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Homogeneous modes of cosmological instantons
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We discuss thé@(4) invariant perturbation modes of cosmological instantons. These modes are spatially
homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are
important in establishing the meaning of the Euclidean path integral. If negative modes are present, the
Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the
decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a
careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate
on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a
finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of
the Hawking-Moss or Coleman—De Luccia type, and discuss the associated spectral flow. We also investigate
Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regu-
larization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to
substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated
by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on
the suitability of Euclidean quantum gravity as a potential description of our universe.
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[. INTRODUCTION the possible foundation for a description of the initial condi-

tions of the universe itself. One seeks solutions of the no

An important issue in the study of quantum gravity is theboundary form, in which Lorentzian spacetime is analyti-
question of whether a consistent Euclidean formulation excally rounded off on a Euclidean region. Correlators of ob-

ists at all. There is of course the problem of renormalizabil-S€rvables are then to be computed via a perturbation expan-

ity, but this may be considered a “technical” difficulty per- sion in the Euclidean region. Since the Euclidean propagator

: : iS unique, in principle one should obtain unique Euclidean
haps to be resolved by the inclusion of more degrees 0I‘,Sorrelators which then, after analytic continuation to the

freedom at high energies. Somewhat more fundame_zntal_lst Erentzian region, fully define the theofy].
apparent unboundedness of the Euclidean action itself,

. ! _ The existence of negative modes should, we believe, be a
known as “the conformal factor problenT1]. This problem  aiqr consideration in deciding whether or not instantons

has a deep physical origin in the fact that there is no canonighgy|g pe regarded as describing tunneling or whether they
cal ensemble for gravitating systems. This is perhaps thgroyide a fundamental description of the initial state for the
major hazard to be faced by the use of non-perturbative Euynjverse. The complete set of fluctuation modes divides into
clidean techniques. those which aré(4) invariant in the Euclidean region and
In this paper we study the behavior of the action around ahose which are not. The latter describe inhomogeneous cos-
class of non-perturbativ®(4) invariant classical solutions mological perturbations, and it is well known that they pos-
of Euclideanized Einstein—scalar-field theory called cosmosess positive Euclidean action. Negative modes can however
logical instantons. These instantons have been used for soragise in theO(4) invariant sector and in this paper we shall
time in inflationary theory to describe the decay of an inflat-develop the technology necessary to describe them.
ing false vacuum statg2]. In analogy with the instanton At first sight the conformal factor problem makes the
description of quantum tunnelir{@,4], one expects such in- problem of defining the number of negative modes intrac-
stantons to possess a single negative niddideading to an  table. If an inappropriate choice of variables is made, as in
imaginary contribution to the energy of the unstable state[8] for example, the Euclidean action is unbounded below
For the tunneling interpretation to be valid, it is important towith an infinity of negative modes appearing. Another ap-
establish the presence of the negative mode. However, ffroach has been proposed which involves Wick rotating in-
such a mode exists, this equally establishes that the Euclidinite sub-classes of modes in the Euclidean region and ar-
ean path integral can only be regarded as an approximatioguing about the transformation properties of the measure
since it is ill defined at a fundamental level. [9,10]. This is related to the proposal of Gibbons, Hawking
Cosmological instantons are also used in another, morand Perry{1] of Wick rotating the conformal factor fluctua-
ambitious context. They provide a first approximation to thetions to make the Euclidean path integral bounded. These
Euclidean no boundary path integfdl], and therefore are methods seem rather arbitrary and contrived and do not seem
to yield sensible results when applied to both Hawking-Moss
as well as Coleman—De Luccia instantons.
*Present address: Joseph Henry Laboratories, Princeton Univer- Instead we shall attempt to continue to the Euclidean re-
sity, Princeton, NJ 08544. Email address: sgratton@princeton.edwgion in a well-defined manner following from a Hamiltonian
"Email address: N.G.Turok@damtp.cam.ac.uk formulation in the Lorentzian region. We integrate out gauge
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degrees of freedom in the Lorentzian region and analyticallyrhe freedom we then exploit is the choice of the linear com-
continue only physical degrees of freedom. It is important tobination ofp andq for the retained variable to be continued
note that the analytic continuation which generalizes the&o the Euclidean region. If some particular linear combina-
choicet— —i7 in Minkowski spacetime is completely fixed tion yields a positive kinetic term throughout the Euclidean
by considering a hypothetical field only weakly coupled toregion, this is to be preferred since the number of negative
gravity and demanding that its action be positive definite inmodes is then countable. Note that just one linear combina-
the Euclidean region. tion of p andq is sufficient to completely define the theory in

To quadratic order in the fluctuations, “three-fourths” of the Euclidean region, since correlators of the independent
the conformal factor problem is solved by removing gaugdinear combination may be derived by differentiating with
degrees of freedom and taking the Einst&p, constraint respect to time and using the Heisenberg equations of motion
equations properly into account. The latter link the variation(q= — p/B in the example above

of the metric with the amplitude of the scalar field, so a " ysing the freedom to define the retained coordinate, and

