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Electroweak preheating on a lattice

A. Rajantie*
DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

and Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

P. M. Saffin†

DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
and Centre for Particle Theory, Durham University, South Road, Durham DH1 3LE, United Kingdom

E. J. Copeland‡

Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
~Received 8 December 2000; published 24 May 2001!

In many inflationary models, a large amount of energy is transferred rapidly to the long-wavelength matter
fields during a period of preheating after inflation. We study how this changes the dynamics of the electroweak
phase transition if inflation ends at the electroweak scale. We simulate a classical SU(2)3U(1)1Higgs model
with initial conditions in which the energy is concentrated in the long-wavelength Higgs modes. With a
suitable initial energy density, the electroweak symmetry is restored non-thermally but broken again when the
fields thermalize. During this symmetry restoration, baryon number is violated, and we measure its time
evolution, pointing out that it is highly non-Brownian. This makes it difficult to estimate the generated baryon
asymmetry.

DOI: 10.1103/PhysRevD.63.123512 PACS number~s!: 98.80.Cq, 11.15.Ha, 11.15.Kc, 11.30.Fs
th

e
a

ol
io

el
c

le
n
-

ed

b
t

te
ym
el
n

an
r

la
on

tan-
r

fla-
the
de-
uni-

and
tter
re-
ith

ium
n
ies

m-
to

ons
of
di-

ch
uge
ns.
ure
to
ur-
n be
I. INTRODUCTION

In order to explain the observed baryon asymmetry of
universe, a theory must satisfy three conditions@1#: baryon
number violation,C and CP violation and deviation from
thermal equilibrium. Grand unified theories offer the r
quired properties, but in addition to baryons, they also le
to the formation of magnetic monopoles. This monop
problem can be solved by a subsequent period of inflat
but it would also wipe out any baryon asymmetry.

Although the baryon number is conserved perturbativ
in the electroweak theory, there are non-perturbative effe
that violate it. At zero temperature, this effect is negligib
because the baryon number can only be changed by stro
suppressed tunneling processes@2#. However, there are clas
sical field configurations, sphalerons@3#, that interpolate be-
tween different baryon numbers and become unsuppress
high temperatures@4#. Thus, provided thatCP is violated,
the electroweak theory can explain the baryon asymmetry
itself, as long as the electroweak phase transition gives
necessary non-equilibrium state.

However, sphaleron processes do not stop immedia
after the electroweak transition, and thus the baryon as
metry can be washed out by the sphalerons, unless the
troweak symmetry is already strongly broken when the u
verse returns to thermal equilibrium. In the standard big b
scenario, only a strongly first-order phase transition can p
vent this baryon washout, but lattice Monte Carlo simu
tions have shown that the thermal transition cannot be str
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enough in the standard model@5#. Although it is possible in
some extensions, such as the minimal supersymmetric s
dard model~MSSM! @6#, this has led people to conside
other possibilities.

A particularly attractive idea, suggested in Refs.@7,8#, is
based on the non-equilibrium dynamics at the end of in
tion. When inflation ends the universe is very cold and all
energy is stored in the inflaton field, which subsequently
cays into the standard model fields, thus heating up the
verse to the reheat temperatureTrh . Instead of ordinary per-
turbative decays this can take place non-perturbatively,
much faster, if the inflaton starts to resonate with the ma
fields @9#. In this period of parametric resonance, called p
heating, the energy is transferred mainly to the modes w
longest wavelengths, and they reach an effective equilibr
state at a temperatureTeff which can be much higher tha
Trh . This makes it possible to effectively restore symmetr
that are spontaneously broken atTrh @10,11#. Eventually, the
universe thermalizes and cools down to the equilibrium te
peratureTrh , undergoing a non-thermal phase transition
the broken phase.

In the special case in whichTrh is below the electroweak
critical temperature, baryon number is violated by sphaler
and the system is far from equilibrium during the period
non-thermal symmetry restoration, and therefore the con
tions for baryogenesis are satisfied@7,8#. The washout prob-
lem is avoided ifTrh is low enough, because the rate at whi
the universe cools is determined by the decay rate of ga
bosons, and is much faster than the decay rate of baryo

Because of the non-perturbative, non-equilibrium nat
of the process, the only reliable way of studying it is
simulate it numerically. Also, the fluctuations produced d
ing preheating have large occupation numbers so they ca
considered as interacting classical waves@12,13#. Thus the
©2001 The American Physical Society12-1
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dynamics of the system can be studied simply by solving
classical equations of motion numerically, which is a re
tively straightforward task.

Non-thermal symmetry restoration was first observed
numerical simulations in a scalar field model in Ref.@14#.
More recently, two of us studied the same process in
Abelian Higgs model@15#, which has a very similar structur
to the electroweak theory. The results of the simulations s
port the scenario, but unfortunately there is no analogue
the Chern-Simons number in the three-dimensional Abe
Higgs model, and thus the question of baryogenesis co
not be addressed directly. The generated baryon asymm
has been measured in one-dimensional Abelian simulat
@8#, but it is not possible to convert the results into thr
dimensions, and therefore a quantitative test of the scen
is still missing.

In this paper, we study the dynamics of the full ele
troweak theory in non-equilibrium conditions. The metho
we develop can be applied to studies of baryogenesis du
preheating, in a given inflationary model. However, su
simulations would necessarily be very model-dependent
therefore we consider only a simplified scenario in this
per. In that scenario, we find that the rate of true topolog
sphaleron transitions is slower than expected because o
interaction between the gauge and Higgs fields.

