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Super-Hubble nonlinear perturbations during inflation
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We show that the nonlinear evolution of long-wavelength perturbations may be important in a wide class of
inflationary scenarios. We develop a solution for the evolution of such nonlinear perturbations which is exact
to first order in a gradient expansion. As a first application, we demonstrate that in single field models of
inflation there can be no parametric amplification of super-Hubble modes during reheating. We consider the
implications of the solution for recent discussions of the back-reaction effect of long wavelength perturbations
on the background geometry, give a new derivation of the equation of motion of stochastic inflation, and
demonstrate that if the~generalized! slow-rolling condition is not satisfied, then inevitably long wavelength
vector modes for gravitational fluctuations will be generated.
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I. INTRODUCTION

The hypothesis that causally unrelated regions of spa
time evolve independently is one of the cornerstones in
development of relativity and one of the basic assumpti
of all relativistic theories. As an implication of this hypoth
esis in cosmology we expect that perturbations with lo
wavelengths1 evolve independently at different points o
space, as if they were independent homogeneous patch
the Universe~see e.g.@1# and references therein!. This ex-
pectation has been explored in the linear theory of cos
logical perturbations. In this context, it is possible to der
integral constraints~see e.g.@2#! which imply that in the case
of adiabatic fluctuations there can be no generation of fl
tuation modes on super-Hubble scales. However, it is p
sible for entropy fluctuations to be generated on such sca
one well known example being the formation of cosmic d
fects during a phase transition which leads to super-Hub
structures~see e.g.,@3#!. Another example is the generatio
of axion fluctuations~see e.g.@4#!. Recently, the super
Hubble range effects of entropy fluctuations have be
widely studied in the context of inflationary reheating~see
e.g. @5–7#!.

The aim of this work is to investigate the process of str
ture formation in the non-linear regime, for inflationary mo
els based on a single scalar field. In Sec. II, we show that
presence of nonlinearities is inevitable in a wide class
inflationary models. In Sec. III we find a solution~which is
exact to leading order in the gradient expansion! for nonlin-
ear modes in the case when~but not only when! perturba-
tions satisfy ageneralized slow-rolling condition. This con-
dition is naturally satisfied during inflation. For our solutio

1Throughout this paper, we use the terms super-Hubble, infra
and long wavelength interchangeably. All refer to modes w
wavelengths larger than the Hubble radius.
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we can define a generalized Bardeen parameter which is
stant on scales larger than the Hubble radius. As a first
plication ~Sec. IV!, we demonstrate that there is no ampli
cation of long wavelength gravitational fluctuations duri
reheating. In Sec. V we discuss some implications of
solution for the back reaction of perturbations on the ba
ground geometry. In Sec. VI, the Langevin equation for s
chastic inflation@8# is re-derived in a way which includes th
effects of gravitational~and not just matter! fluctuations, us-
ing the results of Sec. III which can be self-consistently a
plied in an inflating Universe with nonlinear super-Hubb
modes. Finally in Sec. VII we demonstrate that in the case
which the generalized slow-rolling condition is violated, th
generation of vector modes is inevitable.

II. GENERATION OF FLUCTUATIONS

Perturbations are generated in the de Sitter phase o
inflationary Universe as a consequence of quantum vacu
fluctuations~see e.g.@9# for a comprehensive review!. The
analysis is based on the consistent quantization of the lin
ized metric and matter perturbations in a classical expand
background space-time. In this framework, it can be sho
that the Sasaki-Mukhanov parameterv @10,11#, defined as2

v5aFdw1S ẇ

H
DfG5

aẇ

H
z, ~1!

in the linear regime obeys the equation of motion of a fr
scalar field. Here,z is the Bardeen parameter@12#

z5f2
H

Ḣ
~Hf1ḟ !, ~2!

d
2The cosmological scale factor is denoted bya(t), the Hubble

expansion rate byH, and the scalar matter field byw.
©2001 The American Physical Society05-1
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wheref is the variable which describes scalar metric pert
bations in longitudinal gauge in a spatially flat universe:

ds25~112f!dt22a2~ t !~122f!d i j dxidxj . ~3!

