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(De)stabilization of an extra dimension due to a Casimir force
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We study the stabilization of one spatial dimensiongr-(1 + 1)-dimensional spacetime in the presence of
p-dimensional bran®), a bulk cosmological constant and the Casimir force generated by a conformally
coupled scalar field. We find general static solutions to the metric which require the fine-tuning of the inter-
brane distance and the bulk cosmological constiatving the two brane tensions as free paramgptoge-
sponding to a vanishing effective cosmological constant and a constant radion field. Taking these solutions as
a background configuration, we perform a dimensional reduction and study the effective theory in the case of
one- and two-brane configurations. We show that the radion field can have a positive mass squared, which
corresponds to a stabilization of the extra dimension, only for a repulsive nature of the Casimir force. This type
of solution requires the presence of a negative tension brane. The solutions with one or two positive tension
branes arising in this theory turn out to have negative radion mass squared, and therefore are not stable.
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. INTRODUCTION =ala on the energy density of matter on the brae6]. In
fact, as it was shown in Ref6], an abnormal behaviat
The past few years witnessed a growing interest among- () may persist in a later epocifithe stability of the extra
particle physicists and cosmologists toward models with exdimension is achieved via a fine-tuned cancellation between
tra space-like dimensions. This interest was initiated bypositive and negative energy densities on the two branes. As
string theorist§1], who exploited a moderately large size of it was first shown in Ref[7], a natural resolution to this
an external 11th dimension in order to reconcile the Planclproblem comes from the stabilization of the extra dimension,
and string/or grand unified theofUT) scales. Taking this which also removes the necessity for an unphysical fine tun-
idea further, it was shown that large extra dimensions allowng between energy densities on different branes. The
for a reduction of the fundamental higher-dimensional gravi-smooth transition to the four-dimensional cosmology and
tational scale down to the TeV scdl®]. An essential ingre- Newtonian 4D interaction requires the presence of a non-
dient of such a scenario is the confinement of the standardanishing(55)-component of the energy-momentum tensor.
model (SM) fields on field theoretic defects, so that only It was subsequently shown in Reff8,9] that the value of 55
gravity can access the large extra dimensions. These modéts automatically adjusted to a value proportional g&"
are argued to make contact with an intricate phenomenology; 3p*) for a generic stabilization mechanism. It was also
with a variety of consequences for collider searches, lowobserved if8] that the stabilization mechanism is crucial for
energy precision measurements, rare decays and astropartigletting a consistent solution to the gauge hierarchy problem
physics and cosmology. However, the mechanisms, respomn the negative tension brane in the set up of R&f.(see
sible for the stabilization of extra dimensions, remain un-also [10]). Subsequently, it was demonstrated that, in the
known. The fact that the size of extra dimensions is large apresence of a stabilization mechanism, the solution to the
compared to the fundamental scale also remains unedierarchy problem in the two positive tension brane models
plained. An alternative solution to the hierarchy problem wass also possiblg11,12. From a particle physics point of
proposed in Refl3]. This solution appeals to the possibility view, these models are more appealing than the models with
of a strongly curved extra dimension limited by two branesnegative tension branes, which cannot be realized as field
with positive and negative tensions, with the scale factor irntheoretic solitonic solutions.
the bulk space between the two branes changing by orders of Since the nature of the stabilization mechanism is yet un-
magnitude within a distance of several Planck lengths. In thiglear, it is reasonable to studynainimal possibility, which
case, the ratio of fundamental energy scales on the twintroduces one scalar field in the bulk. Classical stabilization
branes is given by a large warping factor. However, the resoforces due to non-trivial background configurations of a sca-
lution of the hierarchy problem is possible only in the caselar field along an extra dimension were first discussed by
where the observable brarien which the SM fields are Gell-Mann and Zwiebach13]. With the revived interest in
trapped is the one with the negative tension. extra dimensions and brane worlds, a modified version of
The early studies of cosmologies in the brane models rethis mechanism, which exploits a classical force due to a
vealed an unusual dependence of the Hubble pararhkter bulk scalar field with different interactions with the brésge
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received significant attentiofil4—17. However, as it was mological constani\ g of an arbitrary sign. The action of the
shown in Refs[11,17, a classical scalar interaction is not system is given bYy
useful for the stabilization of two positive tension branes.

In this paper we study another stabilization mechanism _ d-1 — 1
due to a Casimir force generated by the quantum fluctuations S=- f d Xf dz _g(d)( - 2_,<5R(d)+A1 Az=2)
about a constant background of a conformally coupled mass-
less scalar field. This effect was initially studied in R€fg] 1
in the context of M theory, and subsequently in R&g] for Ay 8(2=2)+ At 5mé Mp+ VR(d)d’z) , (29
a background Randall-Sundrum geometry. The same effect
was further investigated if20]. Recen_tly, Mukohyamé?l] where M=0,...d—1, x=t, @Y=z and y=(d
a_nd our group22] found an exact static solution in 5 dimen- —2)/(4(d—1)). We also assumez, symmetry represented
sions in the presence of the Casimir force and the bulk cossy mirror transformations about the branes in the z coordi-
mological constant. By imposing boundary conditions on the,ate.
branes, one may transfer the breaking of the 5D Poincare At the classical level the stress energy tensor in the bulk is
invariance into the bulk, natura”y generating an aniSO_trOpinetermined on|y byAB which makes it iso'[roF:)iC,T'\’\l/I
energy-momentum tensor witfe different fromTg andT{. = — A, 6. At the quantum level the-dimensional isot-
It turns out that there are static solutions admitting one Okopy OfT'\N/I can be broken by the Casimir stress. Following
two positive tension branes. The purpose of the present papglef. [19], we exploit the relation between the quantum in-
is to investigate the stability of these solutions. duced part of the energy-momentum tensor in flat spacetime

