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Cardy-Verlinde formula and AdS black holes

Rong-Gen Cai*
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

~Received 22 February 2001; published 23 May 2001!

In a recent paper by E. Verlinde, hep-th/0008140, an interesting formula has been put forward, which relates
the entropy of a conformal formal field in arbitrary dimensions to its total energy and Casimir energy. This
formula has been shown to hold for the conformal field theories that have anti–de Sitter~AdS! duals in the
cases of AdS Schwarzschild black holes and AdS Kerr black holes. In this paper we further check this formula
with various black holes with AdS asymptotics. For the hyperbolic AdS black holes, the Cardy-Verlinde
formula is found to hold if we choose the ‘‘massless’’ black hole as the ground state, but in this case, the
Casimir energy is negative. For the AdS Reissner-Nordstro¨m black holes in arbitrary dimensions and charged
black holes inD55, D54, andD57 maximally supersymmetric gauged supergravities, the Cardy-Verlinde
formula holds as well, but a proper internal energy, which corresponds to the mass of supersymmetric back-
grounds, must be subtracted from the total energy. We fail to rewrite the entropy of corresponding conformal
field theories in terms of the Cardy-Verlinde formula for the AdS black holes in Lovelock gravity.

DOI: 10.1103/PhysRevD.63.124018 PACS number~s!: 04.70.2s
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I. INTRODUCTION

It is well known that the entropy of a (111)-dimensional
conformal field theory~CFT! can be given by the Card
formula @1#

S52pAc

6 S L02
c

24D , ~1.1!

wherec is the central charge,L0 denotes the productER of
the total energy and radius of system, and the shift ofc/24 is
caused by the Casimir effect, which is a finite-volume effe

In a recent paper by Verlinde@2#, it has been propose
that the Cardy formula~1.1! can be generalized to the case
arbitrary dimensions. Consider a conformal field theory l
ing in (11n)-dimensional spacetime described by the me

ds252dt21R2dVn
2 , ~1.2!

whereR is the radius of an-dimensional sphere. The entrop
of the CFT can be given by the generalized Cardy form
~hereafter we refer to this as the Cardy-Verlinde formula!

S5
2pR

Aab
AEc~2E2Ec!, ~1.3!

whereEc represents the Casimir energy, anda andb are two
positive coefficients that are independent ofR and S. For
strong coupled CFT’s with AdS duals in the supergrav
regime, the value of productab is fixed to n2 exactly. The
above Cardy-Verlinde formula is then reduced to

S5
2pR

n
AEc~2E2Ec!. ~1.4!
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Given the total energyE and the radiusR, the Cardy-
Verlinde formula~1.4! gives the maximal entropy

S<Smax5
2pRE

n
, ~1.5!

whenEc5E. This is just the Bekenstein entropy bound@3#.1

In the spirit of AdS/CFT correspondence@5–7#, it was
convincingly argued by Witten@8# that the thermodynamics
of a certain CFT at high temperature can be identified w
the thermodynamics of black holes in anti–de Sitter sp
~AdS!. With this correspondence, Verlinde checked the f
mula ~1.4! using the thermodynamics of AdS Schwarzsch
black holes in arbitrary dimensions and found it holds e
actly @2#. Furthermore the Cardy-Verlinde formula has be
checked more recently for the AdS Kerr black holes in R
@9#, which corresponds to a CFT residing in a rotating E
stein universe. Once again, this formula has been foun
hold exactly. Some of the recent works related to the entr
bound and the Cardy-Verlinde formula are found in Re
@10–15#.

The Cardy-Verlinde formula has been established for c
formal field theories with AdS duals, which are in the sup
gravity regime. So it is not surprising if it can be violated f
the weakly coupled CFT’s. However, it is still of great inte
est to see whether the formula is universally valid for
CFT’s with AdS duals. Therefore it is worthwhile to do som
further check for the formula in a larger extent than that
Refs.@2# and@9#, in order to see to what extent this formu
is valid. This is just the aim of this paper.

