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Homogeneous modes of cosmological instantons
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We discuss theO(4) invariant perturbation modes of cosmological instantons. These modes are spatially
homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are
important in establishing the meaning of the Euclidean path integral. If negative modes are present, the
Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the
decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a
careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate
on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a
finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of
the Hawking-Moss or Coleman–De Luccia type, and discuss the associated spectral flow. We also investigate
Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regu-
larization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to
substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated
by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on
the suitability of Euclidean quantum gravity as a potential description of our universe.
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I. INTRODUCTION

An important issue in the study of quantum gravity is t
question of whether a consistent Euclidean formulation
ists at all. There is of course the problem of renormaliza
ity, but this may be considered a ‘‘technical’’ difficulty pe
haps to be resolved by the inclusion of more degrees
freedom at high energies. Somewhat more fundamental is
apparent unboundedness of the Euclidean action its
known as ‘‘the conformal factor problem’’@1#. This problem
has a deep physical origin in the fact that there is no can
cal ensemble for gravitating systems. This is perhaps
major hazard to be faced by the use of non-perturbative
clidean techniques.

In this paper we study the behavior of the action aroun
class of non-perturbativeO(4) invariant classical solution
of Euclideanized Einstein–scalar-field theory called cosm
logical instantons. These instantons have been used for s
time in inflationary theory to describe the decay of an infl
ing false vacuum state@2#. In analogy with the instanton
description of quantum tunneling@3,4#, one expects such in
stantons to possess a single negative mode@5#, leading to an
imaginary contribution to the energy of the unstable sta
For the tunneling interpretation to be valid, it is important
establish the presence of the negative mode. Howeve
such a mode exists, this equally establishes that the Eu
ean path integral can only be regarded as an approxima
since it is ill defined at a fundamental level.

Cosmological instantons are also used in another, m
ambitious context. They provide a first approximation to t
Euclidean no boundary path integral@6#, and therefore are
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the possible foundation for a description of the initial con
tions of the universe itself. One seeks solutions of the
boundary form, in which Lorentzian spacetime is analy
cally rounded off on a Euclidean region. Correlators of o
servables are then to be computed via a perturbation ex
sion in the Euclidean region. Since the Euclidean propag
is unique, in principle one should obtain unique Euclide
correlators which then, after analytic continuation to t
Lorentzian region, fully define the theory@7#.

The existence of negative modes should, we believe, b
major consideration in deciding whether or not instanto
should be regarded as describing tunneling or whether t
provide a fundamental description of the initial state for t
universe. The complete set of fluctuation modes divides i
those which areO(4) invariant in the Euclidean region an
those which are not. The latter describe inhomogeneous
mological perturbations, and it is well known that they po
sess positive Euclidean action. Negative modes can how
arise in theO(4) invariant sector and in this paper we sh
develop the technology necessary to describe them.

At first sight the conformal factor problem makes th
problem of defining the number of negative modes intr
table. If an inappropriate choice of variables is made, as
@8# for example, the Euclidean action is unbounded bel
with an infinity of negative modes appearing. Another a
proach has been proposed which involves Wick rotating
finite sub-classes of modes in the Euclidean region and
guing about the transformation properties of the meas
@9,10#. This is related to the proposal of Gibbons, Hawki
and Perry@1# of Wick rotating the conformal factor fluctua
tions to make the Euclidean path integral bounded. Th
methods seem rather arbitrary and contrived and do not s
to yield sensible results when applied to both Hawking-Mo
as well as Coleman–De Luccia instantons.

Instead we shall attempt to continue to the Euclidean
gion in a well-defined manner following from a Hamiltonia
formulation in the Lorentzian region. We integrate out gau
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u
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STEVEN GRATTON AND NEIL TUROK PHYSICAL REVIEW D63 123514
degrees of freedom in the Lorentzian region and analytic
continue only physical degrees of freedom. It is importan
note that the analytic continuation which generalizes
choicet→2 i t in Minkowski spacetime is completely fixe
by considering a hypothetical field only weakly coupled
gravity and demanding that its action be positive definite
the Euclidean region.

To quadratic order in the fluctuations, ‘‘three-fourths’’ o
the conformal factor problem is solved by removing gau
degrees of freedom and taking the EinsteinG0m constraint
equations properly into account. The latter link the variat
of the metric with the amplitude of the scalar field, so
quickly oscillating metric leads to a large scalar field flu
tuation and large Euclidean action. This eliminates nega
kinetic terms forO(4) non-invariant modes~i.e. the spatially
inhomogeneous modes in the Lorentzian universe!, as dis-
cussed for example in Ref.@7#.

