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Close limit from a null point of view: The advanced solution
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We present a characteristic algorithm for computing the perturbation of a Schwarzschild spacetime by means
of solving the Teukolsky equation. We implement the algorithm as a characteristic evolution code and apply it
to compute the advanced solution to a black hole collision in the close approximation. The code successfully
tracks the initial burst and quasinormal decay of a black hole perturbation through 10 orders of magnitude and
tracks the final power law decay through an additional 6 orders of magnitude. Determination of the advanced
solution, in which ingoing radiation is absorbed by the black hole but no outgoing radiation is emitted, is the
first stage of a two stage approach to determining the retarded solution, which provides the close approximation
wave form with the physically appropriate boundary condition of no ingoing radiation.
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I. INTRODUCTION

In this work, we present the advanced solution for a p
turbation of a Schwarzschild background describing
head-on collision of black holes in the close approximat
where the merger takes place in the far past. We compute
solution by means of a characteristic evolution of the W
tensor, as governed by the Teukolsky equation@1,2#. The
advanced solution corresponds to stage I of a new two s
approach to the vacuum binary black hole problem@3#. In
subsequent work~stage II!, we will use the results of this firs
stage to compute the physically more relevant retarded s
tion. This perturbative solution will in turn provide a valu
able reference point for the physical understanding of a fu
nonlinear treatment of binary black holes being pursued b
similar two stage strategy@4#, a computationally feasible
problem using an existing characteristic code@5#. The per-
turbative results also provide a new perspective on the ph
cal picture previously obtained by applying the Cauchy pr
lem to the close approximation@6#, especially with regard to
global issues which have not yet been explored in
Cauchy formulation.

In the characteristic formulation of this problem, the a
vanced solution is simpler to compute than the retarded
lution because of the global relationship between the n
hypersurfaces on which boundary information is known. O
of these hypersurfaces is the black hole event horizonH 1

whose perturbation must correspond to the close approx
tion of a binary black hole. In the retarded problem, the ot
null hypersurface~in a conformally compactified descrip
tion! is past null infinityI 2 where the incoming radiation
must vanish. BecauseH 1 and I 2 are disjoint, there is no
direct way to use data on those two hypersurfaces to po
characteristic initial value problem.

However, in the advanced problem, it is at future n
infinity that the radiation is required to vanish. SinceH 1 and
I 1 formally intersect at future time infinityI 1, they can be
used to pose a characteristic initial value problem to evo
backward in time and compute the exterior region of spa
time. Potential difficulties in dealing withI 1 are avoided by
posing the no outgoing radiation condition on an ingoing n
0556-2821/2001/63~12!/124013~15!/$20.00 63 1240
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hypersurfaceJ1 which approximatesI 1 and intersectsH 1

at a late time when the perturbation of the black hole h
effectively died out. These data onH 1 andJ1 then consti-
tute a standard double-null initial value problem@7–10# for
the exterior spacetime, in which ingoing radiation is a
sorbed by the black hole but there is no outgoing radiatio

This advanced solution provides the radiation incide
from I 2. In stage II of the approach, this ingoing radiatio
will be used to generate a ‘‘source free’’advanced minus
retarded solution. A purely retarded solution can then b
produced by superposition with the stage I solution. A
though we do not address stage II in this paper, we w
discuss the role of time reflection symmetry in the pertur
tion equations, which simplifies the technical details in c
rying out the superposition. From a time reversed point
view, the stage I solution is equivalent to the retarded so
tion for a ‘‘head-on’’ white hole fission, with the physicall
relevant boundary conditions that radiation is emitted
that there is no incoming radiation fromI 2. It is convenient
here to formulate the stage I results in terms of such a w
hole fission since the characteristic evolution then takes
standard form of being carried out forward in retarded tim

The close approximation has been extremely useful
testing fully nonlinear Cauchy evolution codes. The resu
of numerical Cauchy evolution and close-limit perturbati
theory are in excellent agreement in the appropriate regi
giving great confidence in both approaches@6,11#. Further-
more, the perturbative approach provides an important
for the interpretation and physical understanding of tho
results@12#.

Clearly, this vital synergism between numerical and p
turbative approaches should also extend to character
evolution. However, in all perturbative studies performed
date, the background geometry has either been the Schw
child spacetime in standard Schwarzschild coordinates or
Kerr spacetime in Boyer-Lindquist coordinates. These co
dinate systems are appropriate for comparison with res
from nonlinear Cauchy evolution but, to our knowledg
there does not yet exist a treatment of the close approxi
tion in terms of null coordinates appropriate for the compa
©2001 The American Physical Society13-1
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son with nonlinear characteristic evolution.
This work provides such a framework. The methods a

results presented here are expected to have direct bearin
the study of binary black holes presently underway usin
fully nonlinear characteristic code. Characteristic evolut
has been totally successful in evolving 3-dimensional sin
black hole spacetimes for effectively infinite timest
'60 000M in terms of black hole mass! @13#. Although it is
not yet known to what extent the characteristic approach
handle the inspiral and merger of binary black holes, it
clear that the limitations are due to difficulties in treati
caustics and not due to high nonlinearity.

The characteristic data which has been obtained for
nonlinear description of a binary black hole spacetime g
erate close approximation data for a perturbative solut
We present here a numerical code to evolve such data
perturbation of a Schwarzschild spacetime in null coor
nates. Fortunately for our purposes, the perturbative form
ism due to Teukolsky@2# is amenable to a reasonab
straightforward change of background coordinates, as
served in Ref.@14#.

The Teukolsky equation is based upon the decomposi
of the Einstein equations and Bianchi identities in terms o
conveniently chosen complex null tetrad, as carried out
Newman and Penrose@15# in the early 1960s. The Newman
Penrose formalism allowed Teukolsky to construct a sin
master wave equation for the perturbations of the Kerr me
in terms of the Weyl curvature componentsc4 ~describing
outgoing radiation! or c0 ~describing ingoing radiation!. The
Teukolsky formalism provides a completely gauge invari
spherical harmonic multipole decomposition for both ev
and odd parity perturbations in terms of radial wave eq
tions. For a Kerr black hole with angular momentum, there
no similar multipole decomposition of metric perturbatio
in the time domain~as opposed to the frequency domain
Fourier modes!. In the non-rotating case, the Teukolsk
equation reduces to the so-called Bardeen-Press equ
@16#.