We start by reviewing the scenario of electroweak bar
genesis at preheating in Sec. II. We only simulate theCP
invariant case, but sinceCP violation is necessary for baryo
genesis, we discuss the possibilities of including it in t
simulations in Sec. III. In Sec. IV, we discuss the appro
mations that are needed in order to make the simulat
feasible and show that all of them are justified. Numeri
simulations also require that the space-time is discretiz
and we present the details of this in Sec. V. In Sec. VI,
discuss how the requirement that the baryon number is
washed out when the system thermalizes, restricts the pa
eters of the theory. In Secs. VII and VIII we present t
results of our simulations, and in Sec. IX, we discuss
conclusions we can draw from them. Some technical det
about the simulations are presented in the Appendixes.

II. BARYOGENESIS AT PREHEATING

The scenario of electroweak baryogenesis at prehea
@7,8# assumes a model of inflation in which the energy sc
of the inflation is so low that the equilibrium temperature
the universe never exceeds the electroweak critical temp
ture after inflation. The inflaton is assumed to couple to
standard model Higgs field.

The inflation dilutes the inhomogeneities in all the fiel
away and results in a cold, vacuum configuration. Howev
the zero mode of the inflaton has a large value, and a
inflation ends it oscillates with some frequencyv. This starts
a parametric resonance with those Fourier modes of
Higgs field that have the same frequency@9#. This resonance
amplifies the quantum fluctuations of the Higgs field exp
nentially and transfers very rapidly a significant fraction
the energy of the inflaton to the Higgs field. If the frequen
v is small enough, the resonance only excites the lo
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wavelength part of the Higgs power spectrum, but the oc
pation numbers of those modes becomes huge.

The energy subsequently flows into the gauge bosons
cause of their strong coupling to the Higgs field, and soo
quasi-equilibrium state is reached in which the boso
modes below a certain cutoffk* are approximately in ther-
mal equilibrium while the other modes are still in vacuu
@13#. Since the energy density is concentrated in a sm
number of degrees of freedom, the effective temperatureTeff
of the long-wavelength modes is much higher than the reh
temperatureTrh , and therefore the electroweak symmet
can be restored@10,11,15#.

We can estimate thatk* ;aWTeff @15#, because above tha
scale the interactions are perturbative and therefore the t
malization rate of the modes withk*aWTeff is suppressed
by powers of coupling constants. It is important that the sc
k* is the same as the typical size of a sphaleron configu
tion @8#. Thus the sphaleron transitions are insensitive to
physics at higher momenta, and we can try and estimate t
rate in the same way as in thermal equilibrium. In the brok
phase, the sphaleron rateGsph, defined as the number o
sphaleron processes per unit volume per unit time, is ex
nentially suppressed by the Higgs expectation value, bu
the symmetric phase it is unsuppressed. In the presence
ultraviolet cutoffk* at temperatureTeff , the classical sphale
ron rateGsph in the symmetric phase has been estimated to
@16#

Gsph'aW
5 Teff

5 /k* ;aW
4 Teff

4 . ~1!

Each sphaleron process changes the SU~2! Chern-Simons
number

NCS~ t !2NCS~0!5
g2

32p2E
0

t

dtE d3xemnrs
1

2
Wmn

a Wrs
a

~2!

by one, leaving the U~1! equivalent,

nCS~ t !2nCS~0!5
g82

32p2E0

t

dtE d3xemnrs
1

2
BmnBrs ~3!

unchanged. Therefore,NCS changes wildly during the non
thermal symmetry restoration, and the baryon current is
conserved, due to the anomaly,

]mJB
m5

1

32p2
emnrsFg2

2
Wmn

a Wrs
a 1

g82

2
BmnBrsG . ~4!

The system is strongly out of equilibrium and therefo
baryon asymmetry can be generated provided thatCP viola-
tion is strong enough. As was pointed out in Ref.@17#, the
oscillations of the inflaton can enhance this process.

The effective temperatureTeff decreases gradually, partl
because the bosonic modes with higher momenta bec
excited but mainly because of decays of the bosons into
mions. The experimental value for the decay rate,g
'2 GeV, is much higher than the rate of baryon numb
violation
2-2
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ELECTROWEAK PREHEATING ON A LATTICE PHYSICAL REVIEW D63 123512
gB'
39

4

Gsph

Teff
3

, ~5!

which implies that the sphaleron processes stop insta
neously when the system enters the Higgs phase, and
baryon asymmetry generated during the period of symm
restoration is not washed out. Simulations in a~111!D toy
model support this scenario@8#, but obviously they canno
decide whether it can really work in the context of the re
istic standard model. Our aim in this paper is to partia
address that question.

We are not going to address the issue of finding a mo
of inflation that would have a low enough reheat temperat
and would produce the necessary initial conditions. In fa
we do not treat the inflaton as a dynamical field, but sim
assume that the state of the system after the parametric
nance has transferred the energy to the Higgs field, can
approximated by a configuration in which the Higgs field h
a large expectation value and its inhomogeneous modes
in vacuum. This means a drastic simplification in comparis
with the scenario proposed in Refs.@7,8# and is obviously
only a first approximation, but it allows us to parametrize t
properties of the inflaton by a single numberf0, the Higgs
expectation value after the preheating, and therefore ma
the analysis simpler. In any given inflationary model, it is
straightforward task to include the inflaton as a dynami
field, thus making the treatment much more accurate, bu
the expense of making the results specific to that model

III. CP VIOLATION

In the absence ofCP violation, there is no preferred di
rection for the change of the baryon number, and there
domains of matter and antimatter would be formed. In pr
tice, these domains are far too small to explain the bar
asymmetry of the universe, and thereforeCP violation is
necessary. Unfortunately, the only experimentally confirm
source of CP violation in the standard model, due t
Cabibbo-Kobayashi-Maskawa mixing of quarks, is too sm
to cause a sufficient baryon asymmetry@18,19#. This means
that we must resort to extensions of the standard mode
find additional sources ofC andCP violation.