The remaining negative kinetic terms are associated w
the O(4) invariant modes. As discussed above, the nega
ity is meaningful and we should not attempt to artificia
remove it. Rather we seek to isolate it in a discrete numbe
clearly identified fluctuation modes. Changes of variable
the path integral can be very helpful for this purpose. C
sider for example quantum mechanics in real time for a p
ticle with a positive harmonic potential but a negative kine
term. The real time path integral may be written

E @dq#expF i E dtS 2
A

2
q̇22

B

2
q2D G , ~1!

where bothA and B are positive. If we perform the usua
analytic continuationt52 i t, we obtain a Euclidean actio
with a negative kinetic term, analogous to the case of gr
ity. For normalized fluctuations inq the Euclidean action
possesses an infinite number of negative modes. Howev
functional Fourier transform sheds new light on the proble
We can reproduce the first term in the action with a fun
tional integral overp, with the term*pq̇1(1/2A)p2. We
then integrate by parts int and functionally integrate overq,
obtaining, in place of Eq.~1!,

E @dp#expF i E dtS 1

2B
ṗ21

1

2A
p2D G . ~2!

We notice that the coefficients of the kinetic and poten
terms have been interchanged, so that we now have a p
tive kinetic term and a negative potential term. Continuing
before viat52 i t, the Euclidean action now has a positiv
kinetic term. Of course the potential term is now negative,
we have merely replaced one ill-defined Euclidean path
tegral with another and one might think we had not gain
much. But for the context below, where the Euclidean reg
is compact, the positivity of the kinetic term means that ev
if the potential term is negative, the action is bounded be
for normalized perturbations and the number of nega
modes is then finite.

The functional Fourier transform used above is of cou
just another way of introducing the full first order action o
phase space (p,q) appropriate to a Hamiltonian treatmen
12351
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The freedom we then exploit is the choice of the linear co
bination ofp andq for the retained variable to be continue
to the Euclidean region. If some particular linear combin
tion yields a positive kinetic term throughout the Euclide
region, this is to be preferred since the number of nega
modes is then countable. Note that just one linear comb
tion of p andq is sufficient to completely define the theory
the Euclidean region, since correlators of the independ
linear combination may be derived by differentiating wi
respect to time and using the Heisenberg equations of mo
(q52 ṗ/B in the example above!.

Using the freedom to define the retained coordinate,
exploiting the fact that the number of negative modes o
Sturm-Liouville operator is independent of the measure c
sen, we prove that large classes of regular gravitational
stantons have negative modes. This puts tunneling inter
tations of these instantons on a firmer footing. But
discussed above it raises doubts about using them to des
the beginning of the universe.

Indeed in theories with Hawking-Moss and Coleman–
Luccia instantons, there is usually a lower action instan
which does not possess negative modes. Consider the
where there is a global potential minimum, and it is positiv
Then there is an instanton which is a round four-sphere.
radius of the sphere tends to infinity as the potential m
mum decreases to zero. This instanton solution has no n
tive modes. Its analytic continuation is just empty de Sit
spacetime, or in the limit of zero potential minimum
Minkowski spacetime. It seems to us that this trivial vacuu
state, defined by the lowest action instanton, is in fact
natural one implied by the Euclidean no boundary propo
for the sector of the theory with the simplestS4 topology.
Selecting another instanton with this topology~Hawking-
Moss or Coleman–De Luccia! to describe the beginning o
the universe seems unacceptable. Since those instantons
sess negative modes, they may describe tunneling from
approximate, unstable state but to use them as the basis
fundamental description is surely questionable.

The existence of singular, but finite action, constrain
instanton solutions@11# in a generic inflationary model open
new possibilities in this regard. Such instantons may
made regular by a change of variables on superspace plu
appropriate regularization of the potentialV(f) at large val-
ues of the inflaton fieldf @12#. In the regular description, the
topology of the solutions is notS4 but RP4, and the scalar
field is actually a twisted field living on that manifold. Thes
instantons are classical solutions in a sector of the the
which is topologically distinct from the naiveS4 Euclidean
vacuum discussed above. Implementing the regulariza
scheme of Kirklin, Turok and Wiseman@12#, we show that
the constraint removes negative modes for those instan
giving substantial inflation. There is therefore a stable val
in the configuration space of the Euclidean theory, and
Euclidean path integral for fluctuations about such solutio
is well defined to quadratic order. It may therefore posses
well-defined perturbative expansion to higher orders.

The outline of the paper is as follows. We review negat
modes of Hawking-Moss instantons, before discussing re
lar Coleman–De Luccia instantons and then generic sing
4-2
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HOMOGENEOUS MODES OF COSMOLOGICAL INSTANTONS PHYSICAL REVIEW D63 123514
Hawking-Turok instantons. Motivated by the construction
Ref. @12# we regularize the latter by matching the scalar p
tential V(f) at largef to a certain class of exponentiall
decaying potentials. We discuss an alternate regulariza
and constraint motivated by Garriga’a construction of sin
lar instantons as dimensionally reduced five dimensio
regular solutions@13#. In the latter construction, a negativ
mode is always present for a generic slow-roll potential.
nally implications of this work for Euclidean quantum gra
ity are commented upon.

Our study yields a simple picture of Euclidean configu
tion space for a generic inflationary theory, into which t
known classical solutions fit. The valley we have identifi
for Hawking-Turok instantons is potentially of much intere
since it may provide a well-defined perturbative basis
Euclidean approaches to inflationary cosmology.

