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Close limit from a null point of view: The advanced solution
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We present a characteristic algorithm for computing the perturbation of a Schwarzschild spacetime by means
of solving the Teukolsky equation. We implement the algorithm as a characteristic evolution code and apply it
to compute the advanced solution to a black hole collision in the close approximation. The code successfully
tracks the initial burst and quasinormal decay of a black hole perturbation through 10 orders of magnitude and
tracks the final power law decay through an additional 6 orders of magnitude. Determination of the advanced
solution, in which ingoing radiation is absorbed by the black hole but no outgoing radiation is emitted, is the
first stage of a two stage approach to determining the retarded solution, which provides the close approximation
wave form with the physically appropriate boundary condition of no ingoing radiation.
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. INTRODUCTION hypersurfacel™ which approximated * and intersecté{ *
. . at a late time when the perturbation of the black hole has
In this work, we present the advanced solution for a peryffectively died out. These data 6it* andJ* then consti-
turbation of a Schwarzschild background describing thyte a standard double-null initial value probléin-10] for
head-on collision of black hok_es in the close approximationy,e exterior spacetime, in which ingoing radiation is ab-
where the merger takes place in the far past. We compute the, ,o py the black hole but there is no outgoing radiation.
solution by means of a characteristic evolution of the Weyl This advanced solution provides the radiation incident
tensor, as govgrned by the Teukolsky equafibr2]. The from Z . In stage Il of the approach, this ingoing radiation
advanced solution corresponds to stage | of a new two staqﬁi” be used to aenerate a “source freeitvanced minus
approach to the vacuum binary black hole problggh In 0 g .
subsequent workstage 1), we will use the results of this first retarded solution. A p“_”?'y ret_arded solution can then be
stage to compute the physically more relevant retarded sollpreduced by superposition with the stage | solution. Al-
tion. This perturbative solution will in turn provide a valu- though we do not address stage Il in this paper, we will
able reference point for the physical understanding of a fullydiscuss the role of time reflection symmetry in the perturba-
nonlinear treatment of binary black holes being pursued by #0n equations, which simplifies the technical details in car-
similar two stage strategj4], a computationally feasible TYing out the superposition. From a time reversed point of
problem using an existing characteristic cd@ The per-  View, the stage | solution is equivalent to the retarded solu-
turbative results also provide a new perspective on the phystion for a “head-on” white hole fission, with the physically
cal picture previously obtained by applying the Cauchy prob+elevant boundary conditions that radiation is emitted but
lem to the close approximatidie], especially with regard to that there is no incoming radiation frofii . It is convenient
global issues which have not yet been explored in théhere to formulate the stage | results in terms of such a white
Cauchy formulation. hole fission since the characteristic evolution then takes the
In the characteristic formulation of this problem, the ad-standard form of being carried out forward in retarded time.
vanced solution is simpler to compute than the retarded so- The close approximation has been extremely useful for
lution because of the global relationship between the nultesting fully nonlinear Cauchy evolution codes. The results
hypersurfaces on which boundary information is known. Oneof numerical Cauchy evolution and close-limit perturbative
of these hypersurfaces is the black hole event horioh  theory are in excellent agreement in the appropriate regime,
whose perturbation must correspond to the close approximayiving great confidence in both approachésll]. Further-
tion of a binary black hole. In the retarded problem, the othemore, the perturbative approach provides an important tool
null hypersurface(in a conformally compactified descrip- for the interpretation and physical understanding of those
tion) is past null infinityZ~ where the incoming radiation results[12].
must vanish. Becaus® © andZ~ are disjoint, there is no Clearly, this vital synergism between numerical and per-
direct way to use data on those two hypersurfaces to posetarbative approaches should also extend to characteristic
characteristic initial value problem. evolution. However, in all perturbative studies performed to
However, in the advanced problem, it is at future nulldate, the background geometry has either been the Schwarzs-
infinity that the radiation is required to vanish. Sirfige and  child spacetime in standard Schwarzschild coordinates or the
Z* formally intersect at future time infinity", they can be Kerr spacetime in Boyer-Lindquist coordinates. These coor-
used to pose a characteristic initial value problem to evolvalinate systems are appropriate for comparison with results
backward in time and compute the exterior region of spacefrom nonlinear Cauchy evolution but, to our knowledge,
time. Potential difficulties in dealing with" are avoided by there does not yet exist a treatment of the close approxima-
posing the no outgoing radiation condition on an ingoing nulltion in terms of null coordinates appropriate for the compari-
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son with nonlinear characteristic evolution. In Sec. Il, we specify a null background tetrad suitable to

This work provides such a framework. The methods andeexpress the Teukolsky equations fgg and %, in null
results presented here are expected to have direct bearing ooordinates appropriate for characteristic evolution. We also
the study of binary black holes presently underway using aliscuss various global aspects of these equations which are
fully nonlinear characteristic code. Characteristic evolutionimportant for numerical evolution. In Sec. lll, we discuss
has been totally successful in evolving 3-dimensional singlelata for the Teukolsky equation. We present null data for
black hole spacetimes for effectively infinite times ( linearized Robinson-Trautman solutions, which provide an
~6000MM in terms of black hole mag$13]. Although itis  analytic check on numerical accuracy, and null data for the
not yet known to what extent the characteristic approach canlose approximation to a white hole fission. In Sec. IV, we
handle the inspiral and merger of binary black holes, it isdiscuss the numerical algorithm used to carry out the char-
clear that the limitations are due to difficulties in treating acteristic evolution. The properties of the close approxima-
caustics and not due to high nonlinearity. tion wave forms, are presented in Sec. V.

