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Cardy-Verlinde formula and AdS black holes
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In a recent paper by E. Verlinde, hep-th/0008140, an interesting formula has been put forward, which relates
the entropy of a conformal formal field in arbitrary dimensions to its total energy and Casimir energy. This
formula has been shown to hold for the conformal field theories that have anti—de(&d®rduals in the
cases of AdS Schwarzschild black holes and AdS Kerr black holes. In this paper we further check this formula
with various black holes with AdS asymptotics. For the hyperbolic AdS black holes, the Cardy-Verlinde
formula is found to hold if we choose the “massless” black hole as the ground state, but in this case, the
Casimir energy is negative. For the AdS Reissner-Nordsiotack holes in arbitrary dimensions and charged
black holes inD=5, D=4, andD =7 maximally supersymmetric gauged supergravities, the Cardy-Verlinde
formula holds as well, but a proper internal energy, which corresponds to the mass of supersymmetric back-
grounds, must be subtracted from the total energy. We fail to rewrite the entropy of corresponding conformal
field theories in terms of the Cardy-Verlinde formula for the AdS black holes in Lovelock gravity.
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I. INTRODUCTION Given the total energyE and the radiusR, the Cardy-
Verlinde formula(1.4) gives the maximal entropy
It is well known that the entropy of a (1)-dimensional

conformal field theory(CFT) can be given by the Cardy 2-RE
formula[1] S<S, = ra— (1.5
c c
S=2m\/g| Lo~ 55/ (1.)  whenE,=E. This is just the Bekenstein entropy bouji#.!

In the spirit of AAS/CFT corresponden¢B—7], it was
convincingly argued by Witteh8] that the thermodynamics
of a certain CFT at high temperature can be identified with
the thermodynamics of black holes in anti—de Sitter space
‘(AdS). With this correspondence, Verlinde checked the for-
i . mula(1.4) using the thermodynamics of AdS Schwarzschild
that the Cardy formulgl.1) can be generalized to the case in black holes ingarbitrary dimgnsions and found it holds ex-

arbi_trary dimensions_. Consider a conformgl field theory ”V.'actly [2]. Furthermore the Cardy-Verlinde formula has been
ing in (1+ n)-dimensional spacetime described by the MetrCehecked more recently for the AdS Kerr black holes in Ref.
[9], which corresponds to a CFT residing in a rotating Ein-
stein universe. Once again, this formula has been found to
hold exactly. Some of the recent works related to the entropy
whereRis the radius of a-dimensional sphere. The entropy bound and the Cardy-Verlinde formula are found in Refs.
of the CFT can be given by the generalized Cardy formulg10-15.

(hereafter we refer to this as the Cardy-Verlinde formula The Cardy-Verlinde formula has been established for con-
formal field theories with AdS duals, which are in the super-

27R gravity regime. So it is not surprising if it can be violated for

S= ——= VE(2E—-E,), (1.3 the weakly coupled CFT’s. However, it is still of great inter-

Jab est to see whether the formula is universally valid for all

wherec is the central charge,, denotes the produ&R of

the total energy and radius of system, and the shit/®4 is

caused by the Casimir effect, which is a finite-volume effect
In a recent paper by Verlindg2], it has been proposed

ds?=—dt?+R%dQ2, (1.2

o CFT’s with AdS duals. Therefore it is worthwhile to do some
whereE, represents the Casimir energy, andndb are two  fyrther check for the formula in a larger extent than that in

positive coefficients that are independentRfand S For  Refs.[2] and[9], in order to see to what extent this formula
strong coupled CFT’s with AdS duals in the supergravityis valid. This is just the aim of this paper.

regime, the value of produetb is fixed ton? exactly. The
above Cardy-Verlinde formula is then reduced to

