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Inflationary preheating and primordial black holes
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Preheating after inflation may overproduce primordial black h@RE&H’s) in many regions of parameter
space. As an example we study two-field models with a massless self-interacting inflation, taking into account
second order field and metric back reaction effects as spatial averages. We find that a complex quilt of
parameter regions above the Gaussian PBH overproduction threshold emerges due to the enhancement of
curvature perturbations on all scales. It should be possible to constrain realistic models of inflation through
PBH overproduction although many issues, such as rescattering and non-Gaussianity, remain unsolved or

unexplored.
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[. INTRODUCTION back reaction ends the resonant growth yofluctuations.

This is a crucial issue since strong preheating is generic in
The issue of whether initial conditions at the Planck eramany models of inflation. However, Green and Malik used
were suitable for the onset of inflation is both complex andthe results of 7] for the estimate of the time at which back
controversia[1,2]. With these subtleties aside, there remainsréaction ends the initial resonance. As they point out this
a cavernous space of possible inflationary moda]s The  estimate does not include metric perturbations or rescattering
requirement of a graceful exit from the cold inflationary @nd hence could be misleading.
phase into an acceptable radiation-dominated Friedmann- Here we present first estimates of PBH production includ-
Lamaitre-Robertson-WalkeiFLRW) universe has proven a ing back reaction computed dynamically. We find that while
powerful filter on this model space. preheating may lead to over-production of PBH'’s in some
Failure to exit gracefully spelled the end of the old infla- fegions of parameter space, the result is sensitive to many
tionary scenari¢4], is perhaps the major stumbling block in subtle issues.
pre_big_bang mode|§]' and continues to p|ague String and To place our methods in context, consider Flg 1 which
supergravity models of inflation through the threat of over-shows the different numerical studies of preheating under-

production of dangerous relics such as moduli and gravitino§ken in the literature. The eventual goal of these studies is a
[6]. fully nonlinear analysis of multifield preheating including

Perhaps the most radical way to end inflation is via preimetric perturbations. So far this has been achieved without
heating(see, e.g[7]), in which runaway particle production Metric perturbationgno ®)—often with simplified expan-
occurs in fields coupled nongravitationally to the inflaton.Sion dynamics—through lattice simulatioh81]. The fur-
This explosive growth of quantum fluctuations drives similarthest the community has progresg4d] in solving the full
resonances in metric perturbations on scales which range
from cosmological to sub-Hubble].

It is now recognized that in certain models preheating can
alter the predictions of inflation for the cosmic microwave
background (CMB) [9-13 by exponentially amplifying
super-Hubble metric perturbations. This does not violate
causality but depends sensitively on the preceding inflation-
ary phase which determines the spectrumydfuctuations
[14-18. In this paper we discuss what appears to be a more
robust mechanism for constraining models of preheating—
over-production of primordial black hold®BH's).

The idea that the amplification of metric perturbations
during preheating would lead to enhancement of PBH abun-
dances was raised early 8] and has been alluded to fre-
quently since; e.g[14,19. Recently Green and Mali20]
have used a semi-analytic approach which incorporates sec-
ond ordery field fluctuations to study PBH formation in a
two-field massive inflaton model. FIG. 1. A schematic figure showing the numerical approaches to

Their results suggest that during strong preheatig 1 preheating with numbers in brackets denoting appropriate refer-
[7]), PBH formation could violate astrophysical limits before ences. See the text for discussion.

[12,13,16] [13,14]
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Einstein field equations is in a model with plane wave sym- Preheating
metry and a single scalar field.

An alternative to full lattice simulations of preheating is
the use of the Hartree, lardé-and mean field approxima-
tions [22]. Recently the Hartree approximation has been
combined with the linear approximation for metric perturba-
tions @ [12,17,18 and, in[13,14], with the second order
metric perturbations formalism of Abramet al. [23]. It is
this latter approach that we adopt. y

Immediate goals are fully nonlinear spherically symmetric y’
simulations suitable for studying individual PBH formation
(c.f. [24]) and inclusion of rescattering effects in the pres-
ence of metric perturbationsh. The latter requires going Gaussian
beyond the Hartree approximation and evaluating double and
triple convolutions.