We would like to draw to the attention of the reader t
recent work of Khvedelidze, Lavrelashvili and Tana
@14,15#, which also addresses the issue of negative mo
about Coleman–De Luccia instantons.

II. SECOND ORDER ACTION

Our starting point is the second order action for sca
perturbations in the Lorentzian universe, as discussed in
e
r

un
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4 of @7#. We consider a scalar fieldf with potentialV(f)
minimally coupled to gravity. The background field equ
tions are

f912Hf852a2V,f~f!,

H 25
k

3S 1

2
f82 1V~f!a2D2K, ~3!

where k58pG, H5a8/a, primes denote derivatives with
respect to conformal time andK50,61 for flat, closed and
open Friedmann-Robertson-Walker~FRW! universes. With
the perturbed line element

ds25a2$2~112A!dt212Bu idxidt

1@~122c!g i j 12Eu i j #dxidxj%, ~4!

and the scalar field represented asf1df, with f the back-
ground solution, the second order action for fluctuations
given by Eq.~18! of @7#, reproduced here:
S25
1

2kE dtd3xa2AgH 26c82212HAc812Dc~2A2c!22~H812H 2!A21k~df821dfDdf2a2V,ffdf2!

12k~3f8c8df2f8df8A2a2V,fAdf!1K@26c212A2112cA12~B2E8!D~B2E8!#

14D~B2E8!S k

2
f8df2c82HAD J . ~5!
ell

de-
-
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te-
he
This is well defined for all values off8 and the three-spac
LaplacianD. In an open universeD takes the value zero fo
the spatially homogenous mode and2p221 with p2.0 for
the continuum of square integrable modes. In a closed
verseD is given by2n211 with nPN.

The momenta canonically conjugate toc, E, anddf are

Pc5
2a2Ag

k S 23c813
k

2
f8df23HA2D~B2E8! D ,

PE5
2a2AgD

k S c82
k

2
f8df1HA2K~B2E8! D ,

Pdf5a2Ag~df82f8A!. ~6!

Under an infinitesimal scalar coordinate transformationxm

→xm1lm, wherelm5(l0,l u i), the perturbation fields and
momenta transform as
i-

c→c2Hl0, B→B1l82l0, A→A1l081Hl0,

E→E1l, df→df1f8l0,

Pc→Pc1
2a2Ag

k
~D13K!l0, PE→PE ,

Pdf→Pdf1a2Ag~f92Hf8!l0. ~7!

III. HAWKING-MOSS INSTANTONS

Let us first consider Hawking-Moss instantons@16#,
where the scalar field is everywhere a constant. It is w
known that these have negative eigenmodes forV,ff,0.
The corresponding Lorentzian solution hasf850 every-
where and soV,f must be zero. We notice immediately from
Eq. ~5! that the matter and metric degrees of freedom
couple and, from Eq.~7!, that df has become a gauge in
variant variable. Introducing conjugate momenta to t
gravitational degrees of freedom and performing the in
grals, we find that no gauge invariant combination of t
4-3
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STEVEN GRATTON AND NEIL TUROK PHYSICAL REVIEW D63 123514
fields and momenta that is not forced to be zero is left. T
means that there are no real degrees of freedom describe
the metric. IndeedCN is forced to be zero here, making on
wary of any approach~such as that in@9,10#! pertaining to
negative modes that relies on metric variables alone. Ret
ing to the matter degree of freedom, we analytically contin
into the Euclidean region as detailed in@7#, leaving us with
the action

1

2E dXd3xb2Ag~df822dfD3df1b2V,ffdf2!, ~8!

whereg is now the determinant of the Euclidean metric, a
the Euclidean background line element isb2(X)(dX2

1g i j dxidxj ) with g i j the metric on the round three-spher
All gradient terms are positive, so this action is bound
below for square-integrable variations of the scalar field. T
first thing to note is that ifV,ff.0, then this action is posi
tive definite and so the spacetime is perturbatively stable
V(f0) is the global minimum ofV, one might expect tha
this spacetime is non-perturbatively stable as well. We
see the existence of a negative mode forV,ff,0 as follows.
The eigenvalue equation associated with this action is
Sturm-Liouville form, but we have some freedom in spe
fying the measure, which we shall repeatedly exploit.b4Ag
is a permissible choice, allowing us to just read off thatdf
5const is an eigenmode with eigenvalueV,ff . One might
enquire if there is another negative mode. Rescalingdf by a
factor of b, the action operator takes Schro¨dinger form and
choosing the measure to beAg gives us the Schro¨dinger
equation with a2(22V,ff /H2)/cosh2 X1n2 potential with
H2 here defined to bekV0 /3, and wheren252D311, with
D3 the Laplacian onS3. This can be solved for the negativ
eigenvectors and eigenvalues~see@17# for example! in terms
of hypergeometric functions. The number of negative mo
is independent of the choice of measure. For24
,V,ff /H2,0 there is one, for210,V,ff /H2,24 there
are six, and in general for2N(N13),V,ff /H2,2(N
21)(N12), whereNPZ 1, there areN(N11)2(N12)/12
negative modes. This counting agrees with anO(5) spheri-
cal harmonic analysis. We see that asV,ff becomes more
negative from zero five more modes suddenly cross zer
V,ff /H2524, meaning that the Hawking-Moss instanto
cannot now have anything to do with tunneling. This is ve
interesting because one of the new negative modes is
tially homogeneous and antisymmetric inX. In fact it is the
perturbative indication of the existence of a lower-acti
non-perturbative solution, namely the Coleman–De Luc
instanton for the same potential.V,ff /H2,24 is the pre-
cise condition for the existence of a Coleman–De Luc
instanton@18#, which has a lower action. We will show be
low that this itself has a negative mode, which may
viewed as the carryover of the lowest one of the Hawkin
Moss instanton. The spectral flow is as follows. For sm
negative V,ff , there is only one classical solution~the
Hawking-Moss instanton! with one negative mode. AsV,ff
becomes more negative, one of the positive eigenvalues
creases to zero. As it crosses zero, a new classical soluti
obtained by flowing down the new negative direction to
12351
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new saddle point, which retains the original negative mo
but is stable in other directions. The spatially homogene
negative modes gained by passing throughV,ff /H25
2N(N13), N.1, correspond to the coming into existen
of non-perturbative multibounce instantons. From spec
flow arguments one would expect these to possessN nega-
tive modes. The same arguments indicate that the low
action Coleman–De Luccia instanton should only have o
negative mode, and this is confirmed numerically as we d
cuss below.

