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Shell crossing in generalized Tolman-Bondi spacetimes

Sérgio M. C. V. Gonçalves
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 28 August 2000; published 23 May 2001!

We study the occurrence of shell crossing in spherical weakly charged dust collapse in the presence of a
nonvanishing cosmological constant. We find that shell crossing always occurs from generic time-symmetric
regular initial data, near the center of the matter configuration. For non-time-symmetric initial data, the
occurrence—or lack thereof—of shell crossing is determined by the initial velocity profile, for a given mass
and charge distribution. Physically reasonable initial data inevitably leads to shell crossing~near the center!
before the minimum bounce radius is reached.

DOI: 10.1103/PhysRevD.63.124017 PACS number~s!: 04.20.Dw, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

Tolman-Bondi metrics@1,2# describe the gravitationa
collapse of spatially bounded spherical dust configuration
an otherwise empty spacetime. The model consists of a
eral spherically symmetric metric, matched to a Schwar
child exterior, with the matter content being general inhom
geneous dust. Spherical symmetry implies that the ini
data—two arbitrary functions giving the initial density an
velocity profiles—are a function of the radial coordinater
alone. Since the collapse is pressureless, every shell of
with finite proper radius will collapse through its Schwarz
child radius, become trapped and proceed to become sing
at the center of symmetry in a finite amount of proper tim
~as measured by an observer comoving with the shell!.

For homogeneous dust distributions—Oppenheim
Snyder collapse@3#—all the shells become singular at th
same time, and thus none of the shells cross@4#. For inho-
mogeneous matter configurations, however, the proper
for collapse depends on the~comoving! coordinate radiusr,
and thus the piling up of neighboring matter shells at fin
proper radius can occur, thereby producing two-dimensio
caustics where the energy density and some curvature c
ponents diverge@5#. These singularities can be locally nake
but they are gravitationally weak@6,7#—curvature invariants
and tidal forces remain finite—and, from the viewpoint
geodesic completeness, analytic continuations of the me
can always be found, in a distributional sense, in the ne
borhood of the singularity@8#. In this respect, shell crossing
are not genuine physical singularities; rather, they signal
intersection of matter flow lines at a certain spacelike surf
~in spherically symmetric geometries!, and thus the break
down of the model beyond that surface.~It is worth noting
that they also occur in spherical inhomogeneous Newton
gravitational collapse.!

The inclusion of an electric charge density in spheri
dust models has been considered by various authors@9–11#.
The principal physical motivation for such a generalizati
was the possibility of a ‘‘gravitational bounce’’ at the la
stages of collapse, that could prevent the formation o
black hole @9#. However, a detailed analysis by Ori@12#
showed that shell crossings are inevitable in the collaps
weakly ~the absolute value of the specific charge is less t
unity! charged spherical dust shells. Inner shells are grav
0556-2821/2001/63~12!/124017~10!/$20.00 63 1240
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tionally more weakly bound than outer shells—due to t
larger Lorentz repulsion and weaker gravitational potentia
and thus collapse slower than outer shells, thereby leadin
shell crossingsbefore the ~otherwise! minimum bounce ra-
dius is reached.

One might naively hope that the introduction of a positi
cosmological constant,L, could prevent the occurrence o
shell crossing—thus allowing for singularity avoidance—
increasing the outward acceleration of outer shells with
spect to that of inner shells, i.e., by making outer shells m
weakly bound~since the effective ‘‘gravitational potential’
contains a repulsiveLr 2 term that dominates at large radi!
relative to inner ones.

In this paper, we generalize the existing results for sh
crossing in weakly charged dust collapse, to include the c
tribution of a positive cosmological constant. Our motivati
is fourfold: ~i! Recent observations of high-redshift type
supernovae@13,14# and peculiar motion of low-redshift gal
axies @15#, appear to indicate that the present radius of
universe is accelerating, thus suggesting the existence
positive cosmological constant,L.0; ~ii ! such a non-
vanishing cosmological constant qualitatively changes
standard asymptotically flat picture of charged dust collap
allowing, in particular, for an altogether different caus
structure in the static limit: the Reisser–Nordstro¨m–de Sitter
~RNdS! spacetime@16#; ~iii ! the final exterior geometry o
spherically charged dust configurations is similar to that
~more realistic! neutral rotating configurations@17#; ~iv! the
inclusion of a positive cosmological constant could, conce
ably, prevent the occurrence of shell crossing, there
allowing—at least in principle—for a singularity-fre
‘‘bounce’’ model.

For definiteness, we shall refer to spherically symme
solutions of the Einstein equations with charged dust an
cosmological constant, as generalized Tolman-Bondi m
rics.