27R 1The Bekenstein entropy bound states that the ratio of the entropy
S=—— JEJ(2E—E,). (1.4)  Sto the total energyE of a closed physical system with limited
n self-gravity, which fits in a sphere with radid in three spatial
dimensions, obeysS<2wRE. In fact, the Bekenstein entropy
bound is independent of the spatial dimension. For a derivation of
*Email address: cai@het.phys.sci.osaka-u.ac.jp the Bekenstein bound in arbitrary dimensions see .
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In this paper we choose some typical examples of blaclsponds to the one of a CFT living im{1)-dimensional
holes with AdS asymptotics to check the Cardy-Verlinde for-spacetime with topologfRx S". This case has been already
mula. In a i+ 2)-dimensional AdS, except for the spheri- checked in Ref[2]. For black holes with zero curvature ho-
cally symmetric AdS Schwarzschild black holes whose horitizon, its thermodynamics is conformal invariant and the Ca-
zon is an-dimensional sphere surface with positive constansimir energy vanishes. So the Cardy-Verlinde formlal)
curvature, there exist the so-called hyperbolic AdS blackis not applicable in this case. As a result, in this section we
holes whose horizon is a negative constant curvature hypediscuss the AdS black holes with negative constant curvature
surface. The thermodynamics of the latter is different fromhorizon. In this case, its thermodynamics corresponds to the
that of the former. It would be interesting to see if the Cardy-one of a CFT residing in a spacetinfix 37, where 23
Verlinde formula holds in this case. This will be done in the denotes an-dimensional negative constant curvature space,
next section. which can be a closed hypersurface with arbitrary high genus

The gauged supergravity can also be realized as a selfinder appropriate identification.
consistent truncation of superstring lgr theory compacted The metric for a hyperbolic AdS black hole in a
on a compact manifold. The gauge group is the isometryn+2)-dimensional spacetime can be written dowr] 58
group of the compact manifold. In the course of AdS/CFT
correspondence, the gauge group is identified with the ds®=—f(r)dt®+f(r)"dr?+r2d32, (2.2
R-symmetry group of boundary CFT’s. In this sense the ther-
modynamics of AdS charged black holes can be viewed awhere
that of a certain CFT with a chemical potential. So we will
check the Cardy-Verlinde formula in Sec. Ill with AdS oM r? 167G
Reissner-Nordstr black holes. There we will also discuss f(r)=-1- 1 I_z wn:m,
the charged black holes iB=5, D=4, andD=7 maxi- ' "
mally supersymmetric gauged supergravities. These theori
can be regarded as the self-consistent truncations of IIB s
pergravity on theS°, 11-dimensional supergravity on ti$
andS?, respectively.

In supergravity thegries, higher derivgtive Cl_Jrvature term%lj negative cosmological constalit= —n(n+ 1)/212.
occur as the corrections of the massive string states an

. : : : ; The solution(2.1) has some peculiar properties in the
string loop corrections in superstring theories. In the AdS/sense(l) when the integration constaM =0, even though

CFT correspondence, these corrections correspond 10 thogG, <o, yrion js locally an anti-de Sitter space, it has a black-

of large N expansion of boundary CFT’s in the strong- ) o ;
coupling limit. So it is also interesting to see if the Cardy- gc:l?er?sotgizr?-rlll;;v;iIngw(latrr]]tr:pangmg temperatureT and

Verlinde formula still remains valid after including some of
those corrections. However, it is in general, quite difficult to 1 I"Vol(S,,))

find exact nontrivial black-hole solutions in higher derivative Tik=s—, S=—r—. (2.3
gravity theories, which are required for exactly checking the 2l 4G

Cardy-Verlinde formula. In Sec. IV we will consider a spe-
cial kind of Lovelock gravity theory, in which by choosing
some special coefficients for each term in the action,

simple, but exact black-hole solution can be found. Usingmg

(2.2

%ﬁﬁ denotes the line element ofradimensional hypersur-
Yace with constant curvature n(n+1), Vol(X,) stands for
the volume of the hypersurfacg,, andG is the Newtonian
ravity constant. This is a solution of Einstein equations with

This is the so-called “massless” black hol€) When M
a>0, the solution(2.1) has only a black-hole horizon satisfy-

this black-hole solution, we examine the thermodynamics of n_1/.2
corresponding CFT’s. We summarize our results in Sec. V M= 2.4
with brief discussions. w, |12 ’ '

which implies that , >I. WhenM <0, however, it can have

Il. HYPERBOLIC ADS BLACK HOLES IN ARBITRARY two black-hole horizons, which coincide as

DIMENSIONS
. . . - . -1)/21n-1
In four-dimensional spacetimes, it is believed generally MM 2 )=t (o 25
that the horizon of a black hole must be a sph&teup to ext n+1/in+1 o, '

diffeomorphisms. However, it can be violated if the theory
includes a negative cosmological constant. It was alreadin this case, the coincident horizaﬁzlz(n—l)/(n+ 1),
found that except for the sphere case, namely, the horizon the Hawking temperature vanishes, and the black hole be-
a positive constant curvature hypersurface, black holes areomes an extremal one. It is the peculiar property that causes
allowed to exist with horizon, which are zero or negativethe difficulty to choose an appropriate reference background
constant curvature hypersurfaces. In higher-dimensiobal ( in order to determine the mass of hyperbolic black holes
=4) spaces, it is true as well. For those so-called topologicdl16,17. In other words, there are some debates about the
black hole solutions in arbitrary dimensions, see R&®). ground state of the hyperbolic AdS black holes.