IV. COLEMAN –De LUCCIA INSTANTONS

Let us now consider Coleman–De Luccia instantons@2#.
We start in the open universe from Eq.~5!. For DÞ0, we
proceed as in Sec. 4 of Ref.@7# to Eq. ~20! there. We do the
B andPE integrals, effectively settingPE50 in that expres-
sion. ForD50, B andE no longer appear in Eq.~5!, and we
cannot define aPE . However, we can still introducePc and
Pdf and work forward to the same expression in terms ofA,
c, Pc , df, andPdf as forDÞ0. So from now on we trea
D50 andDÞ0 in a unified way.CN , as defined in Eq.~21!
of Ref. @7#, is singular forD50, and from our experience
with the Hawking-Moss case above we know that spatia
homogeneous fluctuations are significant when investiga
negative modes. So we define the closely related variab

C l5~D13K!c1
HkPc

2a2Ag
~9!

where we have also taken the opportunity to multip
through byD13K in order to keep our fields local. This i
gauge invariant and classically the same as (D13K)CN
sincePE is constrained to be zero. In@7#, introducingPN
made the action independent ofdf. This is classically
equivalent to working in a gaugedf50, and from the
Hawking-Moss example we see that this is potentially aw
ward. So here we define

df l5~D13K!df2
kf8Pc

2a2Ag
~10!

which is again local and gauge invariant. Usingdf l andC l
is classically equivalent to working in the gaugePc50,
which from Eqs.~6! and for KÞ0 is a good gauge every
where. Integrating overA imposes the delta functional con
straint onPdf , which is then integrated over, leaving th
action in the simple form

E dtd3x
a2Ag

D13K

3H 2

kf8
C ldf l81

2~Hf82f9!

kf82
C ldf l

1
1

2
df l

22
1

k
@112~D13K!/kf82#C l

2J . ~11!
4-4
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It is remarkable that in thePc50 gauge, the Newtonian
potentialC and the scalar field fluctuationdf are the two
remaining physical and canonically conjugate variables.

We now have a choice in deciding which linear combin
tion of df l and C l to retain as our coordinate before co
tinuing to the Euclidean region. Having made this choice
integrate out any remaining non-parallel combination a
obtain a quadratic action for the coordinate of interest, wh
we continue to the Euclidean region. For a given backgro
instanton, if the Euclidean action has positive definite deri
tive terms, it is bounded below for normalized square in
grable fluctuations of that variable, and we have made a g
choice for isolating negative modes. From our experie
with Hawking-Moss an obvious choice is to takedf l itself.
After analytic continuation to the Euclidean region, followe
by a simple rescalingQ5bdf l /f8, the action takes the
form

E dXd3xAgf82

2~2D323!2 S Q82

11kf82/2~2D323!
1~2D323!Q2D .

~12!

Let us first briefly discuss the technicality of what ha
pens when (2D323)50, corresponding ton52 ~recall that
the eigenvalues of the Laplacian onS3 are 2n211, n
PN ). This action is infinite unlessQ50. One takes this to
be a positive infinity since then it says that (2D323)50
modes are infinitely suppressed. That this is correct can
seen by considering Eq.~5! for this mode in a closed uni
verse withf8Þ0. There is a degeneracy betweenc andE,
resulting in only the sumc1E affecting the three-metric
Then there are no gauge-invariant combinations of fields
momenta that are not forced to be zero. Note that (2D3
23)50 modes do exist for the Hawking-Moss instanton b
in that casef85V,f50 everywhere.