Typically, effects ofCP violation are modeled through a
effective field theory approach. Once all degrees of freed
except the gauge fields, the Higgs field, and the inflaton h
been integrated out, the effective Lagrangian will cont
non-renormalizable operators that breakCP. The lowest of
these is a dimension-six operator@19#

DLCP5
dcp

Mnew
2

f†f
3g2

32p2 emnrs Tr WmnWrs , ~6!

where the dimensionless parameterdcp is an effective mea-
sure ofCP violation, andMnew represents the scale at whic
the new physics, responsible for this effective operator
important. AssumingMnew;1 TeV, the experimental con
straints on the magnitude of the neutron electric dipole m
ment @20# lead to an upper bounddCP&1, for theCP vio-
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lating parameter @21#. Recent experimental constrain
emerging from measurements of the electric dipole mom
associated with mercury, indicate that the bound ondCP
could be much tighter@22#, being reduced todCP,0.05.
Such a strong bound has to be taken with a degree of cau
as its derivation assumes a number of things about the m
nitude of the contributing sources.

There are two ways that we know of to calculate t
baryon number whenCP violation is present, each with thei
own problems. First one could perform numerical simu
tions with an explicitCP violating term in the equations o
motions, as was done in@8#. However, as explained in@23#,
there are severe difficulties in implementing this on a latti
Although not an insurmountable problem we shall not tac
this here. The second approach is to treatdCP perturbatively
and not evolve the system with theCP violating term, rather
use this evolution as a background. For this one measure
change in the Chern-Simons number and relates this, v
Boltzmann equation, to the change in the baryon numb
This approach also does not work here as it relies onNCS
following a random walk which, as we shall argue later,
not the case here, so we do not attempt to measure
baryon asymmetry in this paper.

IV. APPROXIMATIONS

Given the non-perturbative and non-equilibrium nature
the scenario, it is obviously not possible to study it in the f
standard model without any approximation. Fortunately, i
possible to justify three approximations, which togeth
make the problem tractable:

Bosonic approximation.Initially, most of the energy is in
the Higgs field, and the parametric resonance will transfe
very effectively into the SU~2! and U~1! gauge fields. Be-
cause a similar parametric resonance cannot take place
the fermionic fields and because the Higgs field couples r
tively weakly to most of them, we assume that the fermio
remain in vacuum. In that case, the main effect of the fer
ons is to give an extra channel into which the bosons
decay. We approximate this by adding a simple damp
term with the damping rateg'2 GeV, which agrees with
the experimental decay width of W and Z bosons. This
proximation does not take into account relativistic effects
the oscillations of the Higgs condensate, but we believe
it gives the correct qualitative picture. Improved accura
could perhaps be obtained by introducing extra degree
freedom that would mimic the effect of the fermions, but
the price of extra computational cost.

Of course, these decays also transfer energy into the
mionic sector, which makes our approximation break do
at t*g21. However, this does not restrict our analysis muc
since if the transition to the Higgs phase has not taken p
by this time, the reheat temperature will be close to the cr
cal temperature, and therefore the baryon number is likel
be washed out.

SU(2)3U(1) approximation. The Higgs and the SU(2)
3U(1) gauge fields interact with SU~3! gluons only indi-
rectly via fermions. Therefore, if we assume that the ferm
ons are in vacuum, the same will apply to the gluons as w
2-3
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A. RAJANTIE, P. M. SAFFIN, AND E. J. COPELAND PHYSICAL REVIEW D63 123512
In fact, the flow of energy from fermions to gluons decrea
the energy in the fermionic sector, and therefore makes
bosonic approximation remain valid for longer times.

Classical approximation.After preheating, the long-
wavelength modes of the Higgs and the gauge fields ha
large occupation number, and therefore they can be treate
classical fields@12,13#. Consequently, time evolution of th
system is given by the classical equations of motion, wh
can be solved numerically in a straightforward way.

As a result of these approximations, the time evolution
the system is given in the temporal gauge by the class
equations of motion

]0
2f5DiDif12l~h22f†f!f2g]0f,

]0
2Bi52] jBi j 1g8Imf†Dif2g]0Bi ,

]0
2Wi52@D j ,Wi j #1 igFf~Dif!†2

1

2
~Dif!†f2H.c.G

2g]0Wi , ~7!

wheref is the Higgs field,Bi is the U~1! gauge field,Wi is
the SU~2! gauge field, and the covariant derivative is

Di5] i2
i

2
gWi2

i

2
g8Bi . ~8!

Assuming that the decay rateg is the same for all the
fields means that Gauss’s law will be conserved. Thu
gives a useful check for the numerics of the simulation. If
define the canonical momenta

p5]0f, Ei52]0Bi , Fi52]0Wi , ~9!

Gauss’s law has the form

] iEi5g8Imp†f,

@Di ,Fi #5 igFpf†2
1

2
f†p2H.c.G . ~10!

The temporal gauge leaves the system invariant un
time-independent gauge transformations. This remain
gauge degree of freedom is fixed by choosing that the Hi
field is initially real and positive and that only its lowe
component has a non-zero value.

Even though we use classical equations of motion, i
essential to include the quantum vacuum fluctuations in
initial configuration, because they act as seeds for the am
fication of the low-momentum gauge field modes@12#. They
are approximated by classical fluctuations with the sa
equal-time two-point correlation as in the quantum theory
tree level. For each real field componentQ of massm and
canonical momentumP, this means
12351
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^Q* ~ t,kW !Q~ t,kW8!&5
1

2AkW21m2
~2p!3d (3)~kW2kW8!,

^P* ~ t,kW !P~ t,kW8!&5
AkW21m2

2
~2p!3d (3)~kW2kW8!. ~11!