For a (D=n+2)-dimensional spherically symmetric Let us first suppose the “massless” black hd&3) as
black hole in AdS spacetime, its thermodynamics correthe ground state of the hyperbolic AdS black hal2d). In
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this case, the constaM is the mass of black holes, and the With these quantities, we find that the entropyf CFT in

temperature and entropy of black holes are Eqg. (2.8 can be rewritten as
1 [(n+1)r _27R
_ C(n_ S= —— J|E{(2E—E,). 2.1
Tok= yr— B (n—1) |, = |E¢|( c) (2.12

Comparing with the Cardy-Verlinde formuld.4), we find
that indeed the entropy of a CFT residing in a finite hyper-
bolic space can also be expressed in a form of the Cardy-
Verlinde formula. But, we find the Casimir energy is nega-
According to the prescription of AdS/CFT correspondencetive in this case. This can be traced back to the peculiar
[6,7], the boundary spacetime in which the boundary CFTproperties of hyperbolic AdS black holes discussed above. In
resides can be determined using the bulk metric, up to ather words, it is related to the existence of the “massless”
conformal factor. It is due to the conformal factor that oneblack holes and “negative mass” black holes.

can arbitrarily rescale the boundary metric as one wishes. In One may wonder if the difficulty of negative Casimir en-
this paper, we rescale the boundary metric so that the finitergy can be circumvented by choosing the extremal black
volume has a radiuR (this implies thafT>1/R is assumed hole (2.5 as the ground state of black holes. In that case, the
for the temperatur@ of corresponding CFT)S> That is, the  thermodynamics of black holes is still given by Ef.6), but

o r']rVoI(En).

e (2.6

boundary metric has the following form: the mass of black holes becomigls— M,,;. After a simple
repeat as the above, one has to be led to the conclusion that
R? R? the entropy cannot be expressed in terms of the Cardy-
dsp=1lim — ds’=— I_Zdt2+ R?d37. (2.7)  Verlinde formula in this case.

o I

Thus the system has the finite volurile= R" Vol(Z,). The lll. CHARGED ADS BLACK HOLES

(n+1)-dimensional CFT corresponding to the hyperbolic A. AdS Reissner-Nordstran black holes in arbitrary
black holes has the ener@y temperaturd’, and entropysin dimensions

the metric(1.2), The metric of a (+2)-dimensional AdS Reissner-

_ Nordstran black hole ig18,19
_nlvol(2,)rt 2
= 16msGR I ds’=—f(r)dt?+f(r) ‘dr’+r2dQ?2, (3.2
5 wheredQ2 denotes the line element of a unidimensional
T— | (n+1)ry —(n—l)) sphere and the functiohis given by
4R, |2 '

2.8 m 9> r?
29 f(n=1-—; @ T (3.2

2n-2 |2

r r

S r Vol(Z,)
4G When m/2=|q|, this solution is supersymmetric and the

functionf has the form
Following Ref.[2], let us define the Casimir enerd. as

2 2

m r
E.=n(E+pV-T9), (2.9 f(r)y=|1- 2r”‘1) +|—2. (3.3
where p represents the pressure of CFT defined ms

— —(JE/V)s. With the help of Eq(2.8), we obtain Obviously, in this case, this solution does not represent a
- S- 1£.0),

black hole and the singularity at=0 becomes naked.