1The Bekenstein entropy bound states that the ratio of the ent
S to the total energyE of a closed physical system with limite
self-gravity, which fits in a sphere with radiusR in three spatial
dimensions, obeysS<2pRE. In fact, the Bekenstein entrop
bound is independent of the spatial dimension. For a derivation
the Bekenstein bound in arbitrary dimensions see Ref.@4#.
©2001 The American Physical Society18-1
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In this paper we choose some typical examples of bl
holes with AdS asymptotics to check the Cardy-Verlinde f
mula. In a (n12)-dimensional AdS, except for the sphe
cally symmetric AdS Schwarzschild black holes whose ho
zon is an-dimensional sphere surface with positive const
curvature, there exist the so-called hyperbolic AdS bla
holes whose horizon is a negative constant curvature hy
surface. The thermodynamics of the latter is different fro
that of the former. It would be interesting to see if the Card
Verlinde formula holds in this case. This will be done in t
next section.

The gauged supergravity can also be realized as a
consistent truncation of superstring orM theory compacted
on a compact manifold. The gauge group is the isome
group of the compact manifold. In the course of AdS/C
correspondence, the gauge group is identified with
R-symmetry group of boundary CFT’s. In this sense the th
modynamics of AdS charged black holes can be viewed
that of a certain CFT with a chemical potential. So we w
check the Cardy-Verlinde formula in Sec. III with Ad
Reissner-Nordstro¨m black holes. There we will also discus
the charged black holes inD55, D54, andD57 maxi-
mally supersymmetric gauged supergravities. These theo
can be regarded as the self-consistent truncations of IIB
pergravity on theS5, 11-dimensional supergravity on theS7

andS4, respectively.
In supergravity theories, higher derivative curvature ter

occur as the corrections of the massive string states
string loop corrections in superstring theories. In the Ad
CFT correspondence, these corrections correspond to t
of large N expansion of boundary CFT’s in the stron
coupling limit. So it is also interesting to see if the Card
Verlinde formula still remains valid after including some
those corrections. However, it is in general, quite difficult
find exact nontrivial black-hole solutions in higher derivati
gravity theories, which are required for exactly checking
Cardy-Verlinde formula. In Sec. IV we will consider a sp
cial kind of Lovelock gravity theory, in which by choosin
some special coefficients for each term in the action
simple, but exact black-hole solution can be found. Us
this black-hole solution, we examine the thermodynamics
corresponding CFT’s. We summarize our results in Sec
with brief discussions.

II. HYPERBOLIC ADS BLACK HOLES IN ARBITRARY
DIMENSIONS

In four-dimensional spacetimes, it is believed genera
that the horizon of a black hole must be a sphereS2, up to
diffeomorphisms. However, it can be violated if the theo
includes a negative cosmological constant. It was alre
found that except for the sphere case, namely, the horizo
a positive constant curvature hypersurface, black holes
allowed to exist with horizon, which are zero or negati
constant curvature hypersurfaces. In higher-dimensionalD
>4) spaces, it is true as well. For those so-called topolog
black hole solutions in arbitrary dimensions, see Ref.@16#.

For a (D5n12)-dimensional spherically symmetri
black hole in AdS spacetime, its thermodynamics cor
12401
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sponds to the one of a CFT living in (n11)-dimensional
spacetime with topologyR3Sn. This case has been alread
checked in Ref.@2#. For black holes with zero curvature ho
rizon, its thermodynamics is conformal invariant and the C
simir energy vanishes. So the Cardy-Verlinde formula~1.4!
is not applicable in this case. As a result, in this section
discuss the AdS black holes with negative constant curva
horizon. In this case, its thermodynamics corresponds to
one of a CFT residing in a spacetimeR3Sg

n , where Sg
n

denotes an-dimensional negative constant curvature spa
which can be a closed hypersurface with arbitrary high ge
under appropriate identification.

The metric for a hyperbolic AdS black hole in
(n12)-dimensional spacetime can be written down as@16#

ds252 f ~r !dt21 f ~r !21dr21r 2dSn
2 , ~2.1!

where

f ~r !5212
vnM

r n21
1

r 2

l 2
, vn5

16pG

n Vol~Sn!
, ~2.2!

dSn
2 denotes the line element of an-dimensional hypersur-

face with constant curvature2n(n11), Vol(Sn) stands for
the volume of the hypersurfaceSn , andG is the Newtonian
gravity constant. This is a solution of Einstein equations w
a negative cosmological constantL52n(n11)/2l 2.

