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„De…stabilization of an extra dimension due to a Casimir force
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We study the stabilization of one spatial dimension in (p1111)-dimensional spacetime in the presence of
p-dimensional brane~s!, a bulk cosmological constant and the Casimir force generated by a conformally
coupled scalar field. We find general static solutions to the metric which require the fine-tuning of the inter-
brane distance and the bulk cosmological constant~leaving the two brane tensions as free parameters! corre-
sponding to a vanishing effective cosmological constant and a constant radion field. Taking these solutions as
a background configuration, we perform a dimensional reduction and study the effective theory in the case of
one- and two-brane configurations. We show that the radion field can have a positive mass squared, which
corresponds to a stabilization of the extra dimension, only for a repulsive nature of the Casimir force. This type
of solution requires the presence of a negative tension brane. The solutions with one or two positive tension
branes arising in this theory turn out to have negative radion mass squared, and therefore are not stable.
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I. INTRODUCTION

The past few years witnessed a growing interest am
particle physicists and cosmologists toward models with
tra space-like dimensions. This interest was initiated
string theorists@1#, who exploited a moderately large size
an external 11th dimension in order to reconcile the Pla
and string/or grand unified theory~GUT! scales. Taking this
idea further, it was shown that large extra dimensions al
for a reduction of the fundamental higher-dimensional gra
tational scale down to the TeV scale@2#. An essential ingre-
dient of such a scenario is the confinement of the stand
model ~SM! fields on field theoretic defects, so that on
gravity can access the large extra dimensions. These mo
are argued to make contact with an intricate phenomenolo
with a variety of consequences for collider searches, lo
energy precision measurements, rare decays and astropa
physics and cosmology. However, the mechanisms, res
sible for the stabilization of extra dimensions, remain u
known. The fact that the size of extra dimensions is large
compared to the fundamental scale also remains un
plained. An alternative solution to the hierarchy problem w
proposed in Ref.@3#. This solution appeals to the possibilit
of a strongly curved extra dimension limited by two bran
with positive and negative tensions, with the scale facto
the bulk space between the two branes changing by orde
magnitude within a distance of several Planck lengths. In
case, the ratio of fundamental energy scales on the
branes is given by a large warping factor. However, the re
lution of the hierarchy problem is possible only in the ca
where the observable brane~on which the SM fields are
trapped! is the one with the negative tension.

The early studies of cosmologies in the brane models
vealed an unusual dependence of the Hubble parametH
0556-2821/2001/63~12!/124020~12!/$20.00 63 1240
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5ȧ/a on the energy density of matter on the brane@4–6#. In
fact, as it was shown in Ref.@6#, an abnormal behaviorH
;r (4) may persist in a later epoch,if the stability of the extra
dimension is achieved via a fine-tuned cancellation betw
positive and negative energy densities on the two branes
it was first shown in Ref.@7#, a natural resolution to this
problem comes from the stabilization of the extra dimensi
which also removes the necessity for an unphysical fine t
ing between energy densities on different branes. T
smooth transition to the four-dimensional cosmology a
Newtonian 4D interaction requires the presence of a n
vanishing~55!-component of the energy-momentum tens
It was subsequently shown in Refs.@8,9# that the value ofT55
is automatically adjusted to a value proportional tor (4)

23p(4) for a generic stabilization mechanism. It was al
observed in@8# that the stabilization mechanism is crucial f
getting a consistent solution to the gauge hierarchy prob
on the negative tension brane in the set up of Ref.@3# ~see
also @10#!. Subsequently, it was demonstrated that, in
presence of a stabilization mechanism, the solution to
hierarchy problem in the two positive tension brane mod
is also possible@11,12#. From a particle physics point o
view, these models are more appealing than the models
negative tension branes, which cannot be realized as
theoretic solitonic solutions.

Since the nature of the stabilization mechanism is yet
clear, it is reasonable to study aminimal possibility, which
introduces one scalar field in the bulk. Classical stabilizat
forces due to non-trivial background configurations of a s
lar field along an extra dimension were first discussed
Gell-Mann and Zwiebach@13#. With the revived interest in
extra dimensions and brane worlds, a modified version
this mechanism, which exploits a classical force due to
bulk scalar field with different interactions with the brane~s!,
©2001 The American Physical Society20-1
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received significant attention@14–17#. However, as it was
shown in Refs.@11,17#, a classical scalar interaction is n
useful for the stabilization of two positive tension branes

In this paper we study another stabilization mechan
due to a Casimir force generated by the quantum fluctuat
about a constant background of a conformally coupled m
less scalar field. This effect was initially studied in Ref.@18#
in the context of M theory, and subsequently in Ref.@19# for
a background Randall-Sundrum geometry. The same e
was further investigated in@20#. Recently, Mukohyama@21#
and our group@22# found an exact static solution in 5 dimen
sions in the presence of the Casimir force and the bulk c
mological constant. By imposing boundary conditions on
branes, one may transfer the breaking of the 5D Poinc´
invariance into the bulk, naturally generating an anisotro
energy-momentum tensor withT5

5 different fromT0
0 andTi

i .
It turns out that there are static solutions admitting one
two positive tension branes. The purpose of the present p
is to investigate the stability of these solutions.

In the next section, we present the theoretical framew
of our analysis. We make an attempt to derive tim
dependent solutions in ad-dimensional, conformally-flat
spacetime, where there is a bulk cosmological constant
Casimir stress. In the same section we find an exact, s
background in the case of positive, negative or zero b
cosmological constant and for Dirichlet or Neumann bou
ary conditions for the scalar field. We formulate the fin
tuning conditions which allow for such a solution to exis
These conditions correspond to a vanishing effective fo
dimensional cosmological constant and a constant rad
field. In Sec. III, we study an effective field theory which
obtained after dimensional reduction in the presence of
static, gravitational background determined in the case
negative bulk cosmological constant. The effective poten
for the size of the extra dimension is calculated and, depe
ing on the nature of the Casimir force, it is either positive
negative. Negative mass squared arises due to an attra
Casimir force and corresponds to an unstable extremum.
fortunately, the models with single positive tension brane
two positive tension branes fall into this category. Posit
m2, i.e. true stabilization, arises in the case of a repuls
Casimir force andrequiresthe presence of the negative te
sion brane.