1. 1
e Y
28P T 2AP

quickly oscillating metric leads to a large scalar field fluc- exploiting the fact that the number of negative modes of a
tuation and |arge Euclidean action. This eliminates negativ%turm_Liouvi”e Operator iS independent of the measure ChO'
kinetic terms forO(4) non-invariant mode§.e. the spatially  sen, we prove that large classes of regular gravitational in-
inhomogeneous modes in the Lorentzian universs dis-  stantons have negative modes. This puts tunneling interpre-
cussed for example in Reff7]. tations of these instantons on a firmer footing. But as
The remaining negative kinetic terms are associated witljiscussed above it raises doubts about using them to describe
the O(4) invariant modes. As discussed above, the negativthe beginning of the universe.
ity is meaningful and we should not attempt to artificially  |ndeed in theories with Hawking-Moss and Coleman—De
remove it. Rather we seek to isolate it in a discrete number of yccia instantons, there is usually a lower action instanton
cIearIy identified fluctuation modes. Changes of variable Ir\/vh|ch does not possess negative modes. Consider theories
the path integral can be very helpful for this purpose. Conywhere there is a global potential minimum, and it is positive.
sider for example quantum mechanics in real time for a parThen there is an instanton which is a round four-sphere. The
ticle with a positive harmonic potential but a negative kineticradius of the sphere tends to infinity as the potential mini-
term. The real time path integral may be written mum decreases to zero. This instanton solution has no nega-
tive modes. Its analytic continuation is just empty de Sitter
J [dq]exr{ij dt( _ éqz_ qu) (1) spacetimg, or in. the limit of zero potentiall minimum,
2 2 Minkowski spacetime. It seems to us that this trivial vacuum
state, defined by the lowest action instanton, is in fact the
where bothA and B are positive. If we perform the usual natural one implied by the Euclidean no boundary proposal
analytic continuatiort= _iT, we obtain a Euclidean action for the sector Of the theory W|th the S|mp|£‘t topo|ogy_
with a negative kinetic term, analogous to the case of gravselecting another instanton with this topologflawking-
ity. For normalized fluctuations i the Euclidean action Moss or Coleman—De Lucdido describe the beginning of
possesses an infinite number of negative modes. However tfe universe seems unacceptable. Since those instantons pos-
functional Fourier transform sheds new light on the problemgggg negative modes, they may describe tunneling from one
We can reproduce the first term in the action with a func-approximate, unstable state but to use them as the basis for a
tional integral overp, with the term[pq+ (1/2A)p%. We  fundamental description is surely questionable.
then integrate by parts inand functionally integrate ovey, The existence of singular, but finite action, constrained
obtaining, in place of Eq(l), instanton solutiongl1] in a generic inflationary model opens
new possibilities in this regard. Such instantons may be
. made regular by a change of variables on superspace plus an
f [dp]exp{|J' dt } 2) appropriate regularization of the potenti&|¢) at large val-
ues of the inflaton fieldb [12]. In the regular description, the
We notice that the coefficients of the kinetic and potentialtopology of the solutions is nd8* but RP*, and the scalar
terms have been interchanged, so that we now have a podield is actually a twisted field living on that manifold. These
tive kinetic term and a negative potential term. Continuing asnstantons are classical solutions in a sector of the theory
before viat=—ir, the Euclidean action now has a positive which is topologically distinct from the naiv8* Euclidean
kinetic term. Of course the potential term is now negative, scvacuum discussed above. Implementing the regularization
we have merely replaced one ill-defined Euclidean path inscheme of Kirklin, Turok and Wisemdri2], we show that
tegral with another and one might think we had not gainedhe constraint removes negative modes for those instantons
much. But for the context below, where the Euclidean regiorgiving substantial inflation. There is therefore a stable valley
is compact, the positivity of the kinetic term means that everin the configuration space of the Euclidean theory, and the
if the potential term is negative, the action is bounded belowEuclidean path integral for fluctuations about such solutions
for normalized perturbations and the number of negativas well defined to quadratic order. It may therefore possess a
modes is then finite. well-defined perturbative expansion to higher orders.
The functional Fourier transform used above is of course The outline of the paper is as follows. We review negative
just another way of introducing the full first order action on modes of Hawking-Moss instantons, before discussing regu-
phase spacep(q) appropriate to a Hamiltonian treatment. lar Coleman—De Luccia instantons and then generic singular
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Hawking-Turok instantons. Motivated by the construction of4 of [7]. We consider a scalar fielg with potential V()
Ref.[12] we regularize the latter by matching the scalar po-minimally coupled to gravity. The background field equa-
tential V(¢) at large ¢ to a certain class of exponentially tions are
decaying potentials. We discuss an alternate regularization
and constraint motivated by Garriga’a construction of singu- , . )
lar instantons as dimensionally reduced five dimensional P"+2HP'=—aV 4(9),
regular solutiong13]. In the latter construction, a negative
mode is always present for a generic slow-roll potential. Fi-
nally implications of this work for Euclidean quantum grav- szf( Ed,rz +V(p)a?
ity are commented upon. 3\2

