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Shell crossing in generalized Tolman-Bondi spacetimes
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We study the occurrence of shell crossing in spherical weakly charged dust collapse in the presence of a
nonvanishing cosmological constant. We find that shell crossing always occurs from generic time-symmetric
regular initial data, near the center of the matter configuration. For non-time-symmetric initial data, the
occurrence—or lack thereof—of shell crossing is determined by the initial velocity profile, for a given mass
and charge distribution. Physically reasonable initial data inevitably leads to shell crossargthe center
before the minimum bounce radius is reached.
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[. INTRODUCTION tionally more weakly bound than outer shells—due to the
larger Lorentz repulsion and weaker gravitational potential—
Tolman-Bondi metrics[1,2] describe the gravitational and thus collapse slower than outer shells, thereby leading to
collapse of spatially bounded spherical dust configurations ishell crossingdefore the (otherwise minimum bounce ra-
an otherwise empty spacetime. The model consists of a gerius is reached.
eral spherically symmetric metric, matched to a Schwarzs- One might naively hope that the introduction of a positive
child exterior, with the matter content being general inhomo-cosmological constant), could prevent the occurrence of
geneous dust. Spherical symmetry implies that the initiashell crossing—thus allowing for singularity avoidance—by
data—two arbitrary functions giving the initial density and increasing the outward acceleration of outer shells with re-
velocity profiles—are a function of the radial coordinate spect to that of inner shells, i.e., by making outer shells more
alone. Since the collapse is pressureless, every shell of dusteakly bound(since the effective “gravitational potential”
with finite proper radius will collapse through its Schwarzs-contains a repulsivé r? term that dominates at large radii
child radius, become trapped and proceed to become singuleglative to inner ones.
at the center of symmetry in a finite amount of proper time In this paper, we generalize the existing results for shell
(as measured by an observer comoving with the shell crossing in weakly charged dust collapse, to include the con-
For homogeneous dust distributions—Oppenheimeriribution of a positive cosmological constant. Our motivation
Snyder collapsé3]—all the shells become singular at the is fourfold: (i) Recent observations of high-redshift type la
same time, and thus none of the shells ci@ds For inho-  supernova¢13,14] and peculiar motion of low-redshift gal-
mogeneous matter configurations, however, the proper timaxies[15], appear to indicate that the present radius of the
for collapse depends on tlfeomoving coordinate radius, universe is accelerating, thus suggesting the existence of a
and thus the piling up of neighboring matter shells at finitepositive cosmological constantA>0; (ii)) such a non-
proper radius can occur, thereby producing two-dimensionalanishing cosmological constant qualitatively changes the
caustics where the energy density and some curvature corstandard asymptotically flat picture of charged dust collapse,
ponents diverggs]. These singularities can be locally naked, allowing, in particular, for an altogether different causal
but they are gravitationally wedl6, 7l—curvature invariants  structure in the static limit: the Reisser—Nordstrede Sitter
and tidal forces remain finite—and, from the viewpoint of (RNdS spacetime16]; (iii) the final exterior geometry of
geodesic completeness, analytic continuations of the metrispherically charged dust configurations is similar to that of
can always be found, in a distributional sense, in the neightmore realisti¢ neutral rotating configuratiofd.7]; (iv) the
borhood of the singularit}8]. In this respect, shell crossings inclusion of a positive cosmological constant could, conceiv-
are not genuine physical singularities; rather, they signal thably, prevent the occurrence of shell crossing, thereby
intersection of matter flow lines at a certain spacelike surfacallowing—at least in principle—for a singularity-free
(in spherically symmetric geometriesand thus the break- ‘“bounce” model.
down of the model beyond that surfadd. is worth noting For definiteness, we shall refer to spherically symmetric
that they also occur in spherical inhomogeneous Newtoniasolutions of the Einstein equations with charged dust and a
gravitational collapse. cosmological constant, as generalized Tolman-Bondi met-
The inclusion of an electric charge density in sphericalrics.
dust models has been considered by various aufi®er$1]. Contrary to the naive expectation, we find that the inclu-
The principal physical motivation for such a generalizationsion of a positive cosmological constant does prevent the
was the possibility of a “gravitational bounce” at the late occurrence of shell crossing: the latter always occurs, irre-
stages of collapse, that could prevent the formation of apective of how larggbut finite) the former is, for time-
black hole[9]. However, a detailed analysis by Orl2]  symmetric initial data. For non-time-symmetric initial data,
showed that shell crossings are inevitable in the collapse dhe occurrence of shell crossing is determined by the strength
weakly (the absolute value of the specific charge is less thaof the initial data; for sufficiently steep density gradients and
unity) charged spherical dust shells. Inner shells are gravitanon-negative initial velocity gradients, a non-zero-measure
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set of shells will cross at finite area radius near the center.
This paper is organized as follows: Sec. Il derives the m(t,r)=
Tolman-Bondi family of metrics from the Einstein equations
and discu'sses shell crossings in such spacetimgs. In Sec. IHinstein’s equatiortssimplify greatly to
the spherical collapse of weakly charged dust with a cosmo-
logical constant is studied; the Einstein-Maxwell equations R2=2mR 1—k (10)
are reduced to a coupled set of first-order partial differential '
equationgPDE’s) and an energy-type equation is obtained.
Section IV gives a proof of the inevitability of shell crossing,
near the center, based on a detailed analysis of the shape of .
the effective potential in the energy equation. In Sec. V, we m=0, (12)
give an alternative proof of the occurrence of shell crossing )
in generalized Tolman-Bondi spacetimes, based on the poinWith the constraint
particle—dust-shell analogyfree surface approximation.
Section VI contains an analysis of the uncharged case, with
A>0. Section VIl concludes with a discussion and sum-
mary.
Natural geometrized units, in whicB=c=1, are used
throughout.