Contrary to the naive expectation, we find that the inc
sion of a positive cosmological constant doesnot prevent the
occurrence of shell crossing: the latter always occurs, i
spective of how large~but finite! the former is, for time-
symmetric initial data. For non-time-symmetric initial dat
the occurrence of shell crossing is determined by the stren
of the initial data; for sufficiently steep density gradients a
non-negative initial velocity gradients, a non-zero-meas
©2001 The American Physical Society17-1
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SÉRGIO M. C. V. GONÇALVES PHYSICAL REVIEW D 63 124017
set of shells will cross at finite area radius near the cent
This paper is organized as follows: Sec. II derives

Tolman-Bondi family of metrics from the Einstein equatio
and discusses shell crossings in such spacetimes. In Se
the spherical collapse of weakly charged dust with a cos
logical constant is studied; the Einstein-Maxwell equatio
are reduced to a coupled set of first-order partial differen
equations~PDE’s! and an energy-type equation is obtaine
Section IV gives a proof of the inevitability of shell crossin
near the center, based on a detailed analysis of the sha
the effective potential in the energy equation. In Sec. V,
give an alternative proof of the occurrence of shell cross
in generalized Tolman-Bondi spacetimes, based on the po
particle–dust-shell analogy~free surface approximation!.
Section VI contains an analysis of the uncharged case,
L.0. Section VII concludes with a discussion and su
mary.

Natural geometrized units, in whichG5c51, are used
throughout.

II. TOLMAN-BONDI SPACETIMES

For completeness, we present here a brief descriptio
Tolman-Bondi metrics and shell crossings in neutral d
collapse in asymptotically flat spacetimes.

The Tolman-Bondi family of solutions is given by
spherically symmetric metric, written here in normal Gau
ian coordinates$t,r ,u,f%:

ds252dt21e22C(t,r )dr21R2~ t,r !dV2, ~1!

dV[du21sin2udf2, ~2!

together with the stress-energy tensor for dust:

Tab5r~ t,r !uaub5rda
t db

t , ~3!

whereua5d t
a is the 4-velocity of a dust element andr(t,r )

the energy density.
With the metric~1!, the independent non-vanishing Ein

stein tensor components are

Gtt5R22@2Re2C~2R8C812R91R21R82!

22ṘĊR111Ṙ2#, ~4!

Grt522R21~Ṙ81R8Ċ!, ~5!

Grr 52R22@e22C~2R̈R1Ṙ211!2R82#, ~6!

Guu5sin22uGff

5R~ṘĊ1R8C8e2C1R9e2C2R̈1C̈R2Ċ2R!,

~7!

where the overdot and prime denote partial differentiat
with respect tot and r, respectively.

Introducing the auxiliary functions

k~ t,r ![12e2CR82, ~8!
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m~ t,r ![
1

2
R~Ṙ21k!, ~9!

Einstein’s equations1 simplify greatly to

Ṙ252mR212k, ~10!

k̇50, ~11!

ṁ50, ~12!

with the constraint

m854pR2R8Ttt . ~13!

The model is then reduced to a single first-order PDE for
area radiusR(t,r ), given by Eq.~10! with

m~r !54pE
0

r

R2~0,r̃ !R8~0,r̃ !r~0,r̃ !dr̃. ~14!

If m(r ) tends to a constant at spatial infinity, thenM
5 limr→1`m(r ) is the ADM mass of the spacetime.

The metric~1! with e2C5@12k(r )#/R82, together with
Eqs.~10! and~13!, fully determine the Tolman-Bondi family
of solutions. Included in this family are the Schwarzsch
metric (m5const), the Einstein–de Sitter universe (R
}rt 2/3, k50), and the closed Friedmann universe@R
5ra(t), k5r 2].

The general2 (k.0) Tolman-Bondi solution can be easil
obtained by parametric integration of Eq.~10!:

t~h,r !5t0~r !1mk23/2~h1sinh!, ~15!

R~h,r !5
2m

k
cos2S h

2 D , ~16!

where 0<h<p, and t0(r ) is an arbitrary constant of inte
gration to be fixed by the initial data,Ṙ(0,r )[v(r ), via

t0~r !5mv23 tan3S h0~r !

2 D @h0~r !1sinh0~r !#. ~17!

For time-symmetric initial data,v(r )5t0(r )50, which im-
plies k(r )52m/r .

1Since there are only three functions to be determined and
equations, only three of these are independent, with the remai
one acting as a constraint. We take Eqs.~10!–~12! as our complete
set, and Eq.~13! as the constraint equation, since it provides
simple relation between the initial data and the initial mass profi

2The k.0 solution corresponds to gravitationally bound config
rations, and thek50 case—discussed below—to marginally bou
systems. For the unbound case,k,0, an analytical solution has als
been obtained in closed form~see e.g.@18# for a systematic treat-
ment of spherical dust spacetimes!, but it is of little interest to the
implosion situation we are interested in.
7-2
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The radial coordinater is merely a label for the differen
shells, and we can therefore fix the radial coordinate ga
by equating the initial area radius to the coordinate radiu

R~0,r !5r , ~18!

so that Eqs.~15! and ~16! simplify to

t~h,r !5S r 3

8mD 1/2

~h1sinh!, ~19!