Since the Higgs field is a complex field, it may be deco
posed into four real components

f5
1

A2
S f21 if3

f01 if1
D . ~12!

Note that asf0 has a large value so the masses of th
components are different.

We must also require that the initial configuration satisfi
Gauss’s law~10!. This is achieved by a cooling procedu
described in Appendix B.

V. LATTICE

In order to simulate the system numerically, we discret
it on aN3 lattice with lattice spacinga in such a way that the
Higgs fieldf is defined at lattice sites and the gauge fie
are represented by group elements at links between the s
In the time direction, the time step isat and the canonica
momenta of the fields are defined at half-way between
time steps. The details of the discretization, as well as
lattice equations of motion, are given in Appendix A.

On a lattice, we label the lattice sites by integer lab
x jP$1, . . . ,N% and the corresponding lattice momenta
k jP$0, . . .N21%. We define the discrete Fourier transfor
by

Q~kW !5
1

N3 (
x j

expS 2p i(
j

x jk j /NDQ~xW !. ~13!

The physical momentum vector is then given by

i k̂ j5
1

a
@12exp~22p ik j /N!# ~14!

which has the property that the backward lattice derivat
acting on a field inx space is equivalent to multiplying thek
space field byi k̂ j . The lattice Laplacian acting inx space
also has the effect ink space of multiplying by2( j uk̂ j u2, in
analogy with the continuum case.

The fields on the lattice are therefore required to sati
@cf. Eq. ~11!#
2-4
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ELECTROWEAK PREHEATING ON A LATTICE PHYSICAL REVIEW D63 123512
^QkW
* QkW 8&5

1

2A(
j

uk̂ j u21mf
2

1

N3a3
dkW ,kW 8

^PkW
* PkW 8&5

A(
j

uk̂ j u21mf
2

2

1

N3a3
dkW ,kW 8 . ~15!

The lattice discretization regularizes the theory, and it m
also be renormalized, i.e., the bare parameters used in
lattice equations of motion must be chosen in such a way
the values of any observables agree with those measure
experiments. To our accuracy, we can neglect the renorm
ization of the coupling constants, and therefore we only c
sider the Higgs boson mass counterterm. It can be de
mined by calculating the Higgs boson mass to one-loop o
in lattice perturbation theory

mH
2 5mlatt

2 1S 6l1
9

4
g21

3

4
g82D ^Q* Q&0 , ~16!

where the subscript 0 in̂. . . &0 indicates a free-field expec
tation value, andmH

2 is the physical Higgs boson mass. In th
approximation where the masses inside the loops are take
be zero, the correlation function~15! implies

^Q* Q&0.(
k j

1

~Na!3

1

2A(
j

uk̂ j u2

.
1

4p3a2
E

0

p

d3wS (
j

sin2wj D 21/2

.
0.226

a2
,

~17!

and mH
2 is the physical Higgs boson mass. This gives

bare mass parameter that must be used in the simulatio

mlatt
2 'mH

2 2S 6l1
9

4
g21

3

4
g82D0.226

a2
. ~18!

Also, we define the ‘‘renormalized’’ version of^f†f& by
subtracting the one-loop divergence

^f†f&5^f†f& latt22^Q* Q&0'^f†f& latt2
0.452

a2
.

~19!

This will be a useful quantity as an effective order parame
but we emphasize that it is not a physical observable. In
1 we start the fields near the vacuum solution and let th
evolve. The upper graph shows how the equilibrium value
^f†f& without the mass counterterm depends on the lat
spacing, relaxing to larger values asa is decreased. When th
fluctuations are taken into account by the counterterm, lo
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graph, we see that this dependence is removed. Such be
ior is essential if we are to have results free from latt
artifacts.

For our simulation we include a phenomenological dam
ing term to account for the fermions. The effect of this is
damp the fluctuations on all length scales; this then chan
the two point correlator~15! which appears in the mas
counterterm~16!. When the counterterm is calculated one
interested in how the large momentum modes behave. In
limit k@g the dispersion relation becomes

vk. i
g

2
6Ak21m2, ~20!

showing thatfk(t)5exp(ivkt)fk decays as e2gt/2 and thus
the actual mass counterterm~16! and ^f†f& counterterm
~19! must be multiplied by e2gt.

We also need a lattice representative of the Chern-Sim
number ~2!. There is no simple way to translate this co
tinuum expression to a lattice, the essential problem be
that any lattice definition ofemnrsWmn

a Wrs
a is not a total

derivative @23#. Here we follow the reasoning of Ambjo”rn
and Krasnitz@24# where a daughter set of fields are used
calculateemnrsWmn

a Wrs
a . In fact, as pointed out in@25# only

the gauge fields should be included in this daughter set. T
second set of fields are the cooled image of the first, rem
ing UV fluctuations and leaving smooth gauge fields, brin
ing emnrsWmn

a Wrs
a close to a total derivative. This metho

was developed in response to the realization that early
merical simulations of the Chern-Simons diffusion we
measuring a large component of thermal noise rather t
actual topological transitions. To test the method for meas
ing NCS we evolved the fields in a box small enough th
only one sphaleron could fit in it, thus we should see o
one sphaleron at a time andNCS should change by one unit

FIG. 1. Evolution near the vacuum for a renormalized~bottom!
and nonrenormalized~top! mass term withg5g850.1 and a
52,3,431023 GeV21. The straight line ish2.
2-5
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In Fig. 2 we display the difference such a cooling path c
make in determining where a sphaleron transition has ta
place. If we measureNCS without using the cooling path
~upper curve! then the UV fluctuations mask the transitio
but as the cooling depth is increased the integer transi
between baryon vacua becomes clearer. In the following
shall use a cooling depth of 0.9a2.