R(R?+k), 9

N| =

k=0, (12)

m' =47R?R'Ty,. (13

The model is then reduced to a single first-order PDE for the
area radiusk(t,r), given by Eq.(10) with

r ~ ~ ~ ~
m(r)=477f R2(0r)R’(Or)p(0r)dr. (14)
Il. TOLMAN-BONDI SPACETIMES 0

For completeness, we present here a brief description df m(r) tends to a constant at spatial infinity, thén
Tolman-Bondi metrics and shell crossings in neutral dustlim,_ ;.m(r) is the ADM mass of the spacetime.
collapse in asymptotically flat spacetimes. The metric(1) with e2¥=[1—k(r)]/R’?, together with

The Tolman-Bondi family of solutions is given by a Egs.(10) and(13), fully determine the Tolman-Bondi family
spherically symmetric metric, written here in normal Gauss-of solutions. Included in this family are the Schwarzschild

ian coordinatest,r, 6, ¢}: metric (m=const), the Einstein—de Sitter univers® (
«rt?3, k=0), and the closed Friedmann univer§&
ds?=—dt?+e 2YtNdr2+ R%(t,r)dQ?, D =ra(t), k=r?.
. 5 The generdl(k>0) Tolman-Bondi solution can be easily
dQ=d¢?+sirf 6d¢?, (2)  obtained by parametric integration of EG.0):
together with the stress-energy tensor for dust: t(n,r)=to(r)+mk ¥2(p+siny), (15)
Tab:P(t,r)uaub:pétaéI ) ©) om 7
R(7,r)= —cosz(—) , (16)
whereu?= 57 is the 4-velocity of a dust element apdt,r) k 2

the energy density. _ . . .
With the metric(1), the independent non-vanishing Ein- Wheré 0s 7<=, andty(r) is an arbitrary constant of inte-

stein tensor components are gration to be fixed by the initial dat&(0,r)=v(r), via

Gy=R [—R&Y(2R' V' +2R"+R 'R'?) 70(r)

to(r)=mo 3tar?

[70(r) +sinmo(r)].  (17)

. . 2
—2RVYR+1+R?], (4)
_ ) For time-symmetric initial datay(r)=ty(r)=0, which im-
Gu=-2R YR +R'¥), (5) pliesk(r)=2m/r.
Gy =—R Fe ?Y(2RR+R?+1)—R'?], (6)

- ISince there are only three functions to be determined and four
Ggg=sIn “0G, equations, only three of these are independent, with the remaining
.. , L . one acting as a constraint. We take Ed€)—(12) as our complete
=R(R¥Y+R'W¥ e2‘1’+R”e2‘I'—R+\I/R—\If2R), set, and Eq(13) as the constraint equation, since it provides a
(7) simple relation between the initial data and the initial mass profile.
2The k>0 solution corresponds to gravitationally bound configu-
where the overdot and prime denote partial differentiatiornrations, and thé=0 case—discussed below—to marginally bound

with respect ta andr, respectively. systems. For the unbound cake;0, an analytical solution has also
Introducing the auxiliary functions been obtained in closed forsee e.g[18] for a systematic treat-
ment of spherical dust spacetimebut it is of little interest to the
k(t,r)=1—-e*'R’?, (8)  implosion situation we are interested in.
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The radial coordinate is merely a label for the different Only sufficiently steep density distributions can provide a
shells, and we can therefore fix the radial coordinate gaugkarge enough specific binding enerdyr), that allows outer
by equating the initial area radius to the coordinate radius: shells to overlap inner ones. This condition is the same as
that obtained by requirinR’ =0, with R’ given by Eq.(22).
R(OJ)=r, (18
Marginally bound configurations