The characteristic data which has been obtained for the Notation and conventions: We use a metric of signature
nonlinear description of a binary black hole spacetime genf—+++) and a null tetrad with normalizatioh®n,=
erate close approximation_ data for a perturbative solution—mam_=—1, so tha@abzz(m(aﬁb)—l(anb)). We usegap
We present here a numerical code to evolve such data ast@ represent the standard unit sphere metric in angular coor-
perturbation of a Schwarzschild spacetime in nL_JII Coord"dinates xA=(9,¢) and SethB:q(AaB), where q*8qsc
nates. Fortunately for our purposes, the perturbative formal-_ 52, with A= (Li/sin9). We useg® to define thed op-
ism_due to Teukolsky[2] is amenable to a reasonably erator with the conventiodf=q*d,f, for a spin-weight 0
straightforward change of background coordinates, as Obfhnctionf Coml . t'q 'Aél i dp ith %b .,
served in Ref[14] . plex conjugation |_s enoted with a “bar,

The Teukolsky equation is based upon the decompositiof-9- R(f) =(f +f)/2. The conventions of the present paper
of the Einstein equations and Bianchi identities in terms of desult in a different form of the perturbation equations from
conveniently chosen complex null tetrad, as carried out byhat originally given by Teukolsky.
Newman and Penrog&5] in the early 1960s. The Newman-
Penrose formalism allowed Teukolsky to construct a single
master wave equation for the perturbations of the Kerr metric
in terms of the Weyl curvature components (describing  A. The background Schwarzschild metric in outgoing horizon
outgoing radiatiohor i, (describing ingoing radiationThe coordinates
Teukolsky formalism provides a completely gauge invariant
spherical harmonic multipole decomposition for both even
and odd parity perturbations in terms of radial wave equa- M oM\ 1
tions. For a Kerr black hole with angular momentum, there is ds?’=— ( 1- T) dt’+dr?| 1— e +r2q,pd X dxE.
no similar multipole decomposition of metric perturbations 2.)
in the time domain(as opposed to the frequency domain of '
Fourier modes In the non-rotating case, the Teukolsky

equation reduces to the so-called Bardeen-Press equatigi outgoing Eddington-Finkelstein coordinates, wharet

[16]. _ . —r* is a null coordinate and* =r +2Mlog(r/2M — 1), the
Since the 1970s the Teukolsky equation for the first ordeschwarzschild metric takes the Bondi form

perturbations around a rotating black hole has been Fourier
transformed and integrated in the frequency domain for a
variety of situations where initial data played no rfl&,18.

In order to avoid the important but difficult problem of pre-
scribing physically appropriate initial data for that equation,
the computation of gravitational radiation has been restricted
to the cases of unbounded particle trajectories or circulaf hese coordinates specialize to spherical symmetry the gen-
motion. The first evolution code to integrate the Teukolskyeral procedure for constructing a Bondi null coordinate sys-
equation in the time domain, in Boyer-Lindquist coordinates f€m[24]. They patch two quadrants of the Kruskal manifold:
was recently developed 9] and successfully testd@0]. In the exterior spacetime quadrant and the quadrant following
order to incorporate initial data representing realistic astrothe initial singularity.

physical initial data for the late stage of binary black hole ~For the anticipated comparison with a fully nonlinear de-
coalescence, 81 expressions connecting, and its time scripti_on of a white hole, it is useful to intrqduce another null
derivative to Cauchy daté8-metrich;; and extrinsic curva- coordinate system based upon the affine parameter

ture Kj;) satisfying the Hamiltonian and momentum con- —Me ™ ¥*M along the ingoing null hypersurface=2M that

Il. THE PERTURBATION EQUATIONS

The Schwarzschild metric in standard coordinates is

2MY ~
ds?=— ( 1- T)duz—Zduerr r2gapdx*dxB. (2.2

straints forms the white hole horizon. We set=0 at the intersection
of the black hole and white hole horizons, i.e. at the
ba=a(hij [ Kij), b= a(hyj Kjp), =2M bifurcation sphere(corresponding tou=+o in
Eddington-Finkelstein coordinatesThe metric then be-
have been worked out explicith21,20,22,23 comes
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8M
du?+ - dudr+ r2qagdxAdxE.

(2.3

2
dszz_(l_m>16M

r u2

In addition, we introduce an affine parame®eralong the
outgoing null geodesics in the direction, with the affine
freedom fixed by requiring that=0 whenr=2M and that
92°(9,u) d,A = — 1. This implies

AM(r—2M)
—

In these (1,\) coordinates, the metric takes the form

ds?>=—WdwP—2dud\ + r2gagdx dxE, (2.4

where
=2M A 2
=M 29

and
W= 220 (2.6)
AU—8M2’ '
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Here the spin coefficienta = (I,.,n®m°—m,,m*m®)/2, B
=(lapn®mP—mgpm®mP)/2,  y=(I4,N?N°—m,,,;m?nP)/2,
e=(lpn?P—mgpm?P)/2, 7=1,,m?n®, 7=—n_ . m3P,
p=I,pmm° and u=—n,,m*m° are computed using the
background geometry and the directional derivativesare
=129,, A=n?j,, =m?d, andé=m?3d,. The Weyl scalars
Yo or ¢, are first order quantities in perturbation theory
while ¢,=C,pcd *m°m°nd=—M/r% is a zeroth order curva-
ture quantity.

This formulation has several advantageous featurgst
is a completely first order gauge invariant descriptioa.,
the perturbative Weyl scalaif, or ¢, are invariant not only
under infinitesimal coordinate transformations but also under
null rotations of the tetraq (ii) It does not rely on any fre-
quency or multipole decompositigne., the above equations
can be directly integrated in the time domjitiii ) The Weyl
scalars are objects defined in the full nonlinear theory, where
o can be prescribed as constraint-free data on an outgoing
null hypersurface and, as constraint-free data on an ingo-
ing null hypersurface.

Since Eqs(2.7),(2.8) are expressed in a covariant form, it
is straightforward to write them explicitly in any background
coordinate system. Specializing thus to the Schwarzschild
background metric in the Israel coordinates introduced in Eq.
(2.4), we choose a null tetrad

These coordinates specialize to spherical symmetry the gen-
eral procedure for constructing a Sachs null coordinate sys-
tem designed for the double-null initial value probléi.