VI. PARAMETERS

In the simplified model we are discussing here, the
namics of the theory depends only on two parameters;
Higgs boson massmH and the initial valuef0 of the Higgs
field. We choose the valuemH5100 GeV, but unlike stan-
dard electroweak baryogenesis, the scenario discussed h
probably not very sensitive to the Higgs boson mass. T
coupling constants are taken from electroweak data@26#; g
50.64, g850.34, h5250.7/A2 GeV, g52 GeV.

The initial valuef0 of the Higgs field parametrizes th
initial energy density, and therefore also determines the fi
reheat temperatureTrh to which the system eventually equil
brates. Although in the bosonic theory all the vacua w
differentNCS are degenerate, the one with zero baryon nu
ber has the lowest energy once the fermions are included
therefore the sphaleron transitions tend to wash out
baryon number. Thus, ifTrh is above or too close toTc , the
sphaleron rate at the final state can be so high that the ba
asymmetry generated before disappears. It has been
mated that to avoid this, one needs@27,18#

v~Trh!*Trh , ~21!

wherev(Trh) is the expectation value of the Higgs field.
one-loop perturbation theory@28#

FIG. 2. MeasuringNCS with different cooling paths. The path
lengths are 0, 0.9a2, 1.8a2, 4.5a2, 9.0a2. Without cooling, the ul-
traviolet noise blurs the signal, but with cooling the sphaleron
be seen att50.1 GeV21.
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v2~T!5S 12
T2

Tc
2D 2h2,

Tc
25

32lh2

8l13g21g82
'~200 GeV!2, ~22!

and thus the condition~21! becomesTrh&155 GeV. The
corresponding energy density ise(Trh)'(p2/30)g* Trh

4 ,
whereg* '100 is the effective number of degrees of fre
dom at the electroweak scale. Sincee(Trh) must be equal to
the initial energy densitye05lf0

4, we find

Trh'S 30l

g* p2D 1/4

f0'0.22f0 . ~23!

Consequently the constraint~21! becomes

f0&700 GeV. ~24!

VII. SYMMETRY RESTORATION

In Fig. 3 we show the time evolution of the ‘‘renorma
ized’’ value of ^ufu2& @see Eq.~19!#. We use a 603 lattice
with the initial conditionf05700 GeV @cf. Eq. ~24!# and
lattice spacingsa5331023 GeV21, at50.2a; unless oth-
erwise stated these will be used throughout the paper.
also performed test runs with smaller lattice spacings
time steps, finding results that were in statistical agreem
with those presented here.

Since^ufu2& gets a positive definite contribution from ev
ery Fourier mode, it is not zero even in the symmetric pha
Furthermore, since there is no phase transition in the e
troweak theory even in equilibrium@5#, there is no rigorous
way to determine whether the electroweak symmetry is

n

FIG. 3. The evolution of the renormalizedufu2 defined in Eq.
~19! as a function of time. Because of the inhomogeneous fluc
tions, ufu2 never vanishes, but its exponential decay shows that
electroweak symmetry is effectively restored up untilt
*0.8 GeV21.
2-6
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ELECTROWEAK PREHEATING ON A LATTICE PHYSICAL REVIEW D63 123512
stored non-thermally or not. Nevertheless, we know that
damping term causes the amplitude of the inhomogene
modes to decrease according to Eq.~20!, and thus if there is
no Higgs condensate present we expectufu2 to decrease as
exp(2gt). This is indeed what we observe untilt
'0.8 GeV21. We can therefore conclude that the ele
troweak symmetry is effectively restored during this time

At t*0.8 GeV21, ^ufu2& starts to grow and approache
its vacuum expectation value. Although it is not entire
clear that our approximations are still valid at this time, b
causet*g21, conservation of energy implies that the syste
must eventually end up in the broken phase, because
initial energy density is lower than that at the transition po
in equilibrium.

In order to obtain a better insight to the dynamics of t
fields we also measured the power spectrum of the ele
field Ei of the U~1! gauge fieldBm . It is a gauge-invariant
quantity, and although Gauss’s law Eq.~10! fixes the value
of its longitudinal component, it does not affect its transve
components. In thermal equilibrium at temperatureT, each
Fourier modeEi

T(k) of the transverse components satisfie

d3k

~2p!3
^uEi

T~k!u2&52T, ~25!

and therefore one can define even in a non-equilibrium
ting an effective temperature for each Fourier mode se
rately @15#:

Teff~k!5
1

2
uEi

T~k!u2
d3k

~2p!3
. ~26!

In Fig. 4, we show the effective temperature of differe
Fourier modes ofEi at the beginning of the simulation and

FIG. 4. Effective temperature~26! of different Fourier modes of
the hypercharge field measured in the initial configuration andt
50.1 GeV21. At this time, the Higgs fluctuations have heated
the long-wavelength modes to a high effective temperature.
comparison, the plot also shows the effect of the damping term
the vacuum, measured in a run withf050.
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time t50.1 GeV21. Note that although the electric field i
initially in vacuum, its effective temperature is nonzer
Teff(k)'k/2. This is caused by the initial ‘‘quantum’’ fluc
tuations~11!, and corresponds to the vacuum energyv/2 of a
quantum harmonic oscillator. In fact, in a quantum syste
the effective temperature would be related to the occupa
number as

n~k!5
Teff~k!

k
2

1

2
. ~27!

At t50.12 GeV21, the long-wavelength modes withk
&k* '200 GeV have reached a high temperatureTeff
'104 GeV, but the short-wavelength modes are still
vacuum.~The evolution of the power spectrum at largek is
due to the damping factor, but these modes remain vacu
modes as the counterterm is also decaying.!