Having dealt with this, we move on to the more intere
ing cases ofn51 and n.2. In the latter inhomogeneou
case both the kinetic terms and the potential terms are p
tive definite, giving no possibility of negative modes. No
let us consider the potentially dangerous homogeneoun
51 mode. The kinetic term is positive definite as long as
2kf82/6.0 across the entire instanton. This conditi
holds for a wide class of Coleman–De Luccia instantons
both the thin-wall and the thick-wall variety. In this case w
see the existence of the negative modeQ5const by choosing
the measuref82Ag. So a wide class of Coleman–De Lucc
instantons are shown to have a negative mode. Inciden
we note that had we chosen a variable that had nodf matter
component, the homogeneous mode would have had n
tive definite kinetic term, as found in@9,10#. Then the action
could be arbitrarily negative for square integrable fluctu
tions of the metric variable.

Having chosen a measure, one can numerically determ
the other eigenmodes and eigenvalues of the operator.
Coleman–De Luccia instantons associated with potential
Gaussian forme2Af2

for example, we have found no ev
dence of further negative modes about these lowest-ac
12351
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regular solutions. This is consistent with expectations ba
on spectral flow from the Hawking-Moss instanton as d
cussed above.

V. HAWKING-TUROK INSTANTONS

On singular instantons, as the scalar field tends to infin
the condition 12kf82/6.0 is certainly violated. However
this by itself does not mean that we should exclude the
Rather we should first consider the possibility that gravity
the instanton is sufficiently strong that a pure matter varia
like Q does not provide a suitable description of the fluctu
tions. Indeed, going back to Eq.~11!, we can defineQ̄
5df l12(H2f9/f8)C l /kf8 to obtain, after analytic con-
tinuation,

E dXd3xb2Ag

2~2D323!2 S ~2D323!Q̄82

f8~1/f8!92D324
1~2D323!Q̄2D .

~13!

This time we see that the kinetic term is positive defin
both forn51 andn.2 as long as24,f8(1/f8)9,4. Us-
ing the background field equations, we have

D~X![f8~1/f8!924

52b2S 2kV1
8HV,f

f8
1V,ff2

2b2V,f
2

f82 D . ~14!

We see that if the potential has a maximum, then we m
have 2kV1V,ff.0 for Q̄ to be a suitable variable. Let u
examine the behavior of this term near the singularity. W
haveb2 going like X, andf goes like2A3/2k ln X. If V is
polynomial,D goes likeX times a term involving lnX fac-
tors. Now the solution of the eigenvalue operator for a
eigenvalue is of the formA*D(X)/XdX1B near the singu-
larity and we see that this has finite action for anyA andB.
This shows that the action alone does not in fact impose
boundary conditions for theO(4) invariant perturbations o
singular instantons. It is consistent with the fact that singu
instantons cannot be regarded as unconstrained saddle p
of the Euclidean action since the action varies across
class of singular instantons. They must be defined by in
ducing a constraint into the path integral which is later in
grated over. This constraint determines the allowedO(4)
invariant modes. If one is interested in calculating a c
relator which weights particularly strongly towards a giv
value for the constraint~for example if we are interested i
correlating with the observed value ofV today!, it may be
useful to only consider one sector and ignore the integra
over the constraint. This is what is effectively done in@7,19#
where a constraint is implicitly applied to give an accepta
value ofV0, and homogeneous fluctuations are ignored si
they do not affect the microwave background correlation

VI. REGULARIZED INSTANTONS

In the above section we saw that ifV were polynomial in
f, thenD went like X times a term involving lnX factors.
4-5
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STEVEN GRATTON AND NEIL TUROK PHYSICAL REVIEW D63 123514
However, if V is asymptotically of the form (e2A2k/3f) r ,
with r an odd integer, thenD goes likeXr 11, and the eigen-
functions have the formAXr 111B near the singularity.
Therefore with this form of potential the theory has go
analytic behavior near the singularity. This suggests that w
this type of potential there is special behavior and indeed
is the case. We see here the perturbative indication of
scenario of Kirklin, Turok and Wiseman@12#. There it is
shown that singular instantons of potentials with t

asymptotic form (e2A2k/3f) r , with r odd and greater than
23, may be viewed as true classical solutions of a the
related to the original theory by a conformal transformat
which vanishes at the Einstein frame singularity. In terms
the new variables the metric is strictly Riemannian and
instantons are regular.

If we use this scheme to regularize the singular instant
occurring in a generic inflationary theory, we must mod

the potential so that it tends to (e2A2k/3f) r at largef. The
theory is then defined as the limit where this modificati
occurs at infinitely largef. We must check that our result
are insensitive to the details of how the limit is taken. W
chooser positive because forr 521, the functionD(X)
vanishes making the kinetic term for the fluctuations ill d
fined.

In the regularized theory, the appropriate degrees of fr
dom are combinations of the conformal factor and the sc
field, residing on a regular Riemannian manifold. This ma
fold is taken to have the topology ofRP4, and the conformal
factor is taken to be in the twisted sector. This enforces
conformal zero, corresponding to the singularity. On
non-contractible three-surface where the conformal facto
zero, one is free to specify the Riemannian three-metric,
this corresponds to information stored ‘‘at the singularity’’
the original Einstein frame.