For this reason, they are especially useful for the study of
horizons in the nonlinear regime. They are also useful in the
perturbative regime because they cover the entire Kruskal
manifoldr >0 with remarkably simple analytic behavior, as
first discovered by Israel [25]. Since g=W
=—\2%/(2Mr) the hypersurfaces =const are everywhere
spacelike(so that theu-direction is spacelikeexcept on the
white hole horizon where =0 and theu-direction is null.
The surfacesu=const are everywhere null. The spacelike
surfaces\ =const>0 (A =consk0) can be used as patrtial
Cauchy hypersurfaces to cover the two quadrants abimse
low) A=0 in the Kruskal manifold.

where

B. The Teukolsky equations

By aligning a complex null tetrad,l’(,n“,m“,ﬁ”) with
the degenerate principal null directions of a Petrov type D
background spacetime, Teukolgid] was able to express the

al _va _( ﬂ)a_
=—vau=| | =[0,1,00,

A [\ wW aa—l)‘zoo
=u) T2\ T tame )
ma:iqa
Jar
o= — g (2.9
Jar’

(5] + sl 100
o= 75| + =[] =[00a%. (210

sind \ do

Correspondingly, the only non-vanishing background NP

vacuum perturbation equations for the Weyl curvature scaquantities are

lars o=Capcd 2m°I°m® (of spin-weight s=2) and i,
= Capedn®mPnmd (of spin-weights= —2) of the Newman-
PenrosgNP) formalism[26] as the simple wave equations

[(D+3e—e+dp+p)(A+dy—pu)—(6—m+a+3B+47)
X(8—m+4a)— 3] ho=0, 2.7
[(A=3y+y—4u—p)(D—4e+p)—(6+7—B—3a—4am)
X (84 7—48) =3¢y h, =0. (2.8
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B 1 J i J
2r\ a0 sing ag)’

- 1 1% I 1% 21
_\/E J%  sind dg)” (213

Substitution of the above NP quantities into E(&7),(2.8)
reduces the Teukolsky equations to

L? L?
|_0+ 5| #=0 and L4+2— $,=0, (2.12
r
where
Lo=——\2 >
0= Zar MOt gp U
ay + >
S TVE
+ [
La= e ———\202+ dydy — YTV 2r2>\aA
r2—16M2+4Mr
- (2.13

2Mr3
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—N2924 9,0y — —~——Ud —lm
AMr " Th D TUTA g Myr T o2 TN
r’—16M2+4Mr  (2+80)

=0. (2.19

2Mr3 2r2

These equations can be re-expressed in terms of the La-
placian
2\2

2\ (16M2%—u\)
8M2—un

(8M2—un)?

9?2,

(2.19

defined by the metrids’= —WdW?— 2dud\ induced by the
Schwarzschild metric on the 2-dimensionalX) subspace.
Discussion of the asymptotic behavior of the Weyl tensor is
most convenient in terms of the variablég=r>d, and
F,=r®,. The spin-weight-zero Eq$2.14) and(2.15 then
reduce to

D2=— N 2940\ —

andL?= —33 is the angular momentum squared operator. In

order to treat the radiation ne@r it is also advantageous to
consider a boosted tetrad 3(n®,m?,m?), with T2=—Vu
and n? satisfying T8n,=—1. We accordingly define
boosted Weyl scalars gio=Cg,pcd m°1°m? and 7,
=Cpedn®mPn°md. This boosted tetrad is adapted to the af-
fine timeu atZ * rather than the affine timeat the horizon.

C. Spin-weight-zero versions of the Teukolsky equations

It is useful to convert Eq92.12,(2.13 into spin-weight-
zero equations. Considering the commutation relatida (
—38) »p=2sn for a spin-weights function 7, and setting
Yo=0%D, so that ddyy,=0%(6+35)P,, the Teukolsky
equation fory, becomes, after factoring out an overaf,

5 1
VT ——\202+ 9y — 4Mruau——rzyx(SM—4r)ax
5 (6+80)| -
am gz | P07 219

Similarly, setting ,=38°®, so that33y,=05%(2+385)®,
and after factoring out an overaif, the Teukolsky equation
for ®, takes the spin-weight-zero form

(D?2+To)Fo= (2.17
(D2+T,)F,=0, (2.18
where
(6M+r1)\ 30M (6+30)
To=— 2 AT T3 2
Mr r r
and
(6M+r)\ (2+00)
Ty=—————0— —&
Mr?2 r3 r?

do not containg,, terms.

Asymptotic flatness requires th&t, and F, have finite
limits atZ *. This is consistent with the asymptotic forms of
Egs.(2.17) and(2.18, which asymptote to one-dimensional
wave equations for solutions whose radial derivative falls off
uniformly asO(1/r?). The limit of F, determines the outgo-
ing gravitational radiation wave form and the limit Bf, is
related to the retarded quadrupole moment of the system.

More precisely, linn 1//4 (rN whereN is the standard defi-
nition of the Bondi news function.
In the limit A — oo,

(6M+r)A
Mr?

