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Trans-Planckian problem of inflationary cosmology
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In most current models of inflation based on a weakly self-coupled scalar matter field minimally coupled to
gravity, the period of inflation lasts so long that, at the beginning of the inflationary period, the physical
wavelengths of comoving scales which correspond to the present large-scale structure of the Universe were
smaller than the Planck length. Thus, the usual computations of the spectrum of fluctuations in these models
involve extrapolating low-energy physics~both in the matter and gravitational sector! into regions where this
physics is not applicable. In this article we study the dependence of the usual predictions of inflation for the
spectrum of cosmological fluctuations on the hidden assumptions about super-Planck scale physics. We intro-
duce a class of modified dispersion relations to mimic possible effects of super-Planck scale physics, and find
that, given an initial state determined by minimizing the energy density, for dispersions relations introduced by
Unruh the spectrum is unchanged, whereas for a class of dispersion relations similar to those used by Corley
and Jacobson~which involve a more radical departure from the usual linear relation! important deviations from
the usual predictions of inflation can be obtained. Some implications of this result for the unification of
fundamental physics and early Universe cosmology are discussed.

DOI: 10.1103/PhysRevD.63.123501 PACS number~s!: 98.80.Cq, 98.70.Vc
ica

n
r
in
t

e
t

ca
su

elf
In

th
a
e
a

a
th
s
i-
b

n.
uld

ing

ical
is

ry

n-

the
by
-
lds

ng
est.
rum

of
nc-

ng,
ates
c-
I. INTRODUCTION

The inflationary Universe scenario@1# is the first theory of
the very early Universe to provide a mechanism@2# for the
production of density fluctuations on scales of cosmolog
interest based on causal physics~see also Ref.@3# for initial
ideas!. The key point is that during the period of inflatio
fixed comoving scales are stretched exponentially compa
to the Hubble radius. Thus, the wavelengths correspond
to the present large-scale structure in the Universe and to
measured cosmic microwave background~CMB! anisotro-
pies were equal to the Hubble radius about 50 Hubble
pansion times before the end of inflation. This gives rise
the possibility that causal physics acting before that time
generate fluctuations on these scales while they are of
Hubble length.

Most current models of inflation are based on weakly s
coupled scalar matter fields minimally coupled to gravity.
this context, quantum vacuum fluctuations provide@2# a
causal mechanism for generating fluctuations. In fact,
coupled linear metric and matter fluctuations can be qu
tized in a unified manner@4#. The problem reduces to th
quantization of a free scalar field with a time-dependent m
~see, e.g., Ref.@5# for a comprehensive review!. An initial
vacuum state thus undergoes squeezing during inflation,
this leads to the generation of fluctuations. According to
standard calculations@2,6–10#, the predicted spectrum i
scale invariant~modulo a mild deviation from scale invar
ance which stems from the time dependence of the Hub
constant during the inflationary period!.

*Email address: martin@edelweiss.obspm.fr
†Email address: rhb@het.brown.edu
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There are good heuristic reasons@3# to expect a scale-
invariant spectrum of fluctuations to emerge from inflatio
Since de Sitter space is time-translation invariant, one sho
expect the amplitude of the density fluctuationsdM /M to be
independent of the scale~labeled by the comoving wave
numbern) if measured at the time when the correspond
wavelength crosses the Hubble radiusl H during the inflation-
ary period. Since microphysics cannot change the phys
amplitude of the mass fluctuations while the wavelength
larger thanl H , one therefore expectsdM /M to be indepen-
dent of n when measured at the timet f(n) when the scale
reenters the Hubble radius in the post-inflationa
Friedmann-Robertson-Walker period:

dM

M
@n,t f~n!#5const, ~1!

which is the definition of a scale-invariant Harriso
Zel’dovich spectrum@11#.

The time-translation invariance is, however, broken in
current models of inflation. The calculations are done
picking an initial timet i ~e.g., the beginning of the inflation
ary period!, by choosing a specific state of the quantum fie
at this time~e.g., the local Minkowski vacuum state@10# or
the Bunch-Davies vacuum@12#!, by evolving this state using
the linearized equations of motion, and by finally calculati
the correlation functions and expectation values of inter
In this context, the emergence of a scale-invariant spect
of fluctuations is seen to arise from a subtle cancellation
the wave number dependence in the initial state wave fu
tion and in the growth factor before Hubble radius crossi
and thus depends explicitly on the initial state chosen. St
can be found@13# which do not yield a scale-invariant spe
©2001 The American Physical Society01-1
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trum. Thus, it is clear that the prediction of a Harriso
Zel’dovich spectrum is not completely generic in curre
models of inflation.