The appropriate action in this picture is one where
Riemannian three-metric is fixed on the conformal zero.
terms of Einstein frame variables, this action is just the st
dard first derivative action@20# including the usual Gibbons
Hawking boundary term. ForO(4) invariant solutions the
boundary data may be taken to be the value ofm on the
three-surface,mB , wherem is the Riemannian frame radiu

given by m[beAk/6f in terms of Einstein frame variables
We treat the value ofmB at the conformal zero as a variab
to be integrated over in the path integral. FormB smaller
than some value there is no classical solution. However,
largermB there are two solutions, one of higher and one
lower Euclidean action. The higher action solution cor
sponds to low values of the scalar fieldf0 at the beginning
of the Lorentzian open universe. The lower action solut
corresponds to a larger value forf0. As mB is increased, the
corresponding value off0 increases to infinity, giving large
and larger amounts of inflation in the Lorentzian universe

It is slightly subtle to impose the required constraint b
cause the single field degree of freedom we use is notdm.
However, we expressdm in terms of Q̄ and its canonical
conjugate, as given by its saddle-point value in the path
tegral. Consider working in the gaugedf50. This is a good
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gauge near the singularity becausef is varying quickly
there. Thendm goes likec, which in terms of our gauge
invariant local variables is proportional toC l1Hdf l /f8.
Now Q̄5df l12(H2f9/f8)C l /kf8, and at the saddle
point C l5kf8Q̄8/2D(X). Consequentlydm is proportional
to Q̄23Q̄8/HD(X) near the singularity. Our numerical cod
uses the auxiliary variableP[b2Q̄8/D(X) and works in
proper Euclidean time. So the condition that we must imp
on our eigenfunctions is thatQ̄13P/b2ḃ50 at the singular-
ity. It is straightforward to show that the most general so
tion of the Q̄ eigenvalue equation has the behaviorAX2

1B near X50, and our boundary condition is a specifi
relation betweenA andB.

We have investigated a number of potentials which
have appropriately at largef. For example we have matche
a f2 potential onto thee2A2k/3f potential using a negative
cubic term. One has to be slightly careful with the matchi
prescription so that one does not violate the 2kV1V,ff

.0 condition for Q̄ to be a good variable at the turnove
point. As long as the matching is done a long way furth
along the potential than where the runaway behavior sta
the results are in any case insensitive to the details of
matching.

Now as explained above there are two starting values
f at the regular pole which lead to the same value ofmB at
the singularity~see Fig. 1!. The instanton with largerf at the
regular pole has lower action. Since for fixedmB these are
the only two extrema, one could anticipate that the largef
solution would be stable and the lowerf solution unstable.
We have confirmed this numerically.

Now as we varymB downwards the values off at the
regular pole in the two solutions move closer and ultimat
merge, in the unique solution with minimalmB . The associ-
ated instanton is the one with the most negative action, an
is is like a critical point. Since two solutions—one unstab
and one stable—are merging, one expects to find that
resulting configuration has a zero mode and this is ind
confirmed numerically.

As a result of this investigation we can build up a pictu
of the action-configuration space structure of the theory
shown in Fig. 2, and we can speculate as to what the st
ture might look like away from where we have been able
probe. FormB above the critical value, there is a stable va
ley in mB , f space where the stability increases with i
creasingmB . The instantons with lower action are con

FIG. 1. The left sketch shows howm at the singularity varies
with the value off at the regular pole. The right sketch shows ho
the appropriate action of the singular instanton varies with the va
of f at the regular pole.
4-6
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HOMOGENEOUS MODES OF COSMOLOGICAL INSTANTONS PHYSICAL REVIEW D63 123514
strained solutions which lie on the floor of this valle
However, at lowerf there is an unstable ridge, which
joined to the valley at the criticalmB . The implication is that
even though the constrained instantons in the valley
stable, there are nonperturbative instabilities lurking at l
f, beyond the unstable ridge, and at lowmB , below the
critical point. Hence it seems unlikely that the Euclide
path integral will be well defined nonperturbatively. It a
pears that at the very least projection operators onto ce
subclasses of configuration space in the path integral are
quired.

VII. CONNECTIONS WITH PREVIOUS WORK

In this section we briefly show that the approach p
sented in this paper leads to the same results as in@7# for the
computation of cosmic microwave background~CMB! back-
ground anisotropies about singular instantons. One need
check that the spatially inhomogeneous modes allowed
one choice of path integral variable correspond to the equ
lent modes allowed for the other choice of variable. For
inhomogeneous modes,C l and CN are equivalent, and we
shall show that theq modes allowed in@7# give the same
behavior inCN near the singularity as the allowedQ̄ modes
here give inC l . In @7#, the unsuppressedq modes behaved
asX3/2, corresponding toCN tending to a constant. The sup
pressed mode hadq→X21/2, corresponding toCN diverging
like 1/X2. The eigenvalue equation leading from Eq.~13!

looks like (XQ̄8)850 near the singularity, with general so
lutions of the formA ln X1B. Substituting back into the ac
tion we find that the lnX solution has infinite action and so
suppressed. At the saddle point we haveC l behaving as
Q̄8/X and we see thatQ̄→A ln X corresponds toC l→1/X2,
whereas the unsuppressed modeQ̄→B1O(X2) corresponds
to C l being finite. Hence both approaches select the sa
allowed modes and thus give equivalent correlators.