The scalar sector is the dominant one for cosmological p
turbations generated through slow-roll inflation~see e.g.@13#
and references therein!.

The action for linearized metric and matter perturbatio
about a classical expanding background becomes@9# the ac-
tion of a free scalar fieldv with time-dependent mass~the
time dependence is determined by the background geom
and is negligible on scales smaller than the Hubble radi!.
Hence, the perturbations can be canonically quantized,
expectation values ofv ~and hence also ofz) can be easily
calculated~see e.g.@9#! once the state of the system is spe
fied. The state can be specified mode by mode in Fou
space. Our choice is the following: We fix the initial cond
tions for each Fourier mode when its wavelength is equa
the Planck length,3 and assume that we have vacuum exp
tation values at that time. This assumption is very similar
the usual choice of a vacuum state at the onset of inflat
since—at least for the usual dispersion relations@14,15#—the
wave function is almost constant on sub-Hubble scales.
advantage of our choice compared to the usual one is tha
do not extrapolate the physics above the Planck ene
However, for the usual dispersion relations for a free fie
the difference is immaterial. Using the equation of moti
for z in the inflationary era, we obtain the following expre
sion for ^z2&:

^z2&5E d3k

~2p!3

Hp
4

2k3ẇp
2 S 11

k2

a2H2D . ~4!

Note thatz contains the full information about the linearize
metric ~and matter! fluctuations~valid as long as the slow
roll approximation holds!.

Now we turn our attention to the infrared part of the spe
trum (k/aH!1) for which

f.2
Ḣ

H2
z. ~5!

Thus

^f2& IR5
Ḣ2

H4EIR

d3k

~2p!3

Hp
4

2k3ẇp
2

, ~6!

where the subscriptIR indicates that we only include infra
red modes.

Integrating the equation of motion for the backgrou
field and the Friedmann equations in the slow rolling regi
gives

3The values of the variables at this time are indicated by a s
script p, and they are functions ofk.
12350
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wp

w Vdw

V8
5mp

2logS k

amp
D , ~7!

wheremp5(8pG)21/2 is the Planck mass andV(w) is the
scalar field potential. Assuming a power law potential

V~w!5M4S w

mp
D a

, ~8!

we get

wp
25w222mp

2a logS k

amp
D . ~9!

Substituting in Eq.~6! and carrying out the integral give

^f2& IR5
a

48~41a!p2 S M

mp
D 4S w

mp
D aS w i

w D 41a

, ~10!

for uwu!uw i u, wherew i is the background field value whe
inflation starts.

We see that if inflation lasts long enough, i.e. iff i is large
enough, then̂ f2& IR can become larger than one and th
infrared perturbations can go nonlinear. As a matter of fa
although the amplitude of each mode may be small, due
the large phase space of infrared modes, the actual valu
f in real space may be greater than 1, and so we may no
allowed to use perturbation theory to expand the Einst
equations. The possible importance of nonlinear effects
the evolution of space-time was pointed out in@16,17#,
though with a different interpretation. We will return to th
issue in Sec. V.

Let us now study under which conditions^f2& IR is indeed
nonlinear. As a first step, note that the value ofM is con-
strained by the observational data. The amplitudeA of a
linear cosmological perturbation mode~measured in terms o
z) when it enters the Hubble radius after inflation is the sa
as when it exits the Hubble radius during inflation.4 Con-
sider, for example, the largest wavelength observable mo
the mode which is entering the Hubble radius today and
given by

k5a0H0.S M

TCMB
D S H0

mp
D ~aemp!, ~11!

where the subscript 0 refers to the value of quantities tod
TCMB denotes the present temperature of the microw
background, andae is the value of the scale factor whe
inflation ends. Then, combining Eqs.~4! and~9! gives us the
amplitude of the mode:

A5
Hp

4

ẇp
2

.S M

mp
D 4F logS TCMBmp

MH0
D G11a/2

. ~12!

b-

4Although this statement is conventionally taken to be true, th
are exceptions as has recently been shown for a certain clas
inflationary models~see Sec. IV and references quoted there!.
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SUPER-HUBBLE NONLINEAR PERTURBATIONS DURING . . . PHYSICAL REVIEW D63 123505
Thus we end up with

M

mp
.A1/4F672

1

4
logAG2(a12)/8

. ~13!

