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We show that the nonlinear evolution of long-wavelength perturbations may be important in a wide class of
inflationary scenarios. We develop a solution for the evolution of such nonlinear perturbations which is exact
to first order in a gradient expansion. As a first application, we demonstrate that in single field models of
inflation there can be no parametric amplification of super-Hubble modes during reheating. We consider the
implications of the solution for recent discussions of the back-reaction effect of long wavelength perturbations
on the background geometry, give a new derivation of the equation of motion of stochastic inflation, and
demonstrate that if thégeneralized slow-rolling condition is not satisfied, then inevitably long wavelength
vector modes for gravitational fluctuations will be generated.
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[. INTRODUCTION we can define a generalized Bardeen parameter which is con-
stant on scales larger than the Hubble radius. As a first ap-
The hypothesis that causally unrelated regions of spaceplication (Sec. V), we demonstrate that there is no amplifi-
time evolve independently is one of the cornerstones in th€ation of long wavelength gravitational fluctuations during
development of relativity and one of the basic assumptiongeheating. In Sec. V we discuss some implications of our
of all relativistic theories. As an implication of this hypoth- solution for the back reaction of perturbations on the back-

esis in cosmology we expect that perturbations with longdround geometry. In Sec. VI, the Langevin equation for sto-
wavelengths evolve independently at different points of chastic |nflat|or{8]_ is re—derlved_m a way which mpludes the
space, as if they were independent homogeneous patchesﬁffe"ts of gravitationaland not just matterfluctuations, us-

the Universe(see e.g[1] and references therginThis ex- ing the results of Sec. Ill which can be self-consistently ap-

pectation has been explored in the linear theory of cosmop”eOI in an ‘”f'f?‘“”g Universe with nonlinear Sl.Jper'HUbeEf‘
logical perturbations. In this context, it is possible to derivemOdeS' Finally in Sec. VIl we demonstrate that in the case in

. . L . which the generalized slow-rolling condition is violated, the
mtegrgl co_nstramtss_ee e.gl2]) which imply that in the case generation of vector modes is inevitable.
of adiabatic fluctuations there can be no generation of fluc=
tuation modes on super-Hubble scales. However, it is pos-
sible for entropy fluctuations to be generated on such scales,
one well known example being the formation of cosmic de-  perturbations are generated in the de Sitter phase of an
fects during a phase transition which leads to super-Hubblgflationary Universe as a consequence of quantum vacuum
structures(see e.g.[3]). Another example is the generation fluctuations(see e.g[9] for a comprehensive reviewThe
of axion fluctuations(see e.g.[4]). Recently, the super- analysis is based on the consistent quantization of the linear-
Hubble range effects of entropy fluctuations have beenzed metric and matter perturbations in a classical expanding
widely studied in the context of inflationary reheatifepe  background space-time. In this framework, it can be shown
e.g.[5-7). that the Sasaki-Mukhanov parametef10,11], defined a%

The aim of this work is to investigate the process of struc-
ture formation in the non-linear regime, for inflationary mod-
els based on a single scalar field. In Sec. Il, we show that the v=a
presence of nonlinearities is inevitable in a wide class of

inflationary models. In Sec. Il we find a solutigwhich is i, the |inear regime obeys the equation of motion of a free
exact to leading order in the gradient expansitam nonlin-  ¢.51ar field. Here{ is the Bardeen parametft?]
ear modes in the case whébut not only whei perturba-

tions satisfy ageneralized slow-rolling conditiorThis con- H
dition is naturally satisfied during inflation. For our solution (=d— —(Hop+ o), 2)
H

IIl. GENERATION OF FLUCTUATIONS
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Throughout this paper, we use the terms super-Hubble, infrared
and long wavelength interchangeably. All refer to modes with °The cosmological scale factor is denoted &ft), the Hubble
wavelengths larger than the Hubble radius. expansion rate byd, and the scalar matter field hy.