In the next section, we present the theoretical frameworland in conformally flat geometries. The vacuum average
of our analysis. We make an attempt to derive time-(T,,\) in a free field theory bounded indidimensional flat
dependent solutions in a@-dimensional, conformally-flat spacetime can be inferred from the effective potential of a
spacetime, where there is a bulk cosmological constant ancbnstant classical background, where the fluctuations are to
Casimir stress. In the same section we find an exact, statighey the boundary conditions, by symmetry considerations
background in the case of positive, negative or zero bullor directly from the corresponding propagaf@d].
cosmological constant and for Dirichlet or Neumann bound- In the case where the boundaries are two parallel
ary conditions for the scalar field. We formulate the fine-P-branes, separated by a spatial distalcthe tracelessness
tuning conditions which allow for such a solution to exist. Of the (improved[25]) energy-momentum tensor implies the
These conditions correspond to a vanishing effective fourfollowing result:
dimensional cosmological constant and a constant radion
field. In Sec. lll, we study an effective field theory which is
obtained after dimensional reduction in the presence of the
static, gravitational background determined in the case of a
negative bulk cosmological constant. The effective potentialvhere « is dimensionless and depends on the fields of the
for the size of the extra dimension is calculated and, dependheory, the boundary conditions, awd The same form of
ing on the nature of the Casimir force, it is either positive oer," will hold for a single brane configuration, which can be
negative. Negative mass squared arises due to an attractiebtained by identifying two branes of equal tensions.
Casimir force and corresponds to an unstable extremum. Un- It is common wisdom[19,26 that the Casimir effect
fortunately, the models with single positive tension brane oK (TN))*'#0 due to a conformally coupled, massless field in
two positive tension branes fall into this category. Positivea conformally flat, odd-dimensional spacetime is related to
m?, i.e. true stabilization, arises in the case of a repulsivéhe corresponding flat-space expression as follows:
Casimir force andequiresthe presence of the negative ten-

((Tk",))f=§diag(1,l, L A-(pt1), (22

sion brane. (TN =a”%((T)", 2.3
where a?=a?(x)>0 denotes the conformal factor trans-
IIl. ONE OR TWO p-BRANES IN (p+2) DIMENSIONS formln_g the metrlc_from flat to curved geometry. Note that
there is no restriction to the dependenceadin the space-
A. Energy-momentum tensor due to the Casimir effect and the  time coordinatex=(t,x,, ... Xp ,Z) other than smoothness
equations of motion ind dimensions and definiteness. This conversion formula for the vacuum

_ _ averages of the energy-momentum tensor in curved and flat
We start from the classical expression for thespace can be obtained by an explicit calculation, using a field
d-dimensional action describing a gravitational field, ayedefinitiong=al®~2"2p, and it is only valid for oddi [26].
conformally-coupled scalar field, and two p-branes em-
bedded ird=p+ 2 dimensions. The branes have tensidns
and A, and are located at;<z,, respectively, where de- . .
2 . 1-*2 P Y, W . Throughout this paper, we follow Wald's conventidi28]: The
notes the coordinate along the compact extra dimension. The . . " . a ; _
metric signature isyyny=(—,+,- - -,+) and the Riemann tensor is

bulk between the branes is characterized by a nonzero cos- - _ T p
y defined aR o= L=, L+ o
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Our goal is to find whether this contribution to the total The right-hand sidéRHS) of the above equation becomes
energy-momentum tensor of the bulk leads to a true stabilitime-independent, like the LHS, only if=0 orcy,=0. Let
zation of the extra dimension. To study that, we consider, fous consider first the case=0, i.e., disregard the Casimir

now, only a dependence afont andz

ds’=a%(t,z) (—dt?+dxi+dxo+ - - - +dxj+d 7).
(2.9

As for the field ¢ the background configuration ig,
=const. Varying the action of Eq2.1) with respect to the
metric, one obtains the following Einstein’s equatidbgy
= Kg TMN:
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stress. Upon integration, EQR.10 then provides the solu-
tion for the functiong(z), and the warp factor takes the final
form

at.z)= Co(t—tg)+c 2’

2k3
— 2_ d
where c;==*\/cg p(p+1)AB' (2.1)

Note that the above bulk solution exists for every value,
positive, negative or zero, of the bulk cosmological constant.
The singular distribution of energy at the location of the two
branes generates the so-caljachp conditions[27], which,

in conformal coordinates, take the form

7 2
a
[a'] :_ﬁAi
p

= (i=1,2).

(2.12

Z

Substituting the solutiori2.11) in the above conditions, we
arrive at the constraints

c —K—éA ——K—gA (2.13
1_2p 1~ 2p 2 .

which reveals the extreme fine tuning between the positive
and negative self-energies of the two branes necessary for
the stabilization of the inter-brane distance in the absence of
a stabilizing potential, even in the time-dependent case. The
fine tuning which is now relaxed, due to the coefficiegtis

the one that relates the brane self-energies to the bulk cos-
mological constant. As a result, the effective 4D cosmologi-
cal constant does not vanish, thus, inducing the assumed evo-
lution in time. One can easily check that, in the linaj

Thereby, the dots and primes denote derivatives with respect, the extreme fine-tuning between all of the parameters

to t andz, respectively.

of the theory reappears, i.e.,

Keeping the brane coordinates fixed, we now try to find

general, time-dependent solutions of E¢&5—(2.8). Tak-

ing the sum of Eqs(2.5) and(2.6), an ordinary differential
equation can be derived fa(t,z) with respect to time. An
easy integration yields the solution

a(t,z)= 2.9

(2) (t=to)+9(2)’
where f(z) and g(z) are associated with the initial data
a(ty,z) anda(ty,z). Substituting the solutiof2.9) into Eq.