There is, however, a much more serious potential prob
for the claim that current models of inflation based
weakly self-coupled scalar fields generically lead to a sc
invariant spectrum of fluctuations. Most of these models
inflation involve ~see, e.g., Ref.@14# for a recent review! a
period of inflation much longer than the 60e foldings of
inflation required to solve the horizon and flatness proble
of standard cosmology. Since wavelengths exponenti
redshift during inflation, the physical wavelengths of t
modes which correspond to the present large-scale struc
in the Universe were, in those models, much smaller than
Planck length at the initial timet i . Thus, the usual compu
tations of the spectrum of fluctuations involve extrapolat
weakly self-coupled field theory coupled to classical grav
into a regime where these theories are known to break do

This problem is analogous to the trans-Planckian prob
for black hole physics~see Ref.@15# for a recent overview!.
In black hole physics there is an arbitrarily large bluesh
when following modes of Hawking radiation at future infin
ity into the past, and the usual calculations of Hawking
diation @16# seem suspect~see, e.g., Ref.@17# for a discus-
sion of this point!.

In the case of the black hole problem, it was recen
shown by Unruh@18#, Brout et al. @19#, Hambli and Burgess
@20#, and by Corley and Jacobson@21# that the prediction of
a thermal Hawking spectrum of black hole radiation is ins
sitive to modifications of the physics at the ultraviolet end
the spectrum. In these works, the dispersion relation of
quantum fields was modified~in ratherad hocways! at en-
ergies larger than some ultraviolet scalekC , and it was found
that the spectrum of radiation at future infinity at wave nu
bers much smaller thankC is insensitive to the modification
considered. In this sense, Hawking radiation from bla
holes was shown to be an infrared effect.

The obvious question is whether a similar conclusion w
hold for the generation of fluctuations in inflationary cosm
ogy. This is the question we will address in this paper. W
will consider a free scalar field in an inflationary backgrou
@de Sitter phase of a Friedmann-Robertson-Walker cosm
ogy with scale factora(t)]. This scalar field can represen
the scalar metric fluctuations, the gravitational wave mo
or a matter scalar field on the fixed background geometry
the case of most interest for cosmology corresponds to sc
metric fluctuations. We will modify the usual dispersion r
lation

v25k2, k2[
n2

a2 , ~2!

wheren andk are the comoving and physical wave numbe
respectively, for values ofk larger than some cutoff scal
kC , and will calculate the predicted spectrum of fluctuatio
in the modified theory for well-motivated initial quantum
states, states which in the unmodified theory coincide w
the state usually chosen as the initial state. The modi
dispersion relations which we use are the same as the
12350
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used by Unruh@18# and by Corley and Jacobson@21#. As
preferred initial states we will use either the state wh
minimizes the energy density at the initial timet i , following
the approach of Brown and Dutton@23#, or a naive generali-
zation of the local Minkowski vacuum.

We find that in the case of Unruh’s dispersion relatio
the spectrum of density fluctuations is unchanged in
minimum energy density initial state. However, in the ca
of the family of dispersion relations generalizing the cho
of Corley and Jacobson, the choice of the minimum ene
density initial state leads to a spectrum of fluctuations whi
depending on the specific member of the family of dispers
relations chosen, may be characterized by a tilt, by an ex
nential factor, and by superimposed oscillations.

Our work indicates that the prediction of a scale-invaria
spectrum in inflationary cosmology depends sensitively
hidden assumptions about super-Planck-scale physics.
has important implications for the attempts to unify fund
mental physics and early Universe cosmology. It is now
rather nontrivial question under which conditions a unifi
theory of all forces such as string or M theory will lead to
scale-invariant spectrum, assuming for the moment tha
does indeed lead to a period of inflation.

The outline of this paper is as follows. In Sec. II w
demonstrate that the growth of linear density fluctuatio
gravitational waves and linear scalar matter fluctuations
all be described in terms of the same framework: that o
free scalar field with a time-dependent mass. In Sec. III
introduce the two classes of modified dispersion relatio
which will be used in the calculations. The quantization
the scalar field in the time-dependent background and
construction of theminimum energy densityinitial state are
reviewed in Sec. IV. Section V contains our calculations
both classes of dispersion relations. Our results are sum
rized and discussed in the final section.

II. EQUIVALENCE BETWEEN COSMOLOGICAL
PERTURBATIONS AND A FICTITIOUS

SCALAR FIELD

Without loss of generality, the line element for the sp
tially flat Friedmann-Lemaıˆfitre-Robertson-Walker~FLRW!
background plus the perturbations can be written in the s
chronous gauge according to@24,25#

ds25a2~h!H 2dh21Fd i j 1h~h,n!Qd i j 1hl~h,n!
Q,i , j

n2

1hgw~h,n!Qi j GdxidxjJ . ~3!