—— —,

u

so that the appearance of this termTiyp and T, can cause
inaccuracy in the numerical solution of Eg&.17 and
(2.18 at late Bondi times o * (as—u—0). In particular,
the late time behavior of the radiation wave form, can be
more accurately computed by an evolution algorithm for the

Weyl componenty,. Setting,=02®, and /,= 8D, the
fields Fy=r>®, andF,=r®, satisfy
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(D2+So)|~:o:0 (2.19 D. Time reflection properties of the Teukolsky equation
The different forms of Eqs(2.14 and (2.15, or Egs.
(D2+S,)F,=0 (2.20 (2.19 and(2.20, make it clear that the Teukolsky equation

for the Weyl componeny, in the outgoing null directionh?
and the Teukolsky equation for the Weyl componétin
the ingoing null directiom? are not related in a way which
makes manifest the time reflection symmeirpf the back-
ground Schwarzschild geometry, defined hyt,r,6, )

r2 =(—-t,r,0,¢) in Schwarzschild coordinates or by
T(u,r,0,)=(—0.r,0,¢) in terms of Bondi retarded and
advanced times=t—r* andv=t+r*. The time reflection
symmetry could be incorporated explicitly by introducing
null tetrad vectorsL?=al? and N?=(1/a)n? satisfying
and 7L%=—N? However, the explicit form of the required

boost,

where

16M(r —3M) 30M (6+39)
= > 0)\— 3 +

ur r

4(r—3M) _ 30M (6+039)

2 r r3 2

r r

16M(r —3M) 6M  (2+30)

5 h=—3+— 2M  2(r—=2M) 2M | —2)\u
ur r r = — N T\
u r u 8M2—\u’

_4(r=3M) &M (2+80) (2.23

2 r r3 2 ’

=

r r

makes it clear that such a time symmetric formulation would

) o _introduce singular behavior at both the black and white hole
In these variables, the deviation of the Teukolsky equationggrizons.

(2.19 and(2.20 from a one-dimensional wave equation is  However, this time symmetric tetrad is useful for formu-

independent of time at a fixed These equations are well |ating the time reflection symmetry of solutions of the
behaved af ¥, i.e., after a compactified coordinate such aSTeukolsky equations using other tetrads. Leb,

x=1/r is introduced. Becaus§4=(u/4M)2F4_, whereF,  —c_, N?m°N°md="w(U,r,6,4) be a perturbative solution
must be regular throughout the Kruskal manlf({klhce itis  for w,. Then the time reflection symmetry implies th,
constructed with a regular baist follows thatF,—0 as  —c_ 1 amPLemi=w(—7,r,6,4) is a perturbative solu-

the black hole horizon is'approached. This facilitatgs an acon for W,. This correspondence maps a retarded solution
curate long term evolution of the wave form using EQ. (g incoming radiationfor ¥, into an advanced soluticino
(2.20. B - outgoing radiatiopfor W. In terms of thel® andn? Weyl

~ Note also, however, tha,=(4M/u)?F so thatFo is  components, the solutiosr,= ¢/(U,r,6,4) corresponds un-
singular on the black hole horizon and thus a poor choice ofjor time reflection to the solution
variable for long term evolution. The opposite signs of the

coefficients ofg, in Sy andS, are responsible for this behav- 2 L
ior, as can be seen by ignoring the remaining potential terms o= 2e”mz,/;(—v,r,e,gi)). (2.29
and freezing the coefficient of, at r=2M, so that Egs. 256\

(2.19 and(2.20 reduce to
. NULL DATA FOR A SCHWARZSCHILD

1) - PERTURBATION
(26@—(9,—M> d,Fo=0, (2.21
The Weyl componenty, can be posed as constraint-free
1 gravitational data on an outgoing null hypersurface. Simi-
= larly, i, constitutes constraint-free gravitational data on an
-0+ — = . o .
(Z(T“ Ir M %Fa=0, (2.22 ingoing null hypersurface. Thes®nlinearresults extend to

linearized theory but care must be exercised in applying
in terms of retarded Bondi coordinates. In this approximathem to the Teukolsky equations.
tion, both of these equations admit purely outgoing waves In the Cauchy formulation, the Teukolsky equation for

E(U). However, an ingoindc, wave has the exponentially is normally chosen in order to investigate the outgoing radia-
singular behavior tion introduced by a perturbation. However, the Hamiltonian

and momentum constraints prevent the free specification of
s (Or ¢g) on a Cauchy hypersurface. Consistent Cauchy
data for ¢, must be provided indirectly by a 3-metric and

- extrinsic curvature that solve the constraints. In the Cauchy
as an initial pulsef(uo+2r) approaches the black hole ho- approach to the close approximation, this has been provided
rizon asu—o. In contrast, an ingoingr, wave decays ex- by (a limit of) Misner’s time symmetric wormhole dafa7].
ponentially on approach to the black hole. In the double-null formulation of the characteristic initial

Fo=f(U-+2r)evoram
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value problem, data are given on a pair of intersecting nulivhereX=W?[1—L?(logV)], L? is the angular momentum
hypersurfaces, one outgoing and one ingoing. Null data fopperator and/A(u,x*) satisfies the nonlinear equation

the Teukolsky equation foy, can be freely posed on the

ingoing null hypersurface but data f@r, on the outgoing

null hypersurface has to obtained indirectly. This can be 12M 75 (log) = W2L2K. (3.2
done, as in the Cauchy problem, by first considering consis-

tent metric data in double null coordinate, from which the

Weyl data forys, can be constructed on both hypersurfaces. The outgoing Eddington-Finkelstein form of the
This is the method we use here to generate two examples &chwarzschild metric Eq.2.2) results from settingV=1.

double-null data for the Teuk0|5ky equation: RObinSOﬂ-More genera”y' smooth initial data/\}(tlo,XA) evolve

Trautman perturbations and close approximation data. ~ smoothly to form a Schwarzschild black hole horizon. The
linearized solutions to the Robinson-Trautman equai®B)
A. Robinson-Trautman perturbations are obtained by settiny=1+ ¢ and dropping nonlinear

The Robinson-Trautman space-tinj@8] describe an al- €MS iné:

gebraically special but distorted and radiating black hole.
They provide an important testbed for the computation of a
general perturbative solution by numerical evolution. In the
case of outgoing radiation from a black hole of mé&sthe
metric can be put in the Bondi forfi29]

12M app=L2%(2—L2) ¢. (3.3

For a spherical harmonic perturbatiop=A(U)Y,,, this

M\ - ~ leads to the exponential decay=A e {0107 +1-2)1
MY o 0
ds’= (’C rw)du 2Wdudr The corresponding Weyl tensor components for the per-
_ turbation arey,=0, in agreement with the role ¢f as an
—2rW adudx*+r2gagd X dx®, (3.1)  algebraically degenerate principal null direction, and

C2M AG[I(1+1)=2][-6M+1 (I1+1)r]

_ — 2411+ D)[I(1+1)—2]/3K2
322 (—u/M) 0Yim, (3.9

4

in terms of the affine horizon parameterThe perturbation vanishes on the black hole horizoh and is singular af ~—. This
supplies the data o/ ~ and an outgoing null hypersurface=u_ for the evolution ofi, forward in retarded time.