(2.7), gives f(z) =co=const. With this information, inser-
tion of Eq. (2.9 into Eq.(2.8) gives

+1
PP @

+1)
(pl_p—”a[Co(t_toH‘Q(Z)]D+2 :

(2.10

A2:A2:8_p@
LR (ptD) k2

(2.19

In this limit, note that the solution exists only for negative
bulk cosmological constant and the warp factor assumes the
form a(z)=1/z, where |=p(p+1)/(2x5Ag) is the
d-dimensional AdS radius. For the specific case of a 3-brane
embedded in a 5-dimensional spacetime we easily recover
the solution of Ref[3] as presented in Rf19] in conformal
coordinates.

If, instead of«=0, we choose alternativelg,=0, we
re-introduce the Casimir stress in our analysis but, at the
same time, we loose the time dependence of our solution. In
the presence of the Casimir stress, time-dependent solutions
most probably require a departure from conformal geometry
which immensely complicates the whole problem. However,
it is possible to construct an effective theory exploiting the
large separation of the energy scales: Casimir stress\and
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are presumably determined in units of a large fundamental
d-dimensional gravitational scale. On the contrary, the char-
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, (pt+2)?

2
" “2p(p+ ) altel

(2.22

acteristic frequencies of time-dependent perturbations are

very small as compared to this scale for any cosmologicahnga, , are integration constants. Farz>0 the solution is
epoch starting from reheating. Therefore, it seems reasonablfyen py Eq.(2.21) with cosh and sinh replaced by cos and
to find static solutiots) in d dimensions to perform a dimen- gjj, respectively. Finally, fohg=0, the solution reads

sional reduction about. Studying small and “soft” perturba-
tions around these solutions, one can perform the stability
resulting

analysis for the extra dimension in the

(d—1)-dimensional, effective field theory.

B. Static solutions

Assuming the presence of the Casimir stress in the bulk, aP™2/Ay)=aP*2"
and of a bulk cosmological constant, we seek static solutions

for the warp factom=a(z). The system of Eq42.5—(2.8)

a2 y)=Ay+A,. (2.23

Let us concentrate first on the cadg<0. The solution
(2.21) can be rewritten in a more convenient form:

coshw(y—yo)] if A=A,
Slnl‘[a)|y—y0|] |f A1<A2
(2.24

then reduces to the following set of independent equationsqnserting these solutions into E.20), we obtain the fol-

" 12 ) a
— + S (p=-3)—= 2| _ -
p a + 2(p 3) az Kda _ AB+(aL)p+2 y
(2.15
P Lo . (p+Da
2(p+1) 22 =kga Ap a2
(2.16

lowing consistency conditions:

(PtDa _
23 — =1-——" cosh? —
tanfflw(y—yo)]=1 |AB|(aOL)dCOS [o(y—Yo)]
(2.25
(p+e
Flo(y—Yo)]=1— —————sinh {w(y—yo)],
cothw(y—Yo)] |AB|(aOL)dsm [o(y—Yo)]

(2.26

As we will see these equations can be integrated explicitly.

Multiplying Eq. (2.15 by (p+ 1) and adding E¢(2.16), one
obtains

a” p a12 -
P(p+1)§+§(P+1) (p—z)?z—(PJrZ) kga®Ag.
(2.1

In order to solve Eq(2.17), we perform a coordinate trans-
formation dy=a(z)dz which corresponds to the following
parametrization of the line element:

ds?=a%(y) (—dt?+dxi+dxg+ - - +dx3) +dy?.

(2.18
In these coordinates one gets
” 12
p(p+1)| o+ 5?) =—(p+2) kjAg, (219
while Eq.(2.16 becomes
Lo+ g)ZZKﬁ{_ . % . @20

respectively. It follows from Eq92.25 and(2.26) that

(p+1)a

|AgL9=(=*)
a8+2

(2.27

Equation(2.27) demandsx to be positive for the cosh-type
and negative for the sinh-type solution. For the
5-dimensional case this was also realized in IR&f]. Note
that the parameter =z,—2z,, appearing in the above con-
straints, may be written in terms of the coordinategandy,

in the non-conformal frame as

L_J‘dey_ 1 N ) (2.28
B y1 a(y) B an wyl,wyz , ’
where the integral is defined as follows:
I O (2.29
w , = s .
Yoy wyy cost/PT2)(z— 7))

where{,= wy,, for the cosh-type solution. A similar expres-
sion (with cosh replaced by sinhholds for the sinh-type
solution.