II. ONE OR TWO p-BRANES IN „p¿2… DIMENSIONS

A. Energy-momentum tensor due to the Casimir effect and the
equations of motion in d dimensions

We start from the classical expression for t
d-dimensional action describing a gravitational field,
conformally-coupled scalar fieldf, and twop-branes em-
bedded ind5p12 dimensions. The branes have tensionsL1

andL2 and are located atz1,z2, respectively, wherez de-
notes the coordinate along the compact extra dimension.
bulk between the branes is characterized by a nonzero
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mological constantLB of an arbitrary sign. The action of th
system is given by1

S52E dd21xE dzA2g(d)S 2
1

2kd
2

R(d)1L1 d~z2z1!

1L2 d~z2z2!1LB1
1

2
]Mf ]Mf1gR(d)f

2D , ~2.1!

where M50, . . . ,d21, x0[t, x(d21)[z, and g[(d
22)/„4(d21)…. We also assume aZ2 symmetry represented
by mirror transformations about the branes in the z coo
nate.

At the classical level the stress energy tensor in the bul
determined only byLB which makes it isotropic,TN

M

52LB dN
M . At the quantum level thed-dimensional isot-

ropy of TN
M can be broken by the Casimir stress. Followi

Ref. @19#, we exploit the relation between the quantum i
duced part of the energy-momentum tensor in flat spacet
and in conformally flat geometries. The vacuum avera
^TMN& in a free field theory bounded in ad-dimensional flat
spacetime can be inferred from the effective potential o
constant classical background, where the fluctuations ar
obey the boundary conditions, by symmetry considerati
or directly from the corresponding propagator@24#.

In the case where the boundaries are two para
p-branes, separated by a spatial distanceL, the tracelessnes
of the ~improved@25#! energy-momentum tensor implies th
following result:

^~TN
M !& f5

a

Ld
diag„1,1, . . . ,1,2~p11!…, ~2.2!

wherea is dimensionless and depends on the fields of
theory, the boundary conditions, andd. The same form of
TN

M will hold for a single brane configuration, which can b
obtained by identifying two branes of equal tensions.

It is common wisdom@19,26# that the Casimir effect
^(TN

M)&c fÞ0 due to a conformally coupled, massless field
a conformally flat, odd-dimensional spacetime is related
the corresponding flat-space expression as follows:

^~TN
M !&c f5a2d^~TN

M !& f , ~2.3!

where a25a2(x).0 denotes the conformal factor tran
forming the metric from flat to curved geometry. Note th
there is no restriction to the dependence ofa on the space-
time coordinatesx5(t,x1 , . . . ,xp ,z) other than smoothnes
and definiteness. This conversion formula for the vacu
averages of the energy-momentum tensor in curved and
space can be obtained by an explicit calculation, using a fi
redefinitionf̃5a(d22)/2f, and it is only valid for oddd @26#.

1Throughout this paper, we follow Wald’s conventions@23#: The
metric signature ishMN5(2,1,•••,1) and the Riemann tensor i
defined asR rmn

s 5]mGrn
s 2]nGrm

s 1 . . . .
0-2
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~DE!STABILIZATION OF AN EXTRA DIMENSION DUE . . . PHYSICAL REVIEW D 63 124020
Our goal is to find whether this contribution to the tot
energy-momentum tensor of the bulk leads to a true sta
zation of the extra dimension. To study that, we consider,
now, only a dependence ofa on t andz:

ds25a2~ t,z! ~2dt21dx1
21dx2

21•••1dxp
21dz2!.

~2.4!

As for the field f the background configuration isfc
5const. Varying the action of Eq.~2.1! with respect to the
metric, one obtains the following Einstein’s equationsGMN

5kd
2 TMN:

Gtt5
p

2
~p11!

ȧ2

a2
2p

a9

a
2

p

2
~p23!

a82

a2

52kd
2 a2 F2LB1

a

~aL!p12G , ~2.5!

Gii 5pS a9

a
2

ä

a
D 1

p

2
~p23! S a82

a2
2

ȧ2

a2D
5kd

2 a2 F2LB1
a

~aL!p12G , ~2.6!

Gtz5p S 2
a8

a

ȧ

a
2

ȧ8

a
D 50, ~2.7!

Gzz5
p

2
~p11!

a82

a2
2p

ä

a
2

p

2
~p23!

ȧ2

a2

5kd
2 a2 F2LB2

~p11! a

~aL!p12 G . ~2.8!

Thereby, the dots and primes denote derivatives with res
to t andz, respectively.

Keeping the brane coordinates fixed, we now try to fi
general, time-dependent solutions of Eqs.~2.5!–~2.8!. Tak-
ing the sum of Eqs.~2.5! and ~2.6!, an ordinary differential
equation can be derived fora(t,z) with respect to time. An
easy integration yields the solution

a~ t,z!5
1

f ~z! ~ t2t0!1g~z!
, ~2.9!

where f (z) and g(z) are associated with the initial dat
a(t0 ,z) and ȧ(t0 ,z). Substituting the solution~2.9! into Eq.
~2.7!, gives f (z)5c0[const. With this information, inser
tion of Eq. ~2.9! into Eq. ~2.8! gives

p~p11!

2
„g8~z!22c0

2
…

52kd
2S LB1

~p11!a

Lp12
@c0~ t2t0!1g~z!#p12D . ~2.10!
12402
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The right-hand side~RHS! of the above equation become
time-independent, like the LHS, only ifa50 or c050. Let
us consider first the casea50, i.e., disregard the Casimi
stress. Upon integration, Eq.~2.10! then provides the solu
tion for the functiong(z), and the warp factor takes the fina
form

a~ t,z!5
1

c0 ~ t2t0!1c1 z
,

where c156Ac0
22

2kd
2

p~p11!
LB. ~2.11!