In this equation, the dimensionless quantityn is the comov-
ing wave vector related to the physical wavevectork through
the relationk[n/a(h). h is the conformal time related to
the cosmic timet by dt5a(h)dh. The functionsh and hl
represent the scalar sector andQ(xi) is the eigenfunction of
the Laplace operator on the flat spacelike hypersurfaces.
function hgw represents the gravitational waves andQi j (x

i)
1-2
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TRANS-PLANCKIAN PROBLEM OF INFLATIONARY COSMOLOGY PHYSICAL REVIEW D63 123501
is the eigentensor of the Laplace operator. It is traceless
transverse, namely,Qi

i5Qi j
, j50. It is convenient to intro-

duce the background quantityg(h) defined byg[2Ḣ/H2,
where a dot means differentiation with respect to cosm
time andH is the Hubble rate,H[ȧ/a. We can also write
g512H8/H 2, whereH[a8/a and a prime denotes differ
entiation with respect to the conformal time.

In the tensor sector, we define the quantitymT by hgw
[mT /a. Then, the equation of motion is given by@26#

mT91Fn22
a9

a GmT50. ~4!

Since gravitational waves do not couple to matter, the
equation is valid for every type of matter.

In the scalar sector, it is convenient to work with a r
sidual gauge invariant variablemS defined by mS

[@a/(HAg)#(h81Hgh), where we have supposedgÞ0.
The caseg50 must be treated separately~see below!. The
quantitymS is related to the gauge invariant Bardeen pot
tial by FB

(SG)5@Hg/(2n2)#@mS /(aAg)#8 where the sub-
script ‘‘SG’’ means ‘‘calculated in the synchronous gaug
@27#. Therefore, knowing the solution formS permits the cal-
culation of the Bardeen variable. If matter is described b
scalar field~the inflaton!, then one can show thatmS obeys
the equation

mS91Fn22
~aAg!9

~aAg!
GmS50. ~5!

The caseg50 corresponds to a scale factora(t)}eHt, i.e.,
to the de Sitter manifold. Then, one can show that the ex
solution to the perturbed Einstein equations isFB50: there
are no density perturbations at all. This is because when
equation of state isp52r, fluctuations of the inflaton are
not coupled to fluctuations of the perturbed metric. Coupl
occurs only as a result of the violation of the conditionp5
2r.

Observable quantities can be computed when the in
power spectra are known. These are defined in terms of
two-point correlation functions. For the Bardeen poten
one has

^0uFB~h,x!FB~h,x1r !u0&[E
0

1`dn

n

sinnr

nr
n3PFB

~h,n!,

~6!

whereas for gravitational waves the correlator is given b

^0uhi j ~h,x!hi j ~h,x1r !u0&[E
0

1`dn

n

sinnr

nr
n3Ph~h,n!,

~7!

where we have writtenhi j 5hgwQi j . We are specially inter-
ested in modes which are outside the horizon at the en
inflation, i.e.,n/(aH)!1. For these modes, the power spe
tra do not depend on time and can be written as
12350
nd

c

st

-

-

a

ct

he

g

al
he
l

of
-

n3PFB
~n!5ASnnS21, n3Ph~n!5AT nnT. ~8!

Let us now consider power law inflation models whe
the scale factor is given bya(h)5 l 0uhu11b where b is a
number such thatb<22 and l 0 has the dimension of a
length. The advantage of this class of models is that eve
thing can be calculated exactly. In the caseb522 which
corresponds to exponential expansion, the lengthl 0 is noth-
ing but the Hubble radiusl H[a2/a8. The functiong is a
constant given byg5(b12)/(b11) which vanishes forb
522. We see that Eq.~5! now reduces to Eq.~4!. The
spectral indices can be determined exactly and read

nS52b15, nT52b14. ~9!

We have the relationnS215nT which is valid exactly only
for power law inflation.

Let us now consider a massless scalar fieldF(h,x) living
in a FLRW spacetime. It is convenient to Fourier decompo
the field and to introduce the quantitym defined according to
F(h,x)[@1/(2p)3/2#*dn(m/a)ein•x. It is easy to show that
the Klein-Gordon equation reduces to the following equat
for m:

m91Fn22
a9

a Gm50. ~10!

