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Photon frequency conversion induced by gravitational radiation
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We consider the propagation of gravitational radiation in a magnetized multicomponent plasma. It is shown
that large density perturbations can be generated, even for small deviations from flat space, provided the
cyclotron frequency is much larger than the plasma frequency. Furthermore, the induced density gradients can
generate frequency conversion of electromagnetic radiation, which may give rise to an indirect observational
effect of the gravitational waves.
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I. INTRODUCTION

Recently there has been an increased interest in gra
tional waves, mainly due to the possibility of direct detecti
by LIGO ~Laser Interferometer Gravitational-Wave Observ
tory! @1#. Naturally the effects of gravitational waves o
Earth are very small—which is illustrated by the large
mensions required for detection. Closer to the source
influence of the gravitational waves may be larger, but g
erally it is nontrivial to predict the possible influence of th
emitted radiation—in particular the coupling to the elect
magnetic~EM! field complicates the description. For a di
cussion of the interaction between electromagnetic fields
gravitational radiation in an astrophysical context, see
example Refs.@2–8#, and references therein.

In the present paper we will study the propagation
gravitational perturbations in a magnetized plasma, with
direction of propagation perpendicular to the magnetic fie
It turns out that large density gradients driven by the gra
tational perturbation can be generated, even for small de
tions from flat space, provided the cyclotron frequency
much larger than the plasma frequency. Furthermore, a
well known from laboratory plasmas~see, e.g.,@9#!, moving
density gradients can increase~or decrease! the frequency of
electromagnetic wave packets, the so-called photon acce
tion. The density gradients in our case are propagating w
exactly the speed of light, in contrast with the laborato
application@9#. In principle this means that a given photo
may increase its energy by several orders of magnitudein-
dependent of its initial energy. Applying our results to gravi-
tational radiation generated by binary systems, it turns
that the regime of most interest is the infrared regime. In t
case a frequency conversion by an order of magnitud
possible for a binary system close to merging.

II. PLASMA RESPONSE TO A GRAVITATIONAL
WAVE PULSE

A. Basic equations

The metric of a linearized gravitational wave propagat
in the z direction can be written as@10#
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ds252dt21@11h~u!#dx21@12h~u!#dy21dz2, ~1!

where we have assumed linear polarization andu[z2t. For
an observer comoving with the time coordinate, the natu
frame for measurements is given by

e05] t ,

e15~12 1
2 h!]x ,

~2!

e25~11 1
2 h!]y ,

e35]z .

It can be shown@7# that in such a frame, Maxwell’s equa
tions can be written

“•E5r/e0 , ~3a!

“•B50, ~3b!

]E

]t
2“3B52 jE2m0j, ~3c!

]B

]t
1“3E52 jB , ~3d!

where the effective gravitational current densities are defi
as

j E
15 j B

25 1
2 ~E12B2!

]h

]z
, ~4a!

j E
252 j B

152 1
2 ~E21B1!

]h

]z
, ~4b!

and“[(e1 ,e2 ,e3).
To first order inh, the fluid equations become
©2001 The American Physical Society03-1
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]n

]t
1“•~nv !50, ~5a!

S ]

]t
1v•“ Dgv5

q

m
~E1v3B!, ~5b!

whereg[(12v i
2)21/2, v i[v3, andn5gñ, whereñ is the

proper number density. These equations hold for each
ticle species. Note that, in general, terms proportional tov1h
andv2h appear in the equations@3#. Throughout this paper
we will assume thatv1 ,v2!1, and thus neglect terms o
orderv1h, v2h.

B. Electromagnetic fields driven by a gravitational
perturbation

From now on we assume]/]t!vc , wherevc[qB/m is
the cyclotron frequency, for all particle species~since the
gravitational perturbation is assumed to be the driver of
perturbations this scaling thereby holds for]/]t acting on all
fields!. Furthermore, we assume the presence of an exte
magnetic fieldB05B0e1 @where the total field isB5(B0
1dB)e1#. The electric field takes the formE5E'e2.

Looking for solutions driven by the gravitational pertu
bation and thus using]/]t52]/]z, we first consider Fara
day’s law fordB!B0, which gives

dB52E'1hB0 . ~6!