Our study yields a simple picture of Euclidean configura-
tion space for a generic inflationary theory, into which the

known classical solutions fit. The valley we have identified .
y respect to conformal time and=0,=1 for flat, closed and

for Hawking-Turok instantons is potentially of much interest . : .
since it may provide a well-defined perturbative basis forOPen Friedmann-Robertson-WalkgfRW) universes. With

Euclidean approaches to inflationary cosmology. the perturbed line element
We would like to draw to the attention of the reader the

-k 3

where k=87G, H=a'l/a, primes denote derivatives with

recent work of Khvedelidze, Lavrelashvili and Tanaka dsz=a2{—(1+2A)d72+ZB dxidr
[14,15, which also addresses the issue of negative modes I o
about Coleman-De Luccia instantons. +[(1—2¢) v+ 2E;;1dx'dX'}, (4)

II. SECOND ORDER ACTION . .
and the scalar field represented¢gs ¢, with ¢ the back-

Our starting point is the second order action for scalaground solution, the second order action for fluctuations is
perturbations in the Lorentzian universe, as discussed in Segiven by Eq.(18) of [7], reproduced here:

szzif drd3xa26[ —6y' 2= 12HAY +2A Yp(2A— ) — 2(H' +2H ) A%+ k(5" >+ SpA Sp—a®V 4,67
+2k(3¢' ' Sp— ¢’ 5’ A—a?V 4ASP)+ K[ — 642+ 2A%+ 12yA+2(B—E')A(B—E')]

+4A(B—E’)(%¢’5¢—¢’—HA)}. (5)

This is well defined for all values ap’ and the three-space  y—y—HA?, B—B+N =\, A—A+NY+HAO,
LaplacianA. In an open universa takes the value zero for

the spatially homogenous mode ang?— 1 with p?>>0 for E—E+\, &¢p—3p+¢'\°,
the continuum of square integrable modes. In a closed uni-
verseA is given by —n?+1 with ne \. 2a2\/y o
The momenta canonically conjugateo E, ands¢ are  [ly— 1L, ——(A+3K)\",  He—lle,
282y B I 54— 55+ a2\ y( " —Hep)NC. )
= (—3w’+3§¢'5¢—3HA—A(B—E’)),
IIl. HAWKING-MOSS INSTANTONS
2a2\/;A « Let us first co_nsidgr Hawking-Moss instantorﬁﬂ;_G],
EZT( W — Eq/,'5¢,+H,A\—/c(|3—|5’)), where the scalar field is everywhere a constant. It is well

known that these have negative eigenmodes\gy;<<0.
The corresponding Lorentzian solution hgs=0 every-
_ .2 Y where and s& , must be zero. We notice immediately from
Mp=a% (8¢’ = ¢'A). ©) Eq. (5) that thg matter and metric degrees of freedom de-
couple and, from Eq(7), that ¢ has become a gauge in-
Under an infinitesimal scalar coordinate transformatidn  variant variable. Introducing conjugate momenta to the
—XFHNH, where)\":()\o,)\“), the perturbation fields and gravitational degrees of freedom and performing the inte-
momenta transform as grals, we find that no gauge invariant combination of the
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fields and momenta that is not forced to be zero is left. Thisew saddle point, which retains the original negative mode

means that there are no real degrees of freedom described buyt is stable in other directions. The spatially homogeneous

the metric. IndeedV’\ is forced to be zero here, making one negative modes gained by passing through,,¢,/H2=

wary of any approaclisuch as that if9,10]) pertaining to —N(N+3), N>1, correspond to the coming into existence

negative modes that relies on metric variables alone. Returrof non-perturbative multibounce instantons. From spectral

ing to the matter degree of freedom, we analytically continuglow arguments one would expect these to posbesega-

into the Euclidean region as detailed[if], leaving us with  tive modes. The same arguments indicate that the lowest

the action action Coleman-De Luccia instanton should only have one
negative mode, and this is confirmed numerically as we dis-

1
Ef dXdBXbZ\/;((Sd),Z—(S(ﬁAg(SQS'F bZV’([,(/)(S(ﬁz), (8) cuss below.

. . . . IV. COLEMAN —De LUCCIA INSTANTONS
wherey is now the determinant of the Euclidean metric, and

the Euclidean background line element B (X)(dX? Let us now consider Coleman—De Luccia instantfls

+ 7;dx'dx’) with y;; the metric on the round three-sphere. We start in the open universe from E@). For A#0, we

All gradient terms are positive, so this action is boundedproceed as in Sec. 4 of R¢f] to Eq. (20) there. We do the
below for square-integrable variations of the scalar field. TheB andIl integrals, effectively settingl=0 in that expres-
first thing to note is that i/ ,,>0, then this action is posi- sion. ForA=0, B andE no longer appear in E@5), and we
tive definite and so the spacetime is perturbatively stable. I€annot define &lg . However, we can still introducH , and
V(¢o) is the global minimum ofV, one might expect that 1I, and work forward to the same expression in term#,of
this spacetime is non-perturbatively stable as well. We caw, I1,,, 6¢, andIl,, as forA+#0. So from now on we treat
see the existence of a negative modeMqy,<0 as follows. A=0 andA#0 in a unified way ¥, as defined in Eq21)
The eigenvalue equation associated with this action is 0bf Ref. [7], is singular forA=0, and from our experience
Sturm-Liouville form, but we have some freedom in speci-with the Hawking-Moss case above we know that spatially
fying the measure, which we shall repeatedly exploft/y ~ homogeneous fluctuations are significant when investigating
is a permissible choice, allowing us to just read off theét  negative modes. So we define the closely related variable
=const is an eigenmode with eigenvalg,,. One might