This form of the power spectrum justifies the classic
approximation, because the occupation number of the lo
wavelength modes is high,n;100, and they are the relevan
modes for the time evolution. The main effect of the sho
wavelength modes is to renormalize the couplings, and
has been taken into account perturbatively~16!.

As argued in Ref.@15#, the cutoff momentum is para
metrically of orderk* ;gf0, and the effective temperatur
Teff;f0 /g. This is compatible with the observation@29# that
the theory becomes non-perturbative at momentak&g2T,
and thus the interactions belowk* are not suppressed by th
coupling constants and thermalization is more effective.

Eventually,k* moves towards higher momenta, but th
process is relatively slow@15#. Instead, the thermalization i
dominated by the decays of the long-wavelength bosons
fermions, which is approximated by the damping term.

Obviously, it would be more interesting to follow the evo
lution of the power spectrum of the SU~2! field, but because
its electric field is not gauge invariant, this is not possib
There are indications@30# that in the ‘‘vacuum’’ configura-
tion ~15!, the cascade of power from the ultraviolet to th
infrared modes is significantly faster in the SU~2! field than
in scalar or U~1! fields. This would lower the ultraviolet par
and raise the infrared part of power spectrum in Fig. 4. Ho
ever, since the power spectrum is already dominated by
infrared modes, this extra contribution to the infrared is n
likely to be significant. Likewise, once the infrared mod
have been excited, their occupation numbers are so high
the precise form of the ultraviolet power spectrum is uni
portant.

It is also possible that the energy transfer to the oppo
direction, from infrared to ultraviolet, is faster in the SU~2!
case, which would mean that the whole SU~2! field could
thermalize much faster than the U~1! field in Fig. 4. Even if
this is the case, it would not presumably change the qua
tive behavior, because lattice simulations@31# have shown
that the sphaleron rate in the classical equilibrium state is
the same order as its quantum mechanical value. Furt
more, the SU~2! gauge field only constitutes a small fractio
of the total field content of the standard model, and full th
mal equilibrium is not reached before all the fermions ha

or
to
2-7
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equilibrated as well. Therefore we believe that our class
approximation gives the correct qualitative picture of the d
namics.

During the period of symmetry restoration, the bary
number is not conserved, and since the effective tempera
of the long-wavelength modes isTeff'103 GeV, we can es-
timate using Eq.~1! that the sphaleron rate is roughly

Gsph'106 GeV4. ~28!

Thus the non-equilibrium oscillations ought to be able
generate baryon asymmetry@8#. On the other hand, the rat
at which the temperature decreases,g'2 GeV, is much
higher than the baryon decay rategB'0.01 . . . 0.1 GeV in
Eq. ~5!, which means that the sphaleron rate drops to zero
rapidly that the baryon asymmetry should not be washed

VIII. EVOLUTION OF THE CHERN-SIMONS NUMBER

In thermal equilibrium, the sphaleron rateGsph can be
measured directly, becauseNCS performs a random walk an
Gsph is given by the diffusion constant

Gsph5 lim
t→`

^@NCS~ t !2NCS~0!#2&
t

. ~29!

In Ref. @8#, this was generalized to non-equilibrium cases
defining the time-dependent sphaleron rate

Gsph~ t !5
d

dt
^@NCS~ t !2NCS~0!#2&. ~30!

This was then used in a phenomenological Boltzmann eq
tion to estimate the baryon asymmetry generated during
heating.

In Fig. 5, we show the time evolution of the varianc
^@NCS(t)2NCS(0)#2&, of the Chern-Simons number durin
the simulation~upper plot!. Instead of growing monotoni
cally, as Eq.~30! assumes, the variance oscillates untit
'0.15 GeV21, and then finally settles down to a value th
is well below its maximum during the oscillations. This in
dicates that the behavior ofNCS is not purely Brownian, but
it contains a deterministic component, which tries to d
crease its value. To see if this is a result of the damping
performed simulations whereg50. The lower graph in Fig.
5 shows that the oscillations persist even if we remove
damping term. In that case,NCS keeps on wandering after th
initial oscillations because the system thermalizes to a h
temperature, but the behavior is still non-Brownian at
'0.1 GeV21. In fact we would not expect the damping
have an effect as the damping timescale is 0.5 GeV21 and
the effect occurs before 0.1 GeV21.

This deterministic behavior is explained by the interact
between the gauge and Higgs fields. When the Higgs fielF
is non-vanishing, one can define the integer-valued Hi
winding numberNH @32#,

NH52
1

24p2E d3xe i jkTr~] iF
†] jF]kF

†F!. ~31!
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HereF is a unitary matrix made from the components off

according to F5f̂41 is if̂ i with f5ufu(f̂21 i f̂1,f̂4

2 i f̂3). In particular, in a vacuumNCS5NH , because any
vacuum configuration can be gauge transformed into on
which the gauge field vanishes, which impliesNCS50, and
the Higgs field is constant, which impliesNH50.

In previous studies ofNCS in thermal equilibrium@31,33–
37#, this has not been a problem. If we write

NCS5N11N2 , where

N15
NCS1NH

2
, N25

NCS2NH

2
, ~32!

the different vacua are labeled byN1 . In thermal equilib-
rium, N1 performs a random walk because of sphaleron tr
sitions, andN2 merely fluctuates around zero. In our no
equilibrium case, these fluctuations must die away as
system cools and thereforeN2 must tend to zero. Thus,N1

will be the sole contributor toNCS in the final state. Given
that, the contribution tôNCS

2 & from N1 will be monotonic
and all the early oscillations of Fig. 5 are due toN2 . This
implies that practically no topological sphaleron transitio
took place in any of our runs, while Eq.~28! would have
predicted around 5000 of them.