B approximation

FIG. 2. An illustration of primordial black hol¢PBH) forma-
Il. THE MODEL tion during preheating due to growth of density perturbations. The
PBH event horizon is schematically shown by the white ring in the
final panel. Astrophysical limits on PBH’s constragi the ratio of
N 2 PBH to total energy density. To constrain theory one needs to map
V(g x)= _¢4+ g_¢2X2, (2.1) B into _the mass_ variance, which |_s most easn_y achieved Wlth a _
4 2 Gaussian or chi-squared assumption for density perturbations. It is

. ) . o ) o that we calculate in our simulations.
where ¢ is an inflaton field. During inflationy decreases

rapidly towards zero ify>/\>1, in which case the tempera-  \ye include back reaction effects to second ordebath

ture anisotropies in the CMB simply scale AT/T~X.  field and metric perturbationg23], which implies that we
We therefore choose a self-coupling f=10"*%. During  jntegrate coupled integro-differential equations. The precise
preheating,y and oy, grow exponentially in very specific strycture of these equations and additional details can be
geometric channels or resonance bands which are well URpyund in the Appendix anfil2—14,23. Here we illustrate the

derstood in terms of Floquet theofg5,10. _ skeletal structure of the system, which has the form
We assume a flat background FLRW geometry with per-

turbations in the longitudinal gaud8]:

We consider the two-scalar field chaotic inflation model

X=F(X,(Y?)),
ds?=—(1+2®)dt*+a%(1-2®)5;dxdx, (2.2
v 2
where® = ®(x,t), the natural generalization of the Newton- V=GOV
ian potential describes scalar perturbations, amda(t) is
the scale factor. We decompose the scalar fields into homo-
geneous parts and fluctuations a@¢t,x) — ¢(t) + 5o (t,x)
and y(t,x)— x(t) + ox(t,x). Fpert: Fper1(<5¢2>’<5)(2>v<q)2>1 o), (2.9

The structure of the linearized Einstein field equations for
this system can be schematically written in terms of twowhere the variance is defined by
vectors: one for the FLRW background dynamicé
=(¢,¢,x,x,a,a), and one for the perturbation variables in
Fourier spaceY = (8¢y, by, Sxx Ox, Pu. L1

While we solve the system of linearized Einstein field
equations in the longitudinal gauge, it is convenient to calfor any field ¢. F and G are nonlinear functions of the
culate PBH constraints in terms of the curvature perturbatio’patially homogeneous background veckorand the vari-
i rather than®,. {, is defined in terms ofb, and the ances of the components ¥t The complete system is inte-
Hubble parameteli=a/a, by grated from 50e-folds before the end of inflation to provide
the appropriate initial conditions for preheating. The initial
values at the start of inflation are chosendas 4m, and x
=1O‘3mp, with conformal vacuum states for the
fluctuations Including the field variances ensures total en-

and is usually conserved on super-Hubble scales in the adi§'dY conservation at 1-loop.

batic single field inflationary scenario. In the multifield case

which we consider in this paper, this quantity can change

nonadiabatically due to the amplification of isocurvat(ee- lUsing the initial conditiony=10"®my; we reproduced the results
tropy) perturbationgsee Fig. 2 of Ref.[13].