Note that the above bulk solution exists for every valu
positive, negative or zero, of the bulk cosmological consta
The singular distribution of energy at the location of the tw
branes generates the so-calledjump conditions@27#, which,
in conformal coordinates, take the form

@a8#

a2 U
zi

52
kd

2

p
L i ~ i 51,2!. ~2.12!

Substituting the solution~2.11! in the above conditions, we
arrive at the constraints

c15
kd

2

2p
L152

kd
2

2p
L2 , ~2.13!

which reveals the extreme fine tuning between the posi
and negative self-energies of the two branes necessary
the stabilization of the inter-brane distance in the absenc
a stabilizing potential, even in the time-dependent case.
fine tuning which is now relaxed, due to the coefficientc0, is
the one that relates the brane self-energies to the bulk
mological constant. As a result, the effective 4D cosmolo
cal constant does not vanish, thus, inducing the assumed
lution in time. One can easily check that, in the limitc0
→0, the extreme fine-tuning between all of the paramet
of the theory reappears, i.e.,

L1
25L2

25
8p

~p11!

uLBu

kd
2

. ~2.14!

In this limit, note that the solution exists only for negativ
bulk cosmological constant and the warp factor assumes
form a(z)5 l /z, where l 5Ap(p11)/(2 kd

2 LB) is the
d-dimensional AdS radius. For the specific case of a 3-br
embedded in a 5-dimensional spacetime we easily reco
the solution of Ref.@3# as presented in Ref.@19# in conformal
coordinates.

If, instead ofa50, we choose alternativelyc050, we
re-introduce the Casimir stress in our analysis but, at
same time, we loose the time dependence of our solution
the presence of the Casimir stress, time-dependent solu
most probably require a departure from conformal geome
which immensely complicates the whole problem. Howev
it is possible to construct an effective theory exploiting t
large separation of the energy scales: Casimir stress andLB
0-3
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are presumably determined in units of a large fundame
d-dimensional gravitational scale. On the contrary, the ch
acteristic frequencies of time-dependent perturbations
very small as compared to this scale for any cosmolog
epoch starting from reheating. Therefore, it seems reason
to find static solution~s! in d dimensions to perform a dimen
sional reduction about. Studying small and ‘‘soft’’ perturb
tions around these solutions, one can perform the stab
analysis for the extra dimension in the resulti
(d21)-dimensional, effective field theory.

B. Static solutions

Assuming the presence of the Casimir stress in the b
and of a bulk cosmological constant, we seek static soluti
for the warp factora5a(z). The system of Eqs.~2.5!–~2.8!
then reduces to the following set of independent equatio

p
a9

a
1

p

2
~p23!

a82

a2
5kd

2 a2 F2LB1
a

~aL!p12G ,

~2.15!

p

2
~p11!

a82

a2
5kd

2 a2 F2LB2
~p11!a

~aL!p12G .

~2.16!

As we will see these equations can be integrated explic
Multiplying Eq. ~2.15! by (p11) and adding Eq.~2.16!, one
obtains

p ~p11!
a9

a
1

p

2
~p11! ~p22!

a82

a2
52~p12! kd

2 a2 LB .

~2.17!

In order to solve Eq.~2.17!, we perform a coordinate trans
formation dy5a(z)dz which corresponds to the following
parametrization of the line element:

ds25a2~y! ~2dt21dx1
21dx2

21•••1dxp
2!1dy2.

~2.18!

In these coordinates one gets

p ~p11! S a9

a
1

p

2

a82

a2 D 52~p12! kd
2 LB , ~2.19!

while Eq. ~2.16! becomes

p

2
~p11! S a8

a D 2

5kd
2F2LB2

~p11!a

~aL!p12G , ~2.20!

where now the prime stands for differentiation with resp
to y. For LB,0 the general solution to Eq.~2.19! is

a(p12)/2~y!5A1 cosh~vy!1A2 sinh~vy!, ~2.21!

where
12402
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v25
~p12!2

2p ~p11!
kd

2 uLBu, ~2.22!

andA1,2 are integration constants. ForLB.0 the solution is
given by Eq.~2.21! with cosh and sinh replaced by cos an
sin, respectively. Finally, forLB50, the solution reads2

a(p12)/2~y!5A1y1A2 . ~2.23!

Let us concentrate first on the caseLB,0. The solution
~2.21! can be rewritten in a more convenient form:

a(p12)/2~y!5a0
(p12)/2H cosh@v~y2y0!# if A1.A2 ,

sinh@vuy2y0u# if A1,A2 .

~2.24!

Inserting these solutions into Eq.~2.20!, we obtain the fol-
lowing consistency conditions:

tanh2@v~y2y0!#512
~p11!a

uLBu ~a0L !d
cosh22@v~y2y0!#

~2.25!

coth2@v~y2y0!#512
~p11!a

uLBu ~a0L !d
sinh22@v~y2y0!#,

~2.26!

respectively. It follows from Eqs.~2.25! and ~2.26! that

uLBu Ld5~6 !
~p11!a

a0
p12

. ~2.27!

Equation~2.27! demandsa to be positive for the cosh-type
and negative for the sinh-type solution. For th
5-dimensional case this was also realized in Ref.@21#. Note
that the parameterL5z22z1, appearing in the above con
straints, may be written in terms of the coordinatesy1 andy2
in the non-conformal frame as

L5E
y1

y2 dy

a~y!
5

1

a0v
I ~vy1 ,vy2!, ~2.28!

where the integralI is defined as follows:

I ~vy1 ,vy2![E
vy1

vy2 dz

cosh2/(p12)~z2z0!
, ~2.29!

wherez05vy0, for the cosh-type solution. A similar expres
sion ~with cosh replaced by sinh! holds for the sinh-type
solution.