Finally, the jump conditions(2.12 for the derivative of

where now the prime stands for differentiation with respectth® scalé factor on the branes, expressed in non-conformal

toy. For Ag<O the general solution to E¢2.19 is
alPT22(y)=A; cosiwy) + A, sinhwy), (2.21)

where

coordinates, lead to the constraints

2In the conformal frame an exact form of the solution b
=0 was presented in Rgf19].
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Kf, proach was pursued: An unknown mechanism created an ef-
tanh[w (Yy—Yo)]=(—1D* —A, (k=1,2 fective potential for the scale factor of the extra dimension.
P (2.30 Varying this contribution with respect to the metric, a
' y-dependent55)-component of the energy-momentum ten-
for the cosh-type solution and sor was found in addition to the contribution due to the bulk
cosmological constant. Since the stabilization mechanism
4w kKS was unknown, it was assumed in REft1] that the compo-
pT2 coth[w (Yx—Yo)]=(—1) FAK (k=12 nentsT,o and T;; were not altered. In the present work we
(2.37  Oobserve that the Casimir stress qualitatively leads to the be-
havior of the scale factor as in R¢f.1] where the existence
for the sinh-type. The position of each brane with respect t@f a minimum allowed for a configuration with two positive-
the pointy=y, determines the sign of its tension. Note thattension branes. Moreover, thedependent contribution to
the cosh-type solution is characterized by the existence of the totalTs5 given as
minimum aty=y, while, at the same point, the sinh-type

4w

p+2

solution has a singularity. We always assume that the first (p+1) a

brane is located to the left ofy (yo—Yy:>0), andA, is Tss=|Ag|— dpt2

positive. In order to avoid the singularity in the case of the L% " *costt{ w(y—yo)]

sinh-type solution we place the second brane on the same IAg|

side ofy,. According to Eq(2.31), A, then should be nega- =|Ag|— e (2.32
tive. On the other hand, in the case of the cosh-type solution cost w(y—Yo)]

the second brane can be placed to the right of the minimum
thus allowing for a configuration with two positive-tension has the same form which the analysis in R&{] demanded.
branes(such a solution was first studied in R¢L1]). An In addition, the known behavior of the solution in the bulk
alternative way of compactifying the extra dimension arisesallowed us to derive its contribution to the remaining com-

in this case: discarding the second brane and identifying thponents of the energy-momentum tensor and thus to include
two minima aty= *vy,, single-brane models with compact its effect on the spacetime structure. Therefore, the non-
extra dimension may be constructed. The construction aniotropic contributions t@ oo andT;; are not zero. However,
investigation of the cosmological properties of these modelshey are different from that tds5 indicating the breaking of
were conducted in Ref§7,9]. the 5-dimensional Poincamovariance. As a result, the Ca-

A remark about the fine-tuning of parameters in oursimir stress generated by a conformally coupled scalar field
model is in order at this point. By fixing the position of one fulfills all the conditions necessary for the existence of a
of the two branes and imposing thafy,)=1, for some configuration with two positive-tension branes. The stability
Y. # Yo, We findyg as a function of,. Invoking the consis- of this configuration, and of the one with a pair of positive-
tency condition(2.27), a, is also fixed in terms of\g and  negative tension branes, under adiabatic perturbations, needs
the parametek, which is related to the location of the sec- to be studied.
ond brane, and, thus, to the inter-brane distance, through Eq. Concluding this section, let us make a few comments on
(2.28. Before considering the jump conditions, these twothe solutions in the case of positive and zero bulk cosmologi-
quantities together with the two brane tensions, are free pasal constant. ForAg>0, Eg. (2.20 leads to a constraint
rameters of the model. The two jump conditions, evaluated asimilar to Eq.(2.27) with (£) replaced by ), for both cos
the locations of the two branes, will fix two of these param-and sin-type solutions. Thus, the solution exists only in the
eters leaving the other two free. Here, we choose to fix thease wherex<<0. Depending on the location of the branes,
bulk cosmological constant and the inter-brane distance antthe system can accommodate positive-negative, negative-
have as input parameters the two brane tensions. In Sec. llhegative, or even positive-positive tension branes due to the
we will demonstratéthat the fine-tuning of\g and of the  oscillating behavior of the solution. The branes of the last
location of the second brane guarantees the existence obnfiguration are geodesically disconnected by a pair of sin-
static solutions with vanishingd(— 1)-dimensional effective gularities. In any case, the hierarchy problem cannot be
cosmological constant and a constant radion field. solved since the warp factor is bounded by a small value. For

Let us investigate the reason that made the construction dfg=0, the solution(2.23, when substituted in E¢2.20),
such a geometry possible in the case of the physically morkeads to the result
interesting cosh-like solution. In Refl1] a simplified ap-

) 2K§ a
Al 0 Lo (2.33
3In Sec. Ill, we will not impose the conditica(y, )=1. In return,

the (:pordinatesl1 {ind Yo Will copveniently be .fixed, in order t0  \yhich again requires: to be negative. Thgump conditions
simplify our analysis. The result is the same with both methods: W&hen yield
are left with one integration constard, (or alternativelya, , see
Sec. Ill), whose equilibrium value will be fixed by the consistency
condition(2.27). The two jump conditions will fix, in turn, the bulk
cosmological constant and the location of the second brane.

(p+2)/2 Ay

TR, (2.39

a(ys)
a(ys)
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meaning that one of the two branes has negative tension. 1 1

This result could also be inferred from the monotonic behav- Seff= — j d*x \/—9(4){ - —Rw*t Ea“r atr
ior of the solution(2.23. The resolution of the hierarchy 2Ky

seems possible at first sight. However, the fine-tuning of the 1 1

ratio of the two brane tensions introduces a new hierarchy + 5(9#¢(4) * byt Emf r2+ y(4)¢(24)R(4)
into the model.