enquire if there is another negative mode. Rescadipdy a y

factor of b, the action operator takes ScHioger form and Wi=(A+3K) g+ 2a2\/— ©
choosing the measure to bé¢y gives us the Schrbnger Y

equation with a—(2—V 44/H?)/cosit X+n? potential with  where we have also taken the opportunity to multiply
H? here defined to beV,/3, and whers?=—A3+1, with  through byA + 3K in order to keep our fields local. This is
A5 the Laplacian or83. This can be solved for the negative gauge invariant and classically the same as+@K)¥
eigenvectors and eigenvalugee[17] for example in terms  sincellg is constrained to be zero. [i7], introducingIl

of hypergeometric functions. The number of negative modesnade the action independent @i. This is classically

is independent of the choice of measure. Fer4  equivalent to working in a gaugé#=0, and from the
<V ¢¢/H2<O there is one, for-10<V ,,/H?*<—4 there  Hawking-Moss example we see that this is potentially awk-
are six, and in general for N(N+3)<V M/H <—(N  ward. So here we define

—1)(N+2), whereNe Z*, there areN(N+1)?(N+2)/12

negative modes. This counting agrees with@({b) spheri- ¢f1‘[
cal harmonic analysis. We see that\s,;, becomes more o =(A+3K)6 2y (10
negative from zero five more modes suddenly cross zero at

V 44/H?=—4, meaning that the Hawking-Moss instanton

which is again local and gauge invariant. Usifig, and ¥,

is classically equivalent to working in the gaudg,=0,
which from Egs.(6) and for K#0 is a good gauge every-
where. Integrating oveA imposes the delta functional con-
straint onH5¢, which is then integrated over, leaving the
act|on in the simple form

cannot now have anything to do with tunneling. This is very.
interesting because one of the new negative modes is spa
tially homogeneous and antisymmetricXn In fact it is the
perturbative indication of the existence of a lower-action
non-perturbative solution, namely the Coleman—De Luccia
instanton for the same potential. ;, IH2<—4 is the pre-
cise condition for the existence of a Coleman-De Luccia 2\/—

instanton[18], which has a lower action. We will show be- f drd3x

low that this itself has a negative mode, which may be

viewed as the carryover of the lowest one of the Hawking- "

Moss instanton. The spectral flow is as follows. For small X{L‘Iﬁ&ﬁ{ 2(H ¢ ¢ )«p 54

negativeV ,,, there is only one classical solutiofthe

Hawking-Moss instantorwith one negative mode. A¥

becomes more negative, one of the positive eigenvalues de-

creases to zero. As it crosses zero, a new classical solution is + §5¢|2— ;[14— 2(A+3/C)/;<<f>’2]‘1’|2 . (11)
obtained by flowing down the new negative direction to a
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It is remarkable that in thdl,=0 gauge, the Newtonian regular solutions. This is consistent with expectations based
potential ¥ and the scalar field fluctuatiofi¢ are the two on spectral flow from the Hawking-Moss instanton as dis-
remaining physical and canonically conjugate variables.  cussed above.

We now have a choice in deciding which linear combina-
tion of d¢, and ¥, to retain as our coordinate before con- V. HAWKING-TUROK INSTANTONS
tinuing to the Euclidean region. Having made this choice we . ) . o
integrate out any remaining non-parallel combination and ©On singular instantons, as the scalar field tends to infinity,
obtain a quadratic action for the coordinate of interest, whicthe condition -« ¢'%/6>0 is certainly violated. However,
we continue to the Euclidean region. For a given backgroundhis by itself does not mean that we should exclude them.
instanton, if the Euclidean action has positive definite derivaRather we should first consider the possibility that gravity on
tive terms, it is bounded below for normalized square intehe instanton is sufficiently strong that a pure matter variable
grable fluctuations of that variable, and we have made a gootke Q does not provide a suitable description of the fluctua-
choice for isolating negative modes. From our experiencéions. Indeed, going back to Edll), we can defineQ
with Hawking-Moss an obvious choice is to take, itself. =0 +2(H—¢"1d")W, Ik’ to obtain, after analytic con-
After analytic continuation to the Euclidean region, followed tinuation,
by a simple rescalingd=bd¢,/¢’, the action takes the _
form f dX dxb?\/y ( (—A;—3)Q"2