F=Fpom™ Fpert-

1
<<>2>sﬁ k2| ¢ |2dk, (2.5

H .
ngq)k—ﬁ(H‘bﬁ‘q)k)a (2.3
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FIG. 3. Threshold PBH formation—the growth af, Zk
=k¥%,, and Sy, =k¥25x,/my for a super-Hubble modec
=k/(\\ o) =10"? vs dimensionless timg= \\ o7 in the case
g%IN=2.5, wheregy=0.1m,, is the value of the inflation when it
begins to oscillate coherently. With the cholce=aH in the win-

dow functionW(kR) = exp(—k?R2/2), & just reaches the threshold
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FIG. 4. The power spectrum dfat the end of preheating for the
values ofg?/\ = 2,50 withk, =aH. Since the inflationary suppres-
sion of y becomes stronger @&/ is increased, the growth df, at
long wavelengths is suppressed. Note also the dominance of the
g%/\=2 modes at sub-Hubble scales 1. Inset: The evolution of
Sxx for a super-Hubble modec=k/(\\ ¢p)=10"2 for g?/\
=2,50. The suppression of the initial conditions, due to the preced-

o, =0.03 for the PBH formation for chi-squared first order distri- ing inflationary phase in the heavy C@%)\ZSO, is evident.

butions.

Ill. PRIMORDIAL BLACK HOLE CONSTRAINTS

Since PBH's form from large density fluctuatiof6], it

the excitement of field and metric perturbations during pre-
heating. We solved the Einstein equatid@s?) numerically,
varying the ratiag?/\, and evaluated the mass variance with

is an obvious concern that preheating might encounter progWo cutoffsk, =aH andk, =10aH to investigate sensitivity
lems with PBH constraints arising from the Hawking evapo-t0 cutoff effects.

ration of small PBH’s or from overclosure of the universe

(Qpg>1) for heavy PBH's.

Wheny fluctuations are amplified during preheating, this
stimulates the growth of the metric perturbatieh,. On

To quantify this suspicion one needs to compute the masg2Smological scales this effect is sensitive to the suppression

function g [27,28:

=pﬂ*=pr(5)da,

pTot 8¢

(3.9

whereP(6) is the probability distribution of the density con-
trast, 6, and &, (=0.7) [29], is the critical value at which
PBH formation occurs in the radiation dominated era.
Usually one assumes a Gaussian distributiBis)
=1/(\2mwo)exd — 8%(267)], whereo is the mass variance at
horizon crossing. Observational constraints imply tiat

<10 2 over a very wide range of mass scales, which trans-

lates into a bound on the mass varianceref o, =0.08. o

of y and Sy, modes in the preceding inflationary phase.
Wheng?/\= (1), this suppression is weak since tfe

field is light[10], and once the long-wavéy, modes grow

to of order ¢y during preheating, super-Hubble, and ¢,

are amplified until back reaction effects shut off the reso-

nance. This amplification occurs in the regior:g?/\ <3

[10-13, where thek=0 modes lie in a resonance band. The

increase inf, leads to a corresponding growth of the mass

varianceo which can reach the threshold, =0.03 for 1

<g?/A<3 and 6<g?/A<10 with the cutoff set atk,

=aH, i.e., around the Hubble scaflsee Fig. 3.

As g?/\ is increased, thg field becomes heavy and sup-

pressed during inflation. This restricts the amplification of

>, corresponds to PBH overproduction in the GaussiarfuPer-Hubble metric perturbatiop$3] despite the fact that
distributed case. When the distribution is instead first ordef® k—0 mode of 5y, lies in a resonance band fox(2n

chi-squared—an approximation to tlyedensity fluctuations
in preheating(see the later discussigrsthe threshold is
o, =0.03[20].

—1)<g?r<n(2n+1), n=1,23... [25], as is evident
from Fig. 4. However, since sub-Hubb#&y, modes are not
suppressed during inflatidii4,9], ®, and{, on sub-Hubble

Defining the power-spectrum of the curvature perturbaScales do exhibit nonadiabatic, resonant growth g
tion as P,=k’|{J%/(27%), the mass variance can be ex- >1,” which leads to growth ob.

pressed af20,30

4
=[5

9 (3.2

JREETTE
Oa_H’Pg( )?