+ L bay, 3, &”r)] . (3.3
I1l. PROPERTIES OF THE RADION FIELD

In this section we perform the derivation of the L£(¢).d,r ¢“T) denotes possible interaction terms of the
4-dimensional effective theory following from the higher- radion with the,) field which are of no interest in this
dimensional theory2.1) upon dimensional reduction. Our Paper. For the stability analysis it is only necessary to inves-
main goal is the determination of a kinetic term and an effigate the free sector of the effective theory for the radion
fective potential for the fluctuations of proper size of the field. We treat cosh- and sinh-type solutions separately in the

extra dimension which are related to those of the canonicalljeMainder of this section.
normalized radion field. These two quantities decide whether

and how stable the static configurations of the previous sec- A. Sinh-type solution

tion are. We will consider “+" single-brane models as well In order to determine the effective, four-dimensional
as “++" and “ + —" two-brane models(* +"” and “ =" theory for the radion field, we need to start from the five-
refer to the sign of the brane tensionk what follows we  gimensional action and perform thieintegration explicitly.
specialize to the cas#=5. For this purpose we rewrite the dependence of the scale fac-

In order to study the size fluctuations, we restore the scalgyr a in terms of its value on the first brane, in the case of
factor b of the extra dimension and consider it as a four-sinh-type solutions, as follows:
dimensional field

sint?3(wb(x, )| £])
sin?S(wb(x,))

(3.9

a(x;,§)=a(x,)
dy=b(x,)d¢. (3.1
with

Thereby, ¢ is a dimensionless coordinate and; -
=(t,x,x?,x%). The static solution corresponds to the equi- a (x,)=agsinf™(wb(x,)). (3.5
librium value(b)=b, which satisfies the constraints listed in
the previous section. In terms of the coordinétee choose Inserting Eq.(3.4) into Eq. (2.1) under consideration of Eq.
the position of the first brane to be fixed at the poiat  (3.1), we obtain the following decomposition of the radion
= —1 while the pointy, corresponds t&;=0. The second action:
brane is located at=\ with A>0 corresponding to\,
>0 for the cosh-type solution. For the sinh-type solution Sfrsff: S',“”e“c+ Sirnteraction_+_ SPotentiaI. (3.6
positive values ofA are excluded due to the singularity at
£=0. The radion field is proportional to the deviation lof

§kinetic
from its equilibrium valueb, '

Thereby, the term and S may be computed

together. They include kinetic terms foras well as an in-
teraction term withR 4y and follow from the terms of the
5-dimensional scalar curvatuis, which involve deriva-
tives of the metric with respect to the 4-dimensional coordi-
nates. We have

b(x,)—bo=Z""r(x,), 3.2

where the factoZ as well as the factor in front dfb(x,)

—by]? can be obtained by an explicit integration of the ac- gkinetic_ ginteraction_ j d*xvV—=a.. {A(wb) R

tion (2.1) over the transverse coordinage Fluctuations of ' ' 9 1AL@D) Re

b(x,) aboutb, entail x, -dependent fluctuations af [14]. +B(wb) d,b a*b} 3.7)
" ! :

Considering only terms up to quadratic order in the fluctua-
tions, our final result will contain four dimensional gravity, a
kinetic and a mass term for the radion, and the coupling ofvhere
the radion to gravity. In addition, there will be a massless

scalarg 4y, the remnant of the five-dimensional conformally b (1 sintwb|g)
coupled scalar fieldp. The four-dimensional, effective ac- A(wb)=— — e (3.8
tion takes the following form: kg7 sintf(wb)
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120 (1 Sinﬁt/5(wb|§|) and the adgfitional conesﬁtraim.27), i_t is not difficult to show
B(wh)= 5— that bothVv |b0 and sV /5b|b0 vanish. Hence, we conclude

that the constrain(2.27) in conjunction with thgump con-
ditions causes the effective four-dimensional cosmological
—[cothwb) — £ coth wbé) ] constant to be zero and, at the same time, extremizes the
radion effective potential. Calculating the second derivative
2wb of Ve with respect td and inserting the result in the above
+ ?[Comwb)—ﬂomwb@]z . (3.9  expansion, we obtain the following expression for the effec-
tive potential of the radion:

N sinf*®(wb)

Equation(3.8), upon integration will lead to the definition of

the four-dimensional Newton’s constant in terms of the 24 3

5-dimensional one and the size of the extra dimension. VeT=(b—bg)?— —Zsinh’S’S(wbo)
The potential part of Eq(3.6) includes several contribu- Ks

tions due to the brane tensions, the bulk cosmological con- 2

stant, the Casimir energy, the terms from the five- % 1 ( 1 B Al )

dlme_nS|onaI curvatureR sy |_nv0IV|ng g_—derlvatlves of the_ I (wbo) | sink?S(wb) sint®(whg|\|)

metric, and the delta-functional contributions from the dis-

continuities ofa’ at the boundarie=—1,\. After integrat- 2 cothlwbgy)  |\|?coth(wbg|\])

ing over¢, the expression fogf**"@ reads 5 SIS wby) - SIS wbg| |

(3.19

Sfotentialz_f dAX\/T(A)Veff

Varying N between—1 and 0, we realize that the radion

mass squared is not sign definite. In order to draw some

_f d*V=aom 9 definite conclusions about the sign of the radion mass and,
thus, the stability of the sinh-type solutions, we will study

5 |A | sintf'S(wbl\|) separately the cases of nearly flabb<1) and highly
x| Aj— = — coth(wb) + ————— warped wb>1) extra dimension.
2 sinf>(wb) (A) Nearly flat extra dimensiorin the limit wb<<1, the
hyperbolic functions in Eq93.8),(3.9) can be expanded in
Ao+ E M cotr(cob|)\|)) powers ofwb. Keeping only the dominant terms and per-
2 forming the integration, the kinetic pa(8.7) takes the sim-
plified form
1 ( [Ag] | 2aw* )
Sint5( wh) T 4 (wb)