so that Eqgs(15) and (16) simplify to The special case &(r)=0 corresponds to a marginally

p3\ 12 bound matter configuration. It is the simplest case, and all
t(n,r)= (—) (p+siny), (19)  the relevant expressions can be obtained analytically in
8m closed form.
The dynamical equation
n
R(7,r)=r cos’-E. (20) om
RZZF, (27)
A shell with initial proper area #r? will thus collapse to
vanishing area radius in @omoving time is trivially integrated to
r3 {128
teal(N) =7\ gy (21 R(t,r)zr[l— —} , (28)
te(r)
For inhomogeneous mass distributioms# const<r3), dif-  \where
ferent shells become singular at different times; in the homo-
geneous case, all the shells collapse to zero area radius at the or3
same timg4]. t(r)= om (29
The relevant derivatives of the area radius are m
ri3 m is the proper time for the complete collapse of a spherical
R’ =co< g + 2T (m+sin n)ta,—(g , (220 shell with initial area radius. Shell crossings occur when
rm
t —1/3
. 2m 7 R’=(1——> 1——+ty(r)|=0, (30
R=— —tar(— . (23) te te
r 2
B rm’
Shell crossing in Tolman-Bondi spacetimes vr=1- 3m’ (3D
In the context of Tolman-Bondi metrics, shell crossings _ .
are defined by the loci of events given by R’ vanishes at
R'=0 and R>O0. (29 t=to(1+tey). (32

At R=R’=0, a shellfocusingsingularity is said to occur. Hence, the necessary and sufficient condition for shell cross-
Unlike shell crossings, this central shell focusing singularitying is

does not admit any metric extension through it and the

spacetime is therefore geodesically incomplésee e.g. t<te, (33
[19)]). It has been shown that shell focusing singularities can

be naked20,21 and gravitationally strondfinite physical  which is exactly the same as the one for the time-symmetric
volumes are “crushed” to zero at the singularity; 4&2] k>0 casem’/m>3/r. [Note, however, that thk=0 case
and references therginalthough massled23|. For the re-  corresponds to non-time-symmetric initial  dat®(0,r)
mainder of this paper we shall be concerned only with shell J2mir ]

crossing singularities, as defined by EB4).

Clearly, the necessary and sufficient condition for shell
I1l. GENERALIZED TOLMAN-BONDI SPACETIMES

crossings is
, We consider a generalization of the original Tolman-
tear<0, (29 Bondi metrics that includes a charge density distribution
o N o o w(t,r) and a cosmological constant As pointed out by Ori
which is a condition on the initial mass distribution: [11], the existence of a non-vanishing charge density implies
, that the charged matter shells do not follow geodesic motion,
m_>§ (26) and thus their comoving timeno longer equals proper time
m- r’ 7, which precludes the use of Gaussian normal coordinates
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(g1t=—1). We therefore consider a general spherically sym- Gyo= =Sirf0G . (44)
metric metric in the standard spherical coordinates
{t,r,0,¢}: The non-vanishing components of the stress-energy tensor
are
dg?=—e2®tNd2+ e 2Y(tNdr2+ R2(t,r)dQ?, (34)
2<I> Q2
where R(t,r) is the proper area radius andi)?=d6? Tu=g— —+A+87Tp> (45)
+sirf6d¢? is the canonical metric of the unit two-sphere. R*
The stress-energy tensor is that of a charged dust fluid
. . -2V 2
with a cosmological constand,: _€ .. Q
Trr_ 8 a (46)
™ R
1 e 1 A
Tap= 4 FacFp— 4gadee + pUgUp— ggaba R? Q2
—ein—2 —
where F,;, is the Maxwell tensorp is the energy density, ) . .
andud=e ®52 is the four-velocity of a charged dust ele-  Introducing the auxiliary functions
ment.F,, is constrained by the Maxwell equations K(t,r)=1—e2YR'2, (48)
VFaP=—4mj2, (36)
b | m(t r)=3R e’zq’R2+k+Q—2—£R2 (49)
ViaFbg=0, (37 T2 RZ 3 )’
where the four-current ig*= nu?, andu is the charge den- the Einstein-Maxwell equations can be recast as
sity. Spherical symmetry implies that the only non-vanishing
component of the Maxwell tensor can be chosen to be Copi2 22 . A )
e “’R°=—-Q°R “+2mR —k+§R, (50)
Fn=e‘”’%, (38) i
k=2—(k-1)®’, (51)
whereQ(t,r) is the total charge inside a sh&l} with proper R
R2(t,r): :
area 4rR-(t,r) =0, (52)
Q- | itz o=0, 53
t
2@ (7 (r P r — f 207 rp—1 A 2P’
:j J f x/—gjtdrd0d¢=47rf we” YRZdr. m'=47R’R'p+QQ'R™ 1+ S R°R’, (54)
0 0JO 0
(39) Q'=4mR% ¥ p. (55)
With the metric(34) the non-vanishing Einstein tensor Equation(50) is just Eq.(49); Egs.(51)—(54) follow directly
components are from the Einstein equations, and E&5) follows from Eq.
(39). The equation fok’ is algebraically complicated and it
g2(®@+¥) ) x proves more convenient to use an equivalent equation given
Gu= [R"“+2R(R"+¥'R") ]——(R+ 2RV), by the local conservation of energy-momentufh,Ta=
(40) (where we tookb=r):
2 QQ' =4mpR*d’. (56)
G"Zﬁ(R ~RETHIRY, (41) This equation expresses the balance between Lorentz and
gravitational “forces” in the comoving frame. The other
e 2(V+®) L . R’ equation p=t) from the local conservation of energy-
G":T[ZR R+R(R—2R®)]—- E(R, +2Rd"), momentum gives the conservation of specific charge:
(42) :
&t(%)56=0. (57)