We choose a Gaussian-filtered window functig(kR)
=exp(—k?R%2) whereR=1k, is the artificial smoothing
scale[30]. We can expect an exponential increase alue to

However, we daot find that this is significant enough to
lead too> o, for g?/A>1, except for very short intervals

around$=0, in contrast to the expectations [&0]. How-

2We have reproduced the result that the homogeneous part of the
x field is amplified by the second order couplings betwégnand
Sxk [14] despite of the inflationary suppression.
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FIG. 5. The mass varianae vs g%\ for two window function FIG. 6. The smoothed dependence of the final mass variance

cutoffsk, =aH andk, = 10aH. The threshold ofr, =0.03 in the N the initial condition,y; , 55 e-folds before the start of preheating
chi-squared distributed case is shown and is marginally crossed fdP" 9°/A=2,50. Note the relatively weak dependence in both cases.
the regions aroung?/\~2 andg?x~8 whenk, =aH. Fork, _ N _
=10aH a quilt of regions above the Gaussian threshejd=0.08  Bunch-Davis conditiony,~ 1/\w,~1/\/g¢, we can esti-
emerges which coincide closely witif/\ = 2n?, corresponding to  mate ( x?)=1/27?[dkI| x,|? to be ~k3/(g¢) if the vari-

Flogquet indices with maxima at longest wavelengths. ance is super-Hubble dominated during inflation, and where
k, =H is the natural cutoff at the Hubble scale.
ever, when we enlarge the cutoff frequengyto 10aH, we Now if inflation is driven by then HZZV(¢)/m§| and

do find 0>0.08 in wide ranges of parameter spasee Fig. e find X2=V(4)¥%(g¢m3). For the potential2.1) this

5). Somewhat surprisingly, these super-threshold regions aligsds to the estimates ~ 10 °m,, for g2/A=0(1) andy;
all clustered around the super-Hubble resonance bands mlo—sg—l/zmpl for g2/A>1 if vse take A~ 1013 and ¢

2
g“/\ space. ~4my,.
(3) Choose the value of; which leads to a stationary
IV. INITIAL CONDITIONS FOR THE  x FIELD distribution in eternal inflatiorfwhere the classical drift and

. . . . tum fluctuations are balangédAssuming quantum
An issue of general importance which has been little studJ4a"Mur AN
9 b fluctuations §¢~H/27 on characteristic time scalest

ied is that of initial conditions for noninflaton fields at the _1 . 3172 298 N 32 Ay 23
startof inflation. In our model these fields are represented by~ one arrives al;~H (9" )ZN)‘ ¢"/(g"my) and
x and the initial value is set 58-folds before the end of hencfmxj; 10 ‘19 my  for g/A=0(1) and ;i
inflation. This problem has two facets—the initial value of ~10 9" “mp for g“/A>1.

the background, or vacuum expectation valueypaind the (4) Finally we may choose the value af which corre-
initial value of the distribution of fluctuations, i.e3y, . sponds to the instantaneous minimum of the potential. It sug-

A sensible choice for the latter is the Bunch-Davis9€StSxi=0. This argument has several problems, the most
vacuum, but it is the initial value of the homogeneous part ofundamental of which is that the system is not in equilibrium
x Which is of the most importance, sinceyit=0 (the mini-  Since they field is not strongly coupled except far®/\
mum of the potentialno resonance can occur at linear order.>1:

We have found four suggestions for setting the initial D€Spite the wide range of possible initial valugg, at
value, y;, as follows: the start of inflation, Fig. 6 shows that the final mass vari-

(1) Choose the value of which maximizes the probabil- aNC€, and hence the probability of PBH overproduction, de-
ity distribution in eternal inflation for fixed large values of Pends rather weakly og; .
the inflation (> 1m,) at a specific time. Since the regions

with the largest Hubble constant dominate the distributiony. POTENTIAL PROBLEMS AND UNRESOLVED ISSUES

[31] this corresponds to choosing>1m,, i.e., super- .
Planckian chaotic initial conditions foy. Our results suggest that PBH overproduction maybe