2(—A3-3)%1 ¢'(1g")"—Az—4

+(—A3—3)62).
(13

J dXd3X\/;¢/2 QIZ . R 3 )
2(—A3—3)2 \1+k¢p'?2(—A3—3) (T83=3)Q7). This time we see that the kinetic term is positive definite
(120  bothforn=1 andn>2 as long as-4<¢'(1/¢')"<4. Us-

ing the background field equations, we have

Let us first briefly discuss the technicality of what hap- D(X)=¢'(1lp')"—4
pens when { A;—3)=0, corresponding ta=2 (recall that
the eigenvalues of the Laplacian & are —n’+1, n )
e N'). This action is infinite unles® =0. One takes this to =-b
be a positive infinity since then it says that A;—3)=0
modes are infinitely suppressed. That this is correct can b@je see that if the potential has a maximum, then we must

seen by considering E@5) for this mode in a closed uni- h — . .
. . ave «V+V ,,>0 for Q to be a suitable variable. Let us
[ T oz
verse with¢'#0. There is a degeneracy betwegrandE, examine the behavior of this term near the singularity. We

resulting in only the sum_p+E_affect|ng _the_three-metrlc. Qavebz going like X, and ¢ goes like— 32« In X, If V/ is
Then there are no gauge-invariant combinations of fields an 7 . : . X
polynomial, D goes likeX times a term involving IiX fac-
momenta that are not forced to be zero. Note that\g . .
= ; . ; tors. Now the solution of the eigenvalue operator for any
—3)=0 modes do exist for the Hawking-Moss instanton but _. . .
in that casep’ =V ,=0 everywhere elgenvalue is of the forrvfka(X)_/)_(dX+I_3 near the singu-
Having dealt W~i't/’h this. we move.on to the more interest_Ianty and we see that this has finite action for ahandB.
. 9 ’ . This shows that the action alone does not in fact impose the
ing cases ofn=1 andn>2. In the latter inhomogeneous bound diti for the(4) i . bati f
case both the kinetic terms and the potential terms are p03|—.Oun ary conditions for t @(. ) Invariant perturbations o
tive definite. divind no possibility of neaative modes. Now singular instantons. It is consistent with the fact that singular
let us cons}dger tr?e o?entiall )(/jan er?)us homo eﬁeous instantons cannot be regarded as unconstrained saddle points
—1 mode. The kinetig term isy ositi\?e definite asgljon as 1of the Euclidean action since the action varies across the
B ’2/6>.O across the ent'rg nstanton. Thi congd't'on class of singular instantons. They must be defined by intro-
4 SS re ins : IS i gucing a constraint into the path integral which is later inte-

o o vide lass of Coleman e Luceia stantons, oyated over. This consraint deterines the oot
Y invariant modes. If one is interested in calculating a cor-

see the eX'Ste,gce of the ne_gatlve m@ue const by choosmg. relator which weights particularly strongly towards a given
fche measures'?\/y. So a wide class of C_Zoleman—De Luccia 4146 for the constraintfor example if we are interested in
instantons are shown to have a r)egatlve mode. 'nc'dema"é(orrelating with the observed value 6f today), it may be

we note that had we chosen a variable that had#ianatter  ,qef,| 19 only consider one sector and ignore the integration
component, the homogeneous mode would have had neggyer the constraint. This is what is effectively dong L9

tive definite k!netl_c term, as found i19,10. '_I'hen the action a6 4 constraint is implicitly applied to give an acceptable
could be arbitrarily negative for square integrable fluctua—va|ue ofQ),, and homogeneous fluctuations are ignored since

tions O.f the metric variable. , . they do not affect the microwave background correlations.
Having chosen a measure, one can numerically determine

the other eigenmodes and eigenvalues of the operator. For
Coleman—De Luccia instantons associated with potentials of

Gaussian forme™A%" for example, we have found no evi- In the above section we saw thatMfwere polynomial in
dence of further negative modes about these lowest-actiog, thenD went like X times a term involving liX factors.

8HV 4 2b%V?,
2KV + ——=+V 44— <1, (14
’ ' ¢/2

VI. REGULARIZED INSTANTONS
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2

However, if V is asymptotically of the form & Y2<3¢)r, Se

with r an odd integer, the® goes likeX" "1, and the eigen- /\
functions have the formAX "1+B near the singularity. \\/
Therefore with this form of potential the theory has good - :
analytic behavior near the singularity. This suggests that with

this type of potential there is special behavior and indeed this : >0, : >,
is the case. We see here the perturbative indication of the

scenario of Klr.k“n’ Turpk and Wisemafil2]. There .It IS with the value of¢ at the regular pole. The right sketch shows how

shown  that S'nQU|ar_mStamons of potentials with thethe appropriate action of the singular instanton varies with the value
asymptotic form € Y2</3%)" "with r odd and greater than of ¢ at the regular pole.