Next we note that if the excited fieldsE' and dB grow
~invalidating dB!B0), the quantityE'1B that appears in
the effective current still becomesE'1dB5hB0 and
thereby the above formula holds for arbitrary electrom
netic amplitude. Taking the time derivative of Ampere’s la
using Eq.~6!, we obtain

F ]2

]t2
2

]2

]z2GE'1m0(
i

] j'( i )

]t
522

]2h

]t2
B0 , ~7!

where the sum is over particle species andj'[ j 2. For ]/]t
52]/]z, the term~explicitly! involving E' vanishes. The
currents are determined by the equation of motion, not
that the condition]/]t!vc means that the current contribu
tions from different particle species cancel to lowest orde
an expansion in the operatorvc

21]/]t. The equation of mo-
tion gives

v i52
E'

B01dB
~8!

to lowest order. Note that, using Eq.~6!, we can now ap-
proximate the denominator in Eq.~8! by B02E' . The error
this approximation introduces will not have any noticea
effects. This is becausev i can only be altered significantl
by the omitted term ifdB'B0, but this regime is inacces
sible since—from Eq.~8!—it corresponds to superlumina
speeds. From the parallel component of Eq.~5b! we can
calculate the first order correction to the induced veloc
which subsequently determines the current. We obtain
12400
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12v i

B02E'

]~gv i!

]t
. ~9!

Furthermore, the continuity equation gives

dn5
n0v i

12v i
~10!

where we have divided the density into a perturbed and
unperturbed part,n5n01dn.

From ~7! and the relations above we can thus determ
the induced velocity and density in terms of the metric p
turbationh. The result~for all particle species! is

v i5
12~12H!2

11~12H!2
, ~11a!

dn5
n0

2 F 1

~12H!2
21G , ~11b!

where H[2h/( i(vp(i )
2 /vc(i )

2 ) and vp(i )[(q( i )
2 n0 /e0m( i ))

1/2

is the plasma frequency for the unperturbed plasma speci.
Thus it is clear that even a moderate or small value of
gravitational perturbation may cause significant density p
turbation, provided the plasma is strongly magnetized in
sense that( i(vp(i )

2 /vc(i )
2 )!1. This is because the fast mag

netosonic~or compressional Alfve´n! wave fulfills approxi-
mately the same dispersion relation as the gravitatio
wave, with the mismatch being proportional
( i(vp(i )

2 /vc(i )
2 ) @11#. The divergence that occurs forH→1 is

clearly unphysical and its removal will be discussed in t
next subsection.

For future considerations it will also be useful to have t
relation between the relative magnetic field perturbation a
the relative density perturbation. WhenudBu@uhB0u, which
is the case of most interest, the last term of Eq.~6! can be
neglected and the desired relation can be derived by com
ing the resulting formula with Eqs.~8! and~10!. The simple
result is

dn

n0
5

dB

B0
. ~12!

C. Removal of the divergence

The purpose in this subsection is to explain the reason
the occurrence of divergence whenH approaches unity, and
to discuss various modifications of the assumptions that l
to a more physical behavior. From Eq.~9! we note that for
infinitesimal velocity perturbations,v' ~and therebyj') de-
pends linearly onv i , but for large parallel velocities; in par
ticular whenv i→1, v' remains finite due to the factor 1
2v i . From Eq.~7! it is thus clear that wecannot have a
stationary solution whereE' depends only onz2t for large
enoughh, and from Eq.~11a! we see that this limit for the
gravitational perturbation is reached whenH becomes unity.
Basically, the physical reason is the following: In a vacuu
the electromagnetic and gravitational modes obey the s
3-2
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dispersion relation, and therefore—due to the mode coup
provided by the unperturbed magnetic field—the syst
evolves in a nonstationary way. In particular, gravitation
wave energy may be continuously converted into elec
magnetic wave energy, as will be examined in more de
below. In the presence of a plasma, however, the indu
currents change the dispersion relation of the electrom
netic wave, and the resulting detuning of the modes satur
the conversion of energy between them, making a ste
state solution~in a frame moving with the velocity of light!
possible in principle. For a strongly magnetized plasma,
the other hand, the induced plasma currents cannot g
continuously withh, as we have seen above. For sufficien
high gravitational amplitude this means that the plasma c
rents are of little significance, practically the plasma appe
as a vacuum forH>1 and, in particular, solutions dependin
on z2t are impossible. This conclusion isnot dependent on
the absence of thermal effects in our calculations in Sec. I
Generally the addition of thermal motion only modifies o
expressions~11! by a factor of the order 11(v t /c)2, where
v t is the thermal velocity. In particular, the divergence
~11b! still occurs for a finite value ofH.