The value ofA is constrained by various observations,
particular by the amplitude of the cosmic microwa
anisotropies on large angular scales@18#, which give A
;10210.

A theoretical requirement for a successful inflationa
scenario is that all the observable modes must have ex
the Planck length during inflation. The consequence is
w i is larger thanwp for all the observable modes. Using Eq
~9!, ~12! and ~13!, this requirement becomes

w i.mpF logS TCMBmp

MH0
D G1/2

.mpF672
1

4
logAG1/2

~14!

~for this order of magnitude estimate we can seta51). In-
serting this constraint in Eq.~10! gives

^f2& IR.AF672
1

4
logAG31a/2

;1024.4110.93a, ~15!

at the end of inflation, forA;10210. We see that even i
inflation starts at the latest possible time which is allowed
theoretical or observational considerations~it is usually taken
to start much earlier!, ^f2& IR almost reaches the nonlinea
regime for a massless theory~i.e. for a54) just before re-
heating starts. If inflation starts at values off for which the
energy density is comparable to the Planck density, then
phase space of infrared modes is much larger and the
linear regime will be reached much earlier.

III. GRADIENT EXPANSION

We use the following ansatz for our metric:

ds25e2fdt22e22cd i j dxidxj , ~16!

which is a generalization of a metric with linear scalar p
turbations. This ansatz, though not a general solution, re
sents the most important sector of the metric since any s
metric can be continuously connected to a metric with lin
scalar perturbations which is the dominant sector in a U
verse with linear perturbations generated during slow-roll
flation @13#. We also consider the simplest model of mat
which has one scalar field~the inflaton!.

The Lagrangian and energy-momentum tensor are g
by

L5
1

2
]aw]aw2V~w!, ~17!

Tn
m5]mw]nw2Ldn

m . ~18!

In writing the Einstein equations we keep the leadi
terms in their gradient expansions, assuming that the wa
lengths are large. Naturally, in theG00 andGi j equations, all
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the gradient terms drop out5 and we are left with the Fried
mann equations for the above metric:

c825
8pG

3 S w82

2
1V~w! D , ~19!

22c913c8258pGS 2
w82

2
1V~w! D , ~20!

and of course the more interestingG0i equation:

~c8! ,i54pGw8w ,i ~21!

where 8 denotese2f(]/]t).
We immediately see that not everyw can satisfy the last

equation since the right hand side must be a perfect grad
The condition thatw must satisfy is

~w8! ,iw , j5~w8! , jw ,i , ~22!

or, equivalently,6

“w8}“w. ~23!

From Eq. ~23!, we can see that surfaces of constantw8
and constantw must be tangential to each other and con
quently are the same. This means thatw8 must be a function
of w, at least in the finite regions of space in which t
gradient ofw does not vanish:

w85
]

]w
g~w,t !, ~24!

whereg(w,t) can be any function ofw and t. Then theG0i
equation reduces to7

c854pGg~w,t !. ~25!

Since there is no explicit time dependence in this formalis
we assume thatg has also no explicit time dependence:

g~w,t !5g~w!. ~26!

From now on, we call Eq.~24! ~with no explicit time depen-
dence! the generalized slow-rolling condition due to its r
semblance to the field equation during the slow-rolli
phase. Note that at this point, we have not shown that
absence of time dependence is required in Eq.~26!, but sim-
ply that this ansatz gives a consistent solution. Howev
below we show that in the case of single field inflationa

5It is possible to show that theGi j equations foriÞ j can be
satisfied only if we include the vector and tensor sectors of
metric perturbations. However their magnitudes go to zero in
long wavelength limit and hence, in this limit, they do not affect t
equations for scalar perturbations.