Gyo=—R{e 2[—R+R(®+ W)+ RV - ¥2—¥d)]
L E2V[RIHR (W) LR+ D24 DU, Equa_tl(_)ns(48), (50), (51, and(56) form a Comple_te set; the
remaining independent equations are constraints. We have
(43)  thus reduced the Einstein-Maxwell system to a set of coupled
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first-order PDE’s. It is not the purpose of the present paper tc
obtain an explicit general solution in closed form—this has
been done, in a different coordinate system, by[Qti. As

we shall see shortly, first integrals of the equations of motion"‘-\.\_

PHYSICAL REVIEW D 63 124017

U(R,r) H(R, r):’

suffice to prove the inevitability of shell crossings in gener-

alized Tolman-Bondi modefs.
Using EQqs.(48), (55), and(56), Eq. (51) integrates to

2

k(Rr)=1—|e~=+W(r)| , (59)

€—

R

whereW(r) is a free function to be fixed by the initial data,
via Eqg. (50) evaluated at=0. Comparison with the neutral
case, leads to the interpretation \&f as a measure of the
binding energy of the system per unit mass. Ror 0, the
configuration is gravitationally unbound, marginally bound,
or bound, wherWW>1, W=1, or W>1, respectively.

For time-symmetric initial dataR(0,r) =0, with the scal-
ing R(O,r)=r, we have then

Q 2m Q2
=e—+ -t —-
W(r)=e- -7+

2o
3

(59
where the ‘4" sign was fixed by consistency with the
asymptoticA =Q=0 limit.

Regularity at the origin requird4.0]

lim 9:0, (60)

r—o"

m

lim —=0, (61)

r—o*
lim |e|=]eg| € (0,1), (62

r—o*

which implies

W(0)=W,=1. (63

Summarizing, the only non-trivial dynamical equation is

e 2’R?+U(R,r)=0, (64)

with the effective potential
U(R,r)=ag+a;R 1+a,R 2+a3R?, (65)
ag(r)=1—W2 (66)
al(r)=2m(e%W—1), (67)
ay(r)=Q%1-€?), (69)

3This is essentially due to the fact that shell crossingsigremi-
cal processes, whence the knowledge of the first “time” derivative
of the spheres’ radii suffices to analyze thekative motion.

-----------

FIG. 1. Effective potentialU(R,r) and auxiliary polynomial
H(R,r)«R?U(R,r), for re(0r*). Without shell crossing, a
spherical shell with initial area radiuR(0r)=r=R, would col-
lapse towards decreasing valuesPofintil reaching the minimum
bounce radiu®k,,=R; at some later tim¢,,. However, shell cross-
ing is inevitableat ts.e (Ot,).

ag=-— (69

3

IV. EFFECTIVE POTENTIAL ANALYSIS

In this section, we prove two propositions that show that
shell crossing is inevitable ifweakly chargeflgeneralized
Tolman-Bondi spacetimes.