On the other hand, it is clear that our omission of the ba
reaction of the electromagnetic wave on the gravitatio
pulse in principle could change this picture, since obviou
certain components of the energy momentum tensor also
verge whenH→1, implying that the gravitational wave am
plitude could indeed be diminished due to the influence
the generated EM wave. The effects of the self-consis
gravitational field caused by the plasma perturbations
discussed in the Appendix, but will be omitted here since
turns out that the back reaction on the gravitational wav
negligible in the application to be discussed in this article

Since it is clear that forH>1 the generated currents ca
not stop the growth of the EM wave, we simplify the pictu
from now on by putting the density to zero and thus tota
ignoring the plasma effects. The general solution to Eq.~7!
for the electric field in the presence of a monochroma
gravitational waveh5h̃ cos@k(z2t)# can then be written

dB5E'5 1
2 k~Czz1Ctt !B0h̃ sin@k~z2t !#1E1~z2t !

1E2~z2t !, ~13!

where Cz1Ct51 and E1 and E2 are arbitrary functions.
For an initial value problem where the plasma is unpertur
in the absence of the pulseCz50, Ct51, andE15E250,
i.e., the electromagnetic amplitude grows linearly with tim
For a boundary value problem, on the other hand, where
external magnetic fieldB0 occupies a regionz>0 and there
is a gravitational wave but no EM waves propagating in
the magnetized region, clearlyCz51, Ct50, andE15E2

50, i.e., we have a linear spatial growth instead. For
applications to be discussed later on we will be intereste
a situation whereB0 is not necessarily static. We thus no
that qualitatively the solution given by Eq.~13! still applies
for a quasi-static situation, i.e., where the dependence oB0
on time is slow enough such that the electric fieldsE asso-
ciated with the time variations fulfillE/B0!1.
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In principle, we can also achieve very large EM-wa
amplitudes when we abandon the specific solutions depe
ing on z2t. However, since the growth is only linear int
and/orz, apparently we need large times/distances of coh
ent interaction. For a boundary value problem we c
roughly define the effective distance of interaction aszeff ,

dBmax.zeffB0,charhchar8 , ~14!

where the index ‘‘char’’ denotes the characteristic values
the various quantities in the region of interest and the pri
denotes differentiation with respect to the argument.

To summarize: Eq.~11b! has a class of physically soun
solutions, but also unphysical ones with the propertydn
→` asH→1. The singular behavior is caused by the ins
tence to look for solutions that move with a specific veloci
together with the omission of the self-consistent gravitatio
field from the plasma perturbations. The divergent solutio
can be removed either by considering a boundary or an
tial value problem, as discussed in this subsection, or
considering the back reaction of the plasma perturbations
the gravitational wave, as discussed in the Appendix. T
alternative considered here is the most relevant one with
gard to astrophysical applications. Real astrophysical s
tems have finite distances of interaction between grav
tional waves and plasma waves that can be estimated
physical grounds. Thus when estimating the maximum m
netic field perturbation that can be produced by a grav
tional wave in a given situation, we can in principle app
solutions~11b! together with~12! but we must note the up
per bound fordBmax that exists for a givenzeff and is given
by Eq. ~14!.

III. PHOTON FREQUENCY SHIFT

We now consider the effect of the gravitational wave p
turbations on high frequency photons in a plasma. For s
plicity we assume that the photons propagate parallel to
gravitational waves and let them be represented by the ve
potentialA5Ã exp(iu)1c.c., where c.c. stands for comple
conjugate. Using the approach of geometrical optics@10#, the
wave numberk[]zu and frequencyv[2] tu satisfy some
local dispersion relationv5W(z,t,k). The amplitude of the
vector potential is assumed small and by high frequency p
tons we meanv@vp(i ) ,vc(i ) .