Finally, the jump conditions~2.12! for the derivative of
the scale factor on the branes, expressed in non-confo
coordinates, lead to the constraints

2In the conformal frame an exact form of the solution forLB

50 was presented in Ref.@19#.
0-4
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~DE!STABILIZATION OF AN EXTRA DIMENSION DUE . . . PHYSICAL REVIEW D 63 124020
4v

p12
tanh@v ~yk2y0!#5~21!k

kd
2

p
Lk ~k51,2!

~2.30!

for the cosh-type solution and

4v

p12
coth@v ~yk2y0!#5~21!k

kd
2

p
Lk ~k51,2!

~2.31!

for the sinh-type. The position of each brane with respec
the pointy5y0 determines the sign of its tension. Note th
the cosh-type solution is characterized by the existence
minimum at y5y0 while, at the same point, the sinh-typ
solution has a singularity. We always assume that the
brane is located to the left ofy0 (y02y1.0), andL1 is
positive. In order to avoid the singularity in the case of t
sinh-type solution we place the second brane on the s
side ofy0. According to Eq.~2.31!, L2 then should be nega
tive. On the other hand, in the case of the cosh-type solu
the second brane can be placed to the right of the minim
thus allowing for a configuration with two positive-tensio
branes~such a solution was first studied in Ref.@11#!. An
alternative way of compactifying the extra dimension aris
in this case: discarding the second brane and identifying
two minima aty56y0, single-brane models with compa
extra dimension may be constructed. The construction
investigation of the cosmological properties of these mod
were conducted in Refs.@7,9#.

A remark about the fine-tuning of parameters in o
model is in order at this point. By fixing the position of on
of the two branes and imposing thata(y* )51, for some
y* Þy0, we findy0 as a function ofa0. Invoking the consis-
tency condition~2.27!, a0 is also fixed in terms ofLB and
the parameterL, which is related to the location of the se
ond brane, and, thus, to the inter-brane distance, through
~2.28!. Before considering the jump conditions, these t
quantities together with the two brane tensions, are free
rameters of the model. The two jump conditions, evaluate
the locations of the two branes, will fix two of these para
eters leaving the other two free. Here, we choose to fix
bulk cosmological constant and the inter-brane distance
have as input parameters the two brane tensions. In Sec
we will demonstrate3 that the fine-tuning ofLB and of the
location of the second brane guarantees the existenc
static solutions with vanishing (d21)-dimensional effective
cosmological constant and a constant radion field.

Let us investigate the reason that made the constructio
such a geometry possible in the case of the physically m
interesting cosh-like solution. In Ref.@11# a simplified ap-

3In Sec. III, we will not impose the conditiona(y* )51. In return,
the coordinatesy1 and y0 will conveniently be fixed, in order to
simplify our analysis. The result is the same with both methods:
are left with one integration constant,a0 ~or alternativelya1 , see
Sec. III!, whose equilibrium value will be fixed by the consisten
condition~2.27!. The two jump conditions will fix, in turn, the bulk
cosmological constant and the location of the second brane.
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proach was pursued: An unknown mechanism created an
fective potential for the scale factor of the extra dimensio
Varying this contribution with respect to the metric,
y-dependent~55!-component of the energy-momentum te
sor was found in addition to the contribution due to the bu
cosmological constant. Since the stabilization mechan
was unknown, it was assumed in Ref.@11# that the compo-
nentsT00 and Tii were not altered. In the present work w
observe that the Casimir stress qualitatively leads to the
havior of the scale factor as in Ref.@11# where the existence
of a minimum allowed for a configuration with two positive
tension branes. Moreover, they-dependent contribution to
the totalT55 given as

T555uLBu2
~p11! a

Lda0
p12cosh2@v~y2y0!#

5uLBu2
uLBu

cosh2@v~y2y0!#
~2.32!

has the same form which the analysis in Ref.@11# demanded.
In addition, the known behavior of the solution in the bu
allowed us to derive its contribution to the remaining co
ponents of the energy-momentum tensor and thus to inc
its effect on the spacetime structure. Therefore, the n
isotropic contributions toT00 andTii are not zero. However
they are different from that toT55 indicating the breaking of
the 5-dimensional Poincare´ covariance. As a result, the Ca
simir stress generated by a conformally coupled scalar fi
fulfills all the conditions necessary for the existence of
configuration with two positive-tension branes. The stabil
of this configuration, and of the one with a pair of positiv
negative tension branes, under adiabatic perturbations, n
to be studied.

Concluding this section, let us make a few comments
the solutions in the case of positive and zero bulk cosmolo
cal constant. ForLB.0, Eq. ~2.20! leads to a constrain
similar to Eq.~2.27! with (6) replaced by (2), for both cos
and sin-type solutions. Thus, the solution exists only in
case wherea,0. Depending on the location of the brane
the system can accommodate positive-negative, nega
negative, or even positive-positive tension branes due to
oscillating behavior of the solution. The branes of the l
configuration are geodesically disconnected by a pair of
gularities. In any case, the hierarchy problem cannot
solved since the warp factor is bounded by a small value.
LB50, the solution~2.23!, when substituted in Eq.~2.20!,
leads to the result

A1
252

2kd
2

p

a

Ld
, ~2.33!

which again requiresa to be negative. Thejump conditions
then yield

Fa~y2!

a~y1!G
(p12)/2

52
L1

L2
, ~2.34!

e

0-5
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meaning that one of the two branes has negative tens
This result could also be inferred from the monotonic beh
ior of the solution~2.23!. The resolution of the hierarch
seems possible at first sight. However, the fine-tuning of
ratio of the two brane tensions introduces a new hierar
into the model.

III. PROPERTIES OF THE RADION FIELD

In this section we perform the derivation of th
4-dimensional effective theory following from the highe
dimensional theory~2.1! upon dimensional reduction. Ou
main goal is the determination of a kinetic term and an
fective potential for the fluctuations of proper size of t
extra dimension which are related to those of the canonic
normalized radion field. These two quantities decide whet
and how stable the static configurations of the previous s
tion are. We will consider ‘‘1 ’’ single-brane models as wel
as ‘‘11 ’’ and ‘‘ 12 ’’ two-brane models~‘‘ 1 ’’ and ‘‘ 2 ’’
refer to the sign of the brane tensions!. In what follows we
specialize to the cased55.