Proposition 1 For weakly charged initial data, there ex-
istsr, >0, such that the effective potentidl(R,r) has, for
re(0r,), three distinct real positive zeroR;<R,<Rj,
satisfying(see Fig. 1

U(R;<R<R,,r)<o, (70

U(R,<R<Rj3,r)>0. (77)

Sketch of the proofwWe prove the above proposition by
showing that for 6<r<r, <1, U(R,r) has a local negative
minimum atR,,>0 and a local positive maximum &,
>R,,. Since limg_o+U=+< and limg_, , ,U=—00, it fol-
lows thatU(R,r) has three distinct real positive zeros, obey-
ing conditions(70),(71).

Proof. Let us rewrite

U(R,r)=azR ?H(R,r), (72)
H(R,r)=R*+c,R?+¢c;R+cy, (73
o= Q1 €) (74)
0o— A € ),
Ci=— %m( EW%— 1) , (75)
_ 3 2
Co=— 1 (1-W?). (76)

The relevant limits are now
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lim H=cy<0, (77
R—0"

lim H=+o. (78
R—+x»

Although the local extrema df) are different from those of
H, all (non-zer9 roots ofH are also roots obJ, and we can
thus study the qualitative behavior bfby analyzingH and
its first partial derivative with respect fe:

10H _R3 1 R 1 29
43R R TR 5C (79
Now, dgH has three distinct real zeros provideif]
WZ_l 3 Q 2
( <—A|6M EW——-1]| . (80
2 m

PHYSICAL REVIEW D 63 124017

Since cos is anti-periodic imr and the trigonometric argu-
ments in Eqs(85),(86) are separated by a3 phase, it
suffices to require that two of the roots are positive, the third
one being then necessarily negative. We therefore impose
m2<®<37/2 (thereby guaranteeing th&, and R, are
positive), which translates to

Sm(l—eW%) < \/%(1—w2)3/2.

Since the right-hand side of the inequality is manifestly

negative, this require§V<<1. Taylor expandingQ(r) and
m(r) near the origin, using Eqg54)—(56), and Eq.(58)
evaluated at=0, with the scalingR(0,r)=r, we have

AN 47 ol o 4
W(r)y=1-— §+?p0(1—eo) r<+0(r), (81

forr e (0,¢1), whereé;<1. Condition(80) is trivially satis-
fied for O<r<¢;.

We will now show that of the three real roots &fH, two
are positive, sayR; and R,, such thatH(R;)H(R,)<0,
thereby guaranteeing theithas a local positive maximum at
R;e(R;,R,) and a local negative minimum aR,
€ (RZ 1R3) o

The rootsR; (i=1,2,3) of the polynomiabgH satisfy
[24]

> R=0, (82)
S RRi= 5 (W2
) RIRj= 5 (W=1), (83)
~ 3m Q
1R ﬁ(ewa—1>, (84)
and can be explicitly given as
ﬁ1=2&cos( ) (85
~ e 2
R2=2\/;cos<§+ ?ﬁ) (86)
- ® 4
R3=2&cos(§+ ?), (87)

where

(90
Near the origin, for 6<r<¢,<1, this becomes
4 [4m %2
[ _ 2 _ 3/2 3
\/K[ 3 po(l—€g)+ 3| T +0O(r°)>0, (91

which is trivially satisfied; thus}; andR, are positive, for
re(0,,). ~ ~

Now, it remains to show thatl(R;)H(R,)<0. From Eq.
(73) together with propertie$82)—(84), and setting~R3=
—X, we obtain

HRDH(Ry)=f(x)

1(c\2, |1 c -
:_Z(Z) CIx | 7CoCiCot| 7| |x 7!
3 , 3(ci\?
—Zcoclx+c0+§ 2| C2 (92

Using Eqgs.(74)—(76), it is straightforward to check thdtis
a monotonically increasing function af From Eq.(87) we
havex=\—c,/6=xy,. Thus, it suffices to show thdi{xy,)

<0:
o0 471N 6 Co 4 N —c,
(93
Near the origin, for € (0,£3), with £3<1, we have
6 [a\®
—\/—(—1 r8+0(r19), (94)
— 4
where
6 (4 A )
a’l:K ?po—f'g (1_60), (95)
3|4 o A
a2=—K ?pO(l_EO)J{_g . (96)
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Condition (93) is manifestly satisfied; hence (R;)H(R,) / 6 47 )
<0, for 0<r<é,. U'(Ry,r)=— E_4 ?po(l—eo)
Now, let us taker, =min{&;,&,,&3}, such that forr
> o 2
fiee(do,r*) conditions(80), (90), and (93) are mutually satis N " 1- &+ §ﬂr 00, (104
! r

Summarizing, we have shown that there exists>0,
such that forr e (0r,), dgH has two distinct real positive Both numerators are manifestly negative, featr (0 ,).
zeros, corresponding to the local extremahbfR,r). We Now, from proposition 1, we havedU/dR)r-,>0 and
have further shown that the product of the local extremid of (JU/dR)r-g <0. Since U(0r)=U(ty,r)=0, it follows
is negative, which implies thad has three distinct real posi- from Egs.(99),(100) that
tive roots, since lim_qo+H=cy<0 and ling_, , .H=+0o.