For the corresponding time reversed solutigyp= 0. By applying to the Robinson-Trautman perturbations a procedure for
mapping an outgoing solution of Einstein’s equations into an ingoing vef8idjn we find the solutions

2MY ~ ~ ~
ds?=— L=+ dv2+2Vdvdr+2rV \dvdx*+r2ggd x*dx, (3.5

whereyv is the advanced Bondi time coordinate=1?1—L%(log))] and
12Mg;(logV) = — V2L2L. (3.6
The linearized solutions obtained by settivigr 1+ ¢ satisfy
12M gz p=—L2(2—L?) . (3.7

For a spherical harmonic perturbatiah=B(2)Y,, this leads to the exponential growBi=Bye® '+ DIZH1-2)AM  The
corresponding perturbative Weyl tensor component is

Boe™[I1(1+1)=2][-6M+1 (I+1)r] (v/M)~ 21 DIFD=2]/3
Yo 20 [0+1)-2][ 3;4M3) 1 (v/M) 2V, 3.9

in terms ofy=Me"/ (the affine parameter along the black hole horjzoFhis perturbation vanishes on the white hole
horizon and is singular & *. Nevertheless, it can be used to che¢koaward in retarded timeevolution algorithm, beginning
at a retarded time_ , by pasting asymptotically flat initial null data outside some radius to interior Robinson-Trautman data.
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B. Close limit initial data null hypersurface emanating from a prolate spheroid embed-

The coordinates introduced by Sachs to formulate théled in a flat spacé4]. Let (r,6,¢) be standard spherical
double-null characteristic initial value probleif] are espe- coordinates for the inertial time slices=const of
cially useful when one of the null hypersurfaces is a whiteMinkowski space. In the close limit, the eccentricity of the
hole horizonH ~. Sachs’ coordinate system consistgidfin  spheroid vanishes and the Minkowski null hypersurface re-

affine null coordinates along the generators 6f ~, which  gyces to the light cone from a sphere0, r=a. The per-

foliates ~ into cross-sections and labels the correspondingyrbation of its conformal null geometry is described, to lin-
outgoing null hypersurfaces emanating from the foliation;ear order in the eccentricity, by

(i) angular coordinates® which are constant both along the

generators of{ ~ and along the outgoing rays aiii) an . asirfe
affine parametei along the outgoing rays normalized by J(t,0)=—— : (3.1
VuV A=—-1, with A\=0 on H ™. In the resultingx® t-a

=(u,\,x") coordinates, the metric takes the form . - )
where the relation betweenand the affine parameteron

ds?=— (W—gagW*WB)du?—2dud\ the white hole horizon is
—2gasWBdudxX*+ gagdx*dxB. (3.9 di ) 2(r-1)2 [(5- \/E)—Z;) 4T3
—=A(7)= —= = :
In addition, it is useful to seag="r>hag, Where detfiag) du (3—-57+7)2\ (5+4/13)—27

=det(qap), Wherequg is the unit sphere metric. (3.12
The requirement that! ~ be null implies thatW=0 onH
and the gauge freedom @i~ can be fixed by choosing the

shift so thatg, is tangent to the generators, implying that -
WA=0 onH ~, and by choosing the lapse so thais an e t—_a (3.13
affine parameter, implying that W=0 on7 ~. In addition p - '
to these choices, we fix the affine freedonuiby specifying - ) ) )
it on a sliceS~ of H ~, which is located at an early time Herep anda are positive parameters which adjust the affine
approximating the asymptotic equilibrium of the white hole freedom in the position of the Minkowski null cone on the
at past time infinityl ~. The outgoing null hypersurfacgg~  white hole horizon. At early times Eq3.12) implies u~t
emanating fromS ~ then approximates past null infiniy . put as the Minkowski null cone pinches off & a the cor-
The Schwarzschild metric in Israel coordinat@sd) is ob-  responding affine time on the white hole horizon asymptotes
tained in the spherically symmetric case wHaft=0 and  to u—ce. In terms of the inverted pair-of-pants picture for a
hag=0ag- white hole fission, the pants legs are mappedto~ so that
The double-null problem for the close limit of a white in the close limit the individual white holes are mapped to
hole is posed on the ingoing null hypersurfage and the  along the white hole horizon in the Kruskal manifold. The
outgoing null hypersurface/ ~, which extends taZ . In  details are discussed elsewhere in a treatment of fully non-
order to pose the double-null Teukolsky problem flof in  linear null data for the general two black hole problem
the perturbative regime, we generate the datayfgrfrom  [31,32].
metric data for the nonlinear version of the problem. The Close limit data forJ(u,#) on the white hole horizon is
metric version of the null data consists of the values of thedetermined by integrating Eq3.12 and substituting into
spin-weight-two f'eldJ:quBhAB/Z onH~ andJ .Fora gq (3.11). These equations allow the rescaling-Ku,
perturbation of a Schwarzschild backgroumds given by _.Ki, p—Kp anda—Ka which allow us to sep=1 with-

Eq. (2.5. On the event horizofi -, out any loss of generality. Note, that the rescaling Ku is