0556-2821/2001/632)/12350%8)/$20.00 63 123505-1 ©2001 The American Physical Society



NIAYESH AFSHORDI AND ROBERT BRANDENBERGER PHYSICAL REVIEW B3 123505

whereg is the variable which describes scalar metric pertur- ¢ Vde
bations in longitudinal gauge in a spatially flat universe: ——=mclog

, )

ds?=(1+2¢)dt>*—a?(t)(1—2¢) 5;dxdx. 3
( ¢ () $)ijdxdx @ wherem,=(87G)~*?is the Planck mass and(¢) is the

The scalar sector is the dominant one for cosmological perscalar field potential. Assuming a power law potential

turbations generated through slow-roll inflati@ee e.g[13] @

and references th(.arein' ' . V(g)= M4(i) , (8)
The action for linearized metric and matter perturbations My

about a classical expanding background becof@igthe ac-

tion of a free scalar field with time-dependent magshe we get

time dependence is determined by the background geometry k

and is negligible on scales smaller than the Hubble radius <pf,=<p2—2m§alog(—). 9
Hence, the perturbations can be canonically quantized, and amp

expectation values af (and hence also of) can be easily  sybstituting in Eq(6) and carrying out the integral gives
calculated(see e.g[9]) once the state of the system is speci-

fied. The state can be specified mode by mode in Fourier a M\4 @\ @\ 4t

space. Our choice is the following: We fix the initial condi- () r= 2(— (—) (—) . (10
tions for each Fourier mode when its wavelength is equal to 484+ a)m” | Mp/ \Mp/ 1 @

the Planck Iengtﬁ,anq assume that we have vacuum expecy, || <|@il, whereg; is the background field value when
tation values at that time. This assumption is very similar to

the usual choice of a vacuum state at the onset of inflationlmcIation starts.
’ We see that if inflation lasts long enough, i.egifis large

since—at least for the usual dispersion relatidi¥ 15—the enough, ther( ¢2),; can become larger than one and thus

wave function is almqst constant on sub-Hubble SC"?"eS- Th%frared perturbations can go nonlinear. As a matter of fact,
advantage of our choice compared to the usual one is that w

do not extrapolate the physics above the Planck ener aeithough the amplitude of each mode may be small, due to

P physics . ©r%he large phase space of infrared modes, the actual value of
However, for the usual dispersion relations for a free fleld,¢ in real space mav be areater than 1. and so we mav not be
the difference is immaterial. Using the equation of motion P ybeg ' Y

for £ in the inflationary era, we obtain the following expres- aIIowgd to use pertqrbatﬁon theory to expapd the Einstein
sion for (¢2): ' equatlons._The possible importance o_f nonlinear effects for
: the evolution of space-time was pointed out [ih6,17],
3 4 5 though with a different interpretation. We will return to this
(%)= f d’k  Hj k
(2m)° 2k3¢2

aZHZ

4) issue in Sec. V.
Let us now study under which conditiofg?)  is indeed
nonlinear. As a first step, note that the valueMfis con-
Note that/ contains the full information about the linearized Strained by the observational data. The amplitief a
metric (and matter fluctuations(valid as long as the slow- linear cosmological perturbation mo@measured in terms of

roll approximation holds {) when it enters the Hubble radius after inflation is the same

Now we turn our attention to the infrared part of the spec-aS When it exits the Hubble radius during inflatibon-
trum (k/aH<1) for which sider, for example, the largest wavelength observable mode,
the mode which is entering the Hubble radius today and is

K given by
=——. 5
é H2§ (5 . Hy .
_a'O 0— TCMB m_p (aemp)v ( )