_ For th nvenien f di ion low, | i
nir? 1V0I(2n) or the convenience of discussions below, let us rewrite

E=—2 _ 21 the solution(3.1) in terms of “isotropic” coordinates. De-
Furthermore we have the extensive energy m=u+2q, 92=q(u+q), r"ior"liq,
(3.9
nr 1 vol(S,)
2E-Ec=2—— Qo (2.1)  we can change Ed3.1) to the following form:
ds?= —H " 2f(r)dt?+ HZO~ Y[ f(r) " *dr?+r2dQ7],
3.9

2In Ref.[2] the radius is taken to be the horizon radius of black
holes. where
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Reasonably, we can view the proper internal endggyas
(3.6)  the zero-temperature energy of CFT, which makes the con-
tribution to the free energy, but not to the entropy. Following

. . . Ref.[2], we define the Casimir energy in this case as
In these coordinates, the supersymmetric solution corre- 2] oy

sponds to the case whet=0. The horizorr . of black hole _ CTe 4T
is determined by the equation Ec=n(E+pV=-TS-oq), 3.13

yu

f(r)zl—rn_1

r2
+—H2OED D H=1+ .
|2 ! rn—l

where the pressuneis defined ap= —(JE/dV)s5. Here it
p —nly 3 is worth stressing that when the electric charge vanishes, we
2.n—1 1] p r+ q ( 7) . .
[“ri have the pressur@=E/nV because we are considering
CFT’s. When the electric charge does not vanish, however,
To find the thermodynamic quantities of a black hole isthe proper internal energyero-temperature energf, does
straightforward. The maddl, entropyS, and Hawking tem-  not make its contribution to the pressure. Therefore the pres-

2n/(n—1)
p=r

peratureT i are sure should have the following form:
nVol(S") E—E
= lenG (MT24) p=—r" (3.14)
_ Vol(S") n(n—1) (3.9 With this relation, substituting those quantities in £8.11)
4G P ’ . into Eq. (3.13 yields
— _ ny,.N—1
n-1 2np(+DI(=1) E :an Vol(SY)r'} . (315
THK:m (n—1)+|2rT ¢ 167GR
+
(n—1)p2V(n-1) Using this Cas_imir energy, it is easy to fin(_j that the entropy
L — of corresponding CFT’s for the AdS Reissner-Nordstro
|2ran—2 black holes can be expressed as

respectively, where Vof") stands for the volume of the unit
n-dimensional sphere. The chemical potengalassociated

with the physical electric charge is

27R
S= n_ \/EC[Z(E_ Eq) —Ecl, (3.16

~ whereE, is the proper internal energy, given by E§.12.
nVol(S") 2q Here the difference from the standard Cardy-Verlinde for-
= W?- 3.9 mula (1.4) is the emergence of the proper internal energy
Eq, Which must be subtracted from the total energy. This

As expected, these thermodynamic quantities satisfy the firgesult is reasonable because the proper internal erieegg-

law of black-hole thermodynamics: temperature energydoes not make its contribution to the
entropy of CFT. In fact, following Ref[2], we can also
dM =T, dS+ ¢dq. (3.10  “derive” the formula (3.16 after considering there is an

additional zero-temperature energy in a certain thermody-
Rescaling the boundary metric so that theimensional namic system. The formulé3.16) is encouraging and the
sphere has the radilR® and the volume/=R"Vol(S"), in  observation(3.14 is also interesting. To see whether it is
the spirit of AAS/CFT correspondence, we have the energyuniversal, in the following sections we will check the for-
temperature, and chemical potential of the correspondingnula (3.16 with the charged black holes in the maximally
CFT in the metric(1.2), supersymmetric gauged supergravities, in which some scalar

| I | fields are present.
E=gM, T=2Tw, P=3¢ (3.1

R R B. Charged black holes inD=5 gauged supergravity

respectively. The entropy and electric charge of CFT are still In this section we discuss the case of black hole®in
given bySandq. From Eq.(3.8), we can see that the energy — > N=8 gauged supergravity. This solution has been
of CFT can be separated to two parts: one of them is propof@und in Ref.[zol (aIso_see Ref.21]) as a special cag&TU
tional to g, which is the contribution of supersymmetric mede) in theD=5, N=2 gauged supergravity.
background, the other is proportional o, which corre- The black-hole solution has the metric

sponds to the contribution of thermal excitations. Let us de- d?=— (H H,H4) 23fdt2
fine
+(HiHH)Y3(f Mdr2+r2dQf), (3.1
_nivol(s) - (H:HMa)™ 3 31D
9~ 167GR <O (312 where