This equation is exactly the same as Eq.~4! and Eq.~5!.
Therefore, investigating the properties of cosmological p
turbations is equivalent to investigating the properties o
fictitious scalar fieldF(h,x). In particular, the calculation o
the power spectrum of the scalar and tensor perturbat
reduces to the computation of the power spectrum of
fictitious scalar field. In the following, we will restrict ou
considerations to this case, having in mind that, in fact,
will calculate the power spectra of cosmological perturb
tions.

Let us make a last remark. Although it seems that we h
considered only a limited class of models~i.e., power law
inflation!, the previous analogy is in fact much more gener
This is because the slow roll approximation, valid for a wi
class of inflationary models, reduces to first order to pow
law inflation.

III. TIME DEPENDENT DISPERSION RELATIONS

In this section, we present the two classes of modifi
dispersion relations that will be used in this article. Let
return to the equation of motion~10!. In this equation, the
presence of the termn2 is due to the differential operato
d i j ] i] j in the Klein-Gordon equation. In Fourier space, th
means that

v25k25
n2

a2
. ~11!

The dispersion relation is therefore linear in the physi
wave numberk: v5k. A possible alteration of the high fre
quency behavior of the Klein-Gordon equation can be
1-3
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JÉRÔME MARTIN AND ROBERT H. BRANDENBERGER PHYSICAL REVIEW D63 123501
tained if we require the presence of a nonlinear funct
F(k) such thatv5F(k) which, for physical wave number
smaller than a new characteristic scalekC , i.e., k!kC, re-
duces tov'k. This means that then2 term in the Klein-
Gordon equation should now be replaced with a time dep
dentneff

2 (h) such that

neff
2 5a2~h!F2~k!5a2~h!F2@n/a~h!#. ~12!

We see that, in terms of comoving wave numbers, we ob
a time dependent dispersion relation. In what follows,
will consider two explicit examples for the functionneff.
Given the modified dispersion relation, Eq.~10! can now be
written as

m91Fneff
2 2

a9

a Gm50. ~13!

Let us analyze this equation in more detail. We can dis
guish three regimes. In region I, the wavelength of a giv
mode

l~h![~2p/n!a~h!, ~14!

is much smaller than the characteristic lengthl! l C . The
nonlinearities in the dispersion relation play an importa
role and the solution of the equation of motion depends
the particular form ofF(k). A crucial issue is that the mod
no longer behaves as a free wave initially. As a conseque
the choice of initial conditions cannot be done in the us
way. In region II, the wavelength of the mode is larger th
the characteristic length but still smaller than the Hub
radiusl C!l! l H . In this case, one can consider the disp
sion relation to be linear, i.e.,V(h)'0 and neglect the term
a9/a. Therefore, the solution can be expressed as

m II~h!5B1einh1B2e2 inh. ~15!

Finally, in region III, the mode is outside the Hubble radiu
l@ l H and the solution~the growing mode! is given by

m III ~h!5Ca~h!, ~16!

whereC is a n dependent constant. This constant has to
determined by performing the matching ofm andm8 at the
times of transition between regions I and II and regions
and III, h1 andh2, respectively. Then, the spectrum can
calculated and reads

n3PF 5n3UmaU
2

5n3uCu2. ~17!

Let us now turn to the first example of a time depend
modified dispersion relation.

A. Unruh’s dispersion relation

The dispersion relation used by Unruh in Ref.@18#, in the
context of black holes physics, is
12350
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v5F~k![kC tanh1/pF S k

kC
D pG , ~18!

wherep is an arbitrary coefficient. For large values of th
wave number, this becomes a constantkC whereas for small
values this is a linear law as expected. According to Eq.~12!,
in the context of cosmology, we take

neff~h!5
2pa~h!

l C
tanh1/pF S nlC

2pa~h! D
pG , ~19!

where l C is the characteristic length corresponding tokC.
The argument of the hyperbolic tangent can also be rewri
asl C /l(h). This means that whenl@ l C , neff(h) tends ton.

B. Generalized Corley-Jacobson dispersion relation

The dispersion relation utilized by Corley and Jacobson
Ref. @21# is given by the following expression:

v25F2~k![k22
k4

kC
2

. ~20!

In this article, we consider a more general case and writ

v25k21k2(
q51

m

bqS k

kC
D 2q

, ~21!

where thebq are a priori arbitrary coefficients. Let us sup
pose that the previous sum only contains the last term.
physics depends on the sign ofbm . If bm is negative, thenv
vanishes fork5kCubmu22m. Beyond this point, the disper
sion relation becomes complex. The Corley-Jacobson c
corresponds tom51 andb1521. In the context of cosmol-
ogy, the previous ansatz gives rise to the following functi
neff(h):

neff
2 ~h!5n21n2(

q51

m
bq

~2p!2q S l C

a D 2q

n2q. ~22!