In order to study the size fluctuations, we restore the sc
factor b of the extra dimension and consider it as a fo
dimensional field

dy5b~x'!dj. ~3.1!

Thereby, j is a dimensionless coordinate andx'

[(t,x1,x2,x3). The static solution corresponds to the eq
librium value^b&5b0 which satisfies the constraints listed
the previous section. In terms of the coordinatej we choose
the position of the first brane to be fixed at the pointj1

521 while the pointy0 corresponds toj050. The second
brane is located atj5l with l.0 corresponding toL2

.0 for the cosh-type solution. For the sinh-type soluti
positive values ofl are excluded due to the singularity
j50. The radion field is proportional to the deviation ofb
from its equilibrium valueb0,

b~x'!2b0[Z21/2r ~x'!, ~3.2!

where the factorZ as well as the factor in front of@b(x')
2b0#2 can be obtained by an explicit integration of the a
tion ~2.1! over the transverse coordinatej. Fluctuations of
b(x') aboutb0 entail x'-dependent fluctuations ofa @14#.
Considering only terms up to quadratic order in the fluct
tions, our final result will contain four dimensional gravity,
kinetic and a mass term for the radion, and the coupling
the radion to gravity. In addition, there will be a massle
scalarf (4) , the remnant of the five-dimensional conforma
coupled scalar fieldf. The four-dimensional, effective ac
tion takes the following form:
12402
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Seff52E d4x A2g(4) H 2
1

2k4
2

R(4)1
1

2
]mr ]mr

1
1

2
]mf (4) ]mf (4)1

1

2
mr

2 r 21g (4)f (4)
2 R(4)

1L~f (4) ,]mr ]mr !J . ~3.3!

L(f (4) ,]mr ]mr ) denotes possible interaction terms of t
radion with thef (4) field which are of no interest in this
paper. For the stability analysis it is only necessary to inv
tigate the free sector of the effective theory for the rad
field. We treat cosh- and sinh-type solutions separately in
remainder of this section.

A. Sinh-type solution

In order to determine the effective, four-dimension
theory for the radion field, we need to start from the fiv
dimensional action and perform thej-integration explicitly.
For this purpose we rewrite the dependence of the scale
tor a in terms of its value on the first brane, in the case
sinh-type solutions, as follows:

a~x' ,j!5a1~x'!
sinh2/5

„vb~x'!uju…

sinh2/5
„vb~x'!…

, ~3.4!

with

a1~x'!5a0 sinh2/5
„vb~x'!…. ~3.5!

Inserting Eq.~3.4! into Eq. ~2.1! under consideration of Eq
~3.1!, we obtain the following decomposition of the radio
action:

Sr
eff5Sr

kinetic1Sr
interaction1Sr

potential. ~3.6!

Thereby, the termsSr
kinetic and Sr

interaction may be computed
together. They include kinetic terms forb as well as an in-
teraction term withR(4) and follow from the terms of the
5-dimensional scalar curvatureR(5) which involve deriva-
tives of the metric with respect to the 4-dimensional coor
nates. We have

Sr
kinetic1Sr

interaction5E d4xA2g(4) $A~vb! R(4)

1B~vb! ]mb ]mb%, ~3.7!

where

A~vb!5
b

k5
2Eulu

1

dj
sinh4/5~vbuju!

sinh4/5~vb!
, ~3.8!
0-6



f
he

-
o
e

is

r

n

e

ical
the

ive
e
c-

n
me
nd,
y

r-

n-

r-
to

~DE!STABILIZATION OF AN EXTRA DIMENSION DUE . . . PHYSICAL REVIEW D 63 124020
B~vb!5
12v

5k5
2Eulu

1

dj
sinh4/5~vbuju!

sinh4/5~vb!

3H 2@coth~vb!2j coth~vbj!#

1
2vb

5
@coth~vb!2j coth~vbj!#2J . ~3.9!

Equation~3.8!, upon integration will lead to the definition o
the four-dimensional Newton’s constant in terms of t
5-dimensional one and the size of the extra dimension.

The potential part of Eq.~3.6! includes several contribu
tions due to the brane tensions, the bulk cosmological c
stant, the Casimir energy, the terms from the fiv
dimensional curvatureR(5) involving j-derivatives of the
metric, and the delta-functional contributions from the d
continuities ofa8 at the boundariesj521,l. After integrat-
ing overj, the expression forSr

potential reads

Sr
potential52E d4xA2g(4) Veff

52E d4xA2g(4)

3FL12
5

2

uLBu
v

coth~vb!1
sinh8/5~vbulu!

sinh8/5~vb!

3S L21
5

2

uLBu
v

coth~vbulu! D
2

1

sinh8/5~vb!
S uLBu

2v
I ~vb!2

2av4

I 4~vb!
D G ,

~3.10!

whereA2g(4)5a1
4 . Note that the result of integration ove

j can be expressed in terms of the integralI, defined in Eq.
~2.29!, which now takes the form

I ~vb!5E
vbulu

vb dz

sinh2/5z
. ~3.11!

We may now expand the effective potential up to seco
order inb2b0, i.e.

Veff~b!5Veff~b0!1
dVeff

db U
b0

~b2b0!1
1

2

d2Veff

db2 U
b0

~b2b0!2

1•••. ~3.12!

With the help of thejump conditions~2.31!, which, when
expressed in terms ofj, can be written as

L15
5

2

uLBu
v

coth~vb!, L252
5

2

uLBu
v

coth~vbulu!,

~3.13!
12402
n-
-

-

d

and the additional constraint~2.27!, it is not difficult to show
that bothVeffub0

anddVeff/dbub0
vanish. Hence, we conclud

that the constraint~2.27! in conjunction with thejump con-
ditions causes the effective four-dimensional cosmolog
constant to be zero and, at the same time, extremizes
radion effective potential. Calculating the second derivat
of Veff with respect tob and inserting the result in the abov
expansion, we obtain the following expression for the effe
tive potential of the radion:

Veff5~b2b0!2
24

5

v3

k5
2

sinh28/5~vb0!