124018-4



CARDY-VERLINDE FORMULA AND AdS BLACK HOLES PHYSICAL REVIEW D 63 124018

With this Casimir energy, the entropy of corresponding CFT

f=1-— +r2I 2HiH,H,, Hi=1+ -, =123 can be written in the following form
r? r
3.1
‘ (319 27R
There are three real scalar field$ and three gauge poten- S= 3 \/Ec[Z(E_Eq)_Ec]* (326
tials A
. - where the proper internal ener@y, and the thermal excita-
X'=H{Y(HiH Hg)™, A== L, i=1,2,3. tion energy are
r<+q;
(3.19
_ _ ol 3l 2, H
Here thNe charges); are related to the physical electric Eq—mZ i, E_Eq_ﬁ r |2 2 pPi
chargesy; via (3.27)

Q= psint? B, g;=psinh coshp;. (320 Clearly, the expressio(8.26) is a special case of E¢3.16)
The solution(3.17) has black-hole horizom, obeying the ~Whenn=3, although the thermodynamics of the black-hole
following equation: solutioqs(3.17) is different from that oD =5 AdS Reissner-
Nordstran black holes because of the presence of three real
scalar fields. Of course, the former degenerates to the latter
1+ — H p|> , pi=ri+qg;. (3.2)  when three charges are equal to each other. This can be seen
= from the solution(3.17).

—r2
m=ry

The mass, Hawking temperature and entropy of black holes

are C. Charged black holes inD=4 gauged supergravity
- The black-hole solution il =4, N=8 gauged super-
M= G M+ Z ql) , gravity has been found in Rdf22]. The metric has the form

ds?=—(HHoH3H )~ Y2 dt2+ (H H, HaH ) Ya(f - tdr?
) I », +r2dQ3), (3.29

r i 1
Toc= i 1- (1—r32 —) ,
I

12r4 Pi where
2m H Pi ' |
i
(3.22
f=1-— B2 2H H,, H; —1+& i=1,2,3,4.
H Pi- 329
i
The associated chemical potentials with the electric charge5he four electric potentials are
q; are
A= s1234 3.3
qu t_r+qiv 1=1,2,5,4. (@

b= 4G oy’ (3.23

As required, the first law of black-hole thermodynamics isThe physical charges; are related to the chargeg as the
satisfied: form (3.20. For the black-hole solutiofB.28), one has the

horizonr ., which satisfies the following equation:

dM=TdS+ >, #dq;. (3.29
I

,u—r+<1+—H p|> pi=r.+q;, i=1,234.
Rescaling the boundary metric so that the three-dimensional 12r2
sphere has the raditR and using the relationg3.13 and (3.3
(3.14), we obtain the Casimir energy
2 The thermodynamics associated with black-hole horizon can
E.= 4GR(2 pi— 2 q|) _ 34WCI;rR (3.29 be easily found. The mass, Hawking temperature, and en-
tropy are
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1 .
M=25 2/,L+2i qi), f(r)=1—ﬁ4+rzl’2H1H2, Hi=1+ q—;, =12
r r
(3.38
H pi H Pi 1 The two gauge potentials in the solutié®37) are
r i i
Thk= - 1-—=5 15 >, 1
[°r [ Y i _ -
4 H Pi + A g i=1,2. (3.39
(3.32 ) _ -
As in the case oD =5 or D=4, the physical chargeg are
also related to the chargegs via the relation(3.20. A stan-
S= K II .. dard calculation gives the thermodynamics of black-hole so-
G i lution (3.37):
respectively. The chemical potentiafs conjugating to the _m 2[5
! M=sloutS a,
chargesy; are 4G\ 4 |
19 . . .
$=aG, ~L234 (3.33 i H P H Py
Thk= - + ik
: : : 2r812 412 T pi
Once again, rescaling the boundary metric so that the two- 7|11 pi
dimensional sphere has the radiRsand repeating the cal- i
culations as in the previous section, one has the Casimir (3.40
energy s
Tr /
S= s ]._[ Pi,
S DO R | B CE e
C_4GR i Pi i qi | = GR’ . B
. 7 q
The entropy can be rewritten as $= 16 o’
2R where the constant is related to the black-hole horizon
S= T\/EC[Z(E— Eq)—Ecl, (335 as
where the proper internal energy and the thermal excitation w=rt+ ziz H pi, pi=ri+q, i=12.
energy are rele i
(3.41
E = ! > E—E.= | + ! 11 The first law heredM=T,dS+3,¢;dg, can be easil
 4GRA i TTU2GR| K s checked. . A g
(3.36 With the relations(3.13 and(3.14), we find the Casimir
energy in this case is
The expression of entropy is the casdbof 4 AdS Reissner-
Nordstran black holes. Although the thermodynamics of the 572r4
solution (3.28 is also different from the one dd=4 AdS Ec=—3GR (3.42

Reissner-Nordstra black holes, the entropy of correspond-

ing CFT’s falls into the Cardy-VerIinde formula, which in- and the entropy of Corresponding CFT has the form
dicates the universality of the Cardy-Verlinde formula.