Since the 1970s the Teukolsky equation for the first or
perturbations around a rotating black hole has been Fou
transformed and integrated in the frequency domain fo
variety of situations where initial data played no role@17,18#.
In order to avoid the important but difficult problem of pr
scribing physically appropriate initial data for that equatio
the computation of gravitational radiation has been restric
to the cases of unbounded particle trajectories or circ
motion. The first evolution code to integrate the Teukols
equation in the time domain, in Boyer-Lindquist coordinat
was recently developed@19# and successfully tested@20#. In
order to incorporate initial data representing realistic as
physical initial data for the late stage of binary black ho
coalescence, 311 expressions connectingc4 and its time
derivative to Cauchy data~3-metrichi j and extrinsic curva-
ture Ki j ) satisfying the Hamiltonian and momentum co
straints

c45c4~hi j ,Ki j !, ] tc45ċ4~hi j ,Ki j !,

have been worked out explicitly@21,20,22,23#.
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In Sec. II, we specify a null background tetrad suitable
reexpress the Teukolsky equations forc0 and c4 in null
coordinates appropriate for characteristic evolution. We a
discuss various global aspects of these equations which
important for numerical evolution. In Sec. III, we discu
data for the Teukolsky equation. We present null data
linearized Robinson-Trautman solutions, which provide
analytic check on numerical accuracy, and null data for
close approximation to a white hole fission. In Sec. IV, w
discuss the numerical algorithm used to carry out the ch
acteristic evolution. The properties of the close approxim
tion wave forms, are presented in Sec. V.

Notation and conventions: We use a metric of signat
(2111) and a null tetrad with normalizationl ana5

2mam̄a521, so thatgab52(m(am̄b)2 l (anb)). We useqAB
to represent the standard unit sphere metric in angular c
dinates xA5(q,w) and set qAB5q(Aq̄B), where qABqBC

5dC
A , with qA5(1,i /sinq). We useqA to define theZ op-

erator with the conventionZf 5qA]Af , for a spin-weight 0
function f. Complex conjugation is denoted with a ‘‘bar,
e.g. R( f )5( f 1 f̄ )/2. The conventions of the present pap
result in a different form of the perturbation equations fro
that originally given by Teukolsky.

II. THE PERTURBATION EQUATIONS

A. The background Schwarzschild metric in outgoing horizon
coordinates

The Schwarzschild metric in standard coordinates is

ds252S 12
2M

r Ddt21dr2S 12
2M

r D 21

1r 2qABdxAdxB.

~2.1!

In outgoing Eddington-Finkelstein coordinates, whereũ5t
2r * is a null coordinate andr * 5r 12M log(r/2M21), the
Schwarzschild metric takes the Bondi form

ds252S 12
2M

r Ddũ222dũdr1r 2qABdxAdxB. ~2.2!

These coordinates specialize to spherical symmetry the
eral procedure for constructing a Bondi null coordinate s
tem @24#. They patch two quadrants of the Kruskal manifol
the exterior spacetime quadrant and the quadrant follow
the initial singularity.

For the anticipated comparison with a fully nonlinear d
scription of a white hole, it is useful to introduce another n
coordinate system based upon the affine parameteru5

2Me2ũ/4M along the ingoing null hypersurfacer 52M that
forms the white hole horizon. We setu50 at the intersection
of the black hole and white hole horizons, i.e. at ther

52M bifurcation sphere~corresponding toũ51` in
Eddington-Finkelstein coordinates!. The metric then be-
comes
3-2



ge
sy

o
th
sk
s

ke
l

D
e
ca

ry
-

der

s

ere
oing
o-

it
d
hild
Eq.

P

CLOSE LIMIT FROM A NULL POINT OF VIEW: THE . . . PHYSICAL REVIEW D 63 124013
ds252S 12
2M

r D16M2

u2
du21

8M

u
dudr1r 2qABdxAdxB.

~2.3!

In addition, we introduce an affine parameterl along the
outgoing null geodesics in ther direction, with the affine
freedom fixed by requiring thatl50 whenr 52M and that
gab(]au)]bl521. This implies

l52
4M ~r 22M !

u
.

In these (u,l) coordinates, the metric takes the form

ds252Wdu222dudl1r 2qABdxAdxB, ~2.4!

where

r 52M2
lu

4M
~2.5!

and

W5
2l2

lu28M2
. ~2.6!

These coordinates specialize to spherical symmetry the
eral procedure for constructing a Sachs null coordinate
tem designed for the double-null initial value problem@7#.
For this reason, they are especially useful for the study
horizons in the nonlinear regime. They are also useful in
perturbative regime because they cover the entire Kru
manifold r .0 with remarkably simple analytic behavior, a
first discovered by Israel @25#. Since gll5W
52l2/(2Mr ) the hypersurfacesl5const are everywhere
spacelike~so that theu-direction is spacelike! except on the
white hole horizon wherel50 and theu-direction is null.
The surfacesu5const are everywhere null. The spaceli
surfacesl5const.0 (l5const,0) can be used as partia
Cauchy hypersurfaces to cover the two quadrants above~be-
low! l50 in the Kruskal manifold.

B. The Teukolsky equations

By aligning a complex null tetrad, (l m,nm,mm,m̄m) with
the degenerate principal null directions of a Petrov type
background spacetime, Teukolsky@2# was able to express th
vacuum perturbation equations for the Weyl curvature s
lars c05Cabcdl

ambl cmd ~of spin-weight s52) and c4

5Cabcdn
am̄bncm̄d ~of spin-weights522) of the Newman-

Penrose~NP! formalism @26# as the simple wave equations

@~D13e2 ē14r1 r̄ !~D14g2m!2~d2p̄1ā13b14t!

3~ d̄2p14a!23c2#c050, ~2.7!

@~D23g1ḡ24m2m̄ !~D24e1r!2~ d̄1 t̄2b̄23a24p!

3~d1t24b!23c2#c4 50. ~2.8!
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Here the spin coefficientsa5( l a;bnam̄b2ma;bm̄am̄b)/2, b

5( l a;bnamb2ma;bm̄amb)/2, g5( l a;bnanb2ma;bm̄anb)/2,
e5( l a;bnal b2ma;bm̄al b)/2, t5 l a;bmanb, p52na;bm̄al b,
r5 l a;bmam̄b and m52na;bm̄amb are computed using the
background geometry and the directional derivatives areD

5 l a]a , D5na]a , d5ma]a andd̄5m̄a]a . The Weyl scalars
c0 or c4 are first order quantities in perturbation theo
while c25Cabcdl

ambm̄cnd52M /r 3 is a zeroth order curva
ture quantity.