R~h,r !5r cos2
h

2
. ~20!

A shell with initial proper area 4pr 2 will thus collapse to
vanishing area radius in a~comoving! time

tcoll~r !5pA r 3

8m
. ~21!

For inhomogeneous mass distributions (mÞconst3r 3), dif-
ferent shells become singular at different times; in the hom
geneous case, all the shells collapse to zero area radius a
same time@4#.

The relevant derivatives of the area radius are

R85cos2S h

2 D1
r

4 S 3

r
2

m8

m D ~h1sinh!tanS h

2 D , ~22!

Ṙ52A2m

r
tanS h

2 D . ~23!

Shell crossing in Tolman-Bondi spacetimes

In the context of Tolman-Bondi metrics, shell crossin
are defined by the loci of events given by

R850 and R.0. ~24!

At R5R850, a shellfocusingsingularity is said to occur
Unlike shell crossings, this central shell focusing singular
does not admit any metric extension through it and
spacetime is therefore geodesically incomplete~see e.g.
@19#!. It has been shown that shell focusing singularities c
be naked@20,21# and gravitationally strong~finite physical
volumes are ‘‘crushed’’ to zero at the singularity; see@22#
and references therein!, although massless@23#. For the re-
mainder of this paper we shall be concerned only with sh
crossing singularities, as defined by Eq.~24!.

Clearly, the necessary and sufficient condition for sh
crossings is

tcoll8 ,0, ~25!

which is a condition on the initial mass distribution:

m8

m
.

3

r
. ~26!
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Only sufficiently steep density distributions can provide
large enough specific binding energy,k(r ), that allows outer
shells to overlap inner ones. This condition is the same
that obtained by requiringR850, with R8 given by Eq.~22!.

Marginally bound configurations

The special case ofk(r )50 corresponds to a marginall
bound matter configuration. It is the simplest case, and
the relevant expressions can be obtained analytically
closed form.

The dynamical equation

Ṙ25
2m

R
, ~27!

is trivially integrated to

R~ t,r !5r F12
t

tc~r !G
2/3

, ~28!

where

tc~r !5A2r 3

9m
~29!

is the proper time for the complete collapse of a spher
shell with initial area radiusr. Shell crossings occur when

R85S 12
t

tc
D 21/3F12

t

tc
1tcg~r !G50, ~30!

g~r ![12
r

3

m8

m
. ~31!

R8 vanishes at

ts5tc~11tcg!. ~32!

Hence, the necessary and sufficient condition for shell cro
ing is

ts,tc , ~33!

which is exactly the same as the one for the time-symme
k.0 case,m8/m.3/r . @Note, however, that thek50 case
corresponds to non-time-symmetric initial data,Ṙ(0,r )
56A2m/r .#

III. GENERALIZED TOLMAN-BONDI SPACETIMES

We consider a generalization of the original Tolma
Bondi metrics that includes a charge density distribut
m(t,r ) and a cosmological constantL. As pointed out by Ori
@11#, the existence of a non-vanishing charge density imp
that the charged matter shells do not follow geodesic mot
and thus their comoving timet no longer equals proper tim
t, which precludes the use of Gaussian normal coordina
7-3
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(gtt521). We therefore consider a general spherically sy
metric metric in the standard spherical coordina
$t,r ,u,f%:

ds252e2F(t,r )dt21e22C(t,r )dr21R2~ t,r !dV2, ~34!

where R(t,r ) is the proper area radius anddV25du2

1sin2udf2 is the canonical metric of the unit two-sphere.
The stress-energy tensor is that of a charged dust fl

with a cosmological constant,L:

Tab5
1

4p S FacFb
c2

1

4
gabFdeF

deD1ruaub2
L

8p
gab ,

~35!

whereFab is the Maxwell tensor,r is the energy density
and ua5e2Fd t

a is the four-velocity of a charged dust ele
ment.Fab is constrained by the Maxwell equations

¹bFab524p j a, ~36!

¹ [aFbc]50, ~37!

where the four-current isj a5mua, andm is the charge den
sity. Spherical symmetry implies that the only non-vanish
component of the Maxwell tensor can be chosen to be

Frt5eF2C
Q

R2
, ~38!

whereQ(t,r ) is the total charge inside a shellS t with proper
area 4pR2(t,r ):

Q~ t,r !5E
S t

j adSa

5E
0

2pE
0

pE
0

r
A2g j tdr̄dudf54pE

0

r

me2CR2dr̄.

~39!

With the metric ~34! the non-vanishing Einstein tenso
components are

Gtt5
e2(F1C)

R2
@R8212R~R91C8R8!#2

Ṙ

R2
~Ṙ12RĊ!,

~40!

Gtr5
2

R
~Ṙ82ṘF81ĊR8!, ~41!

Grr 5
e22(C1F)

R2
@2RR̈1Ṙ~Ṙ22RḞ!#2

R8

R2
~R812RF8!,

~42!