Again, whenl@ l C then the effective comoving wave num
ber simply reduces ton. On the other hand, whenl! l C , one
has

neff
2 '

bm

~2p!2m S l C

a D 2m

n2m12. ~23!

The different dispersion relations used in this article a
displayed in Fig. 1 together with the dispersion relation co
sidered in Ref.@22# denoted ‘‘KG.’’

IV. QUANTIZATION OF A MASSIVE SCALAR FIELD

The aim of this section is to develop a Lagrangian a
Hamiltonian formalism for the system described above. W
will show that considering a time-dependent dispersion re
tion is equivalent to giving a time-dependent mass to
1-4
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fictitious scalar field. The main purpose of this section is
discuss the initial conditions. As already mentioned pre
ously, when the wavelength of a mode is smaller than
critical lengthl C , the mode does not behave as a free wa
because the dispersion relation in this region is no lon
v5k. As a consequence, it is no longer possible to imp
the usual initial condition at h5h i , i.e., m
→e2 in(h2h i)/A2n. Another method must be used. Followin
Ref. @23#, we will choose the state which initially minimize
the energy density of the field.

A. Lagrangian and Hamiltonian formalisms

We now study a massive fictitious scalar fieldF whose
action is given by

S5E dhE
R31

dnFmn8mn*
81

a82

a2
mnmn* 2

a8

a
~mn8mn* 1mnmn*

8!

2neff
2 mnmn* G . ~24!

In this equation, the scalar field has been Fourier expan
according to

F~h,x!5
1

~2p!3/2

1

a~h!
E dnmn~h!ein•x, ~25!

and mn(h) denotes the complex Fourier component of t
field. We can easily check that the Lagrange equation
motion for the quantitymn(h) leads to Eq.~13!.

We are now in a position where we can pass to the Ham
tonian formalism. Our first move is to perform the followin
time-dependent transformation

mn~h![
1

N~n,h!
cn~h!, ~26!

FIG. 1. Sketch of the different dispersion relations.
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whereN(n,h) is a time-dependent factor which will be fixe
below. Next, the action given in Eq.~24! expressed in terms
of the new variablecn(h) takes the form

S5E dhE
R31

dnF 1

N2
cn8cn*

81
1

N2 S N8

N
1

a8

a D 2

cncn*

2
1

N2 S N8

N
1

a8

a D ~cn8cn* 1cncn*
8!

2
1

N2
neff

2 cncn* G . ~27!

We can now calculate the conjugate momentum tocn(h). Its
definition is pn[] L̄n /] cn* (h) whereL̄n is the Lagrangian
density~the bar indicates that one calculates the Lagrang
in Fourier space! which one can deduce from the previou
equation. The conjugate momentum reads

pn5
1

N2 S cn82
a8

a
cnD2

N8

N3
cn . ~28!

The Hamiltonian can be determined using the following
lation:

H̄n[pncn*
81pn* cn82L̄n . ~29!

Inserting the expressions of the Lagrangian and of the c
jugate momentum in this definition, we obtain

H̄n5N2pnpn* 1
~aN!8

aN
~cnpn* 1cn* pn!

1
1

N2
neff

2 cncn* . ~30!

The explicit quantization can now be carried out. We expr
the Fourier componentcn and its conjugate momentumpn in
terms of creation and annihilation operators, satisfying
usual commutation relation@cn ,cr

†#5d(n2r ), according to

cn[A\~cn1c2n
† !, pn[

A\

2i
~cn2c2n

† !. ~31!

The Hamiltonian operator is obtained by plugging the pre
ous expressions into Eq.~30! and requiring that ‘‘\v/2’’ be
present in each mode, which fixes the normalization factoN
to be

N252v~h!, ~32!

where v is the ‘‘comoving frequency’’ defined byv(h)
[neff. Although we use the same notation for convenien
this frequency should not be confused with the physical f
quency which appears in Eqs.~18! and ~20! and which can
obtained by multiplying the comoving frequency by a fact
1/a. The Hamiltonian reads
1-5
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H5E
R3

dnF\v

2
~cncn

†1c2nc2n
† !

1
i\

2

~aAv!8

aAv
~c2n

† cn
†2c2ncn!G . ~33!

This Hamiltonian has the usual structure. The first term
just a collection of harmonic oscillators whereas the sec
term represents the interaction between the background
the perturbations. This term is responsible for the pheno
enon of particle creation, which is a squeezing effect. I
static spacetime, the pump function (aAv)8/(aAv) vanishes
and the interaction part of the Hamiltonian disappears. T
field operator can be expressed as

F~h,x!5
A\

a~h!