_ 1 1 1., equivalent to the time translation isometny-u-+ const. In
Ya=5d ™ 5 KK+ 7K order to eliminate nonessential parameters, we initiate the
integration at the bifurcation sphewe=0. Then, up to scale,

the close data are determined hy=7|,_,<0 or in terms of

in terms of

1

-1 -1 277
It It 4‘]qu J by the parameter
whereK = \/1+JJ, which reduces in the linear regime to _— Plu=o_ 1 (3.14
— 1 Uy ATO’ .
~=Ju- 3.1 S
Ya 27w (3.19 which is independent of the overall scale freeddm\J

. that is factored out in the close approximation. The param-

Off the horizon the expression faf, is more complicated eter » is a scale invariant parameter describing the physical
and involvesw andW” as well asJ andr. properties of the close limit. It determines the yield of the

The horizon data for a head-on fission of a white hole, carwhite hole fission. In the time reversed scenario of a black
be obtained from a conformal model based upon an ingoingpole collision, » would be related to the inelasticity of the
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collision. No similar parameter seems to appear in thdime foliation. The remaining issue is how to effectively in-
Cauchy description of the close approximation in terms ofcorporate the behavior of the ingoing null geodesics into the
time symmetric Misner datgb]. algorithm.

The close limit data on the horizon faf, used in the Consider first the description of the ingoing null geodesics
simulations presented in Sec. V C are obtained by integratingh a compactified version of Israel coordinatesx), where
Eqg. (3.12 with a fourth order Runga-Kutta scheme and car-x=\/(M+\) so thatZ* is located aix=1. The analytical
rying out the substitutions into Eq§3.11) and (3.10. The  simplicity of these coordinates is not matched by their nu-
data on an early outgoing null hypersurface are accuratelynerical convenience. The ingoing null geodesics satisfy
approximated by setting/,=0 since Eq.(3.11) implies ¢, 5
=0(u?). This approximates the condition on the data that %: —(1—x)2ﬂ= (1—x)x
there be no ingoing radiation &t . du 2M  8M(1—x)—ux’

NearZ* where 1-x= §<1, this reduces to

IV. NUMERICAL ALGORITHM ds &
Before giving the details of the numerical algorithm, we du_u 4.9
should state the goals we want to achieve. For many pur-

one can read off the first few cycles of quasinormal mOd%earI+ decays linearly withu and exponentially With
oscillation. This is sufficient in practice to compare with a ’ o Gii—100M is impossibl.e

nonlinear evolution, to get the astrophysically relevant part! NUS evolving for a Bondi timy N
of the wave form, to compare quasinormal mode results wittfS the geodesics would be withen 76, of each other.
those in the literature, etc. Instead we define as our criterion Not only is thex-c_qordinate numerically unsatisfactory in
of quality the ability to evolve stably and accurately well into the Way it compactified ™, the u-coordinate is also incon-
the domain where the wave form is dominated by a poweyenl_ent in the way it covers the exterior Kruskal quadrant_ in
law, which requires at least a 10000f Bondi time for our & f|n|te_retarded time. This prevents the Iong term numerical
typical data. This turns out to be a rather stringent criterion/€Selution of the ringdowwith the characteristic time scale
which rules out a number of numerical approaches which w&' the lowest quasinormal mogl@ithout using an exponen-
have tried. In all such approaches, our overall strategy is t§2lly decaying step sizéu. This is simple to fix by using
compactify the outgoing null direction and bridg" into a ~ Bondi timeu as the time step coordinate.
finite coordinate distance while maintaining regularity of the ~ The problem with thec-coordinate can be “delayed” by
equations. introducing a dynamical grid, in which the gridpoints move
We begin the description of our numerical setup with aalong the ingoing null geodesics, a strategy that has been
discussion of the ingoing null geodesics, which forms thesuccessful in studies of spherical critical collap38]. This
basis of our approach to the numerical solution of the Teuapproach drastically decreases the discretization error and is
kolsky equation. Then we briefly describe a few of the algo-sufficient to evolve for about 100, and read off the quasi-
rithms which do not work completely satisfactorily for the normal ringdown frequency and damping time with good
Teukolsky equation, and explain why this is so. We believeaccuracy. However, théx intervals between neighboring
that this also provides useful experience for nonlinear studgeodesics decrease exponentially and the approach breaks
ies, where, lacking a stationary background geometry, thdown once the separation between neighboring gridpoints
source of problems may be much less obvious. falls below the error of the geodesic integraterg. machine
Our present results pertain to the Teukolsky equation foprecision and a “numerical crossing” of the geodesics ef-
4, where ¢, describes the outgoing radiation through its fectively occurs.
asymptoticO(1/r) behavior atZ *. The incoming radiation Note that in practice the computation of the null geodesics
at 7~ is described by, which has asymptoti©(1/r%) is related to the problem of inverting the definition of the
behavior atZ*. As a result, an accurate treatment of thetortoise coordinate
Teukolsky equation fory, requires different numerical

) : ; ) . r
methods, which will be described in a forthcoming paper. P =r+2MIog(m—l)

A. Ingoing null geodesics to computer, which is also required for our production al-
Null geodesics are fundamental to the design of the nudorithm as discussed in the next section. Both problems are

merical algorithm since they are the characteristics of thé:andt!edl nurr}erlcl\?lly tby Folwr;g the tabove mﬁ)“c't equa‘gon
Teukolsky equation. In particular, since we handle the angu'— eratively using Newton's metho@in terms of the appropri-

lar part of the spin-weight-zero Teukolsky equation by aate coordinatgs
spherical harmonic decomposition in whiéb=—1(1+1),

the relevant characteristics are the radial null geodesics. The
outgoing null geodesics are automatically built into the char- The preceding considerations lead us to the following
acteristic evolution scheme, which is based upon a retardechoice of algorithm for a production level unigrid code with

B. Numerical algorithm for outgoing radiation
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optimal performance. It is based on@,f) coordinate sys- 10" .
tem, wherep is a radial coordinate, which compactifiés ,
defined implicitly by

r* =potanp, 4.2

with pg an adjustable parameter ardr/2<p=<m/2. Thep siope = 2.0041

coordinate allows good resolution at all times near bth
and the white hole horizon.
In this coordinate system, we evolve thk spherical har-

monic component oF , by expressing the second order dif-
ferential equatior(2.20 as the two coupled equations E10° | .