Guu52R$e22F@2R̈1Ṙ~Ḟ1Ċ!1R~C̈2Ċ22ĊḞ!#

1e2C@R91R8~F81C8!1R~F91F821F8C8!#%,

~43!
12401
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Gff5sin2uGuu . ~44!

The non-vanishing components of the stress-energy te
are

Ttt5
e2F

8p S Q2

R4
1L18pr D , ~45!

Trr 5
e22C

8p S 2L2
Q2

R4 D , ~46!

Tuu5sin22uTff5
R2

8p S 2L1
Q2

R4 D . ~47!

Introducing the auxiliary functions

k~ t,r ![12e2CR82, ~48!

m~ t,r ![
1

2
RS e22FṘ21k1

Q2

R2
2

L

3
R2D , ~49!

the Einstein-Maxwell equations can be recast as

e22FṘ252Q2R2212mR212k1
L

3
R2, ~50!

k̇52
Ṙ

R8
~k21!F8, ~51!

ṁ50, ~52!

Q̇50, ~53!

m854pR2R8r1QQ8R211
L

2
R2R8, ~54!

Q854pR2e2Cm. ~55!

Equation~50! is just Eq.~49!; Eqs.~51!–~54! follow directly
from the Einstein equations, and Eq.~55! follows from Eq.
~39!. The equation fork8 is algebraically complicated and
proves more convenient to use an equivalent equation g
by the local conservation of energy-momentum,¹aTb

a50
~where we tookb[r ):

QQ854prR4F8. ~56!

This equation expresses the balance between Lorentz
gravitational ‘‘forces’’ in the comoving frame. The othe
equation (b[t) from the local conservation of energy
momentum gives the conservation of specific charge:

] tS m

r D[ė50. ~57!

Equations~48!, ~50!, ~51!, and~56! form a complete set; the
remaining independent equations are constraints. We h
thus reduced the Einstein-Maxwell system to a set of coup
7-4
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first-order PDE’s. It is not the purpose of the present pape
obtain an explicit general solution in closed form—this h
been done, in a different coordinate system, by Ori@11#. As
we shall see shortly, first integrals of the equations of mot
suffice to prove the inevitability of shell crossings in gen
alized Tolman-Bondi models.3

Using Eqs.~48!, ~55!, and~56!, Eq. ~51! integrates to

k~R,r !512Fe Q

R
1W~r !G2

, ~58!

whereW(r ) is a free function to be fixed by the initial data
via Eq. ~50! evaluated att50. Comparison with the neutra
case, leads to the interpretation ofW as a measure of th
binding energy of the system per unit mass. ForL50, the
configuration is gravitationally unbound, marginally boun
or bound, whenW.1, W51, or W.1, respectively.

For time-symmetric initial data,Ṙ(0,r )50, with the scal-
ing R(0,r )5r , we have then

W~r !5e
Q

r
1A12

2m

r
1

Q2

r 2
2

L

3
r 2, ~59!

where the ‘‘1 ’’ sign was fixed by consistency with th
asymptoticL5Q50 limit.

Regularity at the origin requires@10#

lim
r→01

Q

r
50, ~60!

lim
r→01

m

r
50, ~61!

lim
r→01

ueu5ue0uP~0,1!, ~62!

which implies

W~0![W051. ~63!

Summarizing, the only non-trivial dynamical equation is

e22FṘ21U~R,r !50, ~64!

with the effective potential

U~R,r !5a01a1R211a2R221a3R2, ~65!

a0~r !512W2, ~66!

a1~r !52mS e
Q

m
W21D , ~67!

a2~r !5Q2~12e2!, ~68!

3This is essentially due to the fact that shell crossings aredynami-
cal processes, whence the knowledge of the first ‘‘time’’ derivat
of the spheres’ radii suffices to analyze theirrelative motion.
12401
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a352
L

3
. ~69!

IV. EFFECTIVE POTENTIAL ANALYSIS

In this section, we prove two propositions that show th
shell crossing is inevitable in~weakly charged! generalized
Tolman-Bondi spacetimes.

Proposition 1. For weakly charged initial data, there e
ists r * .0, such that the effective potentialU(R,r ) has, for
r P(0,r * ), three distinct real positive zeros,R1,R2,R3,
satisfying~see Fig. 1!

U~R1,R,R2 ,r !,0, ~70!

U~R2,R,R3 ,r !.0. ~71!

Sketch of the proof.We prove the above proposition b
showing that for 0,r ,r * !1, U(R,r ) has a local negative
minimum at Rm.0 and a local positive maximum atRM
.Rm. Since limR→01U51` and limR→1`U52`, it fol-
lows thatU(R,r ) has three distinct real positive zeros, obe
ing conditions~70!,~71!.

Proof. Let us rewrite

U~R,r !5a3R22H~R,r !, ~72!