No such check is necessary for the non-singular ins
tons because in this case there is no boundary and all m
are allowed.

FIG. 2. A sketch of the dependence of the Euclidean action
the metric and scalar field configurations, about the constra
singular instantons, represented by the dashed lines. The da
lines represent the instanton solutions at eachm. The orthogonal
direction shows the lowest eigendirection at fixedm. The lower
action solution~largerf! possesses no negative modes: the hig
action solution possesses one. Asm is lowered, the two solutions
approach and merge, with a zero mode being produced. At sm
values ofm there is no classical solution.
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VIII. ALTERNATE ‘‘FIVE DIMENSIONAL’’ BOUNDARY
CONDITION

For the special potentialV}e(A2k/3)f5n21, where here
n[e(2A2k/3)f, Garriga showed@13# that singular Hawking-
Turok instantons could be interpreted as ‘‘dimensional
ductions’’ of a regular five-dimensional solution, which
just a round five sphere. He showed that the five dimensio
action, when written in four dimensional variables, diffe
from the standard first-derivative four dimensional action
minus two thirds of the Gibbons-Hawking surface term. H
also showed that for arbitrary potentialV one reached the
same conclusion if one introduced a brane~of negative ten-
sion! to regularize the singularity.

In this section we study the existence of negative mo
for a form of the action motivated by Garriga’s observatio
for arbitrary scalar potentialV(f). Note that Garriga’s five-
dimensional example yields the specific potentiale(A2k/3)f.
The exact solution here hasf8}1/sinh 2X and the function
D(X) which enters the kinetic term for the perturbatio
vanishes identically. We are unable therefore to prove e
tence of a negative mode in this case. Indeed this is perfe
consistent since from a five-dimensional view, the Garr
solution should have no negative modes. It is a round fi
sphere and continues to five-dimensional de Sitter space
which is presumably stable in analogy with our treatment
the four-dimensional case.

The five dimensional line element is given in term
of the four-dimensional one ds4

2 by ds5
25n21ds4

2

1n2dy2 whereds4
25N2ds21b2(s)dV3

2 and 0,y<L runs
around the fifth dimension, whose radius is (L/2p)n
5(L/2p)exp@2A2k/3f#. Calculation of the five-
dimensional Einstein action for gravity with a cosmologic
constant using this metric yields the action for fou
dimensional Einstein gravity plus a minimally coupled sca
field f with potentialV}e(A2k/3)f5n21.

The embedding in five dimensions yields a natural re
larization of the singularity. Rewriting the line element
dx21m2(x)dV3

21n2dy2, we see that the five-dimensiona
metric is actually perfectly regular whenn vanishes as long
as dn/dx tends to 2p/L there, since then the singularity i
just the usual two-dimensional polar coordinate singula
which may be removed by changing to Cartesian coo
nates. We shall explore the consequences of applying
boundary condition in the general case.

Setting ds̃5Nds, the four-dimensional Euclidean
Einstein–scalar-field action is

SEin5S3E ds̃S 1

2
ḟ2b31V~f!b323M Pl

2 b~12bb̈2ḃ2! D ,

~15!

whereS352p2 is the volume of the unit three sphere an
overdots denote derivatives with respect tos̃. The last term
in the integrand is (21/2k)R, with R the Ricci scalar. We
shall be interested in rewriting this term in various wa
differing by surface terms. First we integrate by parts to
move the second derivatives to obtain the action appropr
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STEVEN GRATTON AND NEIL TUROK PHYSICAL REVIEW D63 123514
to fixed values for the three-metric and scalar field on
boundary, as discussed by Dirac@20#:

SDir5S3E S 1

2
ḟ2b31V~f!b323M Pl

2 b~ ḃ211! D
5SEin23M Pl

2 S3@b2ḃ#. ~16!

The last term is the Gibbons-Hawking boundary term. R
expressing this action in terms of the fieldsm, n, and the
coordinatex, we find

SDir5S3E dxm@V~n!n2m323M Pl
2 ~m82n1mm8n811!#

5SEin2
3

2
M Pl

2 @m3n8#, ~17!

where here a prime denotes a derivative with respect tx
and we have used the fact thatn50 on the boundary. This
action is clearly stationary under variations satisfyingdm
50 on the boundary.

If instead we adopt the boundary condition suggested
Garriga’s construction, we fixn852p/L at the boundary.
The appropriate action is obtained from Eq.~17! by integra-
tion by parts,

Sn85S3E m@V~n!n2m32M Pl
2 ~3m82n132m3n9!#

5SEin2
1

2
M Pl

2 @m3n8#, ~18!

and we see that the Gibbons-Hawking term has been red
by a factor of 3.