The solution ~2.1! has some peculiar properties in th
sense~1! when the integration constantM50, even though
the solution is locally an anti-de Sitter space, it has a bla
hole horizon r 15 l with Hawking temperatureTHK and
Bekenstein-Hawking entropyS,

THK5
1

2p l
, S5

l n Vol~Sn!

4G
. ~2.3!

This is the so-called ‘‘massless’’ black hole,~2! When M
.0, the solution~2.1! has only a black-hole horizon satisfy
ing

M5
r 1

n21

vn
S r 1

2

l 2
21D , ~2.4!

which implies thatr 1. l . WhenM,0, however, it can have
two black-hole horizons, which coincide as

M5Mext52S 2

n11D S n21

n11D (n21)/2 l n21

vn
. ~2.5!

In this case, the coincident horizonr 1
2 5 l 2(n21)/(n11),

the Hawking temperature vanishes, and the black hole
comes an extremal one. It is the peculiar property that cau
the difficulty to choose an appropriate reference backgro
in order to determine the mass of hyperbolic black ho
@16,17#. In other words, there are some debates about
ground state of the hyperbolic AdS black holes.

Let us first suppose the ‘‘massless’’ black hole~2.3! as
the ground state of the hyperbolic AdS black holes~2.1!. In
8-2
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this case, the constantM is the mass of black holes, and th
temperature and entropy of black holes are

THK5
1

4pr 1
S ~n11!r 1

2

l 2
2~n21!D ,

S5
r 1

n Vol~Sn!

4G
. ~2.6!

According to the prescription of AdS/CFT corresponden
@6,7#, the boundary spacetime in which the boundary C
resides can be determined using the bulk metric, up t
conformal factor. It is due to the conformal factor that o
can arbitrarily rescale the boundary metric as one wishes
this paper, we rescale the boundary metric so that the fi
volume has a radiusR ~this implies thatT.1/R is assumed
for the temperatureT of corresponding CFT’s!.2 That is, the
boundary metric has the following form:

dsb
25 lim

r→`

R2

r 2
ds252

R2

l 2
dt21R2dSn

2 . ~2.7!

Thus the system has the finite volumeV5Rn Vol(Sn). The
(n11)-dimensional CFT corresponding to the hyperbo
black holes has the energyE, temperatureT, and entropyS in
the metric~1.2!,

E5
nl Vol~Sn!r 1

n21

16pGR S r 1
2

l 2
21D ,

T5
l

4pRr1
S ~n11!r 1

2

l 2
2~n21!D ,

~2.8!

S5
r 1

n Vol~Sn!

4G
.

Following Ref.@2#, let us define the Casimir energyEc as

Ec5n~E1pV2TS!, ~2.9!

where p represents the pressure of CFT defined asp
52(]E/]V)S . With the help of Eq.~2.8!, we obtain

Ec522
nlr 1

n21 Vol~Sn!

16pGR
. ~2.10!

Furthermore we have the extensive energy

2E2Ec52
nr1

n11 Vol~Sn!

16pGRl
. ~2.11!

2In Ref. @2# the radius is taken to be the horizon radius of bla
holes.
12401
e
T
a

In
te

With these quantities, we find that the entropyS of CFT in
Eq. ~2.8! can be rewritten as

S5
2pR

n
AuEcu~2E2Ec!. ~2.12!

Comparing with the Cardy-Verlinde formula~1.4!, we find
that indeed the entropy of a CFT residing in a finite hyp
bolic space can also be expressed in a form of the Ca
Verlinde formula. But, we find the Casimir energy is neg
tive in this case. This can be traced back to the pecu
properties of hyperbolic AdS black holes discussed above
other words, it is related to the existence of the ‘‘massles
black holes and ‘‘negative mass’’ black holes.

One may wonder if the difficulty of negative Casimir e
ergy can be circumvented by choosing the extremal bl
hole ~2.5! as the ground state of black holes. In that case,
thermodynamics of black holes is still given by Eq.~2.6!, but
the mass of black holes becomesM2Mext. After a simple
repeat as the above, one has to be led to the conclusion
the entropy cannot be expressed in terms of the Ca
Verlinde formula in this case.