Thus
where the subscript O refers to the value of quantities today,
H2 d3k Hg Tcume denotes the present temperature of the microwave
($*)ir= T2 313 2 (6)  background, and, is the value of the scale factor when
H*JIR(2m)” 2k%p inflation ends. Then, combining Eqg) and(9) gives us the
amplitude of the mode:

where the subscrigiR indicates that we only include infra-

red modes. H4 M |4 Tooom.) 1+ a2
Integrating the equation of motion for the background Azl_pzz(_) lo (M” ) (12)

field and the Friedmann equations in the slow rolling regime @p Mp MHo

gives

“4Although this statement is conventionally taken to be true, there
3The values of the variables at this time are indicated by a subare exceptions as has recently been shown for a certain class of
scriptp, and they are functions & inflationary modelgsee Sec. IV and references quoted there
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Thus we end up with the gradient terms drop ouand we are left with the Fried-
mann equations for the above metric:
M 1 —(a+2)/8
m—zA”“[G?— ZIogA (13 87G [ ¢'?
P ¢'2=T(7+V(QD)>, (19
The value ofA is constrained by various observations, in
particular by the amplitude of the cosmic microwave , I 2
anisotropies on large angular scalgkg], which give A 24743y =87G| - -+ V(e) |, (20
~101%0
A theoretical requirement for a successful inflationaryand of course the more interestif,; equation:
scenario is that all the observable modes must have exited
the Planck length during inflation. The consequence is that (") i=47Go @ (21
i is larger thanp, for all the observable modes. Using Egs.
(9), (12) and(13), this requirement becomes where ' denotese™ #(d/dt).
We immediately see that not evegycan satisfy the last
TemeMp 12 1 12 equation since the right hand side must be a perfect gradient.
¢i=>mp| log MH, =mp| 67— 710gA (14 The condition thatp must satisfy is
(for this order of magnitude estimate we can aet1). In- (@)iej=(¢") ¢, (22)

serting this constraint in Eq10) gives .
9 d10 g or, equivalently?

3+al2
1044109 (15 Vo' «Ve. (23

<¢2)|R>A{ 67— %logA

) ) 10 ] From Eq.(23), we can see that surfaces of constant
at the end of inflation, foA~10"". We see that even if 54 constant must be tangential to each other and conse-
mflauon starts at the Ia}est poss@le time vyhlch is allowed byquently are the same. This means thatmust be a function
theoretical or observational consideratiditss usually taken of ¢, at least in the finite regions of space in which the

to ;tart much earlier ($%) g _almost reachgs the nonlinear gradient ofe does not vanish:

regime for a massless theofiye. for a=4) just before re-

heating starts. If inflation starts at valuesdffor which the 9

energy density is comparable to the Planck density, then the p'= a_g(‘P’t)’ (249)
phase space of infrared modes is much larger and the non- ¢

linear regime will be reached much earlier. whereg(e,t) can be any function of andt. Then theGy,

equation reduces fo

Y =47Gg(p,t). (25

IIl. GRADIENT EXPANSION

We use the following ansatz for our metric:

Since there is no explicit time dependence in this formalism,

— 020412 _ a=20 S Axid v
ds*=e*’dt*~e g dx'dx’, (16) we assume thaj has also no explicit time dependence:

which is a generalization of a metric with linear scalar per- t)= 26
turbations. This ansatz, though not a general solution, repre- 9(e.H)=0(¢). (28

sents the most important sector of the metric since any suchrom now on, we call Eq24) (with no explicit time depen-
metric can be continuously connected to a metric with lineagjency the generalized slow-rolling condition due to its re-
scalar perturbations which is the dominant sector in a Unisemplance to the field equation during the slow-rolling
verse with linear perturbations generated during slow-roll inphase. Note that at this point, we have not shown that the
flation [13]. We also consider the simplest model of mattergpsence of time dependence is required in(6), but sim-
which has one scalar fieldhe inflator). _ply that this ansatz gives a consistent solution. However,
byThe Lagrangian and energy-momentum tensor are giveRe|ow we show that in the case of single field inflationary