This suggestion is, however, sensitive to the choice of #8neric in strong preheating. However they can only be con-
hypersurface for setting the initial conditions. If one definesSidered as preliminary for a number of reasons.
initial conditions on the hypersurface of energy density equal There are at least two fields critically involved in preheat-
to the Planck energy, for instance, then the Hubble constarffd- Even if the inflationary fluctuations are Gaussian, the
will likely be maximized by placing all energy into the field fluctuations induced by preheating are typically not. If she
with the flatest potential, rather than distributing it among thefi€!d has no vacuum expectation value, its density fluctua-
various fields, some of which may have steep potentials. Thifons are roughly< 5y, so it is approximately chi-squared if
will lead to vanishingly small initialy unlessy is a good
inflation, i.e.,g?<\.

(2) Choosey; to satisfy y?=(x?) [13]. If we use the 3We thank Alan Guth for this suggestion.
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Sy is Gaussian distributed. As discussed above, we jake parameter ranges where standard Gaussian and chi-squared

#0. The recent results d32] suggest thaty is Gaussian thresholds for PBH formation are exceeded.

distributed before rescattering sets in and hence the density Nevertheless, the results are not unambiguous. We dis-

perturbations would be Gaussian, at least while dominatedovered a significant sensitivity to the window function cut-

by linear fluctuations. off, k, , and since preheating is expected to lead to non-
Rescattering leads to non-Gaussian distributions and tGaussian fluctuations, it is not clear how realistic the

8¢= x? [7]. The applicability of the criteriom> o, there-  Gaussian threshold for PBH formation is. Nevertheless, PBH

fore depends largely on when PBH formation actually takeoverproduction constraints are very robust. The study of

place—before or after rescattering. Further, the density flucPBH’s in preheating is an exciting area which may lead to

tuations may go nonlinear. Siné=[ — 1,0) this necessarily strong constraints on realistic inflationary models.

skews the distribution, similar to the toy model discussed in We note that there are a number of possible escape routes

the second reference ¢27]. Non-Gaussianity may drasti- to preserve preheating but avoid PBH overproduction. Fer-

cally alter the relationship betweghand o [27,33], chang-  mionic preheating is very unlikely to lead to PBH formation

ing o, and requiring the use of higher-order statistics. unless the fermions are extremely massive. Similarly, instant
In preheating, the Hubble radius is vastly smaller than thepreheating 34], which draws energy away from thefield

true particle horizon and resonance bands often cover thelmost immediately, seems likely to stall PBH formation, as

complete range of scales. Predicting the mass spectrum abes a largee self-interaction.

PBH's created during preheating is therefore a subtle issue. On the other hand, since growth ¢f and o is seeded

Crudely one expects a wide range of PBH masses to be préhrough isocurvature and entropy perturbatidds$], it is

duced, even without criticality argumenit80]. This is re- possible that other models of reheating, such as nonoscilla-

lated to our results showing cutof, , sensitivity. The in- tory models[35], which lead to significant isocurvature

crease inr whenk, is altered fromaH to 10aH reflects the modes, may also have a PBH overproduction problem.

important contributions of sub-Hubble modes. Does this nec- Nevertheless, the precise scenario of the PBH formation

essarily imply that the resulting PBH’s are very small? If so,during preheating can only be understood properly by over-

they are not constrained since they evaporate harmlessisoming two serious hurdles¢ understanding the probabil-

long before nucleosynthesis. ity distribution of density fluctuations during preheating, and
We have not included rescattering. This is known to en<ii) going to fully nonlinear simulations of resonant PBH

hance variances over the Hartree approximation at smafbrmation which include rescattering and nonlinear metric

resonance parameters, in the absence of metric perturba- perturbations.

tions [21]. For g>1 however, the situation is reversed and

variances are overestimated by the Hartree approximation. ACKNOWLEDGMENTS

Whether these results are stable to inclusion of metric per-

turbations is unknown, but this may provide a way to avoid We thank Christopher Gordon, Alan Guth, Anne Green,