III. CHARGED ADS BLACK HOLES

A. AdS Reissner-Nordström black holes in arbitrary
dimensions

The metric of a (n12)-dimensional AdS Reissner
Nordström black hole is@18,19#

ds252 f ~r !dt21 f ~r !21dr21r 2dVn
2 , ~3.1!

wheredVn
2 denotes the line element of a unitn-dimensional

sphere and the functionf is given by

f ~r !512
m

r n21
1

q̃2

r 2n22
1

r 2

l 2
. ~3.2!

When m/25uq̃u, this solution is supersymmetric and th
function f has the form

f ~r !5S 12
m

2r n21D 2

1
r 2

l 2
. ~3.3!

Obviously, in this case, this solution does not represen
black hole and the singularity atr 50 becomes naked.

For the convenience of discussions below, let us rew
the solution~3.1! in terms of ‘‘isotropic’’ coordinates. De-
fining

m5m12q, q̃25q~m1q!, r n21→r n211q,
~3.4!

we can change Eq.~3.1! to the following form:

ds252H22f ~r !dt21H2/(n21)@ f ~r !21dr21r 2dVn
2#,

~3.5!

where
8-3
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f ~r !512
m

r n21
1

r 2

l 2
H2n/(n21), H511

q

r n21
. ~3.6!

In these coordinates, the supersymmetric solution co
sponds to the case whenm50. The horizonr 1 of black hole
is determined by the equation

m5r 1
n211

r2n/(n21)

l 2r 1
n21

, r5r 1
n211q. ~3.7!

To find the thermodynamic quantities of a black hole
straightforward. The massM, entropyS, and Hawking tem-
peratureTHK are

M5
n Vol~Sn!

16pG
~m12q!,

S5
Vol~Sn!

4G
rn/(n21), ~3.8!

THK5
r 1

n21

4prn/(n21) S ~n21!1
2nr (n11)/(n21)

l 2r 1
n21

2
~n21!r2n/(n21)

l 2r 1
2n22 D ,

respectively, where Vol(Sn) stands for the volume of the un
n-dimensional sphere. The chemical potentialf associated
with the physical electric chargeq̃ is

f5
n Vol~Sn!

16pG

2q̃

r
. ~3.9!

As expected, these thermodynamic quantities satisfy the
law of black-hole thermodynamics:

dM5THKdS1fdq̃. ~3.10!

Rescaling the boundary metric so that then-dimensional
sphere has the radiusR and the volumeV5Rn Vol(Sn), in
the spirit of AdS/CFT correspondence, we have the ene
temperature, and chemical potential of the correspond
CFT in the metric~1.2!,

E5
l

R
M , T5

l

R
THK , F5

l

R
f, ~3.11!

respectively. The entropy and electric charge of CFT are
given bySandq̃. From Eq.~3.8!, we can see that the energ
of CFT can be separated to two parts: one of them is pro
tional to q, which is the contribution of supersymmetr
background, the other is proportional tom, which corre-
sponds to the contribution of thermal excitations. Let us
fine

Eq5
nl Vol~Sn!

16pGR
2q. ~3.12!
12401
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Reasonably, we can view the proper internal energyEq as
the zero-temperature energy of CFT, which makes the c
tribution to the free energy, but not to the entropy. Followi
Ref. @2#, we define the Casimir energy in this case as

Ec5n~E1pV2TS2Fq̃!, ~3.13!

where the pressurep is defined asp52(]E/]V)S,q̃ . Here it
is worth stressing that when the electric charge vanishes
have the pressurep5E/nV because we are considerin
CFT’s. When the electric charge does not vanish, howe
the proper internal energy~zero-temperature energy! Eq does
not make its contribution to the pressure. Therefore the p
sure should have the following form:

p5
E2Eq

nV
. ~3.14!

With this relation, substituting those quantities in Eq.~3.11!
into Eq. ~3.13! yields

Ec52
nl Vol~Sn!r 1

n21

16pGR
. ~3.15!