1
L= Ea"@ﬁago—V(cp), a7 °It is possible to show that th&;; equations fori#j can be
satisfied only if we include the vector and tensor sectors of the
metric perturbations. However their magnitudes go to zero in the
Ty=0"pd,o—LF) . (18 long wavelength limit and hence, in this limit, they do not affect the
equations for scalar perturbations.
In writing the Einstein equations we keep the leading °Equation(22) implies that the cross product of two gradient vec-
terms in their gradient expansions, assuming that the waveoers vanishes, so the vectors must be in the same direction.
lengths are large. Naturally, in tf@,, andG;; equations, all "The integration constant can be absorbed(ip,t).
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models which initially satisfy the slow rolling condition, Eq.
(26) is indeed satisfied.
As one can easily see, in the linear regime Eg$) and

(26) lead to the vanishing of the non-adiabatic pressure de-

fined as

5pnad pF p (27)

Sp 5p>
P p
This is the condition derived if6,7] for the constancy of

for the perturbations.
Combining Eqs(24) and(26) gives

W'=4wGe'2 (28)

which can also be obtained by combining the Friedmann

equationg19) and (20).
After neglecting the gradient terms and using E(z))

and(26), both theGy, and G;; equations reduce to
47Gg'?—3(47Gg)’=—87GV(9p). (29

Thus we see that, in the long wavelength limit, Bg;

PHYSICAL REVIEW B3 123505

3 ——m——— 7

glp)

equation is consistent with the Friedmann equations given

that the fielde satisfies the generalized slow-rolling condi-

tion (24).

FIG. 1. The solid curve is a solution fg(¢) during the reheat-
ing era and the dashed curve\¥(¢)/(67G). The horizontal axis

As a matter of fact, this is what happens during slow-rollis in units of Planck mass while the vertical axis has arbitrary units.

inflation, when we have

1 V(ie) 1 dV(e)
3H Jde¢ _3¢' do

o'=- : (30

and hence Eq(24) is satisfied.

Because of this property, even after the end of inflation, as

long as the perturbation is in the super-Hubble regipk,

gs(e *y)
g/2

5
900 _ g

8L(X)=SyY—4mwG
g

H .
=5¢—H—(H5¢+ oY) ={(X). (32

remains a function ofp. The reason is that, using the field Thus, we have been able to generalize the Bardeen parameter

equation, we can track the evolution g¢fand ¢’ into the
reheating era, as functions of the initial during inflation.
By eliminating the initial ¢, it is possible to findy' as a
function of ¢ at any time. However it will not be a single-
valued function whenyp is oscillating. Figure 1 shows the
behavior ofg(¢) (solid curve during the reheating era, ob-
tained by solving Eq.(29). The dashed curve is
VV(¢)/(67G), the asymptotic limit ofg(¢) for ¢>m,.

Dividing Eq. (24) by Eq. (25) and integrating the result
with respect top, we find that

-1
8log(g)> do

Z(x)z¢—4wef ( (31

is an integration constant and as such does not depend
time.

It can easily be verified that for linear perturbatiafx)
reduces to the usual Bardeen paramétavhich is known to
remain constant for adiabatic super-Hubble m8des

8In linear perturbation theory§¢ is forced to be equal téy by
the off-diagonalG;; equations for all theories in which the off-
diagonal components df;; vanish to linear order, which is in par-
ticular the case for scalar field matter.

to the case of nonlinear long-wavelength fluctuations.

Let us now consider the case of multiple scalar fields. In
this case, Eq(21) changes to

(¢'),i=471G o 04, (33

where the subscri denotes the field index and is summed
over, if repeated. The consistency conditi@®) takes the
form
(34)

(¢2)i®a=(®a) jPai-

We see that if the fields satisfy the generalized slow rolling
condition

on

a
9(e.0), (39

(Pa a(Pa

then Eq.(34) is satisfied and we again arrive at H@5).
However, for the multiple field problem this result is not
general. Note that Ed35) is only a sufficient condition.