PBH overproduction since it should filter throughgpand ROy Maartens, Kei-ichi Maeda, Karim Malik, Masaaki

o Morita, and Takashi Torii for useful discussions and com-
Figure 5 showsr as a function ofg?/\. The value ofc ~ Ments.

plotted is its maximum at the end of preheating. Howewer,

does grow larger than this value, instantaneously exceeding APPENDIX: DETAILED FORM OF THE EVOLUTION

0.01, even fork, =aH, when ¢=0. We choose the more EQUATIONS

conservative route of not taking these as the true maxima

but the question remains, can largeattained for very short

periods, lead to PBH formation?

" In this appendix we present the evolution equations in
detail. We include second order field and metric back reac-
\ , : . tion effects[23] in the background equations, which are

We solved they field equation, including second order combined with the Hartree approximatiof22].

terms such agd dx) [14]' Initially 5X_a_ndCI> are co_r_related, Then the Hubble parameter and homogeneous parts of the
but when they fluctuations are sufficiently amplified, they scalar fields satisfy13,14

are well described by classical stochastic wa\ieq, which

may be uncorrelated with metric variables. It is uncertain 87G
that contributions of second order metric terms should beH2=——
included during such classical regimes. Since this issue af- 3
fects y rather significantly, the quantum to classical transi- 1 1 1 _
tion appears to be of quantitative importance, deserving fur-  + = (8% + == ((Vox)2) + ~ N (p*+ 6% 5¢7)
ther study. 2 2a 4

1.1 . 1 1
§¢2+ §<5¢2>+ z—az<(V5¢)2>+ §X2

+3(5 22) 1 = g2 A+2(N P>+ PP hx*) (DS

VI. CONCLUSIONS (66%)°)+ 597XV +2(N "+ g"dx ) (P 5¢)
We have studied primordial black hol€BH) formation ) ] 3

during preheating using numerical simulations of the per- +202p%x (D Sx) |+ AH(D D) — (D2) + ;((VCDV),

turbed Einstein field equations including second order field

and metric back reaction effects. We found that there exist (A1)
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(p+3H@)(1+4(D2)+ N p(p?+3(542) +9%(x?
+(8X%)) p—2(D Sp) — A D 5p) — 6H(D 5¢b)

L 2
+4¢<q><b>—gz<q>v2(5¢)>=o, (A2)

(X+3HX)(1+4(D%) +g%(p?+3(54%)) x— 2(P 5)
— 4D 5y) — BH(D 6x) + 43 (D D)

2
— (OVE(5x))=0, (A3)

PHYSICAL REVIEW D63 123503

. . K2
S+ 3H S+ EZ+3)\(¢2+<5¢2>)
-¥9%x2+<5xzw}5¢k
=4¢Dy+2(h+3Hp)Dy—29%hx Sxi
(A4)
k2
Oxx+3H o)+ 52+92(¢2+<5¢2>)}5Xk
=43 Dy +2(x+3Hx) D — 202 x b,
(A5)
O +HD, =47G( S+ ¥ Sxi)- (AB)

— _2 . ) . .
Whefeel.— Mpi 1 Nt(.EV\lltOI"I N grawtlatlonil co?ifnt. Note th?t IWe find from Eq.(A6) that metric perturbations grow
() IMplies a spatial average. in spite of the exponen 'aandé)(k fluctuations are amplified during preheating, and the
suppression during inflation, operative when thdield is

. N x-dependent source term exceeds thelependent one.
heavy @*/A>1), thex field can be significantly enhanced \when field and metric fluctuations are sufficiently amplified,

in the presence of the second order metric back reactioghe coherent oscillations of the inflation condensateare
terms in Eq.(A3), as pointed out in Ref14]. _ destroyed. The entire spectrum of fluctuations typically
The Fourier transformed, perturbed Einstein equations argoves out of the dominant resonance band and the resonance

is shut off.
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