3F 1

I ~vb0! S 1

sinh2/5~vb0!
2

ulu

sinh2/5~vb0ulu!
D 2

1
2

5 S coth~vb0!

sinh2/5~vb0!
2

ulu2coth~vb0ulu!

sinh2/5~vb0ulu!
D G . ~3.14!

Varying l between21 and 0, we realize that the radio
mass squared is not sign definite. In order to draw so
definite conclusions about the sign of the radion mass a
thus, the stability of the sinh-type solutions, we will stud
separately the cases of nearly flat (vb!1) and highly
warped (vb@1) extra dimension.

(A) Nearly flat extra dimension. In the limit vb!1, the
hyperbolic functions in Eqs.~3.8!,~3.9! can be expanded in
powers ofvb. Keeping only the dominant terms and pe
forming the integration, the kinetic part~3.7! takes the sim-
plified form

Sr
kinetic1Sr

interaction5E d4xA2g(4) H R(4)

2k4
2 S b

b0
D

2
8b0

171
~vb0! @102ulu9/5

3~1929ulu2!# ]mb ]mbJ ,

~3.15!

where

k4
25

9k5
2

10b0

1

~12ulu9/5!
. ~3.16!

In order to recover Einstein’s gravity, we perform the co
formal transformationgmn

(4)5V(b) ĝmn
(4)5(b0 /b) ĝmn

(4) . The
interaction term betweenb and the 4-dimensional scalar cu
vatureR(4) will then disappear and an extra contribution
the kinetic term ofb will arise. The final form of the kinetic
part, then, is given by
0-7
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Sr
kinetic1Sr

interaction5E d4xA2ĝ(4)

3H R̂(4)

2k4
2

2
3

4k4
2b0

2
]mb ]mbJ ,

~3.17!

where the subdominant contribution to the kinetic term fob
in Eq. ~3.15!, proportional to (vb0), has been dropped. Not
that, after the conformal transformation and the derivation
the kinetic term ofb, we may safely setb5b0 in all places
other than]mb. From the above expression, we may eas
read the definition of the canonically normalized radion fie

r ~x'!5A 3

2k4
2b0

2 ~b2b0!. ~3.18!

We now turn to the form of the effective potential~3.14!. In
the same limit,vb0!1, it assumes the form

Veff5~b2b0!2
24

5

~12ulu3/5!

k5
2b0

3
. ~3.19!

Under the conformal transformation, the effective poten
changes as:Veff→V̂eff5V2(b) Veff. However, this does no
affect either the existence of the extremum or the sign of
second derivative, since

dV̂eff

db
U

b0

5V2~b!
dVeff

db U
b0

12V
dV~b!

db U
b0

Veffub0
50,

~3.20!

d2V̂eff

db2 U
b0

5V2~b!
d2Veff

db2 U
b0

14V
dV~b!

db U
b0

dVeff

db U
b0

12 F S dV~b!

db D 2

1V
d2V~b!

db2 GU
b0

Veffub0

5V2~b!
d2Veff

db2 U
b0

. ~3.21!

Using the definition of the radion field~3.18! and of the
4-dimensional Newton’s constant~3.16!, we find the radion
mass to be

mr
25

144

25b0
2

~12ulu3/5!

~12ulu9/5!
. ~3.22!

From the above we may conclude that the radion mass
mains always positive in the limit of nearly flat extra dime
sion, thus, ensuring the stability of the sinh-type solutio
independently of the position of the negative brane. Mo
over, it remains well defined for the whole range of valu
12402
f

l

e

e-

,
-

s

21,l,0, increasing whenulu→0, as the size of the extra
dimension increases, and decreasing in the opposite l
ulu→1.

(B) Highly warped extra dimension. In this case we as-
sume thatvb@1 and write the hyperbolic functions, appea
ing in the kinetic and potential parts of the effective actio
in terms of exponentials. Neglecting the exponentially su
pressed contributions, we may then easily perform the co
sponding integration over the extra dimension. Note, ho
ever, that our approximation breaks down whenuju
;(vb)21, i.e. when the negative tension brane is loca
close to the singularity. We may easily see, by simple
merical analysis that, as we increasevb0, the positivity of
the effective potential~3.14! demands the negative tensio
brane to be located further and further away from the po
j50. For example, forvb0520, the radion mass square
will be negative definite if the negative tension brane is
cated in the interval20.07,l,0, while for vb0586, rel-
evant to the Randall-Sundrum setup, if20.09,l,0.
Therefore, in order to ensure the stability of our sinh-ty
solutions in the case of large warping, we need to place
second brane away from the singularity. In this case, the a
aroundj.0 is excluded and our assumption thatvbuju@1
will always hold for the stable solutions.

The kinetic and interaction terms in this case take
form

Sr
kinetic1Sr

interaction5E d4xA2g(4) H R(4)

2k4
2 ~12e4vb(ulu21)/5!

2
6v

5k5
2 ~ ulu21!2 e4vb(ulu21)/5]mb ]mbJ ,

~3.23!

where

k4
25

2v

5
k5

2 . ~3.24!

Once again, we need to perform a conformal transformat
of the form gmn

(4)5(12e4vb(ulu21)/5)21ĝmn
(4) , in order to re-

cover Einstein’s gravity. Then, we arrive at the result

Sr
kinetic1Sr

interaction

5E d4xA2ĝ(4) H R̂(4)

2k4
2

2
6v

5k5
2 ~ ulu21!2e4vb0(ulu21)/5

3]m~b2b0! ]m~b2b0!J , ~3.25!

where the subdominant contributions to the kinetic term,
ter the conformal transformation and the expansion aro
b0, have been ignored. In this case, the canonically norm
ized radion field is defined as
0-8
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r ~x'!5A12v

5k5
2 ~ ulu21!2 e2vb0(ulu21)/5~b2b0!.

~3.26!