By construction, these are tlsamezeros ofU(R,r). Since R’(0y)
U(R,r)=ag(r)R"2H(R,r) and az<O0, it follows that —<
U(R,r) is negative forRe(R;,R,) and positive forR R'(tm,r)
e (R,,R3), as desired’

Proposition 2 Consider a general solution of EO0),
with parameterdQ,m,A} satisfying proposition 1, and the
spacetime metric determined by that solution. In such a
spacetime, shell crossing always occurs from regular timeT
symmetric initial data, for a non-zero-measure set of spheri-
cal weakly charged matter shells.

Proof. For r>0, Ilimg_g+U(R,r)=+~ and
limg_ .U(R,r)=—o. SinceU is C* with respect taR, this This section gives an alternative proof of the inevitability
implies—from Eq.(50)—that there is a timé,,>0 such that  of shell crossing in spherical weakly charged dust collapse

. with a cosmological constant. It relies on an immediate con-

R(tm,r)=0. (97 sequence of the generalized Birkhoff theor®s] (which
can be extended to include a cosmological cong@6i, the
so-calledfree surfaceapproach: as long as shells do not
cross, their motion will depend solely on their total interior
charge and mass, and thus each shell will move indepen-
JU dently (albeit not geodesicaljylike a test particle in a RNdS
2e72°RR' —2d'e 2°R2+ —R’'+U’'=0. (99 background, with mass and charge equal to the total mass

IR and charge of that shefsee e.g[12]).

(105

Hence, by continuity, there is a timig.e (0t,,), such that
R,(tSCIr):O! V rE(Ovmln{r* !r*})' (106)

his completes the proofl]

V. FREE SURFACE APPROACH ANALYSIS

Let us then defin®,(r)=R(ty,,r).
Taking the total derivative of Eq50) with respect tor,
we obtain

For time-symmetric initial dataR(0,r)=0, and thus, from

A. Particle motion in a ReisserNordstrom—de Sitter
Egs.(97),(98) we have

geometry

, ) U In Schwarzschild coordinatds,r, 6, ¢}, the RNdS metric

R'(0r)=—U"(r,r) R - ) (99) reads
=r
U ds?=—Adt?+ A~ tdr?+r2dQ?, (107

R'(tm,r)=—U'(R ,r)/(—) : (100 _

: : eos, an=1-M, L A 108

(= —T+r—2—§F, (108

We now examine the signs of the numerators in the equa-
tions above. From Eq64) we have where dQ?=d 62+ sirfAd¢? is the canonical metric of the
(101) unit two-sphere.

U’(r,r)=aj+ajr t+apr 2 : . — ,
The action for a particle of masa and charge is

U'(Ry.r)=aj+a;R +asR 2. (102 L !
aal— T A-1yaub T 24 ~va
Setting R(0r)=r=R, and Ry(r)=R,, it follows from Sxel fd}\(2e XX Gap™ sME— QX Aa)’
proposition 1 thaiR,,(r)<r, and we thus can s&,,=3,r (109
for any given shellr, where8,<1 depends om. Near the
origin, for 0<r<r,<1, we have then where \ is an affine parameter along the particle’s world-
8 line, A,=(Q/r) &} is the electromagnetic four-potential, and
, __|e7 2 E_ 2 3 e=e¢e(\) is theeinbein an independent function that gener-
virn= [ 3 poll=ep)+A 3 }r+(’)(r ) alizes the action for a point particl@7].
(103 It is straighforward to showicf. Appendix that if

124017-7



SERGIO M. C. V. GONQAALVES PHYSICAL REVIEW D 63 124017

(LeP)a= EAqp+ Apé=0, (110 T
for a Killing vector field ¢2, thenSis invariant, to first order

in &%, under the transformatior®—x%+ o¢%, whereo € RR.

Denoting by#?=mu?—qA? the generalized momentum of

the particle, it then follows that the corresponding Noether

charge &= &m,, is a constant of motion: Tse

/ (dv/dr),
0
/ (d‘l?/dr)r0+€

d&

g = (Tt £3V p ) UP=muAuPY &, + q( LA, ut=0.