6Equation~22! implies that the cross product of two gradient ve
tors vanishes, so the vectors must be in the same direction.

7The integration constant can be absorbed ing(w,t).
5-3
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models which initially satisfy the slow rolling condition, Eq
~26! is indeed satisfied.

As one can easily see, in the linear regime Eqs.~25! and
~26! lead to the vanishing of the non-adiabatic pressure
fined as

dpnad[ ṗG[ ṗS dp

ṗ
2

dr

ṙ
D . ~27!

This is the condition derived in@6,7# for the constancy ofz
for the perturbations.

Combining Eqs.~24! and ~26! gives

c954pGw82, ~28!

which can also be obtained by combining the Friedma
equations~19! and ~20!.

After neglecting the gradient terms and using Eqs.~24!
and ~26!, both theG00 andGi j equations reduce to

4pGg8223~4pGg!2528pGV~w!. ~29!

Thus we see that, in the long wavelength limit, theG0i
equation is consistent with the Friedmann equations gi
that the fieldw satisfies the generalized slow-rolling cond
tion ~24!.

As a matter of fact, this is what happens during slow-r
inflation, when we have

w852
1

3H

]V~w!

]w
5

1

3c8

]V~w!

]w
, ~30!

and hence Eq.~24! is satisfied.
Because of this property, even after the end of inflation

long as the perturbation is in the super-Hubble regime,w8
remains a function ofw. The reason is that, using the fie
equation, we can track the evolution ofw and w8 into the
reheating era, as functions of the initialw during inflation.
By eliminating the initialw, it is possible to findw8 as a
function of w at any time. However it will not be a single
valued function whenw is oscillating. Figure 1 shows th
behavior ofg(w) ~solid curve! during the reheating era, ob
tained by solving Eq. ~29!. The dashed curve is
AV(w)/(6pG), the asymptotic limit ofg(w) for w@mp .

Dividing Eq. ~24! by Eq. ~25! and integrating the resul
with respect tow, we find that

z̃~x![c24pGE S ] log~g!

]w D 21

dw ~31!

is an integration constant and as such does not depen
time.

It can easily be verified that for linear perturbationsdz̃(x)
reduces to the usual Bardeen parameterz, which is known to
remain constant for adiabatic super-Hubble modes8

8In linear perturbation theory,df is forced to be equal todc by
the off-diagonalGi j equations for all theories in which the off
diagonal components ofTi j vanish to linear order, which is in par
ticular the case for scalar field matter.
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dz̃~x!5dc24pG
gdw

g8
5dc2

gd~e2fċ!

g82

5dc2
H

Ḣ
~Hdf1dċ!5z~x!. ~32!

Thus, we have been able to generalize the Bardeen param
to the case of nonlinear long-wavelength fluctuations.

Let us now consider the case of multiple scalar fields.
this case, Eq.~21! changes to

~c8! ,i54pGwa8wa,i , ~33!

where the subscripta denotes the field index and is summe
over, if repeated. The consistency condition~22! takes the
form

~wa8! ,iwa, j5~wa8! , jwa,i . ~34!

We see that if the fields satisfy the generalized slow roll
condition

wa85
]

]wa
g~w,t !, ~35!

then Eq.~34! is satisfied and we again arrive at Eq.~25!.
However, for the multiple field problem this result is n
general. Note that Eq.~35! is only a sufficient condition.

During inflation, if the effective mass of a field compo
nent is larger than the Hubble constant, it is damped in a
e-foldings. Otherwise, it slow-rolls down the potential. So
few e-foldings after the onset of inflation, all the remainin
field components undergo slow-rolling and satisfy Eq.~35!.

FIG. 1. The solid curve is a solution forg(w) during the reheat-
ing era and the dashed curve isAV(w)/(6pG). The horizontal axis
is in units of Planck mass while the vertical axis has arbitrary un
5-4
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We conclude that during multiple-field inflation, we can st
use the above results. However, when the inflation ends,
~35! breaks down and, unlike the single field case, we end
with a mixture of scalar and vector metric perturbations,
described in Sec. VII.