During inflation, if the effective mass of a field compo-
nent is larger than the Hubble constant, it is damped in a few
e-foldings. Otherwise, it slow-rolls down the potential. So a
few e-foldings after the onset of inflation, all the remaining
field components undergo slow-rolling and satisfy E2p).
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We conclude that dUring multlple-fleld inflation, we can still are constant. At the turning pointg‘, is continuous, and
use the above results. However, when the inflation ends, Egrence it is not possible that at these poffitsindergoes a

(35) breaks down and, unlike the single field case, we end up ~ L
with a mixture of scalar and vector metric perturbations, agump. The ff.i(.:t th_at is constant implies the absence of para-
described in Sec. VIL. metric amplification of.super_—Hubee modes..

We are also able to define the generalized Bardeen param- In contrast to th? single f.'EId case, as p0|nteq out at the
eter (31) for each slow-rolling path in field space, since the end .Of Sec. lll, this .formahsm. cannot be applied to the
evolution is effectively of single field nature along each path.Multiple-field case during reheating, and thus we may expect

However, the parameter does not remain constant after infl 10n-trivial behavior of the fields during this era. In fact, such
tion ends, since Eq35) breaks down ehavior has been observed for a specific two-field potential

In conclusion, we have shown that causally disconnecte&5’6'25'26' where param_etric ampli_fication O,f isocurvature
regions of the Universe evolve independently in the Sensgwode_s”can lead t(;].no?]:llnegr gmph\t/u”des of infrared modes.
that locally observable parameters satisfy the conservatiot'® Will return to this effect in Sec. VII.
law (31), which is a generalization of the conservation of the
Bardeen parameter in linear p(_arturbauon th_eory. As Meny, pacK REACTION OF ADIABATIC INFRARED MODES
tioned, our result is only true in the case @h genera)
non-linear scalar perturbations satisfying the slow-roll con- It has been claimefl6,17] that the growth of ¢2) during

dition. slow-roll inflation can lead to significant corrections to the
In the next two sections we consider some of the applicabackground Friedmann equations at second order in pertur-
tions of this result. bation theory(see alsd 27,2 for similar discussions based

on the back reaction of infrared gravitational waved/e
claim that, as a result of the analysis of Sec. lll, this effect,
though formally valid, cannot be identified by local observ-
ers as an effect of inhomogeneities. The reason is that, as we

It was recently suggestdd 9] that parametric resonance showed, for perturbations generated during slow-roll infla-
during the reheating phase of an inflationary Univei2@| tion, the local Friedmann equations are always satisfied.
may lead to an exponential amplification of super-HubbleNote that our analysis includes the effects of the leading
scale gravitational perturbations. If true, this would affect theback-reaction terms in the above-mentioned references. Ob-
usual predictions of inflationary model for observables suctviously, back-reaction terms which are of higher order in

as the matter power spectrum and the spectrum of cosmigradients are not included in our analysis.
microwave anisotropies. Due to the fact that inflation is followed by a radiation

In Ref.[21] it was shown that, although there is no cau-dominated era, modes which enter the Hubble radius after

sality constraint which prohibits the amplification of super-inflation are damped by the Hubble expansion. Conse-
Hubble ( but sub-horizonmodes during reheating, the effect quently, the phase space of constant amplitude perturbations
does not occur in a simple massive scalar field model ofs shrinking after inflation. This effect can smooth out the
chaotic inflation(i.e. with @=2). This result was shown to be density field so that it becomes of linear order again at some
true even beyond the linear analysis, using numerical methpoint in the radiation dominated era. This will happen in
ods[22]. Recently, a general no-go theorem for resonance ofnodels in which inflation does not last much longer than the
long wavelength scalar gravitational fluctuations in the con-minimal number of e-foldings required to solve the problems
text of a single scalar matter field theory was suggested i®f standard big bang cosmology. However, in many models
[23]. In this last reference, the effect was also investigated®f chaotic inflation, inflation lasts long enough, so that the
numerically for a matter theory with both quadratic and quarfémaining phase space at the time of equal matter and radia-
tic terms(see alsd24]). tion is large enough to give nonlinearity. However, even in
The problem with the analysis §23] or with every other this case there has not been enough time for the non-
analytical approach which is based on considering the evdinearities to enter the observable regisnb-Hubble scalgs
lution of £ (in the linear regimethrough the turning point of ~ This does not mean, however, that the presence of non-
¢ is that ¢ is ill-defined whene vanishes. However? is I|nea_1r|t|es has no effect at aII._As we will see in the_ne>§t
continuous at this point since the integrand of E2p) di- section, the process of generation of perturbations during in-
129 flation is influenced by nonlinear effects and thus the spec-