1

~2p!3/2E dn

A2v~h!

3@cn~h!ein•x1cn
†~h!e2 in•x#. ~34!

The time evolution of the creation and annihilation operat
and therefore of the quantum scalar field is calculated
means of the Heisenberg equation

i\
d

dh
cn~h!5@cn ,H#. ~35!

Using the form of the Hamiltonian derived previously, o
gets the following equations of motion:

i\
dcn

dh
5\v~h!cn1 i\

~aAv!8

aAv
c2n

† , ~36!

i\
dcn

†

dh
52\v~h!cn

†1 i\
~aAv!8

aAv
c2n . ~37!

The solution of these equations is a Bogoliubov transform
tion which can be written as

cn~h!5un~h!cn~h i!1vn~h!c2n
† ~h i!, ~38!

cn
†~h!5un* ~h!cn

†~h i!1vn* ~h!c2n~h i!, ~39!

where we have introduced two new functionsun(h) and
vn(h). These functions satisfyuun(h)u22uvn(h)u251 in or-
der for the commutation relation given to be preserved
time. Let us notice thatun and vn do not depend on the
vector n but only on its modulusn. Inserting the previous
equations in Eqs.~36! and ~37!, one obtains the equation o
motion for these two functions

i\
dun

dh
5\v~h!un1 i\

~aAv!8

aAv
vn* , ~40!

i\
dvn

dh
5\v~h!vn1 i\

~aAv!8

aAv
un* . ~41!
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The functionsun andvn can be reexpressed in terms of thr
other arbitrary functionsr n(h), un(h), andwn(h). Follow-
ing this path would lead to the squeezed state formali
However, we will not need it in this article.

B. Fixing the initial conditions

The previous considerations permit to fix the initial val
of the mode functionmn(h i) and its derivativemn8(h i) for
any choice of functionV(h), i.e., for any time dependen
dispersion relation.

It is straightforward to check that the function

mn[
1

N~n,h!
~un1vn* !5

1

A2v
~un1vn* !, ~42!

satisfies Eq.~13!.1 From Eqs.~38! and ~39!, we see that the
initial conditions for the two functionun andvn are given by
un(h5h i)51 and vn(h5h i)50. Therefore, the initial
value of the mode functionm can be written as

m~h5h i !5
1

A2v~h i !
5

1

A2neff

. ~43!

Let us now turn to the determination ofm8(h5h i). It will be
found by the requirement that the energy density is m
mized. The stress energy tensor can be obtained from
action~24! with the help of the standard definition. In term
of the Fourier componentscn , the energy density reads

r5
\

4p2a4E0

`dn

N2 Fcn8cn*
82

~aN!8

aN
~cncn*

81cn8cn* !

1
a82

a2
cncn* 1

N82

N2
cncn* 1neff

2 cncn* 12
a8N8

aN
cncn* G .

~44!

We now define the functionsx(h) andy(h) as the real and
imaginary parts of the ratiocn8/cn[x1 iy , respectively.
Then, the initial energy density can be expressed in term
xi[x(h5h i), yi[y(h5h i) and the WronskianW(n)

[mn8mn* 2mn*
8mn which is a time independent quantity@as

can be checked in calculatingdW(n)/dh and using the
equation of motion formn]

1It should be noticed thatmn is not exactly the mode function
introduced before. It is dimensionless~instead of dimensionA\c)
and depends only on the modulusn. In the same manner, we now
deal with a ‘‘new’’ functioncn[Nmn .
1-6
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r5
\

4p2a4E0

`

dn
W~n!

2iy i
Fxi

21yi
222

~aN!8

aN
xi1

a82

a2
1neff

2

1
N82

N2
12

a8N8

aN G , ~45!

whereN anda are also evaluated at the initial time. Notic
that, while deriving the previous equation, we used the f
that the Wronskians ofmn andcn are related by a factorN2.
The ‘‘vacuum’’ used in this article is defined as the sta
which initially minimizes the energy density. The variatio
of the previous expression with respect toxi andyi leads to

dr5
\

4p2a4E0

`

dn
W~n!

2i H 2

yi
Fxi2

~aN!8

aN Gdxi1
1

yi
2 F yi

22xi
2

12
~aN!8

aN
xi2

a82

a2
2neff

2 2
N82

N2
22

a8N8

aN GdyiJ . ~46!

Demanding thatdr50, one deduces the initial values ofx
andy

xi5
a8

a
~h i !1

N8

N
~h i !, yi56neff. ~47!