Using this Casimir energy, it is easy to find that the entro
of corresponding CFT’s for the AdS Reissner-Nordstro¨m
black holes can be expressed as

S5
2pR

n
AEc@2~E2Eq!2Ec#, ~3.16!

whereEq is the proper internal energy, given by Eq.~3.12!.
Here the difference from the standard Cardy-Verlinde f
mula ~1.4! is the emergence of the proper internal ener
Eq , which must be subtracted from the total energy. T
result is reasonable because the proper internal energy~zero-
temperature energy! does not make its contribution to th
entropy of CFT. In fact, following Ref.@2#, we can also
‘‘derive’’ the formula ~3.16! after considering there is a
additional zero-temperature energy in a certain thermo
namic system. The formula~3.16! is encouraging and the
observation~3.14! is also interesting. To see whether it
universal, in the following sections we will check the fo
mula ~3.16! with the charged black holes in the maximal
supersymmetric gauged supergravities, in which some sc
fields are present.

B. Charged black holes inDÄ5 gauged supergravity

In this section we discuss the case of black holes inD
55, N58 gauged supergravity. This solution has be
found in Ref.@20# ~also see Ref.@21#! as a special case~STU
model! in the D55, N52 gauged supergravity.

The black-hole solution has the metric

ds252~H1H2H3!22/3f dt2

1~H1H2H3!1/3~ f 21dr21r 2dV3
2!, ~3.17!

where
8-4
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f 512
m

r 2
1r 2l 22H1H2H3 , Hi511

qi

r 2
, i 51,2,3.

~3.18!

There are three real scalar fieldsXi and three gauge poten
tials Ai

Xi5Hi
21~H1H2H3!1/3, At

i5
q̃i

r 21qi

, i 51,2,3.

~3.19!

Here the chargesqi are related to the physical electr
chargesq̃i via

qi5m sinh2 b i , q̃i5m sinhb i coshb i . ~3.20!

The solution~3.17! has black-hole horizonr 1 obeying the
following equation:

m5r 1
2 S 11

1

l 2r 1
4 )

i 51

3

r i D , r i5r 1
2 1qi . ~3.21!

The mass, Hawking temperature and entropy of black ho
are

M5
p

4G S 3

2
m1(

i
qi D ,

THK5
r 1

2

2pA)
i

r i

F 12

)
i

r i

l 2r 1
4 S 12r 1

2 (
i

1

r i
D G ,

~3.22!

S5
p2

2G A)
i

r i .

The associated chemical potentials with the electric cha
q̃i are

f i5
p

4G

q̃i

r i
. ~3.23!

As required, the first law of black-hole thermodynamics
satisfied:

dM5THKdS1(
i

f idq̃i . ~3.24!

Rescaling the boundary metric so that the three-dimensi
sphere has the radiusR, and using the relations~3.13! and
~3.14!, we obtain the Casimir energy

Ec5
p l

4GRS (
i

r i2(
i

qi D 5
3p lr 1

2

4GR
. ~3.25!
12401
s

es

al

With this Casimir energy, the entropy of corresponding C
can be written in the following form

S5
2pR

3
AEc@2~E2Eq!2Ec#, ~3.26!

where the proper internal energyEq and the thermal excita
tion energy are

Eq5
p l

4GR (
i

qi , E2Eq5
3p l

8GRS r 1
2 1

1

l 2r 1
2 )

i
r i D .

~3.27!

Clearly, the expression~3.26! is a special case of Eq.~3.16!
whenn53, although the thermodynamics of the black-ho
solutions~3.17! is different from that ofD55 AdS Reissner-
Nordström black holes because of the presence of three
scalar fields. Of course, the former degenerates to the la
when three charges are equal to each other. This can be
from the solution~3.17!.

C. Charged black holes inDÄ4 gauged supergravity

The black-hole solution inD54, N58 gauged super-
gravity has been found in Ref.@22#. The metric has the form

ds252~H1H2H3H4!21/2f dt21~H1H2H3H4!1/2~ f 21dr2

1r 2dV2
2!, ~3.28!

where

f 512
m

r
1 l 22r 2)

i 51

4

Hi , Hi511
qi

r
, i 51,2,3,4.

~3.29!

The four electric potentials are

At
i5

q̃i

r 1qi
, i 51,2,3,4. ~3.30!