27R
S=— JVEJ[2(E—E,) —E.], 3.4
D. Charged black holes inD=7 gauged supergravity 5 VEL2( o)~ Ec] (3.43
The black-hole solution in th® =7, N=4 gauged su-

where the proper internal energy and the thermal excitation
pergravity has the formi23,21] prop 9y

energy are
ds?= —(HqH,) "3 dt?+ (H Ho) Y(F ~tdr2+r2dQ)),

l
(339 qumZ di, E-Eq ri+

52 1 1 pi).

~16GR (212
where (3.49
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Once again, the entropy of corresponding CFT's to thewhere

charged black holes D=7 gauged supergravity has the

form of Cardy-Verlinde formula. Note that the solution oM\ Um-1) 2
(3.37) does not go to the one for B=7 AdS Reissner- k—( ) += for D=2m,
Nordstran black hole even when two charges are eqgal, f(r)= '

=(,. This example further manifests that the Cardy- Y(m-1) r2 _

Verlinde formula(3.16) and the observatiofi3.14) on the k—M + 2 for D=2m-1,
pressure are universally valid for charged AdS black holes. 4.2

r

IV. ADS BLACK HOLES IN HIGHER DERIVATIVE whereM is an integration constant and can be explained as
GRAVITY the mass of black holes, in this case, it is implied that the
In this section we consider the AdS black holes in a spe@nti—de Sitter space is viewed as the ground state of black
cial class of Lovelock gravity, which may be regarded as thé10les[18]. do= y;;(x)dx dx! denotes the line element of a
most general generalization to higher dimensions of Einsteif-dimensional hypersurface with constant curvaturg
gravity. The Lovelock action is a sum of the dimensionally —1)k. Without loss of generality, one may take-1, 0 and
continued Euler characteristics of all dimensions below the—1, respectively. Whek=1, the hypersurface, is a posi-
spacetime dimensiofD) under consideration. The Lovelock tive constant curvature space, a simple case is just
action has an advantage that the resulting equations of ma~dimensional unit spher8”, as discussed above. Wh&n
tion contain no more than second derivatives of metric, as= —1, the hypersurface is a negative constant curvature
the pure Einstein-Hilbert action, but it includg®/2] arbi-  space. In this case, one can construct a closed hypersurface
trary coefficients, which make it difficult to extract physical with arbitrary high genus via appropriate identification.
information from the solutions of equations of motion. It is Whenk=0, the hypersurface is a zero curvature space, but
possible to reduce those coefficients to two: a cosmologicabecause of the reason explained in Sec. Il, we will not dis-
constant and a gravitational constant. By embedding the Loreuss this case.
entz groupSO(D —1,1) into a larger group, the anti—de Sit-  In the solution(4.1), the horizonr . is determined by the
ter groupSO(D —1,2), the Lovelock theory is divided into equation
two different branches according to the spacetime dimen-
sion: odd dimensions and even dimensions. In odd dimen- r,

2\ m-1
r
sions, the action is the Chern-Simons form for the anti—de — | k+ —+) for D=2m,

Sitter group; in even dimensions, it is the Euler density con- M= 2 12 4.3
structed with the Lorentz part of the anti—de Sitter curvature - p2\m1 '
tensor. For details see R¢R4]. K+ — for D=2m—1.

The metric of a D=n+2)-dimensional AdS black holes 12

in the dimensionally continued gravity theory[iE3,24]

5 The Hawking temperature of black holes can be easily cal-
d82=—f(r)dt2+f(r)*1dr2+r2dan, (4.2 culated, which is

1 2m—1)r?
( s for D=2m,
Aa(m—1)r, |2
THK: . (44)
hi for D=2m-1.
2712

For the black holes in higher derivative gravity theories, the entropy is not simply one quarter of horizon area 18|Red.
have presented a method to obtain the entropy of black holes in higher derivative gravity theories. That method is based on the
fact that all black holes must obey the first law of thermodynardivs= T, xdS+ - - -. Integrating the first law, we have