Due to the gravitational waves the plasma has a ba
ground of possibly large fieldsdn, v i , dB, andE' all be-
ing functions ofz2t and varying on a time and length sca
much longer than that ofA.

Since v@vc(i ) the high frequency pulse approximate
behaves as if the plasma is unmagnetized. The equatio
motion linearized in the high frequency~hf! variables reads

F ]

]t
1v i

]

]zGv ( i )
hf 5

2q( i )

gm( i )
S ]A

]t
1v i

]A

]z D , ~15!
3-3
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and thusv ( i )
hf 52q( i )A/gm( i ) , where the large scale varia

tions have been neglected. The induced high frequency
rent is thereforejhf52vp

2A/m0, where the plasma frequenc
is vp[(( iq( i )

2 n/e0m( i )g)1/2. Taking the time derivative of
Ampere’s law gives the following wave equation for th
photons:

F ]2

]t2
2

]2

]z2
1vp

2GA50. ~16!

We recognize the dispersion relation asv5@k21vp
2(z

2t)#1/2, where we assume that the variations in the plas
frequency are determined from Eqs.~11! together withg
5(12v i

2)21/2.
The change in the wave number and frequency as

wave propagates through the nonuniform and time-vary
media with velocityvg5]v/]k is given by the ray equation

dk

dt
52

]W

]z
,

dv

dt
5

]W

]t
. ~17!

We note thatW is a function ofz2t and introduce coordi-
natesj5z2vgt, t5t locally moving with the photons, i.e.
it should be understood thatvg5vg(t5t0) for some t0.
Then, in a small neighborhood oft0 it holds thatdv/dt5
2]W/]j. Using ]j5(12vg)21]t , this can be integrated
from time 1 to 2~which need not be a small interval!, noting
that 12vg'vp

2/2v2. The result is

v1

v2
5

vp1
2

vp2
2

, ~18!

where the indices 1 and 2 denote the values att1 and t2,
respectively. An interesting aspect of Eq.~18! is that the
frequency conversion factorN5v1 /v2 is independent of the
frequency regime of the EM wave. Thus, in principle, x ra
can be turned into gamma rays, just as well as infrared wa
can be converted into the visible regime. This is in contr
to laser excited wake fields@9#, where efficient frequency
shifts can only take place provided the frequency of the c
verted pulse roughly lies in the same frequency regime as
exciting laser pulse. The reason for the difference is that
density gradients propagate with exactly the speed of ligh
our case, whereas, naturally, the corresponding velocit
slightly less thanc in the laboratory experiments. The ne
essary distance of acceleration for a given conversion fa
N is proportional tov2, however, and this puts certain limit
for the applicability to the highest frequency regimes.

IV. EXAMPLE

We have found that large density perturbations travel
with the velocity of light can be induced by small gravit
tional wave perturbations, provided the cyclotron frequen
is much larger than the plasma frequency, as described
Eqs. ~11!. Furthermore, photons propagating in a movi
density gradient can undergo frequency up conversion~or
down conversion!, as described by Eq.~18!. In principle the
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effects can be large, even for a moderate deviation from
space-time. It is not yet clear that the predicted freque
conversion can be observed during reasonable conditi
however, and our aim in this section is to provide estima
to shed light on this question. In this section we reinstate
speed of light in all expressions.

As a source of gravitational radiation we consider a
nary system. At least one of the objects should have a m
erate to strong magnetic field@in order to make the paramete
( i(vp(i )

2 /vc(i )
2 ) small#, and the objects should be compact~as

to make the gravitational wave frequency and amplitude
fore merging large!. Thus, for definiteness~and calculational
simplicity due to symmetries! we assume that the syste
consists of two neutron stars of equal massM ( separated by
a distance of 40RS , whereRS52GM( /c2'3 km. Further-
more, the surface magnetic field of each neutron star is
sumed to be 106 T. For the unperturbed plasma density pr
file, see Fig. 1.