0 F.,=G 4.3

cog r—3M) sinpcos,
p&pG ( _Sinpcosp)
2pg r? Po

Po (r—2|\/|)[(|2+|—2)r+6|\/|]F
cosp 2r? Fa. (449

107° '
107 107° 107

The background mashl can be scaled out of the above 4p

equgtions by.the re.scalir)g)HMpO, .UHMU and rﬂl\-/lr. FIG. 1. Robinson-Trautman convergence tésterror norme
In this way, simulations can be carried out with=1 with-  versus gridsize\ p.

out loss of generality. Note that rescalinds independent of

the rescalingu—Ku (see Sec. Il B which generates the

translation isometry ofi. 0.01 . .
The relatively sensitive features of E@.4) on a hyper-

surface of constar are located in the region nea2M.
This is the main reason why the coordinate is so useful
since it concentrates grid points in that region while main-
taining a uniform grid spacing. We make the choicg
=40M, which gives good resolution throughout the evolu-
tion, well past the ringdown phase and into the final power
law tail. Note that this would not be possible with the sim-
pler approach of writing the Teukolsky equation(a com-

pactified version of double null coordinatesu( v), which
gives excellent results until one reaches the power law tail. oL
At this stage the dynamics is essentially dominated by the
“Schwarzschild potential,” which is not well resolved in
double null coordinates.

Equation (4.3) is solved using a second order accurate
integration inp. Equation(4.4) is solved using a second
order (in time) Runga-Kutta scheme, with the,G term —0.005 - -
evaluated by means of second order accurate forward differ
encing in the interior of the grid, and second order accurate
central differencing for the point neighboring”. (The 3,G
term drops out on bot{ = andZ ", whered;, is a charac-
teristic direction).

For a typical choice of initial data the power law tail only -0.01
sets in after the quasinormal oscillations have decayed by -
more than 10 orders of magnitude. In order for the final tail
not to be lost in machine error it is necessary to evolve the FIG. 2. Wave formF,(Uu) at Z* produced by a single pulse
guasinormal phase in quadruple precision. emerging from the white hole horizon.

0.005 - b

100 0 100 200
u
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FIG. 7. Close approximation dafa,(u) on M ~ for 7=7060, FIG. 8. Close approximation dafé,(u) on ™ for #=7060,
1410, 364 and 84.3, with the amplitudes renormalized by the relat410, 364 and 84.3, with the amplitudes renormalized by the rela-
tive factors of 1, 24.03, 305.9 and 3223, respectively. tive factors of 1, 24.03, 305.9 and 3223, respectively.
V. WAVE FORMS Fig. 1 determines a slope of 2.0041, in excellent agreement

) _ with the theoretical second order accuracy of the algorithm.
In this section, we present computed wave forms for three

types of quadrupole data, with the background mass scaled
to M=1. The first case, an analytically known Robinson-
Trautman perturbation, is used to establish second order con- We simulate the evolution of dn=2 quadrupole pulse of
vergence of the numerical algorithm. The Robinson-compact support emerging from the white hole horizon.
Trautman wave form decays as a pure exponential. Th&he pulse consists of a single peak of the form

second case, a pulse of compact support emanating from the, _ o ~ _ _ .

white hole horizon, serves to monitor the ability of the code Fa(U,x=0)=[(U=Upin)(Unax—W1*,  Unin<U<Umax,

to track many cycles of the quasinormal ringdown of a ge-

neric radiation tail. The final case is the close limit wave (5.2
form from a white hole fission.

B. Ringdown from a compact pulse

with F,(u,x=0)=0 outside this interval. Figure 2 shows the
A. Robinson-Trautman testbed wave form onZ * obtained by evolvindg-, with initial data

F,=0 on an outgoing hypersurface preceding the pulse. In
the simulation used to produce the wave formZat, we
choose Upin=—50 and Up,=0 and evolve fromu=
r-1 - —60M to uU=2000M. The simulation was performed in two
. (5. i _ _ ~ o~
r steps. The first step, in the interval from= —60M until u
) =250M, was performed in quadruple precision in order not
We use this to perform a convergence test of the code by |ose the final tail in roundoff error. The second step, in the
evolving fromu=0 tou=5 and then examining tHe, norm  interval fromu=250M until u=200M, was performed in
of the error E=||Fsnumeric— FaanaLyTid| versus grid  double precision.
Spacing aﬂzsl at which time the Signa| has decreased by a Figure 3isa |09arithmic plot of the absolute value of the
factor of e 1% The convergence plot of the error given in wave form versusi for the same data. It covers the period

An | =2 Robinson-Trautman perturbation is determined
by the spin-weight-0 field
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FIG. 10. Convergence of the close approximation wave form at

FIG. 9. Close approximation daf,(U) on H ~ for »=6.04 L ': The overlaid plots of 8y,(u) and dy,(u) are indistinguish-
and .00524, with the amplitudes renormalized by the relative factor§Ple.
of 1 and 1220.
C. The close approximation wave form

from the onset of quasinormal ringdown to the onset of the As discussed in Sec. Ill B, the effective parameter space
final tail decay. The logarithmic plot clearly demonstrates thefor the head-on close approximation data can be reduced to
exponential decay and shows a fit to a quasinormal decayhe single scale invariant parametgicontrolling the fission
The lowest quasinormal mode for a gravitational perturbayield. In the simulations presented here we set the scale de-
tion of the Schwarzschild metric has the theoretical fdrm pendent parametgr=1. Thus, in accord with the discussion
~sin(.37367R)exp(—.088962h) [34]. The fit of the com- in Sec. Il B we id.entifyt.—azl 7 and prescr.ibe the horizon
puted wave form to a quasinormal decay B, data used in the simulations in the normalized form

~sin(.373668)exp(—.0889511), in excellent agreement 1

with the expected theoretical form. The corresponding fit of Fa=—(Ad;)(Ad;)~, (5.3
the close approximation wave form given in Sec. V C yields T

the quasinormal dependence

after factoring out thé=2 angular dependence.