We are also able to define the generalized Bardeen pa
eter ~31! for each slow-rolling path in field space, since t
evolution is effectively of single field nature along each pa
However, the parameter does not remain constant after in
tion ends since Eq.~35! breaks down.

In conclusion, we have shown that causally disconnec
regions of the Universe evolve independently in the se
that locally observable parameters satisfy the conserva
law ~31!, which is a generalization of the conservation of t
Bardeen parameter in linear perturbation theory. As m
tioned, our result is only true in the case of~in general!
non-linear scalar perturbations satisfying the slow-roll co
dition.

In the next two sections we consider some of the appl
tions of this result.

IV. PARAMETRIC RESONANCE OF SUPER-HUBBLE
MODES DURING REHEATING

It was recently suggested@19# that parametric resonanc
during the reheating phase of an inflationary Universe@20#
may lead to an exponential amplification of super-Hub
scale gravitational perturbations. If true, this would affect
usual predictions of inflationary model for observables su
as the matter power spectrum and the spectrum of cos
microwave anisotropies.

In Ref. @21# it was shown that, although there is no ca
sality constraint which prohibits the amplification of supe
Hubble~ but sub-horizon! modes during reheating, the effe
does not occur in a simple massive scalar field mode
chaotic inflation~i.e. with a52!. This result was shown to b
true even beyond the linear analysis, using numerical m
ods@22#. Recently, a general no-go theorem for resonanc
long wavelength scalar gravitational fluctuations in the c
text of a single scalar matter field theory was suggeste
@23#. In this last reference, the effect was also investiga
numerically for a matter theory with both quadratic and qu
tic terms~see also@24#!.

The problem with the analysis of@23# or with every other
analytical approach which is based on considering the e
lution of z ~in the linear regime! through the turning point of
w is that z is ill-defined whenẇ vanishes. However,z̃ is
continuous at this point since the integrand of Eq.~30! di-
verges as (w2w0)21/2,9 so the integral is continuous. There
fore, z̃ is well defined through the turning. We now argu
that z̃ is in fact constant throughout. For the argument
refer back to Fig. 1 which shows a sketch of the time evo
tion of g(w) during the period of oscillation ofw. During
each time interval between the turning points,z̃ and hencez

9This can be obtained by considering Eq.~21! close to the turning
point.
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are constant. At the turning points,z̃ is continuous, and
hence it is not possible that at these pointsz̃ undergoes a
jump. The fact thatz̃ is constant implies the absence of par
metric amplification of super-Hubble modes.

In contrast to the single field case, as pointed out at
end of Sec. III, this formalism cannot be applied to t
multiple-field case during reheating, and thus we may exp
non-trivial behavior of the fields during this era. In fact, su
behavior has been observed for a specific two-field poten
@5,6,25,26#, where parametric amplification of isocurvatu
modes can lead to non-linear amplitudes of infrared mod
We will return to this effect in Sec. VII.

V. BACK REACTION OF ADIABATIC INFRARED MODES

It has been claimed@16,17# that the growth of̂ f2& during
slow-roll inflation can lead to significant corrections to th
background Friedmann equations at second order in pe
bation theory~see also@27,28# for similar discussions base
on the back reaction of infrared gravitational waves!. We
claim that, as a result of the analysis of Sec. III, this effe
though formally valid, cannot be identified by local obser
ers as an effect of inhomogeneities. The reason is that, a
showed, for perturbations generated during slow-roll infl
tion, the local Friedmann equations are always satisfi
Note that our analysis includes the effects of the lead
back-reaction terms in the above-mentioned references.
viously, back-reaction terms which are of higher order
gradients are not included in our analysis.