H~R,r !5R41c2R21c1R1c0 , ~73!

c0[2
3

L
Q2~12e2!, ~74!

c1[2
6

L
mS eW

Q

m
21D , ~75!

c2[2
3

L
~12W2!. ~76!

The relevant limits are now

FIG. 1. Effective potentialU(R,r ) and auxiliary polynomial
H(R,r )}R2U(R,r ), for r P(0,r * ). Without shell crossing, a
spherical shell with initial area radiusR(0,r )5r 5R2 would col-
lapse towards decreasing values ofR until reaching the minimum
bounce radiusRm5R1 at some later timetm . However, shell cross-
ing is inevitableat tscP(0,tm).
7-5
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lim
R→01

H5c0,0, ~77!

lim
R→1`

H51`. ~78!

Although the local extrema ofU are different from those o
H, all ~non-zero! roots ofH are also roots ofU, and we can
thus study the qualitative behavior ofU by analyzingH and
its first partial derivative with respect toR:

1

4

]H

]R
5R31

1

2
c2R1

1

2
c1 . ~79!

Now, ]RH has three distinct real zeros provided@24#

S W221

2 D 3

,2LF6mS eW
Q

m
21D G2

. ~80!

Since the right-hand side of the inequality is manifes
negative, this requiresW,1. Taylor expandingQ(r ) and
m(r ) near the origin, using Eqs.~54!–~56!, and Eq.~58!
evaluated att50, with the scalingR(0,r )5r , we have

W~r !512FL3 1
4p

3
r0~12e0

2!G r 21O~r 4!, ~81!

for r P(0,j1), wherej1!1. Condition~80! is trivially satis-
fied for 0,r ,j1.

We will now show that of the three real roots of]RH, two
are positive, sayR̃1 and R̃2, such thatH(R̃1)H(R̃2),0,
thereby guaranteeing thatH has a local positive maximum a
R̃1P(R1 ,R2) and a local negative minimum atR̃2
P(R2 ,R3).

The rootsR̃i ( i 51,2,3) of the polynomial]RH satisfy
@24#

(
i

R̃i50, ~82!

(
iÞ i

R̃i R̃j5
3

2L
~W221!, ~83!

) R̃i5
3m

2L S eW
Q

m
21D , ~84!

and can be explicitly given as

R̃152Ax cosS Q

3 D , ~85!

R̃252Ax cosS Q

3
1

2p

3 D , ~86!

R̃352Ax cosS Q

3
1

4p

3 D , ~87!

where
12401
x5
12W2

2L
, ~88!

cosQ53AL

2

eQW2m

~12W2!3/2
. ~89!

Since cos is anti-periodic inp and the trigonometric argu
ments in Eqs.~85!,~86! are separated by a 2p/3 phase, it
suffices to require that two of the roots are positive, the th
one being then necessarily negative. We therefore imp
p/2,Q,3p/2 ~thereby guaranteeing thatR̃1 and R̃2 are
positive!, which translates to

3mS 12eW
Q

mD,A2

L
~12W2!3/2. ~90!

Near the origin, for 0,r ,j2!1, this becomes

4

AL
F4p

3
r0~12e0

2!1
L

3 G3/2

r 3/21O~r 3!.0, ~91!

which is trivially satisfied; thusR̃1 and R̃2 are positive, for
r P(0,j2).

Now, it remains to show thatH(R̃1)H(R̃2),0. From Eq.
~73! together with properties~82!–~84!, and settingR̃35
2x, we obtain

H~R̃1!H~R̃2![ f ~x!

52
1

4 S c2

4 D 2

c1
2x222F1

4
c0c1c21S c1

4 D 3Gx21

2
3

4
c0c1x1c0

21
3

2 S c1

4 D 2

c2 . ~92!

Using Eqs.~74!–~76!, it is straightforward to check thatf is
a monotonically increasing function ofx. From Eq.~87! we
havex<A2c2/6[xM . Thus, it suffices to show thatf (xM)
,0:

c0
2F12

3

4
c1A2c2

6 S 12
A2/3

c0
D G2S c1

4 D 3A 6

2c2
,0.

~93!

Near the origin, forr P(0,j3), with j3!1, we have

2A 6

2a2
S a1

4 D 3

r 81O~r 10!, ~94!

where

a15
6

L S 4p

3
r01

L

3 D ~12e0
2!, ~95!

a252
3

L F4p

3
r0~12e0

2!1
L

3 G . ~96!
7-6
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Condition ~93! is manifestly satisfied; henceH(R̃1)H(R̃2)
,0, for 0,r ,j3.

Now, let us taker * 5min $j1 ,j2 ,j3%, such that forr
P(0,r * ) conditions~80!, ~90!, and ~93! are mutually satis-
fied.