The physical chargesq̃i are related to the chargesqi as the
form ~3.20!. For the black-hole solution~3.28!, one has the
horizon r 1 , which satisfies the following equation:

m5r 1S 11
1

l 2r 1
2 )

i
r i D , r i5r 11qi , i 51,2,3,4.

~3.31!

The thermodynamics associated with black-hole horizon
be easily found. The mass, Hawking temperature, and
tropy are
8-5
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M5
1

4G S 2m1(
i

qi D ,

THK5
r 1

4pA)
i

r i

S 12

)
i

r i

l 2r 1
2

1

)
i

r i

l 2r 1

(
i

1

r i

D ,

~3.32!

S5
p

GA)
i

r i ,

respectively. The chemical potentialsf i conjugating to the
chargesq̃i are

f i5
1

4G

q̃i

r i
, i 51,2,3,4. ~3.33!

Once again, rescaling the boundary metric so that the t
dimensional sphere has the radiusR, and repeating the cal
culations as in the previous section, one has the Cas
energy

Ec5
l

4GRS (
i

r i2(
i

qi D 5
lr 1

GR
. ~3.34!

The entropy can be rewritten as

S5
2pR

2
AEc@2~E2Eq!2Ec#, ~3.35!

where the proper internal energy and the thermal excita
energy are

Eq5
l

4GR (
i

qi , E2Eq5
l

2GRS r 11
1

l 2r 1
)

i
r i D .

~3.36!

The expression of entropy is the case ofD54 AdS Reissner-
Nordström black holes. Although the thermodynamics of t
solution ~3.28! is also different from the one ofD54 AdS
Reissner-Nordstro¨m black holes, the entropy of correspon
ing CFT’s falls into the Cardy-Verlinde formula, which in
dicates the universality of the Cardy-Verlinde formula.

D. Charged black holes inDÄ7 gauged supergravity

The black-hole solution in theD57, N54 gauged su-
pergravity has the form@23,21#

ds252~H1H2!24/5f dt21~H1H2!1/5~ f 21dr21r 2dV5
2!,

~3.37!

where
12401
o-

ir

n

f ~r !512
m

r 4
1r 2l 22H1H2 , Hi511

qi

r 4
, i 51,2.

~3.38!

The two gauge potentials in the solution~3.37! are

At
i5

q̃i

r 41qi

, i 51,2. ~3.39!

As in the case ofD55 or D54, the physical chargesq̃i are
also related to the chargesqi via the relation~3.20!. A stan-
dard calculation gives the thermodynamics of black-hole
lution ~3.37!:

M5
p2

4G S 5

4
m1(

i
qi D ,

THK5
r 1

3

pA)
i

r i

S 12

)
i

r i

2r 1
6 l 2

1

)
i

r i

r 1
2 l 2

(
i

1

r i

D ,

~3.40!

S5
p3r 1

4G A)
i

r i ,

f i5
p2

4G

q̃i

r i
,

where the constantm is related to the black-hole horizonr 1

as

m5r 1
4 1

1

r 1
2 l 2 )

i
r i , r i5r 1

4 1qi , i 51,2.

~3.41!

The first law heredM5THKdS1( if idq̃i can be easily
checked.

With the relations~3.13! and ~3.14!, we find the Casimir
energy in this case is

Ec5
5p2lr 1

4

8GR
, ~3.42!

and the entropy of corresponding CFT has the form

S5
2pR

5
AEc@2~E2Eq!2Ec#, ~3.43!

where the proper internal energy and the thermal excita
energy are

Eq5
p2l

4GR (
i

qi , E2Eq5
5p2l

16GRS r 1
4 1

1

r 1
2 l 2 )

i
r i D .