M oM
S= JTHKdM f THK( )dr+, (4.5
0 ar

where we have imposed the physical assumption that the entropy vanishes when the horizon of black holes shrinks to zero.
Evidently the entropy gained in this way is independent of the choice of the ground state of black holes. With this formula, we
can obtain easily the entropy of black holes in E41)
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rz m—1
w2 | k+— —kl for D=2m,
I
S= m2 o g e (4.6
_ R m—2-i for D=2m-1.
Am(n 1)'20( i 21 |) K
|
Now we are ready to check the Cardy-Verlinde formula 4K r2
with the AdS black holes in higher derivative gravity. Res- =—| k- —;) (4.12
caling the metric so that the constant curvature hypersurface R |
has the radiu®, we then have the enerdyand temperature and the extensive eneray is
T of the corresponding CFT’s 9y
I I _2| K ri 2 k2
EzﬁM’ TzﬁTHKv (4.7 ZE_EC_E 2 +|—2 —5k=|. (4.13

and the entropys of the CFT’s is still given by the entropy
(4.6) of black holes.

This special example clearly indicates that the entr@p¥1)
does not fall into the form of Cardy-Verlinde formu(a.4).

In the case for the even dimensional black holes, namely,

D=2m, we find the Casimir energy is

2
<
2
and furthermore we have

2

=)
+| —-k|i, (4.8
r

H

k+—2

|2
2——k
re

r.l

2E-E=2r

Ec

|2
—(2m+1)k+ —k?
r

+

. 4.9

So for both casek=*1, we cannot put the entropy in Eq.
(4.6) into the form of the Cardy-Verlinde formula.
In the case for odd dimension® &€2m—1), the Casimir

energy is
)ml

2(m—1)(2m—3)r, "2
_ - IE

=0

&

2(m—1)I
BT R

¢ R

1

2i+1

m—2
i
X km=2-1, (4.10
Again, we cannot put the entropy in E@.6) into the form
of the Cardy-Verlinde formula. To clearly see this, let us
consider a special dimensi@=5. In this case, the action of

V. CONCLUSIONS

The Cardy-Verlinde formula recently proposed by E. Ver-
linde [2], relates the entropy of a certain CFT to its total
energy and Casimir energy in arbitrary dimensions. In the
spirit of ADS/CFT correspondence, this formula has been
shown to hold exactly for the cases of AdS Schwarzschild
black holes and AdS Kerr black holes.

In this paper we have further checked the Cardy-Verlinde
formula with some typical examples of black holes with AdS
asymptotics. They are hyperbolic AdS black holes, AdS
Reissner-Nordstra black holes, charged black holes [n
=5, D=4, andD=7 maximally supersymmetric gauged
supergravities, and AdS black holes in higher derivative
gravity. For the hyperbolic AdS black holes, the formula
holds if we choose the “massless” black hole as the ground
state of black holegotherwise, this formula will no longer
hold), but in this case, the Casimir energy is found to be
negative[see (2.10]. Obviously, further investigations are
needed for the hyperbolic AdS black holes. In fact, the un-
derstanding of the AdS/CFT correspondence is poor for the
thermodynamics of the hyperbolic black holes so[f&f].

For the AdS Reissner-Nordstroblack holes in arbitrary
dimensions and charged black holesDr=5, D=4, and
D=7 maximally supersymmetric gauged supergravities, the
Cardy-Verlinde formula can also hold by subtracting the
proper internal energy from the total enefgge Eq(3.16)].

The proper internal energy corresponds to the contribution of
supersymmetric backgrounds. In the thermodynamics of cor-
responding CFT’s, we can view the proper internal energy as
the zero-temperature energy, which has the contribution to

the gravity theory is the Einstein-Hilbert action plus a Gaussthe free energy, but not to the entropy of thermodynamic

Bonnet term. For such a black hole, the entropy is

2
rs
K+ —
312

. (4.12)

S=8’7TI’+(

system. Therefore our resuB.16) is reasonable and can be
viewed as an extension of Cardy-Verlinde form(dad). In
addition, it might be worth mentioning that for the corre-
sponding CFT'’s to the charged AdS black holes, its pressure
is given by Eq.(3.14, namely,p=(E—Ey)/nV. The quan-

And the Casimir energy for the corresponding CFT is foundtity E—E, has an interpretation as the thermal excitation

to be

energy of CFT’s.
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