—3, may be viewed as true classical solutions of a theory
related to the original theory by a conformal transformation
which vanishes at the Einstein frame singularity. In terms o

the new variables the metric is strictly Riemannian and theinvariant local variables is proportional ), +H35d, /¢’
instantons are regular. ! "

If we use this scheme to regularize the singular instamtonyqW Q= 5¢',+_2’(H_ PG )W k', and. at the §addle
occurring in a generic inflationary theory, we must modify POINtW| = k¢’ Q"/2D(X). Consequentlyym is proportional

the potential so that it tends t@{ med;)r at large . The to Q—3Q'/HD(X) near the singularity. Our numerical code

theory is then defined as the limit where this modificationuses the auxiliary variabl®=b?Q'/D(X) and works in
occurs at infinitely largep. We must check that our results Proper Euclidean time. So the condition that we must impose
are insensitive to the details of how the limit is taken. Weon our eigenfunctions is th@+3P/b?b=0 at the singular-
chooser positive because for=-—1, the functionD(X) Ity Itis Straightforward to show that the most general solu-
vanishes making the kinetic term for the fluctuations ill de-tion of the Q eigenvalue equation has the behavibk?
fined. +B near X=0, and our boundary condition is a specific
In the regularized theory, the appropriate degrees of freerelation betweer andB.
dom are combinations of the conformal factor and the scalar We have investigated a number of potentials which be-
field, residing on a regular Riemannian manifold. This mani-have appropriately at largé. For example we have matched
fold is taken to have the topology &P*, and the conformal 4 #? potential onto thee™ V2k3 potential using a negative

factor is taken to be in the twisted sector. This enforces th@upic term. One has to be slightly careful with the matching

conformal zero, corresponding to the singularity. On theprescription so that one does not violate theV2-V ,,
non-contractible three-surface where the conformal factor IS. 5 condition fora to be a good variable at the turnover

thi o nds to information stored “at the sinaularity” in oint. As long as the matching is done a long way further
h S co .esylacl); St 0 fO ation stored “at the singularity along the potential than where the runaway behavior starts,
€ original EInstein frame. L . the results are in any case insensitive to the details of the
The appropriate action in this picture is one where thematching

R|emann|a_n thr_ee—metrlc IS fixed on the FO”TOf.ma' zero. In Now as explained above there are two starting values of
terms of Einstein frame variables, this action is just the stan-

' L . ) . . ¢ at the regular pole which lead to the same valuengfat
dard first derivative actiof20] including the usual Gibbons- . . . . .
Hawking boundary term. FoD(4) invariant solutions the the singularitysee Fig. ]. The instanton with largep at the

boundary data may be taken to be the valuemobn the regular pole has lower action. Since for fixegy these are

three-surfacemg, wherem is the Riemannian frame radius the only two extrema, one could anticipate that the lakger
_ ' Bs’_/ ) ) ] ) solution would be stable and the lowérsolution unstable.

We treat the value afng at the conformal zero as a variable  Now as we varymg downwards the values ap at the
to be integrated over in the path integral. Fog smaller  regular pole in the two solutions move closer and ultimately
than some value there is no classical solution. However, fofnerge, in the unique solution with minimadg . The associ-
largermg there are two solutions, one of higher and one ofated instanton is the one with the most negative action, and it
lower Euclidean action. The higher action solution corre-s js |ike a critical point. Since two solutions—one unstable
sponds to low values of the scalar fiefd) at the beginning  and one stable—are merging, one expects to find that the
Of the LorentZian Open Universe. The |0Wer aCtion SolutiOWesu|ting Configuration has a zero mode and this is indeed
corresponds to a larger value f@p. As mg is increased, the  confirmed numerically.
corresponding value ap, increases to infinity, giving larger  As a result of this investigation we can build up a picture
and larger amounts of inflation in the Lorentzian universe. of the action-configuration space structure of the theory as
It is slightly subtle to impose the required constraint be-shown in Fig. 2, and we can speculate as to what the struc-
cause the single field degree of freedom we use isén@t  ture might look like away from where we have been able to
However, we expres$m in terms of Q and its canonical probe. Formg above the critical value, there is a stable val-
conjugate, as given by its saddle-point value in the path inley in mg, ¢ space where the stability increases with in-
tegral. Consider working in the gaugeb=0. This is a good creasingmg. The instantons with lower action are con-

FIG. 1. The left sketch shows hom at the singularity varies

auge near the singularity becaugeis varying quickly
here. Thensm goes likey, which in terms of our gauge-
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VIIl. ALTERNATE “FIVE DIMENSIONAL” BOUNDARY
CONDITION

For the special potentiaVe(23)é=n-1 where here

n=e(~V23)¢ Garriga showed13] that singular Hawking-
Turok instantons could be interpreted as “dimensional re-
ductions” of a regular five-dimensional solution, which is
just a round five sphere. He showed that the five dimensional
action, when written in four dimensional variables, differs
from the standard first-derivative four dimensional action by

FIG. 2. A sketch of the dependence of the Euclidean action ofNINus two thirds of the Gllbbons-HaWklng surface term. He
the metric and scalar field configurations, about the constraine@!SO Showed that for arbitrary potentidl one reached the
singular instantons, represented by the dashed lines. The dashé@Me conclusion if one introduced a brgpé negative ten-
lines represent the instanton solutions at eachThe orthogonal ~ SION to regularize the singularity.
direction shows the lowest eigendirection at fixed The lower In this section we study the existence of negative modes
action solution(larger ¢) possesses no negative modes: the highefor a form of the action motivated by Garriga’s observation,
action solution possesses one. rds lowered, the two solutions for arbitrary scalar potential (¢). Note that Garriga’s five-
approach and merge, with a zero mode being produced. At smallefimensional example yields the specific poteng&P</3¢,
values ofm there is no classical solution. The exact solution here has' o 1/sinh 2X and the function