This formulation has several advantageous features:~i! It
is a completely first order gauge invariant description~i.e.,
the perturbative Weyl scalarsc0 or c4 are invariant not only
under infinitesimal coordinate transformations but also un
null rotations of the tetrad!; ~ii ! It does not rely on any fre-
quency or multipole decomposition~i.e., the above equation
can be directly integrated in the time domain!; ~iii ! The Weyl
scalars are objects defined in the full nonlinear theory, wh
c0 can be prescribed as constraint-free data on an outg
null hypersurface andc4 as constraint-free data on an ing
ing null hypersurface.

Since Eqs.~2.7!,~2.8! are expressed in a covariant form,
is straightforward to write them explicitly in any backgroun
coordinate system. Specializing thus to the Schwarzsc
background metric in the Israel coordinates introduced in
~2.4!, we choose a null tetrad

l a52¹au5S ]

]l D a

5@0,1,0,0#,

na5S ]

]uD a

2
W

2 S ]

]l D a

5F1,
l2

4Mr
,0,0G ,

ma5
1

A2r
qa,

m̄a5
1

A2r
q̄a, ~2.9!

where

qa5S ]

]q D a

1
i

sinq S ]

]w D a

5@0,0,qA#. ~2.10!

Correspondingly, the only non-vanishing background N
quantities are

a52b5
cot~q!

2A2r
, g5

~r 12M !l

8Mr 2
,

m5
l

2r 2
, r52

u

4Mr
,

D5
]

]l
, D5

]

]u
1

l2

4Mr

]

]l
,

3-3
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d5
1

A2r
S ]

]q
1

i

sinq

]

]w D ,

d̄5
1

A2r
S ]

]q
2

i

sinq

]

]w D . ~2.11!

Substitution of the above NP quantities into Eqs.~2.7!,~2.8!
reduces the Teukolsky equations to

S L01
L2

2r 2D c050 and S L41
L2

2r 2D c450, ~2.12!

where

L05
1

4Mr
l2]l

21]u]l2
5

4Mr
u]u

2
1

2Mr 2
l~3M24r !]l1

5

2rM
,

L45
1

4Mr
l2]l

21]u]l2
1

4Mr
u]u2

7

2r 2
l]l

2
r 2216M214Mr

2Mr 3
~2.13!

andL252ZpZ is the angular momentum squared operator
order to treat the radiation nearI 1 it is also advantageous t
consider a boosted tetrad (l̃ a,ña,ma,m̄a), with l̃ a52¹ũ

and ña satisfying l̃ aña521. We accordingly define
boosted Weyl scalars c̃05Cabcdl̃

ambl̃ cmd and c̃4

5Cabcdñ
am̄bñcm̄d. This boosted tetrad is adapted to the

fine timeũ at I 1 rather than the affine timeu at the horizon.

C. Spin-weight-zero versions of the Teukolsky equations

It is useful to convert Eqs.~2.12!,~2.13! into spin-weight-

zero equations. Considering the commutation relationZpZ

2ZZp)h52sh for a spin-weights function h, and setting
c05Z2F0 so that ZpZc05Z2(61ZpZ)F0, the Teukolsky
equation forc0 becomes, after factoring out an overallZ2,

F 1

4Mr
l2]l

21]u]l2
5

4Mr
u]u2

1

2Mr 2
l~3M24r !]l

1
5

2rM
2

~61ZpZ!

2r 2 GF050. ~2.14!

Similarly, setting c45Zp2F4 so that ZpZc45Zp2(21ZpZ)F4

and after factoring out an overallZp2, the Teukolsky equation
for F4 takes the spin-weight-zero form
12401
n
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F 1

4Mr
l2]l

21]u]l2
1

4Mr
u]u2

7

2r 2
l]l

2
r 2216M214Mr

2Mr 3
2

~21ZpZ!

2 r 2 GF450. ~2.15!

These equations can be re-expressed in terms of the
placian

D252
2l~16M22ul!

~8M22ul!2
]l22]u]l2

2l2

8M22ul
]l

2 ,

~2.16!

defined by the metricds̄252Wdu222dudl induced by the
Schwarzschild metric on the 2-dimensional (u,l) subspace.
Discussion of the asymptotic behavior of the Weyl tenso
most convenient in terms of the variablesF05r 5F0 and
F45rF4. The spin-weight-zero Eqs.~2.14! and ~2.15! then
reduce to

~D21T0!F050 ~2.17!

~D21T4!F450, ~2.18!

where

T052
~6M1r !l

Mr 2
]l2

30M

r 3
1

~61ZpZ!

r 2

and

T45
~6M1r !l

Mr 2
]l2

6M

r 3
1

~21ZpZ!

r 2

do not contain]u terms.
Asymptotic flatness requires thatF0 and F4 have finite

limits at I 1. This is consistent with the asymptotic forms
Eqs.~2.17! and ~2.18!, which asymptote to one-dimension
wave equations for solutions whose radial derivative falls
uniformly asO(1/r 2). The limit of F4 determines the outgo
ing gravitational radiation wave form and the limit ofF0 is
related to the retarded quadrupole moment of the syst
More precisely, limr c̃4

05] ũN̄, whereN is the standard defi-
nition of the Bondi news function.

In the limit l→`,

~6M1r !l

Mr 2
→2

4

u
,

so that the appearance of this term inT0 and T4 can cause
inaccuracy in the numerical solution of Eqs.~2.17! and
~2.18! at late Bondi times onI 1 ~as2u→0). In particular,
the late time behavior of the radiation wave form, can
more accurately computed by an evolution algorithm for
Weyl componentc̃4. Settingc̃05Z2F̃0 and c̃45Zp2F̃4, the
fields F̃05r 5F̃0 and F̃45r F̃4 satisfy
3-4
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~D21S0!F̃050, ~2.19!

~D21S4!F̃450, ~2.20!

where

S05
16M ~r 23M !

ur2
]l2

30M

r 3
1

~61ZpZ!

r 2

52
4~r 23M !

r 2
] r2

30M

r 3
1

~61ZpZ!

r 2

and

S452
16M ~r 23M !

ur2
]l2

6M

r 3
1

~21ZpZ!

r 2

5
4~r 23M !

r 2
] r2

6M

r 3
1

~21ZpZ!

r 2
.