~3.44!
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Once again, the entropy of corresponding CFT’s to
charged black holes inD57 gauged supergravity has th
form of Cardy-Verlinde formula. Note that the solutio
~3.37! does not go to the one for aD57 AdS Reissner-
Nordström black hole even when two charges are equal,q1
5q2. This example further manifests that the Card
Verlinde formula ~3.16! and the observation~3.14! on the
pressure are universally valid for charged AdS black hol

IV. ADS BLACK HOLES IN HIGHER DERIVATIVE
GRAVITY

In this section we consider the AdS black holes in a s
cial class of Lovelock gravity, which may be regarded as
most general generalization to higher dimensions of Eins
gravity. The Lovelock action is a sum of the dimensiona
continued Euler characteristics of all dimensions below
spacetime dimension~D! under consideration. The Loveloc
action has an advantage that the resulting equations of
tion contain no more than second derivatives of metric,
the pure Einstein-Hilbert action, but it includes@D/2# arbi-
trary coefficients, which make it difficult to extract physic
information from the solutions of equations of motion. It
possible to reduce those coefficients to two: a cosmolog
constant and a gravitational constant. By embedding the L
entz groupSO(D21,1) into a larger group, the anti–de S
ter groupSO(D21,2), the Lovelock theory is divided into
two different branches according to the spacetime dim
sion: odd dimensions and even dimensions. In odd dim
sions, the action is the Chern-Simons form for the anti–
Sitter group; in even dimensions, it is the Euler density c
structed with the Lorentz part of the anti–de Sitter curvat
tensor. For details see Ref.@24#.

The metric of a (D5n12)-dimensional AdS black hole
in the dimensionally continued gravity theory is@18,24#

ds252 f ~r !dt21 f ~r !21dr21r 2dsn
2 , ~4.1!
12401
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where

f ~r !55 k2S 2M

r D 1/(m21)

1
r 2

l 2
for D52m,

k2M1/(m21)1
r 2

l 2
for D52m21,

~4.2!

whereM is an integration constant and can be explained
the mass of black holes, in this case, it is implied that
anti–de Sitter space is viewed as the ground state of b
holes@18#. dsn

25g i j (x)dxi dxj denotes the line element of
n-dimensional hypersurface with constant curvaturen(n
21)k. Without loss of generality, one may takek51, 0 and
21, respectively. Whenk51, the hypersurfacesn is a posi-
tive constant curvature space, a simple case is
n-dimensional unit sphereSn, as discussed above. Whenk
521, the hypersurface is a negative constant curvat
space. In this case, one can construct a closed hypersu
with arbitrary high genus via appropriate identificatio
Whenk50, the hypersurface is a zero curvature space,
because of the reason explained in Sec. II, we will not d
cuss this case.

In the solution~4.1!, the horizonr 1 is determined by the
equation

M55
r 1

2 S k1
r 1

2

l 2 D m21

for D52m,

S k1
r 1

2

l 2 D m21

for D52m21.

~4.3!

The Hawking temperature of black holes can be easily c
culated, which is
ed on the

s to zero.
ula, we
THK55
1

4p~m21!r 1
S k1

~2m21!r 1
2

l 2 D for D52m,

r 1

2p l 2
for D52m21.

~4.4!

For the black holes in higher derivative gravity theories, the entropy is not simply one quarter of horizon area. In Ref.@18# we
have presented a method to obtain the entropy of black holes in higher derivative gravity theories. That method is bas
fact that all black holes must obey the first law of thermodynamicsdM5THKdS1•••. Integrating the first law, we have

S5E THK
21dM5E

0

r 1

THK
21S ]M

]r 1
Ddr1 , ~4.5!

where we have imposed the physical assumption that the entropy vanishes when the horizon of black holes shrink
Evidently the entropy gained in this way is independent of the choice of the ground state of black holes. With this form
can obtain easily the entropy of black holes in Eq.~4.1!
8-7
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S55 p l 2F S k1
r 1

2

l 2 D m21

2kG for D52m,

4p~n21!l (
i 50

m22 S m22

i D 1

2i 11 S r 1

l D 2i 11

km222 i for D52m21.

~4.6!
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Now we are ready to check the Cardy-Verlinde formu
with the AdS black holes in higher derivative gravity. Re
caling the metric so that the constant curvature hypersur
has the radiusR, we then have the energyE and temperature
T of the corresponding CFT’s

E5
l

R
M , T5

l

R
THK , ~4.7!

and the entropyS of the CFT’s is still given by the entropy
~4.6! of black holes.