(3.10 Slr<|net|c+ Srnteractlon_ f d‘&m [ M(bﬂ)

Where\/—g(4):a‘i . Note that the result of integration over

& can be expressed in terms of the intedradefined in Eq. (wbo) [10—|\|%®

(2.29, which now takes the form m
wb  d X (19-9|\|?)]4d,b "D},
[(wb =f _4“/ (3.11 ( N5, ]
wb\| sinh?/>¢
(3.1
We may now expand the effective potential up to second
order inb—by, i.e.
where
Veff 1 52vef'f
eff py — \seff _ -~ — 2
VD)=V Do)+ | (0Bt | (bbo) el 1 15
0 Kpg— — . .
i * 1000 (1 |\ |F)
+o. (3.12
With the help of thejump conditions(2.31), which, when In order to recover Einstein’s gravity, we perform the con-
expressed in terms @f, can be written as formal transformationg()=(b) g)=(by/b) g7). The
5 [Aql 5 [Aql interaction term betweeh and the 4- dlmenS|onaI scalar cur-
I _ 2 vatureR 4y will then disappear and an extra contribution to
Ay=5—, cothlwb),  Ax=—75 cotr(wb|)\|) the kinetic term ot will arise. The final form of the kinetic

(3.13 part, then, is given by
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inetic . cinteraction_ [ a4 - — 1<\ <0, increasing wheh\|— 0, as the size of the extra
STt S —j d™xV =g dimension increases, and decreasing in the opposite limit
|)\|~>1.
§(4) 3 (B) Highly warped extra dimensionn this case we as-
262 4n2D2 dbd by, sume thatwb>1 and write the hyperbolic functions, appear-

ing in the kinetic and potential parts of the effective action,
(3.17 in terms of exponentials. Neglecting the exponentially sup-
pressed contributions, we may then easily perform the corre-
where the subdominant contribution to the kinetic termtfor sponding integration over the extra dimension. Note, how-
in Eq.(3.19, proportional to (wby), has been dropped. Note ever, that our approximation breaks down whéég
that, after the conformal transformation and the derivation of~(wb) %, i.e. when the negative tension brane is located
the kinetic term ofb, we may safely seb=b, in all places close to the singularity. We may easily see, by simple nu-
other thand,b. From the above expression, we may easilymerical analysis that, as we increasb,, the positivity of
read the definition of the canonically normalized radion fieldthe effective potentia(3.14 demands the negative tension
brane to be located further and further away from the point
£=0. For example, fowby= 20, the radion mass squared
r(x.)=\/ 753 (b—bo). (3.18  will be negative definite if the negative tension brane is lo-
2K3bg cated in the intervat- 0.07<\ <0, while for wb,=86, rel-
evant to the Randall-Sundrum setup, #0.09<\<0.
Therefore, in order to ensure the stability of our sinh-type
solutions in the case of large warping, we need to place the
24 (1— |>\|3/5) second brane away from the singularity. In this case, the area
Sl el b B (3.19  aroundé=0 is excluded and our assumption thal| &[> 1
5 kb3 will always hold for the stable solutions.
The kinetic and interaction terms in this case take the
Under the conformal transformation, the effective potentialform

changes asvef—Ve=2(b) Ve, However, this does not

We now turn to the form of the effective potenti@.14). In
the same limitwby<<1, it assumes the form

Ve=(b—bg)?

affect either the existence of the extremum or the sign of the _ R
P : kinetic_|_ interaction_ 4 4) 4wb(|\|—1)/5
second derivative, since S+ S = | d*%\ =04 ;(l—e )
4
(seff L eff 5Q(b) v 6w
oo |~ F20—5—] V=0, — 5 (I\[=1)2e*MND5g b b
by bo bo Ké g
(3.20
(3.23
52\A/eff _02b 52\eft a0 50(b) Sveff o
507 =Q04(b) 507 b ) 5o i where
bg o 0
2w
) 5Q(b)\?  82Q(b) Vel K§=?K§. (3.29
6b S5b? A |b0
’ Once again, we need to perform a conformal transformation,
=0%b) v (3.20 of the form g{{)=(1—e***(N=25~1g() "in order to re-
5b2 ) ' ' cover Einstein’s gravity. Then, we arrive at the result
0

. . . . Slrdnetic + Sinteraction
Using the definition of the radion field3.18 and of the r

4-dimensional Newton'’s constaf$.16), we find the radion = 6o
mass to be :f dx /_§(4) [ﬁ_ _2(|)\| _ 1)2e4wb0(|x|—1)/5
K3 5Skg
, 144 (1-]\*P
e PPN (3.22 .
2505 (1—|\|*) X d,(b—Dbg) 9*(b—Dby) r, (3.2

From the above we may conclude that the radion mass re-

mains always positive in the limit of nearly flat extra dimen- where the subdominant contributions to the kinetic term, af-
sion, thus, ensuring the stability of the sinh-type solution.ter the conformal transformation and the expansion around
independently of the position of the negative brane. Moreb,, have been ignored. In this case, the canonically normal-
over, it remains well defined for the whole range of valuesized radion field is defined as
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120 where now
r(x) =\ 5 (|- 1) 2?0l =D (b—Dby).
5K5