. . . . . D(X) which enters the kinetic term for the perturbations
strained solutions which lie on the floor of this valley. 4nishes identically. We are unable therefore to prove exis-

However, at lower¢ there is an unstable ridge, which is (gnce of 4 negative mode in this case. Indeed this is perfectly
joined to the valley at the criticahg . The implicationis that  ;qngjstent since from a five-dimensional view, the Garriga

even though the constrained instantons in the valley argq)sion should have no negative modes. It is a round five-
stable, there are nonperturbative instabilities lurking at IOWsphere and continues to five-dimensional de Sitter spacetime

¢, beyond the unstable ridge, and at lows, below the  \yhich is presumably stable in analogy with our treatment of
critical point. Hence it seems unlikely that the Euclideanyne four-dimensional case.

path integral will be well defined nonperturbatively. It ap-  The five dimensional line element is given in terms

pears that at the very least projection operators onto certaify ha  four-dimensional one ds2 by ds2=n-lds

subclasses of configuration space in the path integral are re- n2dy? whereds2= N2d02+b2(a)d§)2 and O<y<L run‘;
4 3 =

quired. around the fifth dimension, whose radius i&/2m)n
VIIl. CONNECTIONS WITH PREVIOUS WORK =(L/2mexq —y2k/3¢]. Calculation of ~the five-

dimensional Einstein action for gravity with a cosmological

In this section we briefly show that the approach pre-constant using this metric yields the action for four-
sented in this paper leads to the same results pglifor the  dimensional Einstein gravity plus a minimally coupled scalar
computation of cosmic microwave backgrou@vB) back-  field ¢ with potentialVoce(¥2x/3)¢=n=1,
ground anisotropies about singular instantons. One needs to The embedding in five dimensions yields a natural regu-
check that the spatially inhomogeneous modes allowed foarization of the singularity. Rewriting the line element as
one choice of path integral variable correspond to the equivad y?+ mZ(X)dQ§+ n’dy?, we see that the five-dimensional
lent modes allowed for the other choice of variable. For themetric is actually perfectly regular whenvanishes as long
inhomogeneous mode¥,; and ¥y are equivalent, and we asdn/dy tends to 27/L there, since then the singularity is
shall show that they modes allowed ir{7] give the same just the usual two-dimensional polar coordinate singularity
behavior in¥, near the singularity as the allow&lmodes which may be removed by changing to Cartesian coordi-
here give in¥,. In [7], the unsuppressegimodes behaved nates. We shall explore the consequences of applying this
asX¥?, corresponding taF tending to a constant. The sup- boundary condition in the general case.
pressed mode hag X2, corresponding to¥ diverging Setting do=Ndo, the four-dimensional Euclidean
like 1/X2. The eigenvalue equation leading from Ha43) Einstein—scalar-field action is
looks like (XQ')'=0 near the singularity, with general so-
lutions of the formA In X+B. Substituting back into the ac- ~[1. .
tion we find that the IiX solution has infinite action and so is SEin:S&f do §¢2b3+V(¢)b3—3M§|b(1— bb— b2)>,
suppressed. At the saddle point we ha¥e behaving as (15)
Q’/X and we see thaD— A In X corresponds tal,— 1/X2,
whereas the unsuppressed m@le:B+ O(X?) corresponds where S;=277 is the volume of the unit~three sphere and
to ¥, being finite. Hence both approaches select the sameverdots denote derivatives with respecistoThe last term
allowed modes and thus give equivalent correlators. in the integrand is { 1/2«)R, with R the Ricci scalar. We

No such check is necessary for the non-singular instanshall be interested in rewriting this term in various ways
tons because in this case there is no boundary and all moddéfering by surface terms. First we integrate by parts to re-
are allowed. move the second derivatives to obtain the action appropriate
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to fixed values for the three-metric and scalar field on theives, by(X) is the unperturbed scale factor and the scalar

boundary, as discussed by Dirg0: field now includes the infinitesimal perturbatiafp. It is
1 convenient to pick a gauge wheég =0, which is possible
o Za?b3+ 3_3M2 b(h2+ near the singularity. In this gauge, in order to preserve five
Soir ng (2¢ b7+ V()b 3Mpib(b"+1) dimensional regularity we must have=0 at the singularity.

5 iy Expressed in canonical variables, this condition becomes
= Sein— 3Mp S5 b7b]. (16)  T11,4/(a%¢")=0. In the path integral, th&, constraint is
imposed as a delta functional and the conditionlbgy, im-
plies (KHH¢/¢’+6/C\/;z///¢’)/(a2¢’)=0, which from
Eqg. (9) and for the homogeneous mode becomes after Eu-
clideanization¥,/¢'2~X?>¥,=0 atX=0.