In the case for the even dimensional black holes, nam
D52m, we find the Casimir energy is

Ec5
kr1l

2R H 2m212
l 2

r 1
2 F S k1

r 1
2

l 2 D m21

2kG J , ~4.8!

and furthermore we have

2E2Ec5
r 1l

2R F S 22
l 2

r 1
2

kD S k1
r 1

2

l 2 D m21

2~2m11!k1
l 2

r 1
2

k2G . ~4.9!

So for both casesk561, we cannot put the entropy in Eq
~4.6! into the form of the Cardy-Verlinde formula.

In the case for odd dimensions (D52m21), the Casimir
energy is

Ec5
2~m21!l

R S k1
r 1

2

l 2 D m21

2
2~m21!~2m23!r 1

R (
i 50

m22 S m22

i D 1

2i 11 S r 1

l D 2i 11

3km222 i . ~4.10!

Again, we cannot put the entropy in Eq.~4.6! into the form
of the Cardy-Verlinde formula. To clearly see this, let
consider a special dimensionD55. In this case, the action o
the gravity theory is the Einstein-Hilbert action plus a Gau
Bonnet term. For such a black hole, the entropy is

S58pr 1S k1
r 1

2

3l 2D . ~4.11!

And the Casimir energy for the corresponding CFT is fou
to be
12401
-
ce
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d

Ec5
4kl

R S k2
r 1

2

l 2 D , ~4.12!

and the extensive energy is

2E2Ec5
2l

R F S 2k1
r 1

2

l 2 D 2

25k2G . ~4.13!

This special example clearly indicates that the entropy~4.11!
does not fall into the form of Cardy-Verlinde formula~1.4!.

V. CONCLUSIONS

The Cardy-Verlinde formula recently proposed by E. Ve
linde @2#, relates the entropy of a certain CFT to its tot
energy and Casimir energy in arbitrary dimensions. In
spirit of AdS/CFT correspondence, this formula has be
shown to hold exactly for the cases of AdS Schwarzsch
black holes and AdS Kerr black holes.

In this paper we have further checked the Cardy-Verlin
formula with some typical examples of black holes with Ad
asymptotics. They are hyperbolic AdS black holes, A
Reissner-Nordstro¨m black holes, charged black holes inD
55, D54, and D57 maximally supersymmetric gauge
supergravities, and AdS black holes in higher derivat
gravity. For the hyperbolic AdS black holes, the formu
holds if we choose the ‘‘massless’’ black hole as the grou
state of black holes~otherwise, this formula will no longer
hold!, but in this case, the Casimir energy is found to
negative@see ~2.10!#. Obviously, further investigations ar
needed for the hyperbolic AdS black holes. In fact, the u
derstanding of the AdS/CFT correspondence is poor for
thermodynamics of the hyperbolic black holes so far@17#.

For the AdS Reissner-Nordstro¨m black holes in arbitrary
dimensions and charged black holes inD55, D54, and
D57 maximally supersymmetric gauged supergravities,
Cardy-Verlinde formula can also hold by subtracting t
proper internal energy from the total energy@see Eq.~3.16!#.
The proper internal energy corresponds to the contribution
supersymmetric backgrounds. In the thermodynamics of c
responding CFT’s, we can view the proper internal energy
the zero-temperature energy, which has the contribution
the free energy, but not to the entropy of thermodynam
system. Therefore our result~3.16! is reasonable and can b
viewed as an extension of Cardy-Verlinde formula~1.4!. In
addition, it might be worth mentioning that for the corr
sponding CFT’s to the charged AdS black holes, its press
is given by Eq.~3.14!, namely,p5(E2Eq)/nV. The quan-
tity E2Eq has an interpretation as the thermal excitati
energy of CFT’s.
8-8



ov
ng
is

din
lik
r

s.
the

ci-
t by
i-

CARDY-VERLINDE FORMULA AND AdS BLACK HOLES PHYSICAL REVIEW D 63 124018
We have also considered the AdS black holes in the L
lock gravity and found that the entropy of correspondi
CFT’s cannot be put into the Cardy-Verlinde formula. Th
seems reasonable since the Cardy-Verlinde formula~1.3!
was derived through the assumption that the first sublea
correction to the extensive part of the energy scales
Ec(lS,lV)5l122/nEc(S,V). The corrections from highe
derivative terms are beyond the scope of the scaling.
12401
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