verges as¢— .~ so the integral is continuous. There- Lo ) .
9 . € ¢o . ; . trum is distorted compared to what would be predicted in
fore, ¢ is well defined through the turning. We now argue linear theory

thatZ is in fact constant throughout. For the argument we
refer back to Fig. 1 which shows a sketch of the time evolu-
tion of g(¢) during the period of oscillation of. During VI. EQUATION OF MOTION FOR STOCHASTIC

each time interval between the turning pointgnd hence INFLATION
In this section we will use coarse graining on the scale of
the Hubble radius to provide a new derivation of the equa-

This can be obtained by considering E2[1) close to the turning  tion of motion for stochastic inflatiofi8] which takes into
point. account the gravitational fluctuations.

IV. PARAMETRIC RESONANCE OF SUPER-HUBBLE
MODES DURING REHEATING
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Let us define the coarse-grained Bardeen paraméter,
in Fourier space as follows:

LK) =T(k)W (36)

aH
where the window functio®W(k) can be chosen to b%
k2 |72
a?H?

w (37

aH

PHYSICAL REVIEW B3 123505

Note that since is a metric perturbation variable, the above
equations correspond to metric back reaction yielding sto-
chastic dynamics.

Let us compare this calculation with the original one in
[8]. There, instead of the window functidB7), a step func-
tion was used. More importantly, gravitational perturbations
were neglected. As a result, the numerical factors are differ-
ent. In addition, in the original analysis the random variable
had a white noise spectrum whereas our noise has a finite
correlation time. In spite of these differences, we expect that
the qualitative behavior of the solutions will stay the same.

One major difference between our analysis and the usual

which is smooth on the Hubble scale. In a patch larger thamnalysis of stochastic inflatiofsee e.g[29]) is that if infla-

the Hubble radius but small enough so the non-linearity in
is negligible, we can usé (usual Bardeen parameténstead

of 8. Making use of the fact that backgrougds constant
in this patch we have

tion stops at some point, and consequently the generalized
slow rolling condition breaks dow(see the end of Sec. Il
then, as elaborated in Sec. VII, the evolution takes a nonlocal
form. In particular, the end of inflation in some region of
space can affect the inflating regions in an acausal way.
Limiting the analysis to the linear regime leads to the
standard results of the stochastic inflationary scenario.
Namely, since in the large picture different points in space

We can use our knowledge of the linear quantum genergjnqergo independent random evolution, we end up with a

tion of perturbationgSec. ) to find the statistical properties
of 7', with the result

— — 5H°
(e (Xut1) e (X ta)) = 48m20"2 F(Halxy— %[ H[t;—t5]),

(39

whereF(0,0)=1 andF(8,7)—0 asp or 7 goes to infinity

[more preciselyF(B,7)<1 if g>1 or =1]. The explicit

form of F is complicated and we do not write it down here.
Taking the time derivative of the definition @f[see Eq.

(31)], and using the fact that’' = —H=— /(87 G/3)V(¢)

during inflation, we get

-1
e

dlog(g)

(40)

Z’=—H—477G(

We can negleag’ in Eq.(29) to find g as a function oV (¢)

in the slow-roll approximation. Plugging this into the above

formula, we obtain the coarse-grained equation of motion:

dlog(V) 5 H?
&gcp B \/4:8?§(X't)'

Here, all quantities are coarse-grained, and the variaidea

¢'=—m:H (41)

scale invariant spectrum fdr (or 7) with a logarithmic cor-
rection in Fourier space due to the finite correlation length of
the random fielc€.