Summarizing, we have shown that there existsr * .0,
such that forr P(0,r * ), ]RH has two distinct real positive
zeros, corresponding to the local extrema ofH(R,r ). We
have further shown that the product of the local extrema oH
is negative, which implies thatH has three distinct real pos
tive roots, since limR→01H5c0,0 and limR→1`H51`.
By construction, these are thesamezeros ofU(R,r ). Since
U(R,r )5a3(r )R22H(R,r ) and a3,0, it follows that
U(R,r ) is negative for RP(R1 ,R2) and positive for R
P(R2 ,R3), as desired.h

Proposition 2. Consider a general solution of Eq.~50!,
with parameters$Q,m,L% satisfying proposition 1, and th
spacetime metric determined by that solution. In such
spacetime, shell crossing always occurs from regular tim
symmetric initial data, for a non-zero-measure set of sph
cal weakly charged matter shells.

Proof. For r .0, limR→01U(R,r )51` and
limR→1`U(R,r )52`. SinceU is C` with respect toR, this
implies—from Eq.~50!—that there is a timetm.0 such that

Ṙ~ tm,r !50. ~97!

Let us then defineRm(r )[R(tm,r ).
Taking the total derivative of Eq.~50! with respect tor,

we obtain

2e22FṘṘ822F8e22FṘ21
]U

]R
R81U850. ~98!

For time-symmetric initial data,Ṙ(0,r )50, and thus, from
Eqs.~97!,~98! we have

R8~0,r !52U8~r ,r !Y S ]U

]RD
R5r

, ~99!

R8~ tm,r !52U8~Rm,r !Y S ]U

]RD
R5Rm

. ~100!

We now examine the signs of the numerators in the eq
tions above. From Eq.~64! we have

U8~r ,r !5a081a18r
211a28r

22, ~101!

U8~Rm,r !5a081a18Rm
211a28Rm

22 . ~102!

Setting R(0,r )5r 5R2 and Rm(r )5R1, it follows from
proposition 1 thatRm(r ),r , and we thus can setRm5b r r
for any given shellr, whereb r,1 depends onr. Near the
origin, for 0,r ,r !!1, we have then

U8~r ,r !52F8p

3
r0~12e0

2!1LS 5

3
2e0

2D G r 1O~r 3!,

~103!
12401
a
e-
i-

a-

U8~Rm,r !52F S 6

b r
24D 4p

3
r0~12e0

2!

1
L

b r
S 12e0

21
2

3
b r D G r 1O~r 3!. ~104!

Both numerators are manifestly negative, forr P(0,r !).
Now, from proposition 1, we have (]U/]R)R5r.0 and

(]U/]R)R5Rm
,0. Since U(0,r )5U(tm,r )50, it follows

from Eqs.~99!,~100! that

R8~0,r !

R8~ tm,r !
,0. ~105!

Hence, by continuity, there is a timetscP(0,tm), such that

R8~ tsc,r !50, ; r P~0,min$r * ,r !%!. ~106!

This completes the proof.h

V. FREE SURFACE APPROACH ANALYSIS

This section gives an alternative proof of the inevitabil
of shell crossing in spherical weakly charged dust colla
with a cosmological constant. It relies on an immediate c
sequence of the generalized Birkhoff theorem@25# ~which
can be extended to include a cosmological constant@26#!, the
so-called free surfaceapproach: as long as shells do n
cross, their motion will depend solely on their total interi
charge and mass, and thus each shell will move indep
dently ~albeit not geodesically! like a test particle in a RNdS
background, with mass and charge equal to the total m
and charge of that shell~see e.g.@12#!.

A. Particle motion in a Reisser–Nordström–de Sitter
geometry

In Schwarzschild coordinates$t,r ,u,f%, the RNdS metric
reads

ds252Ddt21D21dr21r 2dV2, ~107!

D~r ![12
2M

r
1

Q̄2

r 2
2

L

3
r 2, ~108!

where dV25du21sin2udf2 is the canonical metric of the
unit two-sphere.

The action for a particle of massm̄ and chargeq is

S@xa,e#5E dlS 1

2
e21ẋaẋbgab2

1

2
m̄2e2qẋaAaD ,

~109!

where l is an affine parameter along the particle’s worl
line, Aa5(Q̄/r )da

t is the electromagnetic four-potential, an
e5e(l) is theeinbein, an independent function that gene
alizes the action for a point particle@27#.

It is straighforward to show~cf. Appendix! that if
7-7
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~LjA!a[jbAa,b1Abj ,a
b 50, ~110!

for a Killing vector fieldja, thenS is invariant, to first order
in ja, under the transformationxa→xa1sja, wheresPR.
Denoting bypa5m̄ua2qAa the generalized momentum o
the particle, it then follows that the corresponding Noeth
charge,E5japa , is a constant of motion:

dE
dl

5~pa¹bja1ja¹bpa!ub5m̄uaub¹bja1q~LjAa!ua50.

~111!