In these variables, the deviation of the Teukolsky equati
~2.19! and ~2.20! from a one-dimensional wave equation
independent of time at a fixedr. These equations are we
behaved atI 1, i.e., after a compactified coordinate such
x51/r is introduced. BecauseF̃45(u/4M )2F4, where F4
must be regular throughout the Kruskal manifold~since it is
constructed with a regular basis!, it follows that F̃4→0 as
the black hole horizon is approached. This facilitates an
curate long term evolution of the wave form using E
~2.20!.

Note also, however, thatF̃05(4M /u)2F0 so that F̃0 is
singular on the black hole horizon and thus a poor choice
variable for long term evolution. The opposite signs of t
coefficients of] r in S0 andS4 are responsible for this behav
ior, as can be seen by ignoring the remaining potential te
and freezing the coefficient of] r at r 52M , so that Eqs.
~2.19! and ~2.20! reduce to

S 2] ũ2] r2
1

M D ] r F̃050, ~2.21!

S 2] ũ2] r1
1

M D ] r F̃450, ~2.22!

in terms of retarded Bondi coordinates. In this approxim
tion, both of these equations admit purely outgoing wa
F̃(ũ). However, an ingoingF̃0 wave has the exponentiall
singular behavior

F̃05 f ~ ũ12r !e(ũ2ũ0)/2M

as an initial pulsef (ũ012r ) approaches the black hole ho
rizon asũ→`. In contrast, an ingoingF̃4 wave decays ex-
ponentially on approach to the black hole.
12401
s

s

c-
.

f

s

-
s

D. Time reflection properties of the Teukolsky equation

The different forms of Eqs.~2.14! and ~2.15!, or Eqs.
~2.19! and ~2.20!, make it clear that the Teukolsky equatio
for the Weyl componentc0 in the outgoing null directionl a

and the Teukolsky equation for the Weyl componentc4 in
the ingoing null directionna are not related in a way which
makes manifest the time reflection symmetryT of the back-
ground Schwarzschild geometry, defined byT(t,r ,u,f)
5(2t,r ,u,f) in Schwarzschild coordinates or b
T(ũ,r ,u,f)5(2 ṽ,r ,u,f) in terms of Bondi retarded and
advanced timesũ5t2r * and ṽ5t1r * . The time reflection
symmetry could be incorporated explicitly by introducin
null tetrad vectorsLa5a l a and Na5(1/a)na satisfying
TLa52Na. However, the explicit form of the require
boost,

a52
2M

u
A2~r 22M !

r
52

2M

u
A 22lu

8M22lu
,

~2.23!

makes it clear that such a time symmetric formulation wo
introduce singular behavior at both the black and white h
horizons.

However, this time symmetric tetrad is useful for form
lating the time reflection symmetry of solutions of th
Teukolsky equations using other tetrads. LetC4

5CabcdN
ambNcmd5C(ũ,r ,u,f) be a perturbative solution

for C4. Then the time reflection symmetry implies thatC0

5CabcdL
am̄bLcm̄d5C̄(2 ṽ,r ,u,f) is a perturbative solu-

tion for C0. This correspondence maps a retarded solut
~no incoming radiation! for C4 into an advanced solution~no
outgoing radiation! for C0. In terms of thel a andna Weyl
components, the solutionc45c(ũ,r ,u,f) corresponds un-
der time reflection to the solution

c05
r 2

256M2
er /mc̄~2 ṽ,r ,u,f!. ~2.24!

III. NULL DATA FOR A SCHWARZSCHILD
PERTURBATION

The Weyl componentc0 can be posed as constraint-fre
gravitational data on an outgoing null hypersurface. Sim
larly, c4 constitutes constraint-free gravitational data on
ingoing null hypersurface. Thesenonlinearresults extend to
linearized theory but care must be exercised in apply
them to the Teukolsky equations.

In the Cauchy formulation, the Teukolsky equation forc4
is normally chosen in order to investigate the outgoing rad
tion introduced by a perturbation. However, the Hamiltoni
and momentum constraints prevent the free specification
c4 ~or c0) on a Cauchy hypersurface. Consistent Cauc
data forc4 must be provided indirectly by a 3-metric an
extrinsic curvature that solve the constraints. In the Cau
approach to the close approximation, this has been prov
by ~a limit of! Misner’s time symmetric wormhole data@27#.

In the double-null formulation of the characteristic initi
3-5



u
fo

e

b
si
he
es
s
n

le
f
h

e

he

er-

MANUELA CAMPANELLI et al. PHYSICAL REVIEW D 63 124013
value problem, data are given on a pair of intersecting n
hypersurfaces, one outgoing and one ingoing. Null data
the Teukolsky equation forc4 can be freely posed on th
ingoing null hypersurface but data forc4 on the outgoing
null hypersurface has to obtained indirectly. This can
done, as in the Cauchy problem, by first considering con
tent metric data in double null coordinate, from which t
Weyl data forc4 can be constructed on both hypersurfac
This is the method we use here to generate two example
double-null data for the Teukolsky equation: Robinso
Trautman perturbations and close approximation data.

A. Robinson-Trautman perturbations

The Robinson-Trautman space-times@28# describe an al-
gebraically special but distorted and radiating black ho
They provide an important testbed for the computation o
general perturbative solution by numerical evolution. In t
case of outgoing radiation from a black hole of massM, the
metric can be put in the Bondi form@29#

ds252S K2
2M

rWDdũ222Wdũdr

22rW,AdũdxA1r 2qABdxAdxB, ~3.1!
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whereK5W 2@12L2(logW)#, L2 is the angular momentum
operator andW(ũ,xA) satisfies the nonlinear equation

12M] ũ~ logW!5W 2L2K. ~3.2!

The outgoing Eddington-Finkelstein form of th
Schwarzschild metric Eq.~2.2! results from settingW51.
More generally, smooth initial dataW(ũ0 ,xA) evolve
smoothly to form a Schwarzschild black hole horizon. T
linearized solutions to the Robinson-Trautman equation~3.2!
are obtained by settingW511f and dropping nonlinear
terms inf:

12M] ũf5L2~22L2!f. ~3.3!