The area surrounding the binary system can loosely
divided into three regions~Fig. 1!. The interval 20RS–30RS
from the center of mass~c.m.! roughly constitutes region I
which is the region where most of the gravitational energy
gained by the EM wave. Using a Newtonian approximatio
with d5aRS andr 5bRS , it is straightforward to show tha
uhu;(2ab)21, whered is the separation distance betwe
the binary objects andr is the observation distance from th
center of mass of the system. In order to obtain an estim
of the amplitude of the generated EM wave, we combine
above expression for the gravitational wave amplitude w
Eq. ~14! and the data given above. The result is

dB

B0
;731025 ~19!

at the end of region I. In region II~approximate interval
30RS–3500RS from the c.m.! dB/B0 is still small, and—
as seen by Eq.~12!—the relative density perturbatio
is thereby small as well, which limits the frequency conve
sion effect in this region. However, the gravitationally i
duced EM wave suffers spherical attenuation, whereas

FIG. 1. The neighborhood of the binary system is divided in
three regions: region I (20RS– 30RS), region II (30RS– 3500RS),
and region III (3500RS– 106RS). In regions I and II we are situated
in the near zone of the magnetic field of the pulsar. Thus the pla
density is low, and we assume that the plasma particles do
interfere with the approximations made in the example. For this
be true,H@1 must hold in region I, which is satisfied even for ve
high densities. Furthermore( i(vp(i )

2 /vc(i )
2 )>1 should apply in re-

gion II, which is fulfilled forn0<106 cm23. In region III, which is
mainly outside the light cylinder of the pulsar, we assume
plasma densityn0 to be of the order of 1012 cm23.
3-4
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unperturbed magnetic field is that of a dipole, and con
quently the relative density perturbation grows quadratica
with distance. The end of region II is defined as the nec
sary distance to makedB/B0 of the order unity due to this
increase.~For pulsars with periods longer than 35 ms, r
gions I and II lie in the near zone, and thus the unpertur
magnetic field indeed decays cubically in the region of int
est, although the unperturbed field becomes a radiation
outside the light cylinder of the pulsar.! In region III ~ap-
proximate interval 3500RS–106 RS), the relative density
perturbation is appreciable, and thus the main frequency c
version occurs here@12#.

At the beginning of region III the relative density pertu
bation is dn/n0;1, in agreement with Eq.~12!. An EM
wave with initial frequencyv[vmin51012 rad/s can move
from a density minimum to a density maximum during
‘‘laboratory system distance’’

L freq5cTfreq5cLgrad/~c2vg!;vmax
2 Lgrad/vp

2 ,

where Lgrad is a typical density gradient scale length. F
definiteness we assume that the pulsars have periods o
order of 350 ms, in which casedB/B0 may increase to
dB/B0;10 for the most of region III. In our example th
maximum frequency magnificationN thus is

N5
vmax

vmin
5

vp,max
2

vp,min
2

;10. ~20!

Inserting vmax51013 rad/s, and lettingvp,max
2 51011 rad/s

~corresponding to n0.1012 cm23) we obtain L freq
.106RS, i.e., the acceleration can take place within reg
III. Strictly applying our one-dimensional calculations
Sec. III means that frequency up converted EM waves w
be down converted and vice versa, if the gravitational sou
and the induced density perturbation are indeed periodic
our example, on the other hand, the successive freque
conversion effects will decrease with the distance from
source, and thus for an earth-based observer the radia
generated in region III should show periodic up and do
conversions. The frequency conversion ratio of Eq.~20! is,
of course, a maximum value of our example that occurs
radiation generated at a density extremum, but all radia
generated in region III will be up or down converted with
factor in the interval 1 –N, and consequently the effec
should be observable provided the object is close enough
radiation generated in region III in the approximate fr
quency interval 1011 rad/s<v<1014 rad/s to be detected
where the upper limit is imposed by the fact that the syst
has a finite distance of interaction. If we try to increase
interaction efficiency by considering higher plasma densi
the electromagnetic wave damping due to Thomson sca
ing becomes prohibitive@12#.

