very last step, one can therefore wri

GC~g!→A2

pE0

`

du e2u2/2GB~ug!

→ m4~D3c!

~4p!2 g3A2

pE0

`

due2u2/2u3e21/ug.

~2.32!

We now approximately evaluate this last integral by writi
it as

E
0

`

du exp@ f ~u!#, f ~u!52
u2

2
2

1

gu
13 lnu,

searching for the maximum off (u) at that u0 defined by
f 8(u0)50, and then calculate in the standard Gaussian m
ner, with f (u); f (u0)1 1

2(u2u0)2f 9(u0), and the u2u0
5u8 integration running from2` to 1`. The equation
defined byf 8(u0)50 is cubic; and becauseg!1 its solution
is to leading order~in g) equivalent to that which would be
obtained by considering

E
0

`

duu3 ef (u), f ~u!52
u2

2
2

1

gu

and replacing theu3 factor byu0
3. Either procedure leads t

u0;g21/3 and

A2

pE0

`

duu3 e2u2/221/ug.
2

gA3
e23/(2g2/3),

so that

GC.
2

A3

m4~D3c!

~4p!2 g2e23/(2g2/3), ~2.33!

which represents a significant increase in magnitude over
result for GB , because there is one less factor ofg in the
numerator, but more importantly because the form of
essential singularity has been changed to exp@23/(2g2/3)#,
compared to the exp@21/g# of GB .

This change of form, and magnitude, of the essential
gularity has a physical interpretation that may be of intere
Elementary QED processes, such ase1e2 pair creation, are
usually thought of as taking place over distances on the o
of lc , the electron’s Compton wavelength. Here, howev
we expect coherent absorption of the laser photons by
incipient, still virtual pair, over distances larger thanlc ,
perhaps as large as some fraction of the laser photons’ w
lengthlg , because there are so many photons that mus
absorbed. This coherence is made explicit by theu integra-
tion, as the parameteru varies over distances centered abo
u0;g21/3, which is considerably larger than 1. In physic
12500
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terms, the exp@21/g#5exp@2A6(m/ee)(lg /lc)# of GB is
here replaced by exp@2A6(m/ee)(lg /u0lc)#, whereu0lc
is perhaps 102–103 times larger thanlc , and which can be
interpreted as the qualitative distance over which cohe
laser photon absorption takes place.

III. MAGNITUDES

Predictions of the half-lives of the three models found
Sec. II tend to be quite small, due mainly to their essen
singularities, and we here consider these quantities in
merical detail.

We begin by calculating the size of the dimensionle
parameteree/m:

S ee

m D 2

5S eev

m D 2 1

v2 → ~4pa!~4pU !

mc2 lclg
2 ,

whereU represents the laser energy density (1/4p)e2v2, and
we have reinserted all relevant dimensional constants. S
we are interested only in orders of magnitude, we repl
(4p)2a5158/137 by unity. The average laser fluxF5cU
then provides

S ee

m D 2

;
lclg

2

c~mc2!
F

and sinceF is conventionally quoted in MKS units as W/m2

we adopt those units, so that, for our ‘‘ideal’’ laser ofF0
51022 W/m2, (ee/m)2;5F0310221550, or (ee/m);7.
With (v/m)51026, g5(eev/m2)(1/A6);1026. There-
fore, for a laser of flux intensityF, g.1026(F/F0)1/2.

The multiplicative factorsm4D3c may be represented a
D3c/lc

4 , a relatively large number with the dimensions
inverse seconds, of size (1025)3(33108)/(10212)4

5331041. We arbitrarily decrease this number by two o
ders of magnitude, to take into account the 2p factors of
each G, as well as possible weightings of the neglect
s•F terms, so that

GA,B;1039g3e2106(F0 /F)1/2
.1021~F/F0!3/2e2106(F0 /F)1/2

.
~3.1!

Further, if these lasers are pulsed, with a durationt, then the
vacuum persistence probability at the end of each laser b
is P05exp@2tGA,B#, and the probabilityP1 of producing one
or more pairs during each pulse is given byP1512P0
.tGA,B , if tGA,B!1.

Let us arbitrarily chooseP1;0.1 as a minimum realiza
tion of this process—roughly one pair produced for every
pulses—for a typical t;10213 sec. This means 1021

;102131021(F/F0)3/2e2106(F0 /F)1/2
, or 1029x3/25e2(106Ax),

wherex5(F0 /F). Settingx5102p, it is not difficult to see
that p.8.6 and

F/F05108.6;43108 ~3.2!

so that for pair production at the rate of one pair per
pulses, as given by models A and B, the available laser
must be increased by 8 to 9 orders of magnitude.
1-12
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On the other hand, the model C requirement for the sa
rate is significantly less, for the above calculations are
placed by

GC;1039g2e23/2g2/3
~3.3!

and

tGC;0.1;102610212~F/F0!e2(1.53104)(F0 /F)1/3
. ~3.4!