Due to the fact that inflation is followed by a radiatio
dominated era, modes which enter the Hubble radius a
inflation are damped by the Hubble expansion. Con
quently, the phase space of constant amplitude perturbat
is shrinking after inflation. This effect can smooth out t
density field so that it becomes of linear order again at so
point in the radiation dominated era. This will happen
models in which inflation does not last much longer than
minimal number of e-foldings required to solve the proble
of standard big bang cosmology. However, in many mod
of chaotic inflation, inflation lasts long enough, so that t
remaining phase space at the time of equal matter and ra
tion is large enough to give nonlinearity. However, even
this case there has not been enough time for the n
linearities to enter the observable region~sub-Hubble scales!.

This does not mean, however, that the presence of n
linearities has no effect at all. As we will see in the ne
section, the process of generation of perturbations during
flation is influenced by nonlinear effects and thus the sp
trum is distorted compared to what would be predicted
linear theory.

VI. EQUATION OF MOTION FOR STOCHASTIC
INFLATION

In this section we will use coarse graining on the scale
the Hubble radius to provide a new derivation of the eq
tion of motion for stochastic inflation@8# which takes into
account the gravitational fluctuations.
5-5
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Let us define the coarse-grained Bardeen parameter,zc ,
in Fourier space as follows:

zc~k!5 z̃~k!WS k

aHD ~36!

where the window functionW(k) can be chosen to be10

WS k

aHD5S 11
k2

a2H2D 22

~37!

which is smooth on the Hubble scale. In a patch larger t
the Hubble radius but small enough so the non-linearity iz
is negligible, we can usez ~usual Bardeen parameter! instead
of dz̃. Making use of the fact that backgroundz̃ is constant
in this patch we have

ż̃5dż̃5 ż. ~38!

We can use our knowledge of the linear quantum gen
tion of perturbations~Sec. II! to find the statistical propertie
of z̃8, with the result

^z c̃8~x1,t1!z c̃8~x2,t2!&5
5H6

48p2w82
F~Haux12x2u,Hut12t2u!,

~39!

whereF(0,0)51 andF(b,t)→0 asb or t goes to infinity
@more precisely,F(b,t)!1 if b@1 or t@1#. The explicit
form of F is complicated and we do not write it down her

Taking the time derivative of the definition ofz̃ @see Eq.
~31!#, and using the fact thatc852H.2A(8pG/3)V(w)
during inflation, we get

z̃852H24pGS ] log~g!

]w D 21

w8. ~40!

We can neglectg8 in Eq. ~29! to find g as a function ofV(w)
in the slow-roll approximation. Plugging this into the abo
formula, we obtain the coarse-grained equation of motio

w852mp
2H

] log~V!

]w
2A 5

48

H2

p
j~x,t !. ~41!

Here, all quantities are coarse-grained, and the variablej is a
random Gaussian field whose two-point correlation funct
is given by

^j~x1 ,t1!j~x2 ,t2!&5F~Haux12x2u,Hut12t2u!. ~42!

10This is only one example of a cutoff function. In general, o
can use any function which is close to one fork,aH and tends to
zero ask goes to infinity fast enough to eliminate the ultraviol
divergence.
12350
n
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Note that sincez is a metric perturbation variable, the abov
equations correspond to metric back reaction yielding s
chastic dynamics.

Let us compare this calculation with the original one
@8#. There, instead of the window function~37!, a step func-
tion was used. More importantly, gravitational perturbatio
were neglected. As a result, the numerical factors are dif
ent. In addition, in the original analysis the random varia
had a white noise spectrum whereas our noise has a fi
correlation time. In spite of these differences, we expect t
the qualitative behavior of the solutions will stay the sam

One major difference between our analysis and the us
analysis of stochastic inflation~see e.g.@29#! is that if infla-
tion stops at some point, and consequently the general
slow rolling condition breaks down~see the end of Sec. III!,
then, as elaborated in Sec. VII, the evolution takes a nonlo
form. In particular, the end of inflation in some region
space can affect the inflating regions in an acausal way.

Limiting the analysis to the linear regime leads to t
standard results of the stochastic inflationary scena
Namely, since in the large picture different points in spa
undergo independent random evolution, we end up wit
scale invariant spectrum forz ~or z̃) with a logarithmic cor-
rection in Fourier space due to the finite correlation length
the random fieldj.