V. SUMMARY AND DISCUSSION

We have considered the generation of traveling den
perturbations in a magnetized plasma induced by grav
tional radiation. Provided( i(vp(i )

2 /vc(i )
2 )!1, significant
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density perturbations, i.e.,dn/n0;1, can be induced even b
a small gravitational wave withh!1, providedH;1. Basi-
cally the large effect is possible because of the approxim
agreement of the dispersion relations between the fast m
netosonic and gravitational modes in the regim
( i(vp(i )

2 /vc(i )
2 )!1, which in turn allows for a long distanc

of coherent interaction.
In order to find a mechanism where the induced den

perturbations may give rise to earth-based observationa
fects, we have studied frequency conversions of electrom
netic wave packets traveling in the moving density gradien
The formula~18!, relating the frequency of the wave pack
for two different positions in the moving density profile, is
conceptual agreement with the corresponding results of R
@9#, which considered an analogous situation but where
density perturbation was due to plasma oscillations trave
with a phase velocity slightly less than the speed of lightc.
In our case the gradients move with exactlyc, however, and
thereby the maximum frequency conversion factorN does
not decrease with the initial frequency~as for conventional
photon acceleration!, in principle allowing for up conversion
even ofg rays.

The idealizations made in Secs. II and III are somew
too strong for our results to be directly applicable to a si
ation of astrophysical relevance. In particular, we can
consider the unperturbed plasma as homogeneous and
geometry as one-dimensional when making estimates. In
example with a binary system as a source of gravitatio
radiation, we have thus been forced to divide the neighb
hood of the system into three regions: region I where mos
the energy transfer into electromagnetic wave energy occ
region II where the relative density perturbation grows, a
region III where the frequency conversion takes place.
order to describe the physics in region I adequately we m
abandon solutions that depend onz2ct only, and the basis
for this has been discussed in Sec. II C. By making estima
based on our analytical calculations, we conclude that
gravitational waves emitted by a system of binary puls
close to merging may result in periodic frequency up a
down conversions of electromagnetic radiation in the inf
red part of the spectrum. The frequency of the up and do
conversions coincides with the gravitational wave frequen
i.e., it is twice the orbital frequency.

APPENDIX

In this appendix we investigate the regime of validity f
the multi-component test fluid approach. Normally we thi
that by continually decreasing the parameters proportiona
the unperturbed energy density, at some point the fluid in
external gravitational field can be treated as a test fluid
our case the situation is not quite that simple, since we
decrease the electromagnetic (}B0

2) and the rest mass energ
density (}n0) at the same rate keeping( i(vp(i )

2 /vc(i )
2 ) con-

stant. Since our solution in Sec. II B has a diverging ener
momentum tensor wheneverH[2h/( i(vp(i )

2 /vc(i )
2 )→1,

clearly we cannot justify the test fluid approach simply
assuming a sufficiently low unperturbed energy density.
shed light on the physical effects due to the self-consis
gravitational field, we will first consider the linearize
theory. This will provide a guide for making estimates of t
3-5
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regime of validity of our~nonlinear! test matter solution in
Sec. II B and also makes it possible to justify the omission
self-consistent gravitational effects in Sec. IV.

We divide all quantities into an unperturbed part~i.e., the
value in the absence of the gravitational perturbation! and a
perturbed part. We note that the only variables that are n
zero in the unperturbed state are the density (5n0), the mag-
netic field (5B0e1), and the metric (5hmn). It should be
emphasized that in addition to the direct effect on the disp
sion relation from the matter, which we will study below
there is also an indirect contribution~that will be omitted
here! to the dispersion relation from the background curv
ture produced by the~unperturbed! matter. In the regime
where the gravitational wave length is much shorter than
background curvature, however, the shortwave approxi
tion can be applied, which implies that these two effects
be studied separately and their contribution to the disper
relation of the gravitational wave can be added; see, e
Ref. @13#. In the above scenario~provided thermal effects ar
still neglected! the only effects from the gravitational wav
on the plasma perturbations are from the effective current
~4a!,~4b!, where, in the present case, we havej E