For a spherical harmonic perturbationf5A(ũ)Ylm this
leads to the exponential decayA5A0e2ũ l ( l 11)(l 21 l 22)/12M.

The corresponding Weyl tensor components for the p
turbation arec050, in agreement with the role ofl a as an
algebraically degenerate principal null direction, and
for

le

data.
c45
2M A0 @ l ~ l 11!22# @26 M1 l ~ l 11! r #

3 r 2M2
~2u/M !221 l ~ l 11!@ l ( l 11)22]/3Zp2Ylm , ~3.4!

in terms of the affine horizon parameteru. The perturbation vanishes on the black hole horizonH 1 and is singular atI 2. This
supplies the data onH 2 and an outgoing null hypersurfaceu5u2 for the evolution ofc4 forward in retarded time.

For the corresponding time reversed solution,c450. By applying to the Robinson-Trautman perturbations a procedure
mapping an outgoing solution of Einstein’s equations into an ingoing version@30#, we find the solutions

ds252S L2
2M

rV Ddṽ212Vdṽdr12rV,AdṽdxA1r 2qABdxAdxB, ~3.5!

whereṽ is the advanced Bondi time coordinate,L5V 2@12L2(logV)# and

12M] ṽ~ logV!52V 2L2L. ~3.6!

The linearized solutions obtained by settingV511f satisfy

12M] ṽf52L2~22L2!f. ~3.7!

For a spherical harmonic perturbationf5B( ṽ)Ylm , this leads to the exponential growthB5B0eṽ l ( l 11)(l 21 l 22)/12M. The
corresponding perturbative Weyl tensor component is

c05
B0 er /M @ l ~ l 11!22# @26 M1 l ~ l 11! r # ~v/M !221 l ~ l 11!@ l ( l 11)22]/3

384M3
Z2Ylm , ~3.8!

in terms ofv5Meṽ/4M ~the affine parameter along the black hole horizon!. This perturbation vanishes on the white ho
horizon and is singular atI 1. Nevertheless, it can be used to check a~forward in retarded time! evolution algorithm, beginning
at a retarded timeu2 , by pasting asymptotically flat initial null data outside some radius to interior Robinson-Trautman
3-6
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B. Close limit initial data

The coordinates introduced by Sachs to formulate
double-null characteristic initial value problem@7# are espe-
cially useful when one of the null hypersurfaces is a wh
hole horizonH 2. Sachs’ coordinate system consists of~i! an
affine null coordinateu along the generators ofH 2, which
foliatesH 2 into cross-sections and labels the correspond
outgoing null hypersurfaces emanating from the foliatio
~ii ! angular coordinatesxA which are constant both along th
generators ofH 2 and along the outgoing rays and~iii ! an
affine parameterl along the outgoing rays normalized b
¹au¹al521, with l50 on H 2. In the resultingxa

5(u,l,xA) coordinates, the metric takes the form

ds252~W2gABWAWB!du222dudl

22gABWBdudxA1gABdxAdxB. ~3.9!

In addition, it is useful to setgAB5r 2hAB , where det(hAB)
5det(qAB), whereqAB is the unit sphere metric.

The requirement thatH 2 be null implies thatW50 onH
and the gauge freedom onH 2 can be fixed by choosing th
shift so that]u is tangent to the generators, implying th
WA50 on H 2, and by choosing the lapse so thatu is an
affine parameter, implying that]lW50 on H 2. In addition
to these choices, we fix the affine freedom inu by specifying
it on a sliceS 2 of H 2, which is located at an early tim
approximating the asymptotic equilibrium of the white ho
at past time infinityI 2. The outgoing null hypersurfaceJ 2

emanating fromS 2 then approximates past null infinityI 2.
The Schwarzschild metric in Israel coordinates~2.4! is ob-
tained in the spherically symmetric case whenWA50 and
hAB5qAB .

The double-null problem for the close limit of a whit
hole is posed on the ingoing null hypersurfaceH 2 and the
outgoing null hypersurfaceJ 2, which extends toI 1. In
order to pose the double-null Teukolsky problem forc4 in
the perturbative regime, we generate the data forc4 from
metric data for the nonlinear version of the problem. T
metric version of the null data consists of the values of
spin-weight-two fieldJ5qAqBhAB/2 on H 2 andJ 2. For a
perturbation of a Schwarzschild background,r is given by
Eq. ~2.5!. On the event horizonH 2,

c̄45
1

2
J,uu2

1

2
J,uKK ,u1

1

4
JK,u

2

1J,ur 21r ,u1Jr21r ,uu1
1

4
J,u

2 J̄

whereK5A11JJ̄, which reduces in the linear regime to

c̄4'
1

2
J,uu . ~3.10!

Off the horizon the expression forc̄4 is more complicated
and involvesW andWA as well asJ and r.

The horizon data for a head-on fission of a white hole, c
be obtained from a conformal model based upon an ingo
12401
e

g
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e
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null hypersurface emanating from a prolate spheroid emb
ded in a flat space@4#. Let (r̂ ,u,f) be standard spherica
coordinates for the inertial time slicest̂5const of
Minkowski space. In the close limit, the eccentricity of th
spheroid vanishes and the Minkowski null hypersurface
duces to the light cone from a spheret̂50, r̂ 5a. The per-
turbation of its conformal null geometry is described, to li
ear order in the eccentricity, by

J~ t̂ ,u!52
asin2u

t̂2a
, ~3.11!

where the relation betweent̂ and the affine parameteru on
the white hole horizon is

d t̂

du
5L~t̂!5

t̂2~ t̂21!2

~325t̂1 t̂2!2 S ~52A13!22t̂

~51A13!22t̂
D 4/A13

,

~3.12!

in terms of

t̂5
t̂2a

p
. ~3.13!

Herep anda are positive parameters which adjust the affi
freedom in the position of the Minkowski null cone on th
white hole horizon. At early times Eq.~3.12! implies u; t̂

but as the Minkowski null cone pinches off att̂5a the cor-
responding affine time on the white hole horizon asympto
to u→`. In terms of the inverted pair-of-pants picture for
white hole fission, the pants legs are mapped tou5` so that
in the close limit the individual white holes are mapped toI 1

along the white hole horizon in the Kruskal manifold. Th
details are discussed elsewhere in a treatment of fully n
linear null data for the general two black hole proble
@31,32#.