The effective potential~3.14!, in the limit vb0@1, reads

V̂eff5~b2b0!2

3
192v3

25k5
2

~12ulu!2

~12e24vb0(12ulu)/5!2

e22vb0

~12e22vb0(12ulu)/5!
,

~3.27!

which, when expressed in terms of the radion field, it yie
the corresponding radion mass

mr
25

32

5
v2 S MW

M P
D 3

e22vb0ulu. ~3.28!

In the above expression, we have used the geometrica
planation of the Planck scale–weak scale hierarchy whic
the limit of large warping is equivalent to

a2

a1
.e22vb0(12ulu)/55

MW

M P
~3.29!

and ignored the exponentially suppressed terms in the
nominator of Eq.~3.27!. As expected, since we restricte
ourselves to the study of the stable sinh-type solutions,
radion mass squared turned out to be positive and pro
tional to the ratioMW

3 /M P , sincev2;M P
2 . However, there

is an extra suppression factor that decreases very rapid
vb0→` leading to an additional strong suppression of
radion mass. This factor depends on the location of the ne
tive tension brane, leading to a larger suppression when
second brane is located close to the first one and to a sm
suppression when the second brane is located closer to
singularity. The relative change however is very small sin
ulu5O(1).

B. Cosh-type solutions

For positive a ~cosh-type solution! we may write the
scale factor as follows:

a~x' ,j!5a1~x'!
cosh2/5

„vb~x'!j…

cosh2/5
„vb~x'!…

, ~3.30!

where, similarly to the previous subsection, we have defi

a1~x'!5a0cosh2/5
„vb~x'!…. ~3.31!

We first focus on the kinetic and interaction terms. Sub
tuting the above ansatz in the 5-dimensional action and
composingR(5) , we obtain

Sr
kinetic1Sr

interaction5E d4xA2g(4) $Ã~vb! R(4)

1B̃~vb! ]mb ]mb%, ~3.32!
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where now

Ã~vb!5
b

k5
2E

21

l

dj
cosh4/5~vbj!

cosh4/5~vb!
, ~3.33!

B̃~vb!5
12v

5k5
2E

21

l

dj
cosh4/5~vbj!

cosh4/5~vb!

3H 2@ tanh~vb!2j tanh~vbj!#

1
2vb

5
@ tanh~vb!2j tanh~vbj!#2J .

~3.34!

In analogy to the previous subsection we obtain for the
tential part the expression

Sr
potential52E d4xA2g(4) Veff

52E d4xA2g(4)FL12
5

2

uLBu
v

tanh~vb!

1
cosh8/5~vbl!

cosh8/5~vb!

3S L22
5

2

uLBu
v

tanh~vbl! D
1

1

cosh8/5~vb!
S uLBu

2v
I ~vb!2

2av4

I 4~vb!
D G ,

~3.35!

where

I ~vb!5E
2vb

vbl dz

cosh2/5z
. ~3.36!

Using thejumpconditions~2.30!, which can be written in the
simple form

L15
5

2

uLBu
v

tanh~vb!, L25
5

2

uLBu
v

tanh~vbl!,

~3.37!

we once again see that bothVeff anddVeff/db vanish when
evaluated at the static solution. Performing the expans
aroundb0, we finally get the following expression for th
effective potential:
0-9
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Veff52~b2b0!2
24

5

v3

k5
2

cosh28/5~vb0!

3F 1

I ~vb0! S 1

cosh2/5~vb0!
1

l

cosh2/5~vb0l!
D 2

1
2

5 S tanh~vb0!

cosh2/5~vb0!
1

l2tanh~vb0l!

cosh2/5~vb0l!
D G . ~3.38!

This is negative definite for any value ofbÞb0. As a result,
we conclude that a positivea leads to a negativemr

2 and thus
to a tachyonic potential for the radion field. Although th
static configuration with two positive tension branes, p
sented in the previous section, corresponds to an extrem
of the effective potential this extremum is a maximu
Therefore, any small perturbation of this static solution
duces an instability causing the radion field to run away fr
its equilibrium value. Hence, there is no stabilization of t
extra dimension.

For completeness, we now briefly give the results for
expression of the radion field, in terms of (b2b0), and of
the radion mass in the two cases of nearly flat (vb!1) and
highly warped (vb@1) extra dimension.

(A) Nearly flat extra dimension. In the limit vb!1, the
integration in Eq.~3.33! gives rise to an interaction term
betweenb andR(4) , as in the case of the sinh-type solutio
The same conformal transformation,gmn

(4)5(b0 /b) ĝmn
(4) , re-

moves this term and gives the dominant contribution to
kinetic term ofb. Then, the kinetic part of the effective ac
tion reduces again to Eq.~3.17!, leading to the same defini
tion ~3.18! for the radion field, while

k4
25

k5
2

2b0~l11!
. ~3.39!
ct
os

12402
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In the same limit, the effective potential~3.38! assumes the
form

V̂eff52~b2b0!2
24v2

5k5
2b0

~l11!5
1

2 S 2
16v2

5 D r 2~x'!,

~3.40!

from which we may easily read the expression of the rad
mass squared which is indeed negative. However, in the l
v→0, this mass goes to zero leaving behind a static co
type solution which is a saddle point of the effective acti
instead of a maximum. Nevertheless, this semi-stable s
tion is plagued by the existence of a massless radion fie

(B) Highly warped extra dimension. In this case, the
analysis is similar to the one of the previous subsection
the limit vb@1. Upon integration of Eqs.~3.33!,~3.34!, we
find the result

Sr
kinetic1Sr

interaction5E d4xA2g(4) H R(4)

2k4
2 ~e4vb(l21)/5

2e28vb/5!1
6v

5k5
2 @~l21!2e4vb(l21)/5

24e28vb/5# ]mb ]mbJ , ~3.41!

wherek4
2 is defined as in Eq.~3.24!. The conformal transfor-

mation gmn
(4)5(e4vb(l21)/52e28vb/5)21ĝmn

(4) restores Ein-
stein’s gravity and leads to a canonically normalized kine
term for the radion field, which is given by Eq.~3.26! with
(ulu21) replaced by (l11). The effective potential~3.38!,
in the limit vb0@1, reads
V̂eff52~b2b0!2
192v3

25k5
2

e22vb0
e24vb0/5~11le22vb0(l21)/5!21~11l2e22vb0(l21)/5!