252 j B
15

2(1/2)B0(]h/]z) and the other components are zero. Th
using Maxwell’s equations and the set of fluid equations
each particle species and the same approximations as in
II ~but avoiding the ansatz]/]t5]/]z) we will obtain a
wave equation for the fast magnetosonic wave, modifi
from the standard textbook form by allowing for an arbitra
value of ( i(vp(i )

2 /vc(i )
2 ) and with a gravitational ‘‘source

term’’ due to the effective gravitational currents above. T
result is

S ]2

]t2
1

CA
2

11CA
2

]2

]z2D dB52
]2h

]t2
B0 , ~A1!

where we have introduced the Alfve´n velocity CA

5(( i(vp(i )
2 /vc(i )

2 ))1/2. ~Note that CA may be larger than
unity, but, as can be seen above, the actual magnetos
wave velocity is smaller or equal toCA .) The system is
closed self-consistently by Einstein’s field equations, whi
after linearization reduces to~cf. Eq. 4.9 in Ref.@13#!

S ]2

]t2
1

]2

]z2D h516pG@T112T22# lin5
16pG

m0
B0dB,

~A2!

where lin stands for ’’linear part of.’’ It is simple to combin
Eqs. ~A1! and ~A2! into a single wave equation for th
coupled fast magnetosonic and gravitational mode. Howe
it is probably more illustrative to proceed by considering t
corresponding dispersion relation. Making a plane wave
satz,dB5dB̃ exp@i(kz2vt)# andh5h̃ exp@i(kz2vt)#, we di-
rectly find the dispersion relation:

v22k25
32pGB0

2

m0
S v2

v22k2CA
2/~11CA

2 !
D ~A3!
12400
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n-
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from Eqs.~A1! and~A2!. Thus the presence of matter caus
a phase velocityv/k.1 and a group velocitydv/dk,1. A
further consequence is that the gravitational wave also
comes dispersive. Apparently the relation betweendB̃ andh̃
is

dB̃5B0h̃S v2

v22k2CA
2/~11CA

2 !
D ~A4!

where the omission of the self-consistent gravitational fi
is a valid approximation only if we can use the vacuu
dispersion relationv22k250 as an approximation instea
of Eq. ~A3! when calculatingdB̃ from ~A4!. From now on
we will focus on the regimeCA@1, which makes the mag
netosonic phase velocity close to unity. Since the~typically
small! right-hand side of~A3! now must be compared to th
small phase velocity difference of the~uncoupled! magneto-
sonic and gravitational waves, the condition for omitting t
self-consistent gravitational field is significantly stronger
one should get an approximately correctmagnetic field, and
not just a small contribution from the right-hand side in t
dispersion relation~A3!. For CA@1 the condition for omit-
ting the self-consistent gravitational field and still obtaini
an approximate expression fordB̃, becomes

32pGB0
2

m0
!

v2

CA
4

. ~A5!

The above validity condition is obtained by comparing t
magnetic field obtained from the full self-consistent disp
sion relation and its vacuum approximation. A much simp
way to arrive at the same condition as in~A5! is to demand
that the relative contribution from the energy momentu
tensor terms in Einstein’s equations should be much sma
than the relative velocity difference between the magne
sonic and gravitational waves. The advantage with this la
formulation of the validity condition is that it can be easi
applied also when the relation betweendB andh as well as
the expression for the energy momentum tensor are non
ear. Adopting this condition for omitting the self-consiste
gravitational field when the plasma response to the me
perturbation is nonlinear we write

32pG max~dT!!
vchar

2

CA
2

hchar, ~A6!

where max(dT) denotes the maximum deviation from th
unperturbed value of the perturbed energy momentum te
for any of its components, and the index ‘‘char’’ denotes t
characteristic value of the gravitational wave frequency a
metric perturbation, respectively. For the regime when E
~A6! is violated, obviously our solution in Sec. II B must b
modified to take the self-consistent gravitational field in
account and this may result in new types of solutions
scribing, for example, nonlinear solitary gravitational puls
This problem is outside the scope of our present article, h
ever. We note that our example in Sec. IV fulfills the validi
condition ~A6! by a margin of several orders of magnitud
3-6
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