We can further back up this claim that the changes
^NCS

2 & are not of a topological nature by looking at^nCS
2 &, the

U~1! equivalent of̂ NCS
2 & @see Eq.~3!#; large gauge transfor

mations leavê nCS
2 & unaffected and so its evolution is du

only to fluctuations. If there is no topology change in t
SU~2! sector then we can relate the fluctuations of^NCS

2 & to
^nCS

2 & via @34#

^NCS
2 &/^nCS

2 &.@3~g/g8!2#2, ~33!

FIG. 5. ^NCS
2 & for dissipationg52 GeV21 ~top! andg50 ~bot-

tom! with a cooling depth of 0.9a2, averaged over 12 runs. Initially
^NCS

2 & oscillates and then starts to decrease vanishing eventu
which means that no topological transitions actually took place
thermal equilibrium,̂ NCS

2 & would grow linearly, which is what hap-
pens in the dissipationless run at late times.
2-8
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ELECTROWEAK PREHEATING ON A LATTICE PHYSICAL REVIEW D63 123512
where the factor 3 is because there are three SU~2! vector
bosons to the one U~1! vector. The plot of@3(g/g8)2#2^nCS

2 &
in Fig. 6 shows that the U~1! Chern-Simons number is of th
order expected if the evolution does not contain topolog
changes.

This non-Brownian element in the motion ofNCS means
that the simple Boltzmann equation does not give an
equate description of the dynamics. The same effec
present also in theCP violating case, and this may lead t
baryon washout even well belowTc if the Higgs winding
remains small during the non-equilibrium time evolutio
Even if the initial fluctuations generate largeNCS, and there-
fore a large baryon asymmetry, the interaction with t
Higgs field may destroy it soon afterwards.

IX. CONCLUSIONS

In this paper, we have studied the out-of-equilibrium d
namics of the electroweak theory in a case where most of
energy is concentrated in the long-wavelength modes. Th
initial conditions are interesting because they resemble
state after preheating at the electroweak scale, where
Higgs field has a large initial value. All the other degrees
freedom were in vacuum, and were given initial conditio
that reproduce the tree-level two-point function of the qu
tum vacuum. The coupling to the fermions was appro
mated by a phenomenological damping term, whose eff
were also taken into account in the renormalization by us
a time-dependent mass counterterm.

Our method can be used to simulate more realistic s
narios of electroweak preheating in a straightforward way
coupling the Higgs field to the inflaton field. In order
achieve accurate results, one would also have to be ab
improve on our approximations, but we believe that even
its present form, the method can give reliable order-
magnitude estimates.

Our results show that the oscillations of the Higgs fie

FIG. 6. The squared U~1! Chern-Simons number̂nCS
2 & multi-

plied by the factor@3(g/g8)2#2 @see Eq.~33!#. It is of similar order
of magnitude aŝNCS

2 & in Fig. 5, which supports the idea that^NCS
2 &

consists of fluctuations only.
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can lead to non-thermal restoration of the SU~2! gauge sym-
metry. This supports the scenario of baryogenesis where
out of equilibrium state, required by the Sakharov criteria
provided by a form of parametric resonance rather tha
thermal phase transition@7,8#, but a truly quantitative tes
would require a measurement of the generated baryon as
metry. In our simulations this was not possible because
equations of motion wereCP invariant.

However, we also studied the Chern-Simons number
the SU~2! gauge field and showed that its motion is not pu
random walk. We believe this is due to interactions with t
Higgs fields which force the vacuum value of the Che
Simons number to equal the winding number of the Hig
field. If the Higgs winding therefore does not change sign
cantly, these interactions will reduceNCS, destroying the
baryons previously created. Conversely, if a mechan
greatly enhancedNH then baryons would be created as t
winding numbers equilibrated. In every one of our simu
tions, the final Chern-Simons number vanished, which s
gests that the rate of true topological transitions that wo
lead to stable baryons is lower than expected during the n
thermal symmetry restoration. It remains to be seen if thi
true in more realistic models as well. In any event, it mea
that the baryon asymmetry cannot be estimated using
effective description that does not take this effect into
count.
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APPENDIX A: EVOLUTION EQUATIONS

To be explicit we give here the lattice method@33,25#
used to simulate the continuum gauge theory. The star
point is the gauge covariant derivative on a lattice:

D̃ if5
1

a
@Ui~ t,x!Vi~ t,x!f~ t,x1 ı̂ !2f~ t,x!#, ~A1!

D̃0f5
1

at
@U0~ t,x!V0~ t,x!f~ t1at ,x!2f~ t,x!#.

~A2!

Here thẽ refers to the lattice covariant derivative, anda and
at are the lattice spacings in the space and time directio
respectively, withx1 ı̂ referring to the position one lattice
site away in thei direction. The fieldsUi(t,x) and Vi(t,x)
are fundamental SU~2!, U~1! valued respectively, and corre
spond to the continuum gauge fields according to
2-9
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Ui~ t,x!5expS 2
i

2
gaWi

asaD , ~A3!

U0~ t,x!5expS 2
i

2
gatW0

asaD , ~A4!

Vi~ t,x!5expS 2
i

2
g8aBi D , ~A5!

V0~ t,x!5expS 2
i

2
g8atB0D . ~A6!

One then finds that the standard continuum gauge actio
modeled by

S̃5(
x,t

ata
3F D̃0f†D̃0f2(

i
D̃ if

†D̃ if2V~ ufu!

2
2

at
2a2g2 (

i
Tr~U0i !2

4

at
2a2g82 (

i
Tr~V0i !