One of the trivial Killing vectors of the RNdS metric i
j (t)5] t . Thus, with the metric~107!, we have

E5j t~m̄ut2qAt!5m̄D
dt

dt
1q

Q̄

r
, ~112!

wheret is the particle’s proper time. Since the geometry
not asymptotically flat, the constant of motionE cannot be
interpreted as the particle’s total energy measured at sp
infinity; it should be regarded as an effective energy, t
coincides with the particle’s total energy at infinity in th
L→0 limit.

From Eq.~107! we have, for a timelike radial world line

DS dt

dt D 2

511D21S dr

dt D 2

, ~113!

which, together with Eq.~112!, gives

S dr

dt D 2

1V~r !50, ~114!

V~r !5~12W̄2!2S 12W̄ē
Q̄

M
D 2M

r
1~12 ē2!

Q̄2

r 2
2

L

3
r 2,

~115!

where W̄[E/m̄ is the particle’s specific effective energ
and ē[q/m̄ its specific charge.

B. Shell crossing analysis

Equation~114!, which governs the radial motion of tes
particles with specific chargee5q/m̄ in a RNdS geometry
with fixedtotal chargeQ̄ and massM, will coincide with Eq.
~64!, which governs the radial motion of charged dust she
with total interior chargeQ(r ) and massm(r ), provided we
make the following formal identifications@and setF50 in
Eq. ~64!, thereby identifying proper and comoving times#:

r 5R, ~116!

W̄5W, ~117!

M5m, ~118!

Q̄5Q, ~119!
12401
r

ial
t

s

ē5
Q

m
. ~120!

The potentialV(r ) reads then

V~r !5~12W2!2S 12We
Q

mD 2m

r
1S 12

Q2

m2D Q2

r 2
2

L

3
r 2.

~121!

It governs the radial motion of a charged dust shell w
proper area 4pr 2 and specific chargee(r )5Q(r )/m(r ), in a
RNdS background metric with total massm(r ) and charge
Q(r ). In the free surface approach, the only—but crucia
difference between shell and particle motion in a RN
background, is that the latter travels on a fixed geome
whereas the former travels on a geometry that is determ
by the interior mass and charge of each shell.

Let us now consider two infinitesimally close shells, wi
wordlinesr 0(t) and r 1(t)5r 01j ~where 0,j!1), which
are solutions of Eq.~114! with V(r ),0. As shown in Fig. 2,
these two neighboring shellswill cross provided

S dr

dt D
r 0

.S dr

dt D
r 01j

. ~122!

From Eq. ~114!, this translates intoV(r 01j),V(r 0). Ex-
pandingV(r 01j)5V(r 0)1V8(r 0)j1O(j2), to first order
in j we have thenV8(r 0)j,0. Sincej.0, the condition for
shell crossing is simply~dropping the ‘‘0’’ index!

V8~r !,0. ~123!

Evaluating Eq.~121! near the origin, for 0,r ,r c!1, this
condition becomes

2e0
2 L

3 S 11
L

8pr0
D 21

r 1O~r 3!.0, ~124!

FIG. 2. Shell crossing for spherical weakly charged dust c
lapse in t2r coordinates. Forr 0P(0,r c), any two neighboring
shells,r 0 and r 01j, will cross each other att5tsc, whenV8(r 0)
.0.
7-8



o
or

te
S

y

e

l

or

th

tly
r-

te

s-
be

or

o-

eu-

sing
nal

ple
he
ate
in-
ore
ter-

ear
l is

ll

ini-
me-

as
ds
m
i-
n

or
is

,

rre-
t

for
he
f

SHELL CROSSING IN GENERALIZED TOLMAN-BONDI . . . PHYSICAL REVIEW D 63 124017
which is clearly satisfied forr P(0,r c). Shell crossing is in-
evitable near the center.

VI. NEUTRAL CASE

In this section, we analyze separately the occurrence
shell crossings for neutral dust spheres in the presence
positive cosmological constant, which is a simpler and m
realistic model for macroscopic astrophysical objects.

Since there is no elecrostatic repulsion acting on the
particles, they move geodesically in a Schwarzschild–de
ter geometry@26#. We can therefore setgtt521, thereby
identifying proper and comoving times. The relevant d
namical equation is then

Ṙ21U~R,r !50, ~125!

U~R,r !512W22
2m

R
2

L

3
R2.

~126!

We consider here the particular case ofW51, corre-
sponding to a gravitationally unbound configuration, sinc
allows for an analytical solution in closed form:

R~ t,r !5S 6m

L D 1/3

sinh2/3u~ t,r !, ~127!

u~ t,r ![
A3L

2
@ tc~r !2t#, ~128!

wheretc(r ) is an arbitrary function to be fixed by the initia
velocity profile via

Ṙ~0,r !52AL

3
r cothSA3Ltc

2 D . ~129!

The relevant derivatives of the area radius are

R8~ t,r !5RS m8

3m
1AL

3
tc8 cothu D , ~130!

Ṙ~ t,r !52AL

3
R cothu. ~131!

Sinceu cothu.0, the necessary and sufficient condition f
shell crossings is

tc8,0. ~132!