However, as argued in Sec. I, there is a large class of
scenarios which allow infrared nonlinear perturbations. As a
matter of fact, the main result of Sec. Il is that the cumulative
effect of the second term in E41) may become important
even when its magnitude is negligible. Hence, even when the
self-reproduction of the stochastic scenario does not take
place, infrared nonlinearities may be importah6].

This nonlinearity affects the generation of perturbations
by changing the background parameters which appear in the
amplitudes as well as the Gaussianity of the inhomogene-
ities. We postpone the calculation of this correction to a fu-
ture work.

VIl. VECTOR MODES

In this section we investigate the case in which the gen-
eralized slow-rolling conditior(24) or (35) is not satisfied.
For the general metric,

random Gaussian field whose two-point correlation function,nere

is given by

(&(xq,t1)E(xp, 1)) =F(Ha|x;— x|, H[t;—t5]). (42

OThis is only one example of a cutoff function. In general, one

can use any function which is close to one ksraH and tends to
zero ask goes to infinity fast enough to eliminate the ultraviolet
divergence.

ds?=N2dt*— y;;dx'dx, (43)
the O Einstein tensor elements are given by
GP=N""(K ;—KL), (44)
i 1Lk
Kj==3N"v v, (45
K=K!. (46)
For the metric used in Sec. Il
N:e¢, ’}/lj =e_2'/’5ij (47)
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and thus

Kij=4"vij - (48)

The G? equation is not satisfied in general. It is well
known that beyond linear order in perturbation theory, tensof,
and scalar perturbations mix. However, in our case we ca
not satisfy the equation by adding tensor perturbations. W
thus include vector metric perturbations in order to satisfy,

the G? equation.
The presence of vector modes would modikyas fol-
lows:

Kij:lp”yij‘i‘Ai;j‘i‘A]‘;i, (49)

whereA; is some vector field made up from the metric vari-
ables representing vector perturbations. Substituting this int

Eq. (44) leads to the followingz? equation:
2V —2R-A+VX(VXA)=87Ge'Vo (50

whereR is the Ricci tensor. IR vanishes, it is easy to findl
and ¢/ in Fourier space:

87G
Ak:_ k4 kX(kXCk), (51)
, —4i7G
W= T(k'ck)- (52
where
C,=87G f d3xe kX' Vo (53

is the Fourier transform of the right hand side of EsQ).
One can take thR term to the right hand side of E¢p0)
and write a perturbative expansion Rfor A and ¢'. We

PHYSICAL REVIEW B3 123505

bations in the case of topological defect formation during a
phase transition, where super-Hubble structures form in a
short time[3]. Another example considered [B,6,25 (see

the end of Sec. IY occurs in inflationary reheating, since
during multiple field reheating the generalized slow-rolling
ondition (35) breaks down. Note that in the back-reaction

"Galculation of [25] and in models in which the infrared
fhodes lead to nonlinearities, it is not enough to include only

scalar perturbations since vector perturbations are generated
as well.

VIIl. CONCLUSION

We have demonstrated that in many models of inflation
the large phase space of infrared modes leads to nonlineari-
ties, even when the amplitude of each Fourier mode is small.
Ve were able to find a solution of the Einstein field equa-
tions for nonlinear fluctuations which is exact to leading or-
der in the gradient expansion, and thus will be accurate to
describe the infrared modes. For this solution, we were able
to define a generalized Bardeen parameter which is con-
served in time.

As a first application of this formalism, we were able to
show that in models with a single matter field, there can be
no parametric amplification of super-Hubble cosmological
fluctuations during inflationary reheating. Applied to the
problem of back reaction of infrared modes, our solution
implies that the back-reaction effect is not locally identifiable
as an effect due to inhomogeneities since the local Fried-
mann equations are satisfied. We were able to use our for-
malism to give a re-derivation of the equation of motion
for stochastic inflation which takes into account the effects
of gravitational fluctuations. Finally, we have shown that
nonlinearities inevitably lead to the generation of vector
perturbations if ageneralized slow-rolling conditioins not
satisfied.
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