Close limit data forJ(u,u) on the white hole horizon is
determined by integrating Eq.~3.12! and substituting into
Eq. ~3.11!. These equations allow the rescalingu→Ku, t̂

→Kt̂ , p→Kp anda→Ka which allow us to setp51 with-
out any loss of generality. Note, that the rescalingu→Ku is
equivalent to the time translation isometryũ→ũ1const. In
order to eliminate nonessential parameters, we initiate
integration at the bifurcation sphereu50. Then, up to scale
the close data are determined byt̂05 t̂uu50,0 or in terms of
J by the parameter

h52
pJuu50

uJuu5`
52

1

t̂0

, ~3.14!

which is independent of the overall scale freedomJ→lJ
that is factored out in the close approximation. The para
eterh is a scale invariant parameter describing the phys
properties of the close limit. It determines the yield of t
white hole fission. In the time reversed scenario of a bla
hole collision,h would be related to the inelasticity of th
3-7
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collision. No similar parameter seems to appear in
Cauchy description of the close approximation in terms
time symmetric Misner data@6#.

The close limit data on the horizon forc4 used in the
simulations presented in Sec. V C are obtained by integra
Eq. ~3.12! with a fourth order Runga-Kutta scheme and c
rying out the substitutions into Eqs.~3.11! and ~3.10!. The
data on an early outgoing null hypersurface are accura
approximated by settingc450 since Eq.~3.11! implies c4
5O(u23). This approximates the condition on the data th
there be no ingoing radiation atI 2.

IV. NUMERICAL ALGORITHM

Before giving the details of the numerical algorithm, w
should state the goals we want to achieve. For many p
poses, it would seem sufficient to evolve the wave form u
one can read off the first few cycles of quasinormal mo
oscillation. This is sufficient in practice to compare with
nonlinear evolution, to get the astrophysically relevant p
of the wave form, to compare quasinormal mode results w
those in the literature, etc. Instead we define as our crite
of quality the ability to evolve stably and accurately well in
the domain where the wave form is dominated by a pow
law, which requires at least a 1000M of Bondi time for our
typical data. This turns out to be a rather stringent criteri
which rules out a number of numerical approaches which
have tried. In all such approaches, our overall strategy i
compactify the outgoing null direction and bringI 1 into a
finite coordinate distance while maintaining regularity of t
equations.

We begin the description of our numerical setup with
discussion of the ingoing null geodesics, which forms
basis of our approach to the numerical solution of the T
kolsky equation. Then we briefly describe a few of the alg
rithms which do not work completely satisfactorily for th
Teukolsky equation, and explain why this is so. We belie
that this also provides useful experience for nonlinear st
ies, where, lacking a stationary background geometry,
source of problems may be much less obvious.

Our present results pertain to the Teukolsky equation
c4, where c4 describes the outgoing radiation through
asymptoticO(1/r ) behavior atI 1. The incoming radiation
at I 2 is described byc0, which has asymptoticO(1/r 5)
behavior atI 1. As a result, an accurate treatment of t
Teukolsky equation forc0 requires different numerica
methods, which will be described in a forthcoming paper

A. Ingoing null geodesics

Null geodesics are fundamental to the design of the
merical algorithm since they are the characteristics of
Teukolsky equation. In particular, since we handle the an
lar part of the spin-weight-zero Teukolsky equation by
spherical harmonic decomposition in whichZZp52 l ( l 11),
the relevant characteristics are the radial null geodesics.
outgoing null geodesics are automatically built into the ch
acteristic evolution scheme, which is based upon a retar
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time foliation. The remaining issue is how to effectively in
corporate the behavior of the ingoing null geodesics into
algorithm.

Consider first the description of the ingoing null geodes
in a compactified version of Israel coordinates (u,x), where
x5l/(M1l) so thatI 1 is located atx51. The analytical
simplicity of these coordinates is not matched by their n
merical convenience. The ingoing null geodesics satisfy

dx

du
52~12x!2

W

2M
5

~12x!x2

8M ~12x!2ux
.

NearI 1 where 12x5d!1, this reduces to

dd

du
5

d

u
. ~4.1!

Henced, and the separation between neighboring geode
nearI 1, decays linearly withu and exponentially withũ.
Thus evolving for a Bondi time ofũ51000M is impossible
as the geodesics would be withine2250d0 of each other.

Not only is thex-coordinate numerically unsatisfactory i
the way it compactifiesI 1, the u-coordinate is also incon
venient in the way it covers the exterior Kruskal quadrant
a finite retarded time. This prevents the long term numer
resolution of the ringdown~with the characteristic time scal
of the lowest quasinormal mode! without using an exponen
tially decaying step sizeDu. This is simple to fix by using
Bondi time ũ as the time step coordinate.

The problem with thex-coordinate can be ‘‘delayed’’ by
introducing a dynamical grid, in which the gridpoints mov
along the ingoing null geodesics, a strategy that has b
successful in studies of spherical critical collapse@33#. This
approach drastically decreases the discretization error an
sufficient to evolve for about 100M , and read off the quasi
normal ringdown frequency and damping time with go
accuracy. However, theDx intervals between neighborin
geodesics decrease exponentially and the approach br
down once the separation between neighboring gridpo
falls below the error of the geodesic integrator~e.g. machine
precision! and a ‘‘numerical crossing’’ of the geodesics e
fectively occurs.

Note that in practice the computation of the null geodes
is related to the problem of inverting the definition of th
tortoise coordinate

r * 5r 12M logS r

2M
21D

to computer, which is also required for our production a
gorithm as discussed in the next section. Both problems
handled numerically by solving the above implicit equati
iteratively using Newton’s method~in terms of the appropri-
ate coordinates!.

B. Numerical algorithm for outgoing radiation

The preceding considerations lead us to the follow
choice of algorithm for a production level unigrid code wi
3-8
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CLOSE LIMIT FROM A NULL POINT OF VIEW: THE . . . PHYSICAL REVIEW D 63 124013
optimal performance. It is based on a (ũ,r) coordinate sys-
tem, wherer is a radial coordinate, which compactifiesI 1,
defined implicitly by

r * 5r0tanr, ~4.2!

with r0 an adjustable parameter and2p/2<r<p/2. Ther
coordinate allows good resolution at all times near bothI 1

and the white hole horizon.
In this coordinate system, we evolve thel th spherical har-

monic component ofF̃4 by expressing the second order d
ferential equation~2.20! as the two coupled equations

]rF̃45G ~4.3!