A trivial example is tc51/r . For small r, 3m/m8.r , and
cothu.1/u. Solving forR850 near the origin yields then

tsc~r !.
1

3r
,tc , ~133!

thus confirming the occurrence of shell crossing near
center.

Since the initial velocity profile@cf. Eq. ~129!# is a mono-
tonically increasing function oftc(r ), the conditiontc8,0 is
12401
of
f a
e

st
it-

-

it

e

simply the requirement that outer shells have a sufficien
larger inward initial radial velocity than inner ones, to ove
come the~comparatively larger, for outer shells! repulsive
effect ofL, thereby leading to shell crossing before comple
collapse.

We note that sinceW51 corresponds to unbound sy
tems, the above criterion for shell crossing is likely to
relaxed for bound configurations. ForW,1, for each shellr,
there is a critical valueLc(t)—which is the root of Eq.~126!
for fixed r—such that the system is gravitationally bound f
L,Lc , and unbound forL.Lc .

VII. DISCUSSION AND CONCLUSIONS

We have shown that the inclusion of a positive cosm
logical constant in spherical charged dust collapse doesnot
prevent the occurrence of shell crossing near the center. H
ristically, this can be explained by the fact thatL has a long
range effect, whereas the relevant physics for shell cros
occurs near the center, where Lorentz and gravitatio
‘‘forces’’ compete and theL repulsion is negligible.

Although the free surface approach yields a rather sim
method for proving the inevitability of shell crossing near t
center, being a purely kinematical analysis it cannot rel
the initial data to the motion of the shells. Reducing E
stein’s equations to first integrals of motion enabled a m
physical analysis, where the dynamics of collapse is de
mined by the choice of initial data.

Proposition 1 showed that in a small neighborhood n
the center of the matter distribution, the effective potentia
such that a shell with initial area radiusr 5R2 will collapse
towards smaller values ofR and, provided there is no she
crossing, reach the minimum bounce radiusR1. Proposition
2 showed that for a such a shell@R(0,r )5r 5R2# shell cross-
ing will inevitablyoccurbeforethe minimum bounce radius
is reached.

Proposition 2 used the assumption of time-symmetric
tial data. This ansatz is by no means essential. For non-ti
symmetric implosion situations, two possibilities arise:~i!
the initial data is sufficiently strong, such thatall shells have
Ṙ(0,r ),0, or ~ii ! a non-zero-measure set of shells h
Ṙ(0,r ).0, and therefore initially starts to expand towar
increasing values ofR, until each shell reaches a maximu
area radiusRmax(r ) and then collapses back through its in
tial radius. Case~ii ! reduces to the time-symmetric situatio
whenR(t,r )5Rmax and is thus covered by proposition 2. F
case~i!, the occurrence—or lack thereof—of shell crossing
determined by the initial velocity profile,v(r )[Ṙ(0,r ) for a
given massm(r ) and chargeQ(r ) @hence specific charge
e(r )# distribution. Clearly, if v,0 and v850 then shell
crossing will occur, since it does whenv5v850: all the
shells are differentially accelerated in the same manner, i
spective of their initial velocity profile. It then follows tha
shell crossing will occur for anyv(r ),0, providedv8<0.

For the neutral case, shell crossing occurs—even
gravitationally unbound matter configurations—provided t
initial velocity profile is sufficiently steep, irrespective o
how large~but finite! L may be. Unlike Lorentz ‘‘forces,’’
7-9
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which become more noticeable as collapse proceeds an
area radius of the shells decreases, theL repulsion becomes
increasingly unimportant at late times~i.e., in the strong-field
region, at small radii!, whence the criterion for shell crossin
becomes analogous to that for uncharged dust collapse i
asymptotically flat spacetime.
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APPENDIX

Consider the following action:

S@xa,e#5E dlS 1

2
e21ẋaẋbgab2

1

2
m2e2qẋaAaD ,

~A1!

where l is an affine parameter along the particle’s wo
line, Aa is the electromagnetic four-potential, ande5e(l) is
o
tte
ies
th

se

is
l

ss

n

t.

12401
the

an

the einbein. Assume that there is a Killing vector fieldja,
such that (LjA)a50. Under the transformationxa→ x̄a5xa

1sja, wheresPR, to first order ins we have

ẋa→ ẋ̄5 ẋa1sj ,c
a xc, ~A2!

gab→ḡab5gab1sgab,cj
c, ~A3!

Aa→Āa5Aa1sAa,cj
c. ~A4!

The actionS@xa,e# becomes then

S̄5E dlF1

2
e21~ ẋa1sj ,c

a xc!~ ẋb1sj ,c
b xc!~gab1sgab,cj

c!

2
1

2
m2e2q~ ẋa1sj ,c

a xc!~Aa1sAa,cj
c!G

5S1
s

2E dl@e21ẋaẋb~Ljg!ab22~LjA!cj
c#5S.h ~A5!
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