~e4vb(l21)/52e28vb/5!2
, ~3.42!
lu-
on
lies

i-
rre-
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e

which yields the radion mass squared

mr
252

32

5

v2

~l11!2
e22vb0l/5H l2 S a1

a2
D 2

~l<1!,

S a1

a2
D ~l.1!,

~3.43!

where (a1 /a2).e2vb0(12l)/5 is the ratio of the warp factors
of the two branes located atj521,l, respectively. The ra-
dion mass squared is always negative definite, as expe
Its value strongly depends on the position of the second p
tive brane and may vary significantly for various values ofl.
ed.
i-

As mentioned in the previous section, the cosh-type so
tion allows for a single positive-tension brane configurati
with compact extra dimension. The above analysis app
also in that case. SettingL250 and taking the limitl→0,
i.e. moving the ‘‘empty’’ brane to the location of the min
mum in all the above expressions, one obtains the co
sponding results for the single-brane configuration. It is o
vious that the effective potential~3.38! maintains its negative
sign which also indicates the instability of the ‘‘1’’ brane
configuration.

IV. CONCLUSIONS

It is often thought that staticity of gravity in a spacetim
with a compact, extra dimensionrequiresthe introduction of
0-10
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two branes possessing tensions of opposite sign. This s
ment is usually illustrated using an analogue in electrosta
The presence of one positive-tension brane creates a gra
tional field with the arrows of the field strength lines direct
away from the brane. Since the dimension is compact th
lines should meet at a point associated with a negat
tension brane. This argument is flawed since it is poss
that at one point the gravitational field strength simply b
comes zero, thus allowing to complete the circlewithout in-
troducing a negative tension object. This idea was advoc
in @7,9#, and the concrete realization of such a compactifi
tion due to the Casimir stress was discussed in@21# and in
this paper.

Interestingly enough, a classical force created by a sc
field in the bulk does not yield a static situation witho
introducing a metric singularity or a compensating negati
tension brane as it was shown in@11,17#. The presence of the
quantum effects~Casimir stress!, however, does allow for
single and two-brane configurations with only positive te
sions as we showed in Sec. II. The deeper reason for th
the violation of the classical energy condition by the Casim
stress@21# since the pressure in the extra dimension exce
the energy density in the bulk. Positive-tension brane c
figurations arise in the case of an attractive Casimir for
whereas a repulsive Casimir force implies static pairs
positive-negative tension branes.

In Sec. II we found exact static solutions to the Einstei
equations, in ad5p1111 –dimensional spacetime, in th
presence of a bulk cosmological constant being posit
negative or zero and of the Casimir stress created by a
formally coupled scalar field. It was shown that tim
dependent cosmological solutions in ad-dimensional,
conformally-flat spacetime are excluded if the Casimir str
is implemented in the theory. Ignoring the Casimir stre
non-static solutions, which are generalizations of the RS
lution in de Sitter and anti de Sitter spacetime, were deriv
These solutions allowed only for pairs of positive-negat
tension branes with extremely fine-tuned brane tensions.
storing the Casimir stress and considering a negative b
cosmological constant, we found two different types of sta
solutions for the scale factor in the bulk, namely a cosh-ty
solution for an attractive Casimir force (a.0) and a sinh-
type solution for a repulsive Casimir force (a,0). The
monotonic behavior of the sinh-type solution was consist
only with the presence of a positive-negative tension pai
branes. On the other hand, the existence of a minimum in
behavior of the cosh-type solution allowed for the introdu
tion of two positive tension branes or even for the comp
tification of the extra spatial dimension with a sing
positive-tension brane. These types of configurations w
studied before in Refs.@7,9,11,12#, by assuming the exis
tence of an unknown mechanism to create an isotropy br
ing contribution to the ~55!-component of the energy
momentum tensor.
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In the above context we addressed the issue of the s
lization of the extra dimension. Up to quadratic fluctuatio
about the static solutions and for all possible brane confi
rations, we derived the dimensionally reduced effect
theory for the radion field. We calculated the mass squa
of the radion field in each case. According to our resu
there is indeed stabilization of the positive-negative pair
branes arising for a repulsive Casimir force and for t
branes situated in the exponential regime of the si
solution. This implies that the corresponding static solut
corresponds to a minimum of the radion effective potent
Interestingly, the situation becomes unstable if the negat
tension brane is placed close to the singularity. However
the case of stabilization the hierarchy between the scale
the two branes produces a radion mass in the KeV rang
smaller which makes this possibility phenomenologically u
acceptable. Similar results demonstrating the stability o
positive-negative brane configuration in the case of a rep
sive Casimir force, which was also plagued by an unna
rally small radion mass, were presented by Garrigaet al.
@19#. The possibility of stabilizing a similar brane configur
tion by taking into account quantum fluctuations of bu
fields was also studied by Goldberger and Rothstein@20# and
the same inconsistency between the resolution of the hie
chy problem and the natural stabilization of the inter-bra
distance was again pointed out. The role of the singularity
the stability of the system, when the second brane is pla
close to it, became apparent only in the framework of o
analysis, where exact solutions for the spacetime ba
ground, in the presence of the Casimir force, were deriv
This feature was not revealed in any of the above wor
where the quantum effects were considered as small pe
bations in a fixed background. On the other hand, the st
cosh-type solution arising for an attractive Casimir forc
turned out to be unstable independently of the position of
two positive tension branes. This is in agreement with
results by Nam@20# where a purely attractive Casimir forc
due to a scalar field fails to stabilize the radion field. T
single positive-tension brane configuration, that also arise
this case, shares the same kind of instability. As a result,
Casimir force fails to stabilize any configuration involvin
solely positive-tension branes, thus, leaving this ques
open for future study.
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