] ũG5
cos2r

2r0
]rG1S 2

~r 23M !

r 2
2

sinr cosr

r0
D G

2
r0

cos2r

~r 22M !@~ l 21 l 22!r 16M #

2r 4
F̃4 . ~4.4!

The background massM can be scaled out of the abov
equations by the rescalingr0→Mr0 , ũ→Mũ and r→Mr .
In this way, simulations can be carried out withM51 with-
out loss of generality. Note that rescalingũ is independent of
the rescalingu→Ku ~see Sec. III B! which generates the
translation isometry ofũ.

The relatively sensitive features of Eq.~4.4! on a hyper-
surface of constantũ are located in the region nearr 52M .
This is the main reason why ther coordinate is so usefu
since it concentrates grid points in that region while ma
taining a uniform grid spacing. We make the choicer0
540M , which gives good resolution throughout the evo
tion, well past the ringdown phase and into the final pow
law tail. Note that this would not be possible with the sim
pler approach of writing the Teukolsky equation in~a com-
pactified version of! double null coordinates (ũ, ṽ), which
gives excellent results until one reaches the power law
At this stage the dynamics is essentially dominated by
‘‘Schwarzschild potential,’’ which is not well resolved i
double null coordinates.

Equation ~4.3! is solved using a second order accura
integration in r. Equation ~4.4! is solved using a secon
order ~in time! Runga-Kutta scheme, with the]rG term
evaluated by means of second order accurate forward di
encing in the interior of the grid, and second order accur
central differencing for the point neighboringI 1. ~The ]rG
term drops out on bothH 2 andI 1, where] ũ is a charac-
teristic direction.!

For a typical choice of initial data the power law tail on
sets in after the quasinormal oscillations have decayed
more than 10 orders of magnitude. In order for the final
not to be lost in machine error it is necessary to evolve
quasinormal phase in quadruple precision.
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FIG. 1. Robinson-Trautman convergence test:l ` error normE
versus gridsizeDr.

FIG. 2. Wave formF̃4(ũ) at I 1 produced by a single pulse
emerging from the white hole horizon.
3-9



MANUELA CAMPANELLI et al. PHYSICAL REVIEW D 63 124013
FIG. 3. Log plot ofuF̃4(ũ)u for the wave form in Fig. 2~darker
curve! and a fit to the quasinormal ringdown~lighter curve!.

FIG. 4. Log-log plot of the tail of the wave form in Fig. 2.
12401
FIG. 5. t̂(u) versusu for 4 values ofh.

FIG. 6. Close approximation dataF4(u) on H2 for 4 values
of h.
3-10
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V. WAVE FORMS

In this section, we present computed wave forms for th
types of quadrupole data, with the background mass sc
to M51. The first case, an analytically known Robinso
Trautman perturbation, is used to establish second order
vergence of the numerical algorithm. The Robinso
Trautman wave form decays as a pure exponential.
second case, a pulse of compact support emanating from
white hole horizon, serves to monitor the ability of the co
to track many cycles of the quasinormal ringdown of a g
neric radiation tail. The final case is the close limit wa
form from a white hole fission.

A. Robinson-Trautman testbed

An l 52 Robinson-Trautman perturbation is determin
by the spin-weight-0 field

F̃45
r 21

r
e22ũ. ~5.1!

We use this to perform a convergence test of the code
evolving fromũ50 to ũ55 and then examining thel ` norm
of the error E5uuF̃4,NUMERIC2F̃4,ANALYTICuu versus grid
spacing atũ55, at which time the signal has decreased b
factor of e210. The convergence plot of the error given

FIG. 7. Close approximation dataF̃4(u) on H 2 for h57060,
1410, 364 and 84.3, with the amplitudes renormalized by the r
tive factors of 1, 24.03, 305.9 and 3223, respectively.
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Fig. 1 determines a slope of 2.0041, in excellent agreem
with the theoretical second order accuracy of the algorith

B. Ringdown from a compact pulse

We simulate the evolution of anl 52 quadrupole pulse o
compact support emerging from the white hole horizonH 2.
The pulse consists of a single peak of the form

F̃4~ ũ,x50!5@~ ũ2ũmin!~ ũmax2ũ!#4, ũmin,ũ,ũmax,

~5.2!

with F̃4(ũ,x50)50 outside this interval. Figure 2 shows th
wave form onI 1 obtained by evolvingF̃4 with initial data
F̃450 on an outgoing hypersurface preceding the pulse
the simulation used to produce the wave form atI 1, we
choose ũmin5250 and ũmax50 and evolve from ũ5

260M to ũ52000M . The simulation was performed in tw
steps. The first step, in the interval fromũ5260M until ũ
5250M , was performed in quadruple precision in order n
to lose the final tail in roundoff error. The second step, in
interval from ũ5250M until ũ52000M , was performed in
double precision.

Figure 3 is a logarithmic plot of the absolute value of t
wave form versusũ for the same data. It covers the perio

a-

FIG. 8. Close approximation dataF̃4(ũ) on H 2 for h57060,
1410, 364 and 84.3, with the amplitudes renormalized by the r
tive factors of 1, 24.03, 305.9 and 3223, respectively.
3-11
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from the onset of quasinormal ringdown to the onset of
final tail decay. The logarithmic plot clearly demonstrates
exponential decay and shows a fit to a quasinormal de
The lowest quasinormal mode for a gravitational pertur
tion of the Schwarzschild metric has the theoretical formf

;sin(.373672ũ)exp(2.0889625ũ) @34#. The fit of the com-

puted wave form to a quasinormal decay isF̃4

;sin(.373668ũ)exp(2.088951ũ), in excellent agreemen
with the expected theoretical form. The corresponding fit
the close approximation wave form given in Sec. V C yie
the quasinormal dependence

F̃4;sin~ .3736735ũ!exp~2.0889575ũ!.

A conservative comparison of these two calculations in

cates a quasinormal dependenceF̃4;sin(.37367ũ)exp

(2.08895ũ), with the numerical uncertainty in the last dig
Figure 4 shows a log-log plot of the late time behavior

the wave form and the final tail. The measured slope of
tail indicates a power law decay, with the power varyi

from F̃4}ũ25.76 near the beginning of the tail toF̃4}ũ25.89

near the end.