3.2 ~ b (» cosH¥(wbé)
(3.29 A(wb)= - dgTb, (3.33
The effective potential3.14), in the limit wby>1, reads x5 -1~ Ccosit(wb)
\yeff __ _ 2
V7=(b=bo) B(wb)= 12w (A 5cosH"E’(wbg)
L1920° (-2 e 2P0 VT 52) 1 costB(wb)
25K§ (1_e74wb0(17\}\|)/5)2 (1_e72wb0(17|)\|)/5) !
(3.27 X —[tanh wb)— étanH wb&)]
which, when expressed in terms of the radion field, it yields wb )
the corresponding radion mass + ——[tanf(wb) - ftanflwb§) 7.
32 _[My)\3 3.3
mrz—wz(—w) g 2@bolA (3.29 (3.39
5 M,

In the above expression, we have used the geometrical eIn analogy to the previous subsection we obtain for the po-

planation of the Planck scale—weak scale hierarchy which ir)t:ent|al part the expression

the limit of large warping is equivalent to

otential__ 4 eff
- oubyi—ps_ Mw (3.29 s —_f d*xV—=9(4)V
a, Mp '

5 |Ag
and ignored the exponentially suppressed terms in the de- = —J d4xv—g(4) Ag— 2w tani wb)
nominator of Eq.(3.27). As expected, since we restricted
ourselves to the study of the stable sinh-type solutions, the cosHS(wb))
radion mass squared turned out to be positive and propor- 4
tional to the ratioM3/Mp, sincew?~M3. However, there costf¥(wb)
is an extra suppression factor that decreases very rapidly as 5 [Ag)
wby— leading to an additional strong suppression of the x| Ap— = 2Bl tank(wbh))
radion mass. This factor depends on the location of the nega- 2 o

tive tension brane, leading to a larger suppression when the

second brane is located close to the first one and to a smaller 1 Al I( _ 2a0"
suppression when the second brane is located closer to the cosi¥(wh) | 2w 1*(wb)] |’
singularity. The relative change however is very small since

— (3.3
IA=0(1).

B. Cosh-type solutions where

For positive a« (cosh-type solutionwe may write the

scale factor as follows: wbh  d{
| (wb) = —/5 (33@
cosi™(wh(x, ) £) ~wb cosh’5¢

(3.30

a(Xl ,g):a+(XL) Cosl’?/s(a)b(xj_)) ,

Using thejump conditions(2.30), which can be written in the
where, similarly to the previous subsection, we have definedimple form

a. (x,)=agcost>(wh(x,)). (3.3)
5 [Ag 5 [Agl

We first focus on the kinetic and interaction terms. Substi- A1:§ Tta”r(wb): A2:§ Tta”r(wbk)-

tuting the above ansatz in the 5-dimensional action and de- (3.37)
composingRs, we obtain

N . ~ we once again see that bou§"™ and 6V&/ sb vanish when
spinetie. gperaction f d*x\=ga) {A(wb) Riay evaluated at the static solution. Performing the expansion
_ aroundb,, we finally get the following expression for the
+B(wb) d,b d*b}, (3.32 effective potential:
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24 o3 In the same limit, the effective potentié3.38 assumes the
Vefl=—(b—bg)? = — cosh ¥ why) form
5 KE
2 . 240? 1/ 16w
1 ! A Vell= — (b—bg)*——(\+1)= 5| - r2(x.),
X + 5K2b 2 5
I (wbo) | cosiF((wby)  cosH®(wbo\) 570

(3.40

. (3.389  from which we may easily read the expression of the radion

mass squared which is indeed negative. However, in the limit

This is negative definite for any value bf#b,. As a result, w—0, th'? mass goes to zero Ieaylng behind a gtaﬂc CQSh'
we conclude that a positive leads to a negativen? and thus type solution which is a saddle point of the effective action

P 9 r instead of a maximum. Nevertheless, this semi-stable solu-

to a tachypnic potentqal for the r_a.dion ﬁel.d' Although thetion is plagued by the existence of a massless radion field.
static configuration with two positive tension branes, pre- (B) Highly warped extra dimensiorin this case, the

sented in the previous section, corresponds to an eXtremuﬁhalysis is similar to the one of the previous subsection, in

of the effective potential this extremum is a maximum. . - ;
Therefore, any small perturbation of this static solution m—}ir:% “trr?: rcz)agultl Upon integration of Eqs3.33,(3.34, we

duces an instability causing the radion field to run away from
its equilibrium value. Hence, there is no stabilization of the

extra dimension. kinetic_, interaction_ f 4 Ra) 4 b(A—1)/5
. . + = | d¥'%V - — (e
For completeness, we now briefly give the results for the S S 9@ 2K2(

expression of the radion field, in terms di{b,), and of N

the radion mass in the two cases of nearly flab&1) and 6w

highly warped @b>1) extra dimension. yiabed) —e 8+ ?[(7\_ INECR
(A) Nearly flat extra dimensiorin the limit wb<<1, the K5

integration in Eq.(3.33 gives rise to an interaction term

betweerb andR 4, as in the case of the sinh-type solution. — 4 80P5) d,b a#b] , (3.41

The same conformal transformatiog(;)= (bo/b) g("), re-

moves this term and gives the dominant contribution to the 5. ] .

kinetic term ofb. Then, the kinetic part of the effective ac- Wherexj is defined as in E(3.24). The conformal transfor-

tion reduces again to E¢3.17), leading to the same defini- mation g{})=(e**P(~D/5— =805 ~19()  restores Ein-

g( tanh wby) )\ztanh(wbo)\))
S| cost™(wbgy)  cosH®(wbg\)

tion (3.18 for the radion field, while stein’s gravity and leads to a canonically normalized kinetic
5 term for the radion field, which is given by E¢3.26 with
2 Ks (3.39 (]N]—1) replaced by X+1). The effective potential3.38),
4 2bp(N+1)° ' in the limit wby>1, reads