The time dependence of the close approximation data is
quite mild when expressed as a functionrofs in Eq.(5.3).
However, the relationshif3.12 can cause the dependence
onu to be quite sharp. There is a transition region where the
behavior of 7(u) changes from the asymptotic forcv/du

—1 as7——» to d7/du—0 as7—0. For large values of

(—.088941), with the numerical uncertainty in the last digit. .
Figure 4 shows a log-log plot of the late time behavior ofgheesgﬁéig]it;m}hls produces sharply pulse shaped data, as

the wave form and the final tail. The measured slope of the _. A
wev I ! N P Figure 5 plotst versusu for »=7060, 1410, 364, and

tail indicates a power law decay, with the power varyin . o

= ~_coe P ] .y 'p~ ~75.831 g84.3. The plots reveal a relatively sharp transition in the
from F,ocu near the beginning of the tail 86,>u slope. This transition region is translated in the negative
near the end. u-direction as increases. For sufficiently smajl the tran-

F4~sin(.373673b)exp( —.0889575).

A conservative comparison of these two calculations indi
cates a quasinormal dependende,~sin(.3736T)exp
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FIG. 11. Close approximation wave fornig(u) onZ* for 7 FIG. 12. Close approximation wave forf,(u): Quasinormal

=7060, 1400, 368 and 84.3, with the amplitudes renormalized byjngdown and tail fory=158.
the relative factors of 1, 37.9, 544 and 11200, respectively.

multiplicative factor and a constant shift in

sition occurs au>0, in the region of the white hole horizon
which does not affect the exterior spacetime. o nefﬁ/z

The location of the transition region affects the nature of Fa(u) |y - T
the horizon data. Figure 6 shows,(u)|, - for the above (e " +1)
values ofy. The value ofy only changes the position of the - -~
transition region, not its width. Hence a changerjrtrans- ~ Figures 7 and 8 show,(u) |4 - andF4(u)| -, respectively,
lates the horizon dat#&,(u)|, - but does not change its for »=7060, 1410, 364, and 84.3. Figure 9 shotg;, -
shape. o versusu for small 7, with the amplitude and position of the

The horizon data foF,(u) has a more complicated de- peaks adjusted so that they overlap. Except for the overall
pendence oy due to the exponential relationship between amplitude, there is no significant effect on the data even

andUu and the extra factor af? introduced by the change in When 7 is reduced by 3 orders of magnitude. For small val-

tetrad. This is of physical importance since ifig(u) which ~ Ues of, F4(u)[5 - scales linearly withy in accord with Eq.
is the observed wave form #&t". The factor ofu? suppresses (5.4), whereas for.largey it .sca!es quadratically, as evident
pulses centered at smaller compared to those centered at from the renormalizations in Figs. 7 and 8.

larger |u| and forces the resulting pulse to vanishuat 0. We test the convergence of the wave formZat by
evolving this close approximation data with increasingly

larger grids containing 1001, 2001, and 4001 points. We de-
fine 8y, to be the difference between the waveforms ob-
tained using 1001 and 2001 points, afig, the difference
between using 2001 and 4001 poin{8Ve consider only
points common to all three grigsSecond order convergence
However, oncey is sufficiently small, the transition region is rﬁquwes th36y1—45y?. For tf;_esg ng(:] S'ZES’ F'g' ].'0 showz
located atu>0 and » does not affect the shape of that y, and 4dy, overlap confirming t atthe code Is secon
- ~ ) i ) order convergent throughout the quasinormal ringdown
F4(u)|; -, although it affects its overall amplitude. In that phase.

case T7=u+ 7y for —oo<u<0, and Fyuly-=1/(u+7o)°, Figure 11 shows a series of wave forms produced 6n
where o= —1/7. As a result, modulo a constant overall obtained by evolving the close approximation data fpr

(5.9

The relation between andu varies from an exponentially
increasing blueshift at large negativeto an exponentially
increasing redshift ai=0. This has the effect of compress-
ing pulses centered at more negativecompared to those
centered at less negatiueThese effects combine to produce
successively broader pulses for successively smatier
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FIG. 13. Close approximation wave forfi,(U): Late time
power law tail for»=158.
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which matches the theoretical form for the lowest quasinor-
mal mode to five digitgin the frequency

Figure 13 shows the late time tail of the wave form. The
measured slope of the tail indicates a power law decay of the

approximate fornf ,o<u~ 58 near the beginning of the tail to

F,cu~>9 near the end, very similar to the behavior of the
tail for the compact pulse described in Sec. V B. These re-

sults suggest a final integer power law t&ij<u~®. For an

=2 quadrupole wave, this is the samie ?'*2) integer
power law originally predicted by Prid@5] for the decay of
an initially static multipole. A rigorous mathematical treat-
ment of power law tails has not yet been gi&®] and it
would be particularly interesting to reexamine the theory in
the context of our boundary conditions.

VI. DISCUSSION

Our results establish the capability of characteristic evo-
lution of the Teukolsky equation to determine an accurate
advanced solution for the head-on collision of black holes in
the close approximation. In subsequent work, we will extend
these results to determine the physically more appropriate
retarded solution. In the fully nonlinear regime, the confor-
mal horizon model for supplying binary black hole data,
combined with an existing characteristic evolution code, of-
fers a new way to calculate the merger-ringdown wave form
from coalescing black holes. Because this is an unexplored
area of binary black hole physics, these perturbative studies
of the head-on collision will provide a preliminary physical
check on extending the work to the nonlinear and nonaxi-

—7060. 1410 364 and 4.39. The wave forms have beeﬁymmetric case, where inspiraling black holes can be treated.
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