FIG. 9. Close approximation dataF̃4(ũ) on H 2 for h56.04
and .00524, with the amplitudes renormalized by the relative fac
of 1 and 1220.
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C. The close approximation wave form

As discussed in Sec. III B, the effective parameter sp
for the head-on close approximation data can be reduce
the single scale invariant parameterh controlling the fission
yield. In the simulations presented here we set the scale
pendent parameterp51. Thus, in accord with the discussio
in Sec. III B, we identifyt̂2a5 t̂ and prescribe the horizon
data used in the simulations in the normalized form

F452~L]t̂!~L]t̂!
1

t̂
, ~5.3!

after factoring out thel 52 angular dependence.
The time dependence of the close approximation dat

quite mild when expressed as a function oft̂, as in Eq.~5.3!.
However, the relationship~3.12! can cause the dependen
on u to be quite sharp. There is a transition region where
behavior oft̂(u) changes from the asymptotic formdt̂/du

→1 as t̂→2` to dt̂/du→0 as t̂→0. For large values of
the parameterh, this produces sharply pulse shaped data
described below.

Figure 5 plotst̂ versusu for h57060, 1410, 364, and
84.3. The plots reveal a relatively sharp transition in t
slope. This transition region is translated in the negat
u-direction ash increases. For sufficiently smallh the tran-

rs

FIG. 10. Convergence of the close approximation wave form

I 1: The overlaid plots of 4dy1(ũ) and dy2(ũ) are indistinguish-
able.
3-12
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sition occurs atu.0, in the region of the white hole horizo
which does not affect the exterior spacetime.

The location of the transition region affects the nature
the horizon data. Figure 6 showsF4(u)uH 2 for the above
values ofh. The value ofh only changes the position of th
transition region, not its width. Hence a change inh trans-
lates the horizon dataF4(u)uH 2 but does not change it
shape.

The horizon data forF̃4(ũ) has a more complicated de
pendence onh due to the exponential relationship betweenu

andũ and the extra factor ofu2 introduced by the change i
tetrad. This is of physical importance since it isF̃4(ũ) which
is the observed wave form atI 1. The factor ofu2 suppresses
pulses centered at smalleruuu compared to those centered
larger uuu and forces the resulting pulse to vanish atu50.
The relation betweenũ and u varies from an exponentially
increasing blueshift at large negativeu to an exponentially
increasing redshift atu50. This has the effect of compres
ing pulses centered at more negativeu compared to those
centered at less negativeu. These effects combine to produc
successively broader pulses for successively smallerh.
However, onceh is sufficiently small, the transition region i
located at u.0 and h does not affect the shape o
F̃4(ũ)uH 2, although it affects its overall amplitude. In th
case t̂'u1 t̂0 for 2`,u,0, and F4uH 2}1/(u1 t̂0)3,
where t̂0521/h. As a result, modulo a constant overa

FIG. 11. Close approximation wave formsF̃4(ũ) on I 1 for h
57060, 1400, 368 and 84.3, with the amplitudes renormalized
the relative factors of 1, 37.9, 544 and 11200, respectively.
12401
f

multiplicative factor and a constant shift inũ,

F̃4~ ũ!uH 2}
he2ũ/2

~e2ũ/411!3
. ~5.4!

Figures 7 and 8 showF̃4(u)uH 2 andF̃4(ũ)uH 2, respectively,
for h57060, 1410, 364, and 84.3. Figure 9 showsF̃4uH 2

versusũ for small h, with the amplitude and position of th
peaks adjusted so that they overlap. Except for the ove
amplitude, there is no significant effect on the data ev
whenh is reduced by 3 orders of magnitude. For small v
ues ofh, F̃4(ũ)uH 2 scales linearly withh in accord with Eq.
~5.4!, whereas for largeh it scales quadratically, as eviden
from the renormalizations in Figs. 7 and 8.

We test the convergence of the wave form atI 1 by
evolving this close approximation data with increasing
larger grids containing 1001, 2001, and 4001 points. We
fine dy1 to be the difference between the waveforms o
tained using 1001 and 2001 points, anddy2 the difference
between using 2001 and 4001 points.~We consider only
points common to all three grids.! Second order convergenc
requires thatdy154dy2. For these grid sizes, Fig. 10 show
thatdy1 and 4dy2 overlap confirming that the code is secon
order convergent throughout the quasinormal ringdo
phase.

Figure 11 shows a series of wave forms produced onI 1

obtained by evolving the close approximation data forh

y
FIG. 12. Close approximation wave formF̃4(ũ): Quasinormal

ringdown and tail forh5158.
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57060, 1410, 364 and 4.39. The wave forms have b
translated with respect to each other and normalized to
amplitude for purpose of comparison. The plots show
wave forms from the initial time up to~roughly! the onset of
quasinormal decay.

Figure 12 shows a log plot of the wave form produced
h5158. The fit of the exponentially damped section is

F̃4}e2.0889575ũsin~ .3736735ũ!, ~5.5!

FIG. 13. Close approximation wave formF̃4(ũ): Late time
power law tail forh5158.
-

O

r-

12401
n
it

e

r

which matches the theoretical form for the lowest quasin
mal mode to five digits~in the frequency!.

Figure 13 shows the late time tail of the wave form. T
measured slope of the tail indicates a power law decay of
approximate formF̃4}ũ25.8 near the beginning of the tail to
F̃4}ũ25.9 near the end, very similar to the behavior of th
tail for the compact pulse described in Sec. V B. These
sults suggest a final integer power law tailF̃4}ũ26. For an
l 52 quadrupole wave, this is the sameũ2(2l 12) integer
power law originally predicted by Price@35# for the decay of
an initially static multipole. A rigorous mathematical trea
ment of power law tails has not yet been given@36# and it
would be particularly interesting to reexamine the theory
the context of our boundary conditions.

VI. DISCUSSION

Our results establish the capability of characteristic e
lution of the Teukolsky equation to determine an accur
advanced solution for the head-on collision of black holes
the close approximation. In subsequent work, we will exte
these results to determine the physically more appropr
retarded solution. In the fully nonlinear regime, the confo
mal horizon model for supplying binary black hole dat
combined with an existing characteristic evolution code,
fers a new way to calculate the merger-ringdown wave fo
from coalescing black holes. Because this is an unexplo
area of binary black hole physics, these perturbative stu
of the head-on collision will provide a preliminary physic
check on extending the work to the nonlinear and nona
symmetric case, where inspiraling black holes can be trea
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