. 192(1)3 e—4wb0/5(1+ )\e—Zwa()\—l)/5)2+ (1+ )\Ze— 2wbg(N— 1)/5)
Veff: _ (b_ b0)2 > e 2wbg — - , (342
25K5 (e4wb()\ l)/5_e 8wb/5)2
|
which yields the radion mass squared As mentioned in the previous section, the cosh-type solu-
tion allows for a single positive-tension brane configuration
a;\2 with compact extra dimension. The above analysis applies
5 \? . (A=1), also in that case. Setting,=0 and taking the limit\—0,
m2= — 3_2 w LI 2 i.e. moving the “empty” brane to the location of the mini-
r S (N+1)? a N> 1 mum in all the above expressions, one obtains the corre-
a_2 ( ), sponding results for the single-brane configuration. It is ob-

(3.43  Vious that the effective potentié8.38 maintains its negative
sign which also indicates the instability of thet+™ brane

where @, /a,)=e?*Po(1~M5 is the ratio of the warp factors configuration.

of the two branes located §&= — 1\, respectively. The ra-
dion mass squared is always negative definite, as expected.
Its value strongly depends on the position of the second posi- It is often thought that staticity of gravity in a spacetime
tive brane and may vary significantly for various values.of  with a compact, extra dimensigrquiresthe introduction of

IV. CONCLUSIONS
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two branes possessing tensions of opposite sign. This state- In the above context we addressed the issue of the stabi-
ment is usually illustrated using an analogue in electrostaticdization of the extra dimension. Up to quadratic fluctuations
The presence of one positive-tension brane creates a gravitabout the static solutions and for all possible brane configu-
tional field with the arrows of the field strength lines directedrations, we derived the dimensionally reduced effective
away from the brane. Since the dimension is compact thesgeory for the radion field. We calculated the mass squared
lines should meet at a point associated with a negativeof the radion field in each case. According to our results,
tension brane. This argument is flawed since it is possiblgnhere is indeed stabilization of the positive-negative pair of
that at one point the gravitational field strength simply be-pranes arising for a repulsive Casimir force and for the
comes zero, thus allowing to complete the cinsiéhoutin-  pranes situated in the exponential regime of the sinh-
troducing a negative tension object. This idea was advocategb|ytion. This implies that the corresponding static solution
in [7,9], and the concrete realization of such a compactificarorresponds to a minimum of the radion effective potential.
tion due to the Casimir stress was discussefRii and i |nterestingly, the situation becomes unstable if the negative-
this paper. tension brane is placed close to the singularity. However, in
Interestingly enough, a classical force created by a scalahe case of stabilization the hierarchy between the scales on
field in the bulk does not yield a static situation without the two branes produces a radion mass in the KeV range or
introducing a metric singularity or a compensating negativesmaller which makes this possibility phenomenologically un-
tension brane as it was shown[ih, 17. The presence of the acceptable. Similar results demonstrating the stability of a
quantum effect{Casimir stress however, does allow for positive-negative brane configuration in the case of a repul-
single and two-brane configurations with only positive ten-sive Casimir force, which was also plagued by an unnatu-
sions as we showed in Sec. Il. The deeper reason for this ig|ly small radion mass, were presented by Garrigal.
the violation of the classical energy condition by the CasimirT19]. The possibility of stabilizing a similar brane configura-
stresg21] since the pressure in the extra dimension exceedgon by taking into account quantum fluctuations of bulk
the energy density in the bulk. Positive-tension brane confields was also studied by Goldberger and Rothdt2@h and
figurations arise in the case of an attractive Casimir forcethe same inconsistency between the resolution of the hierar-
whereas a repulsive Casimir force implies static pairs ofchy problem and the natural stabilization of the inter-brane
positive-negative tension branes. distance was again pointed out. The role of the singularity in
In Sec. Il we found exact static solutions to the Einstein’sthe stability of the system, when the second brane is placed
equations, in al=p+1+1-dimensional spacetime, in the close to it, became apparent only in the framework of our
presence of a bulk cosmological constant being positiveanalysis, where exact solutions for the spacetime back-
negative or zero and of the Casimir stress created by a coRround, in the presence of the Casimir force, were derived.
formally coupled scalar field. It was shown that time- This feature was not revealed in any of the above works,
dependent cosmological solutions in ddimensional, where the quantum effects were considered as small pertur-
conformally-flat spacetime are excluded if the Casimir stresgations in a fixed background. On the other hand, the static
is implemented in the theory. Ignoring the Casimir stresscosh-type solution arising for an attractive Casimir force,
non-static solutions, which are generalizations of the RS sowrned out to be unstable independently of the position of the
lution in de Sitter and anti de Sitter spacetime, were derivedyyo positive tension branes. This is in agreement with the
These solutions allowed only for pairs of positive-negativeresyits by Nanj20] where a purely attractive Casimir force
tension branes with extremely fine-tuned brane tensions. Refye to a scalar field fails to stabilize the radion field. The
storing the Casimir stress and considering a negative bulkingle positive-tension brane configuration, that also arises in
cosmological constant, we found two different types of statichis case, shares the same kind of instability. As a result, the
solutions for the scale factor in the bulk, namely a cosh-typecasimir force fails to stabilize any configuration involving

solution for an attractive Casimir forcex-0) and a sinh-  solely positive-tension branes, thus, leaving this question
type solution for a repulsive Casimir forcex{0). The  gpen for future study.

monotonic behavior of the sinh-type solution was consistent

only with the presence of a positive-negative tension pair of
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