With the same definition ofx andp, one here finds

F/F05107.4;2.53107, ~3.5!

which is at least an order of magnitude improvement o
Eq. ~3.2!.

If further improvements in the model calculations cou
be found, one would expect a further increase in the p
production rate.

IV. APPLICATION TO QCD

If sufficiently high-intensity lasers can be made th
achievee1e2 and evenm1m2 pair production, there is then
no reason why one cannot contemplate laser-induced qu
antiquark production. Here one cannot neglect the QCD
diative corrections, since it is the gluon clouds surroundinq

and q̄ that form a flux tube/string, and produce quark co
finement. But one can idealize what may happen in term
two extreme, and differing, possibilities:~1! q and q̄ appear
with their flux tube/string in place, so that we have produc
in effect, ap0, which the laser fields are incapable of teari
apart; or~2! q and q̄ materialize each surrounded by its vi
tual gluonic structure, which immediately begins to form
self into a tube/string joiningq to q̄. The formation of the
tube/string is surely not an instantaneous effect, but one
can be characterized in terms of a ‘‘string formation velo
ity’’ v f . As a physical process, one expects thatv f cannot be
larger thanc, while it is perfectly possible for theq andq̄ to
be accelerated away from each other by the crossed lase
that their relative velocity of separationvs could equal or
exceedv f . This suggests that, by this mechanism,q and q̄
might temporarily reach separation distances greater th
few fermis.~Of course, after the laser beams pass over thq

and q̄, deceleration occurs, and the tube/string wins.!
What could be a signal of this second possibility? Lar

energy deposition in a small spatial region, perhaps lead
to a pair of hadronic jets, built around the outgoingq and q̄
lines, and arranged so as to maintain an overall color-sin
property. Other structures are also possible, such as theq and
q̄ falling back together and annihilating like positronium, b
with a relatively large energy~absorbed from the intersectin
lasers when the beams pulled theq and q̄ apart, and con-
verted into potential energy ofqq̄ separation! converted into
a few high-energy gammas, or into a ‘‘fireball’’ of x ray
Much more theoretical work needs to be done on this qu
tion; but the qualitative way in which theqq̄ pair materialize
should be amenable to experimental determination.
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V. SUMMARY

These estimates of pair production, via a calculation
the vacuum persistence probability, are examples of intr
cally nonperturbative quantities in quantum field theory. O
estimates for models A and B show an essential singula
analogous to that of the 1951 Schwinger calculation, wh
the improved model C generates a related, but weaker,
sential singularity.

As noted above, these probabilities are strictly functio
of two dimensionless variables,eev/m2 and v/m; but for
reasons of calculational practicability, we have dropped
dependence on the second variable. In so doing, we h
arrived at forms quite similar to Schwinger’s; and it is wor
mentioning that—once such calculational approximatio
have been performed—there is a strong reason to expe
result similar to Schwinger’s.

Suppose that, instead of intersecting at right angles,
two laser beams overlap in an antiparallel way; that is, th

fire in equal and opposite directions, withk̂152 k̂2. ~Such
geometry would of course increase the yields, assuming
the machinery did not destroy itself.! In this case, it is also
possible to find a nonzero ReL, although the spatial averag
ing over the beams becomes more difficult. However, it
easy to see for model A that if a time average is includ
along with the spatial average the expression for the a
agedLA will be unchanged. This is significant because t
oscillating magnetic fields of overlapping, in-phase las
beams moving in opposite directions, whose electric po
ization vectors are in the same direction, exactly can
leaving only the enhanced electric fields, of magnitude p
portional toE;ve. In the limit of decreasing frequency,v
→0 but e→` such that their product is finite, we are in th
situation of a constant electric field. For such head-on la
beams we would expect that the limit ofv→0 and finite
ve;E should reproduce, at least qualitatively, th
Schwinger result; and it does. Of course, our calculations
approximate, and cannot reproduce the precise forms o
exact result; but the correspondence is physically clear.

Finally, we comment on the shortcomings of this analys
which invents a sequence of models to bypass the diffi
task of solving for the relevant function̂ s1u2K(1
12K)21us2&. An effort should be made to obtain this qua
tity to an accuracy better than those of the models prese
here, especially in light of the difference between the ess
tial singularities of models B and C. And, it might be note
there are other ways of approaching the construction ofL@A#
for this two-laser situation, such as the ‘‘infrared’’ approx
mation appearing in Chapters 12 and 13 of the book in R
@3#. Nevertheless, we believe that our results, approxim
and model dependent as they are, do point the way to a
and interesting method of particle production, which sho
become available with lasers of just a few more orders
magnitude of intensity@8#.
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