However, as argued in Sec. II, there is a large class
scenarios which allow infrared nonlinear perturbations. A
matter of fact, the main result of Sec. II is that the cumulat
effect of the second term in Eq.~41! may become importan
even when its magnitude is negligible. Hence, even when
self-reproduction of the stochastic scenario does not t
place, infrared nonlinearities may be important@16#.

This nonlinearity affects the generation of perturbatio
by changing the background parameters which appear in
amplitudes as well as the Gaussianity of the inhomoge
ities. We postpone the calculation of this correction to a
ture work.

VII. VECTOR MODES

In this section we investigate the case in which the g
eralized slow-rolling condition~24! or ~35! is not satisfied.
For the general metric,

ds25N2dt22g i j dxidxj , ~43!

the 0i Einstein tensor elements are given by

Gi
05N21~K ,i2Ki ; j

j !, ~44!

where

K j
i 52

1

2
N21g ikġk j , ~45!

K5Ki
i . ~46!

For the metric used in Sec. III,

N5ef,g i j 5e22cd i j ~47!
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and thus

Ki j 5c8g i j . ~48!

The Gi
0 equation is not satisfied in general. It is we

known that beyond linear order in perturbation theory, ten
and scalar perturbations mix. However, in our case we c
not satisfy the equation by adding tensor perturbations.
thus include vector metric perturbations in order to sati
the Gi

0 equation.
The presence of vector modes would modifyK as fol-

lows:

Ki j 5c8g i j 1Ai ; j1Aj ; i , ~49!

whereAi is some vector field made up from the metric va
ables representing vector perturbations. Substituting this
Eq. ~44! leads to the followingGi

0 equation:

2“c822R•A1“3~“3A!58pGw8“w ~50!

whereR is the Ricci tensor. IfR vanishes, it is easy to findA
andc8 in Fourier space:

Ak52
8pG

k4
k3~k3Ck!, ~51!

ck85
24ipG

k2
~k"Ck!, ~52!

where

Ck[8pGE d3xe2 ik"xw8“w ~53!

is the Fourier transform of the right hand side of Eq.~50!.
One can take theR term to the right hand side of Eq.~50!

and write a perturbative expansion inR for A and c8. We
conclude that for general nonlinear scalar field perturbati
the metric which satisfies the Einstein equations, in gene
must include nonlinear vector perturbations. One known
ample of this phenomenon is the formation of vector pert
12350
r
n-
e

y

to

s
l,

x-
r-

bations in the case of topological defect formation during
phase transition, where super-Hubble structures form i
short time@3#. Another example considered in@5,6,25# ~see
the end of Sec. IV! occurs in inflationary reheating, sinc
during multiple field reheating the generalized slow-rolli
condition ~35! breaks down. Note that in the back-reacti
calculation of @25# and in models in which the infrare
modes lead to nonlinearities, it is not enough to include o
scalar perturbations since vector perturbations are gene
as well.

VIII. CONCLUSION

We have demonstrated that in many models of inflat
the large phase space of infrared modes leads to nonlin
ties, even when the amplitude of each Fourier mode is sm
We were able to find a solution of the Einstein field equ
tions for nonlinear fluctuations which is exact to leading
der in the gradient expansion, and thus will be accurate
describe the infrared modes. For this solution, we were a
to define a generalized Bardeen parameter which is c
served in time.

As a first application of this formalism, we were able
show that in models with a single matter field, there can
no parametric amplification of super-Hubble cosmologi
fluctuations during inflationary reheating. Applied to th
problem of back reaction of infrared modes, our soluti
implies that the back-reaction effect is not locally identifiab
as an effect due to inhomogeneities since the local Fr
mann equations are satisfied. We were able to use our
malism to give a re-derivation of the equation of moti
for stochastic inflation which takes into account the effe
of gravitational fluctuations. Finally, we have shown th
nonlinearities inevitably lead to the generation of vec
perturbations if ageneralized slow-rolling conditionis not
satisfied.
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