For simple monotonic scalar potentials, the action app
priate to thedn850 boundary condition is monotonicall
decreasing asf0 decreases towards the potential minimu
If the potential minimum is zero, the action for the co
strained instantons tends to minus infinity. This is quite d
ferent from the behavior of the action appropriate to
dm50 boundary condition. The latter action has two so
tions at fixedmB above some minimal value. As we showe
above the lower action solution has no negative modes,
ing us a picture of configuration space in which the low
action solutions comprise a stable valley running up towa
f0→`. In contrast, since for generic potentials there is
unique solution for each value ofn8 at the singularity@12#,
and since we know that the Euclidean action is unboun
below, we might suspect that the action-configuration sp
structure takes the form of a single unstable ridge. We s
see that this picture is indeed correct.

We need to rewrite the condition that the five dimensio
metric be regular in terms of our perturbation fields. To
so, we rewrite the four dimensional line element in terms
comoving coordinateX as in the previous sections. Then w
divide the last term in the five dimensional line element
the first and take the square root. We find the condition t
as X tends to zero,b0

21(11A)21e2(Ak/6)f(e(2A2k/3)f)8
should tend to 2p/L where primes now refer toX deriva-
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tives, b0(X) is the unperturbed scale factor and the sca
field now includes the infinitesimal perturbationdf. It is
convenient to pick a gauge wheredf50, which is possible
near the singularity. In this gauge, in order to preserve fi
dimensional regularity we must haveA50 at the singularity.
Expressed in canonical variables, this condition becom
Pdf /(a2f8)50. In the path integral, theG00 constraint is
imposed as a delta functional and the condition onPdf im-
plies (kHPc /f816KAgc/f8)/(a2f8)50, which from
Eq. ~9! and for the homogeneous mode becomes after
clideanizationC l /f82;X2C l50 at X50.

Having established the boundary conditionX2C l50 ap-
propriate to five dimensional regularity, we translate this in
a boundary condition for the fluctuation variableQ̄ appropri-
ate to the negative mode computation. We find thatX2C l

;kX2f8Q̄8/2D(X);X21Q̄8. For the regularized instan
tons, the general solution for the mode equation forQ̄ is
specified by its expansionQ̄;AX21B nearX50, and the
boundary condition therefore readsA50. It is easy to see
that a negative mode always exists for this boundary con
tion. From Eq.~13! and taking the measure to beb2Ag, if we
set Q̄5const, the action is negative. The ansatz clearly s
isfies the boundary condition. Therefore there is at least
negative mode. From a numerical study, we find that fo
simple quadratic potential, regularized at largef as above,
there is in fact only one negative mode.

To summarize, the condition of five dimensional regula
ity may be imposed as a boundary condition. However
does not eliminate the negative modes, therefore leaving
Euclidean path integral as ill defined at a fundamental lev

IX. CONCLUSIONS

In this paper we have given a detailed investigation
spatially homogeneous fluctuations of cosmological inst
tons. We showed how a Hamiltonian treatment, with an
propriate choice of variable, produces a Euclidean act
which is bounded below for normalized fluctuations. Fir
we investigated Hawking-Moss and Coleman–De Luccia
stantons, and showed that the lowest action solution in e
case possesses a negative mode. For the ‘‘thin-wa
Coleman–De Luccia case where the instantons ‘‘almost’’
terpolate between the true and false vacua, this supports
use in tunneling roles as discussed in@4,21#. In that approach
it is necessary that the potential may be obtained by ana
cally distorting one for which the action is positive defini
for all configurations. In the ‘‘thick-wall’’ case, and certainl
for Hawking-Moss instantons, where gravitational effects
important, it is not clear that this is possible. Thus ev
though we have found that these instantons do posse
single negative mode, the assertion that these instanton
useful for describing the decay of one spacetime to ano
requires further understanding.

Our investigation of singular instantons indicates the i
portance of a well-defined regularization. In contrast to
situation for the inhomogeneous modes@7#, the Euclidean
action does not uniquely select a boundary condition for
homogeneous modes. It is therefore essential to choo
4-8
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HOMOGENEOUS MODES OF COSMOLOGICAL INSTANTONS PHYSICAL REVIEW D63 123514
regularization within which the relevant boundary conditi
is defined. We have investigated two such frameworks.
first is theRP4 construction of@12#, according to which we
find that instantons with large starting valuesf0 of the in-
flaton field have no negative modes to quadratic order.
second is the regularization motivated by Garriga’s five
mensional construction. Here we find that a negative mod
always present.

Since in all the cases studied here the instantons h
perturbations which decrease their action, their use in an
constrained path integral to determine the quantum stat
the universe is questionable. In the case of the instan
describing tunneling, a constraint is needed to set the sys
in an initial unstable state. The constraints introduced in
RP4 construction remove negative modes perturbatively,
as we have argued, probably do not remove them nonpe
s

s.
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batively. It therefore seems essential that an additional c
straint be introduced which effectively projects onto certa
subsets of states, and excludes the configurations of a
trarily negative Euclidean action. This might be justified
we are only interested in correlators of certain subsets
observables, for example, as opposed to the unconstra
Euclidean partition function. How the appropriate proje
tions are to be defined and introduced is an important to
for future work.
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