These expressions can be simplified. Using the explicit fo
of the functionN(n,h), one can write

N8

N
5

v8

2v
. ~48!

At the timeh5h i , it is reasonable to considerl! l C ~oth-
erwise, the whole problem studied here would be pointle!.
Then, for Unruh’s dispersion relation, one findsN8/N
'a8/2a and for the Corley-Jacobson dispersion relation, o
hasN8/N'2ma8/2a. In addition,a8/a is very small in the
limit where the conformal time goes to2` sincea8/a(h i)
5(11b)/uh i u and uh i u@1. Therefore, one gets thatcn8/cn

' iy i . On the other hand, we havemn5cn /N. Combining
this formula with the previous one, one obtainsmn81N8/N
5 iy imn . Neglecting again the termN8/N, we finally arrive
at

m8~h5h i !56 iAneff

2
. ~49!

The initial conditions are now completely fixed and given
Eqs.~43! and ~49!.

Let us also mention that it is possible to adopt anot
choice of initial conditions which corresponds to the ‘‘in
stantaneous Minkowski vacuum’’ ath5h i : namely,

m~h i !5
1

A2n
, m8~h i !56 iAn

2
. ~50!
12350
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If the dispersion relation is standard, thenV50 and the
mode is initially free: locally, it does not feel the curvature
space-time and behaves as it were flat. In this case, the
possible choices of initial conditions discussed above co
cide.

Two last comments are in order before ending this s
tion. Let us first remark that the concept of an initial sta
which minimizes the energy density of the field could
problematic in a region where the dispersion relation
comes complex, as is the case for the Corley-Jacobson
persion relation withbm,0, since the energy needs not to b
bounded from below in such a situation. We are not aware
any more obvious method than the one used here to deal
this case.

Finally, although we have introduced two initial states,
should be clear that the minimizing energy state is the o
physical vacuum state. The instantaneous Minkow
vacuum is considered here only to stress the fact that
choice of the initial conditions becomes more crucial than
the standard situation where one can show that a large c
of initial states leads to the same spectrum@28# ~although, as
already mentioned in the Introduction, it is possible to fi
examples which do not belong to this class of initial sta
@13#!.

V. ANALYTICAL SOLUTIONS

In this section, we calculate the spectrum of fluctuatio
for the two classes of dispersion relations introduced in S
III. We focus on a fixed comoving wave numbern and pro-
ceed as follows. We solve the equation of motion in each
the three regions~defined in Sec. III! separately. The coeffi-
cients of the two fundamental solutions in region I are fix
by the initial conditions discussed above. Then, we explic
perform the matching ofm andm8 at the transitions betwee
regions I and II, which occurs at a time denoted byh1, and
between regions II and III, which occurs at timeh2, to obtain
the coefficients of the two fundamental solutions in regi
III, from which the spectrum can be calculated.

The timeh2 is when the mode crosses the Hubble radi
which is given by

l H~h!5
l 0

u11bu
uhu21b. ~51!

Thus, the condition

l H~h2!5l~h2! ~52!

boils down to

uh2u5
2p

n
u11bu. ~53!

The geometry of space-time is illustrated in Fig. 2.
We start this section with Unruh’s dispersion relation.
1-7
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A. Unruh’s case

The equation of motion for the mode function can
written as

m91H 4p2

l C
2

a2 tanh2/pF S l C

l~h! D
pG2

a9

a J m50. ~54!

This equation can be solved exactly in region I only if t
scale factor is given bya(h)5 l 0 /uhu, i.e., in the caseb5
22. Fortunately, this corresponds to the de Sitter space-t
the prototypical model of inflationary cosmology. Note th
in this casel 0 is the Hubble radius@see Eq.~51!#. In region I,
the hyperbolic tangent is approximatively one sincel C@l
initially. Therefore, Eq.~54! reduces to

m91S 4p2l 0
2/ l C

2 22

h2 D m50. ~55!

Note that, in fact, the form of this last equation is indepe
dent of the precise form~i.e., the hyperbolic tangent! of the
dispersion relation in the regimel C@l. It is just necessary to
assume thatF(k) goes to a constant. We see that the res
depends in an essential way on the dimensionless param
e[ l C / l 0. At this point, we have assumed nothing about
value of the ratiol C / l 0. However, physically, it is clear tha
e!1. One would expect the cutoff length to be given by t
Planck length (l C' l Pl), whereasl 0'105l Pl if the spectrum
of fluctuations is COBE normalized. In this case, we ha
e'1025. In the following, we will use an expansion in term
of this parameter. The exact solution of Eq.~55! is

m I~h!5A1uhux11A2uhux2, ~56!

where the exponentsx1 andx2 are given by

x1,25
1

2
6

1

2
A92

16p2

e2
. ~57!