(111

One of the trivial Killing vectors of the RNdS metric is
&ty=0;. Thus, with the metri¢107), we have

— T r0+£ r
Q

_ — dt
E=§t(mut—th)=mAd—T+q?, 112 FIG. 2. Shell crossing for spherical weakly charged dust col-

lapse in7—r coordinates. Forye (0r.), any two neighboring
where 7 is the particle’s proper time. Since the geometry isShells,ro andro+ ¢, will cross each other at= 7o, whenV'(ro)
not asymptotically flat, the constant of moti@cannot be >0.
interpreted as the particle’s total energy measured at spatial

infinity; it should be regarded as an effective energy, that — Q 120
coincides with the particle’s total energy at infinity in the m (120
A—0 limit.
From Eq.(107) we have, for a timelike radial world line The potential(r) reads then
dt\? dr)? 2\ 2
| = Tl Q\2m Q2\Q%2 A
A(dr) Lra (d) ’ (3 V(r):(l“’vz)‘(l“’vfm)T+<1_ﬁ)r_2‘§r2-
(121

which, together with Eq(112), gives
2 It governs the radial motion of a charged dust shell with

(ﬂ +V(r)=0, (114 proper area 42 and specific charge(r)=Q(r)/m(r), in a
dr RNdS background metric with total masgr) and charge
_ —, Q(r). In the free surface approach, the only—but crucial—
— —Q|2M — difference between shell and particle motion in a RNdS
_ A2 _ N 2\ < 2
V(r)=(1-W (1 WeM r (e )rz 3r ' background, is that the latter travels on a fixed geometry,
(115 whereas the former travels on a geometry that is determined

by the interior mass and charge of each shell.

Let us now consider two infinitesimally close shells, with
wordlinesry(7) andr(7)=ry+ ¢ (where 0<é<1), which
are solutions of Eq(114) with V(r)<0. As shown in Fig. 2,
these two neighboring shelsill cross provided

where W=E/m is the particle’s specific effective energy,
and e=qg/m its specific charge.

B. Shell crossing analysis
dr
dr

Equation(114), which governs the radial motion of test ( (122

dr
particles with specific charge= g/m in a RNdS geometry

&,
0
with fixedtotal chargeQ and masdM, will coincide with Eq.
(64), which governs the radial motion of charged dust shells=rom Eq.(114), this translates intd/(rq+ &) <V(rgy). Ex-

)r0+§

with total interior charge(r) and massn(r), provided we
make the following formal identificationand setd =0 in
Eq. (64), thereby identifying proper and comoving tinjes

pandingV(ro+ &) =V(ro) +V'(ro)é+ O(&?), to first order
in ¢ we have thervV'(ry) é<0. Since&>0, the condition for
shell crossing is simplydropping the “0” indeX

r=R, (116 V'(r)<0. (123
W=W, (117 Evaluating Eq.(121) near the origin, for &r<r <1, this
condition becomes

M=m, (118) A _1
_ 25— 1+ r+0(r3>0, (124
Q=Q, (119 3 8mpo
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which is clearly satisfied for e (0,r.). Shell crossing is in- simply the requirement that outer shells have a sufficiently

evitable near the center. larger inward initial radial velocity than inner ones, to over-
come the(comparatively larger, for outer shellsepulsive
VI. NEUTRAL CASE effect of A, thereby leading to shell crossing before complete
collapse.

In this section, we analyze separately the occurrence of \ye note that sinc&V=1 corresponds to unbound sys-
shell crossings for neutral dust spheres in the presence ofiams the above criterion for shell crossing is likely to be
positive cosmological constant, which is a simpler and morgg|axed for bound configurations. Pot< 1, for each shelt,
realistic model for macroscopic astrophysical objects. there is a critical value\ ((t)—which is the root of Eq(126)

Since there is no elecrostatic repulsion acting on the tesh fixed r—such that the system is gravitationally bound for
particles, they move geodesically in a Schwarzschild—de S'tJ\<AC and unbound foh > A .

ter geometry[26]. We can therefore sed,,=—1, thereby
identifying proper and comoving times. The relevant dy-
namical equation is then VII. DISCUSSION AND CONCLUSIONS

R24+U(R,r)=0, (125 We have shown that the inclusion of a positive cosmo-
logical constant in spherical charged dust collapse s
prevent the occurrence of shell crossing near the center. Heu-

. ristically, this can be explained by the fact thtathas a long

(126 range effect, whereas the relevant physics for shell crossing
occurs near the center, where Lorentz and gravitational
We consider here the particular case \WW=1, corre- “forces” compete and the\ repulsion is negligible.