1
1

a4g2 (
i j

Tr~Ui j !1
2

a4g82 (
i j

Tr~Vi j !G . ~A7!

Here we donot use the repeated index summation conv
tion. The field strengths for the gauge fields are given by
12351
is

-

Ui j ~ t,x!5U j~ t,x!Ui~ t,x1 ̂ !U j
†~ t,x1 ı̂ !Ui

†~ t,x!, ~A8!

Vi j ~ t,x!5Vj~ t,x!Vi~ t,x1 ̂ !Vj
†~ t,x1 ı̂ !Vi

†~ t,x!, ~A9!

which means that the lattice action has the following gau
symmetry:

f~ t,x!→V1~ t,x!V2~ t,x!f~ t,x!, ~A10!

Ui~ t,x!→V2~ t,x!Ui~ t,x!V2
†~ t,x1 ı̂ !, ~A11!

Vi~ t,x!→V1~ t,x!Vi~ t,x!V1
†~ t,x1 ı̂ !, ~A12!

V2PSU~2!, V1PU~1!. ~A13!

In our simulations we use the equivalent of temporal gau
in which the link variablesU0 and V0 assume the identity
value, with their equations of motion leading to Gauss ty
constraints. The equations of motion are found by the lat
equivalent of functional differentiation of the lattice action
ions.
f~ t1at ,x!5f~ t,x!1atp~ t1at/2,x!, ~A14!

Vi~ t1at ,x!5
1

2
g8aatEi~ t1at/2,x!Vi~ t,x!, ~A15!

Ui~ t1at ,x!5gaatFi~ t1at/2,x!Ui~ t,x!, ~A16!

p~ t1at/2,x!5~12atg!p~ t2at/2,x!1atF 1

a2 (
i

@Ui~ t,x!Vi~ t,x!f~ t,x1 ı̂ !22f~ t,x!

1Ui
†~ t,x!Vi

†~ t,x!f~ t,x2 ı̂ !#2
]V
]f†G , ~A17!

Im@Ek~ t1at/2,x!#5~12atg!Im~Ek~ t2at/2,x!!1atFg8

a
Im@f†~ t,x1 k̂!Uk

†~ t,x!Vk
†~ t,x!f~ t,x!#

2
2

g8a3 (
i

Im@Vk~ t,x!Vi~ t,x1 k̂!Vk
†~ t,x1 ı̂ !Vi

†~ t,x!

1Vi~ t,x2 ı̂ !Vk~ t,x!Vi
†~ t,x1 k̂2 ı̂ !Vk

†~ t,x2 ı̂ !#G , ~A18!

Tr@ ismFk~ t1at/2,x!#5~12atg!Tr@ ismFk~ t2at/2,x!#1atFg

a
Re@f†~ t,x1 k̂!Uk

†~ t,x!Vk
†~ t,x!ismf~ t,x!#

2
1

ga3 (
i

Tr@ ismUk~ t,x!Ui~ t,x1 k̂!Uk
†~ t,x1 ı̂ !Ui

†~ t,x!

1 ismUk~ t,x!Ui
†~ t,x1k2 i !Uk

†~ t,x2 i !Ui~ t,x2 i !#G . ~A19!

Here we have included a damping factorg which is a phenomenological term put in by hand to model the decay into ferm
Such a term does not spoil the gauge invariance of the model. The remaining components ofEk andFk are found by using
2-10
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det~E!5
2

g8aat

, det~F !5
1

gaat
. ~A20!

The Gauss constraints which are implied by the lattice gauge symmetry are

1

a (
i

Im@Ei~ t1at/2,x!2Ei~ t1at/2,x2 ı̂ !#2g8Im@p†~ t1at/2,x!f~ t,x!#50, ~A21!

1

a (
i

Tr@ iskFi~ t1at/2,x!2 iskUi
†~ t,x2 ı̂ !Fi~ t1at/2,x2 ı̂ !Ui~ t,x2 ı̂ !2gRe@p†~ t1at/2,x!iskf~ t,x!#50. ~A22!

APPENDIX B: RESTORING THE GAUSS CONSTRAINTS

When the random initial conditions on the gauge and scalar fields are imposed we find that the Gauss constra
generically be violated. In order that the simulation is to make sense this must be remedied. In the Abelian case the
Gauss’s law is simple ink space so the longitudinal component ofEj may easily be set to the relevant charge density. In
non-Abelian case however the derivative in Gauss’s law requires a gauge field to make it gauge covariant, it is no
simple matter therefore to find the equivalent of the transverse and longitudinal components. The way we get around
relax the unphysical gauge degrees of freedom in the electric fields and scalar momenta into a state which satisfie
law. This is done by making a Hamiltonian out of the Gauss constraint and using this to define a dissipative motion@33,23#.

DefiningG0 to be the hypercharge Gauss constraint expression~A21! andGk to be the remaining three expressions for t
SU~2! field ~A22!, such that we requireG050, Gk50. Now introduce the Hamiltonian

H5(
x

a3@G0G01GkGk#. ~B1!

By writing Fi5Fi
02( i /2)saFi

awe then evolve thep, Ei , Fi fields according to the dissipative equations

]c

]t
52

dH

dc
, ~B2!

wherec represent the generic momentum field, to find

]p

]t
52F ig8G0~t,x!f~t,x!2 ig(

k
skGk~t,x!f~t,x!G , ~B3!

] Im~Ej !

]t
52

2

a
@G0~t,x!2G0~t,x1 ̂ !#, ~B4!

]F j
b

]t
52

2

a FGb~t,x!2
1

2
Tr@skU j

†~t,x!sbU j~t,x!#Gk~t,x1 ̂ !G . ~B5!
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