Having established the boundary conditiA¥,=0 ap-
Spir= S3f dxm[V(n)n2m3—3M§,,(m’2n+ mm'n’+1)] propriate to five dimensional regularity, we translate this into

a boundary condition for the fluctuation varialdeappropri-
ate to the negative mode computation. We find tKaw,

~KkX2¢'Q'/2D(X)~X"1Q’. For the regularized instan-

where here a prime denotes a derivative with respegt to tons,' the general solution for the mode equation @iis

and we have used the fact that 0 on the boundary. This SPecified by its _expansio6~AX2+B nearX=0, and the
action is clearly stationary under variations satisfyiig ~ Poundary condition therefore reads=0. It is easy to see
=0 on the boundary. that a negative mode always exists for this boundary condi-

If instead we adopt the boundary condition suggested byion: From Eq(13) and taking the measure to b&\/y, if we
Garriga’s construction, we fix’=2x/L at the boundary. setQ=const, the action is negative. The ansatz clearly sat-
The appropriate action is obtained from Etj7) by integra- isfies the boundary condition. Therefore there is at least one
tion by parts, negative mode. From a numerical study, we find that for a
simple quadratic potential, regularized at largeas above,
there is in fact only one negative mode.

To summarize, the condition of five dimensional regular-
ity may be imposed as a boundary condition. However, it
EMZ [mn’] (18) does not eliminate the negative modes, therefore leaving the
2P ' Euclidean path integral as ill defined at a fundamental level.

The last term is the Gibbons-Hawking boundary term. Re
expressing this action in terms of the fields n, and the
coordinatey, we find

S M2 [men] (17

= SEin_ 2

Sy = sz m[V(n)n?m3—M32,(3m’?n+3—mn")]

=Sgin—

and we see that the Gibbons-Hawking term has been reduced
by a factor of 3. IX. CONCLUSIONS

.For simple monotonic scalar pote.n.tials_, the action. appro- | this paper we have given a detailed investigation of
priate to thesn’=0 boundary condition is monotonically gpatially homogeneous fluctuations of cosmological instan-
decreasing ag, decreases towards the potential minimum.ions We showed how a Hamiltonian treatment, with an ap-
If the potential minimum is zero, the action for the con- propriate choice of variable, produces a Euclidean action
strained instantons tends to minus infinity. This is quite dif-yhich is bounded below for normalized fluctuations. First,
ferent from the behavior of the action appropriate to theye investigated Hawking-Moss and Coleman—De Luccia in-
ém=0 boundary condition. The latter action has two solu-stantons, and showed that the lowest action solution in each
tions at fixedmg above some minimal value. As we showed case possesses a negative mode. For the “thin-wall”
above the lower action solution has no negative modes, giveoleman—De Luccia case where the instantons “almost” in-
ing us a picture of configuration space in which the lowerterpolate between the true and false vacua, this supports their
action solutions comprise a stable valley running up towardg;se in tunneling roles as discussed4r21]. In that approach
$o—. In contrast, since for generic potentials there is &jt js necessary that the potential may be obtained by analyti-
unique solution for each value of at the singularityf12],  cally distorting one for which the action is positive definite
and since we know that the Euclidean action is unboundeby all configurations. In the “thick-wall” case, and certainly
below, we might suspect that the action-configuration spacgyr Hawking-Moss instantons, where gravitational effects are
structure takes the form of a single unstable ridge. We shalnportant, it is not clear that this is possible. Thus even
see that this picture is indeed correct. though we have found that these instantons do possess a

We need to rewrite the condition that the five dimensionalkingle negative mode, the assertion that these instantons are
metric be regular in terms of our perturbation fields. To doyseful for describing the decay of one spacetime to another
so, we rewrite the four dimensional line element in terms ofrequires further understanding.
comoving coordinat& as in the previous sections. Then we  QOur investigation of singular instantons indicates the im-
divide the last term in the five dimensional line element byportance of a well-defined regularization. In contrast to the
the first and take the square root. We fin_d the condition thagjtyation for the inhomogeneous modgd, the Euclidean
as X tends to zero,by(1+A) te (WO¢(e(=V2xR)4) action does not uniquely select a boundary condition for the
should tend to z/L where primes now refer tX deriva- homogeneous modes. It is therefore essential to choose a
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regularization within which the relevant boundary conditionbatively. It therefore seems essential that an additional con-
is defined. We have investigated two such frameworks. Thatraint be introduced which effectively projects onto certain
first is theRP* construction of12], according to which we subsets of states, and excludes the configurations of arbi-
find that instantons with large starting valugg of the in-  trarily negative Euclidean action. This might be justified if
flaton field have no negative modes to quadratic order. Theue are only interested in correlators of certain subsets of
second is the regularization motivated by Garriga’s five di-opservables, for example, as opposed to the unconstrained
mensional construction. Here we find that a negative mode igyclidean partition function. How the appropriate projec-

always present. _ _ tions are to be defined and introduced is an important topic
Since in all the cases studied here the instantons hav@r future work.

perturbations which decrease their action, their use in an un-

constrained path integral to determine the quantum state of

the universe is questlonable. In _the case of the instantons ACKNOWLEDGMENTS

describing tunneling, a constraint is needed to set the system

in an initial unstable state. The constraints introduced in the We wish to thank S. Hawking, K. Kirklin and T. Wise-
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