sponding to a gravitationally unbound configuration, since it Although the free surface approach yields a rather simple

allows for an analytical solution in closed form: method for proving the inevitability of shell crossing near the

center, being a purely kinematical analysis it cannot relate

U(R r)=1—W2—2—m—£R2
’ R 3

m\ 3 /3 the initial data to the motion of the shells. Reducing Ein-
R(t.N= A ) sinfa(t.r), (127 stein’s equations to first integrals of motion enabled a more
physical analysis, where the dynamics of collapse is deter-
V3A mined by the choice of initial data.
o(tr)=——[tlr)—t], (128 Proposition 1 showed that in a small neighborhood near

the center of the matter distribution, the effective potential is
wheret(r) is an arbitrary function to be fixed by the initial such that a shell with initial area radins=R, will collapse
velocity profile via towards smaller values d® and, provided there is no shell
crossing, reach the minimum bounce radRis Proposition
. \/X \/3_Atc 2 showed that for a such a shER(0,r) =r=R,] shell cross-
R(OF)=- 3" cot 2 | (129 ing will inevitably occurbeforethe minimum bounce radius
is reached.
The relevant derivatives of the area radius are Proposition 2 used the assumption of time-symmetric ini-
tial data. This ansatz is by no means essential. For non-time-
_/+ \ﬂt' cotha) (130 symmetric implosion situations, two possibilities arige:
3m € ' the initial data is sufficiently strong, such ttedt shells have
R(0r)<O0, or (i) a non-zero-measure set of shells has

R(t,r)=— \/§R cotha. (131) _R(O,r)>_0, and therefore_initially starts to expand toyvards
3 increasing values oR, until each shell reaches a maximum
i . . area radiufx,,(r) and then collapses back through its ini-
Since 6 coth>0, the necessary and sufficient condition for 5| radius. Casii) reduces to the time-symmetric situation
shell crossings is whenR(t,r) =Ryaxand is thus covered by proposition 2. For
/ case(i), the occurrence—or lack thereof—of shell crossing is

t.<0. (132

determined by the initial velocity profile,(r)=R(0,) for a

A trivial example ist;=1/r. For smallr, 3m/m’=r, and  given massm(r) and chargeQ(r) [hence specific charge,

coth#=1/6. Solving forR’ =0 near the origin yields then  €(r)] distribution. Clearly, ifv<0 andv’=0 then shell
crossing will occur, since it does whan=v’'=0: all the

shells are differentially accelerated in the same manner, irre-
tsdr)= 3_r<tc' (133 spective of their initial velocity profile. It then follows that
shell crossing will occur for any (r)<0, providedv’=<0.
thus confirming the occurrence of shell crossing near the For the neutral case, shell crossing occurs—even for
center. gravitationally unbound matter configurations—provided the
Since the initial velocity profilécf. Eq.(129)]is a mono- initial velocity profile is sufficiently steep, irrespective of
tonically increasing function of (r), the conditiont,<<O is  how large(but finite) A may be. Unlike Lorentz “forces,”

R'(t,r)=R
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which become more noticeable as collapse proceeds and tliee einbein Assume that there is a Killing vector fielgf,
area radius of the shells decreases, Aheepulsion becomes gych that €:A),=0. Under the transformatior?— x2= x2@
increasingly unimportant at late timése., in the strong-field 1 5¢2 whereo e R, to first order ino we have

region, at small radjj whence the criterion for shell crossing

becomes analogous to that for uncharged dust collapse in an L

asymptotically flat spacetime. XA —x=x+0&x", (A2)

ACKNOWLEDGMENTS -
Oab—0%ab™ gab+0'gab,cgcy (A3)

| am grateful to Patrick Brady and Kip Thorne for useful
discussions. This work was supported by F.QHortugal
Grant PRAXIS XXI-BPD-16301-98, and by NSF Grant
AST-9731698.

Aa—Aa=A,+ oA, £ (A4)

The actiong x2,e] becomes then
APPENDIX

. . o _ 1 . .
Consider the following action: S= f d\ se Yx3+ 0 Ex°) (XP+ agf’CXC)(gab+ 009ap,c&°)

gx2 e]=f dx Ee‘15<5‘>'<bg —Emze—qkaA )
1 2 ab 2 a|;

1 .
(A1) B Emze—Q(XawL O'E?CXC)(Aa"_UAa,ch)

where \ is an affine parameter along the particle’s world _ T fj —1,a.b _ c1—
line, A, is the electromagnetic four-potential, age e(\) is S 2 dN[e"HXLeG)ap— 2(LeA)e£7] =S (AS)
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