It is now time to fix the coefficientsA1 andA2. They are
completely determined by the initial conditions~43! and

FIG. 2. Sketch of the evolution of a physical mode through
the three regions defined in the text. The dashed region is the re
where the dispersion relation is modified.
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~49!. In the approximation wherel C@l, they are solutions of
~note that we do not yet use the fact thate is small!

A1uh i ux11A2uh i ux25
1

2
Ae

p
uh i u1/2, ~58!

A1x1uh i ux1211A2x2uh i ux22157 iAp

e
uh i u21/2. ~59!

The exact solution of this system of equations can be writ
as

A15uh i u1/22x1
1

12x1 /x2

1

2
Ae

pS 16
2ip

ex2
D , ~60!

A25uh i u1/22x2
1

12x2 /x1

1

2
Ae

pS 16
2ip

ex1
D . ~61!

It is at this point that we use the fact thate is small. To first
order in a systematic expansion in this parameter we ob

A1'
i

8 S e

p D 3/2S 1

2
2

2ip

e
6

2ip

e DexpS 2
2ip

e
lnuh i u D ,

~62!

A2'
i

8 S e

p D 3/2S 1

2
1

2ip

e
6

2ip

e DexpS 2ip

e
lnuh i u D .

~63!

We now pursue the calculation for both choices of the s
of the initial conditions. We introduce an index ‘‘u’’ for the
upper choice and ‘‘l ’’ for the lower choice. This leads to

A1
u5

i

16S e

p D 3/2

expS 2
2ip

e
lnuh i u D , ~64!

A2
u5

1

2 S e

p D 1/2

expS 2ip

e
lnuh i u D , ~65!

A1
l 5

1

2 S e

p D 1/2

expS 2
2ip

e
lnuh i u D , ~66!

A2
l 52

i

16S e

p D 3/2

expS 2ip

e
lnuh i u D . ~67!

Therefore, one hasA2
u@A1

u , A1
l @A2

l and only one branch o
the solution~56! survives. Then, the solution in region I ca
be expressed as

m I
u,l~h!5

1

2
Aeuhu

p
expS 7

2ip

e
lnU h

h i
U D . ~68!

Let us now turn to region II. As already mentioned abov
in this region, the solution is given by

m II~h!5B1einh1B2e2 inh. ~69!

t
on
1-8
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The coefficientsB1 andB2 are determined by the matchin
of this solution with the solution~68! at the timeh1. Conti-
nuity of m andm8 yields

inB1einh11 inB2e2 inh15
in

2 S euh1u
p D 1/2

expS 7
2ip

e
lnUh1

h i
U D ,

~70!

inB1einh12 inB2e2 inh156 i S p

euh1u D
1/2

expS 7
2ip

e
lnUh1

h i
U D .

~71!

The solution can be found easily and reads

B15
1

2An
~161!expS 7

2ip

e
lnUh1

h i
U1 2ip

e D , ~72!

B25
1

2An
~171!expS 7

2ip

e
lnUh1

h i
U2 2ip

e D . ~73!

As a consequence, the solution in region II also contains o
one branch.

Finally, we must solve the mode equation in region III. A
already mentioned, the nondecaying mode is

m III 5Ca~h!. ~74!

The coefficientC is fixed by the matching of the mode func
tion when the mode crosses the horizon ath2.2 One gets

C5m II~h2!
uh2u
l 0

5
2p

n

m II~h2!

l 0
. ~75!

Therefore, regardless of the choice of the sign of the ini
conditions, we haveuCu}1/n3/2 and as a result

n3PF }n0. ~76!

We see that, whenb522, the final answer is not change
compared to what is obtained without the modification of
dispersion relation, i.e., we get a scale invariant spect
nS51 @see Eq.~9!#.

We now discuss different initial conditions. We adopt t
‘‘instantaneous Minkowski’’ initial conditions given by Eqs
~50!. Of course, the form of the solution in region I is still th
same but, now, the coefficientsA1 andA2 are different. The
exact expressions for these coefficients can now be writte

A156An

2

i

x22x1
uh i u12x1S 17

ix2

nuh i u
D , ~77!

A256An

2

i

x12x2
uh i u12x2S 17

ix1

nuh i u
D . ~78!

2To be more precise, we should take the decaying mode in re
III into account and match bothm and m8 at time h2. This only
changes the result by an unimportant constant of order 1.
12350
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In the limit when the parametere is small, an expansion o
the previous expressions leads to the following formulas

A1'
1

2A2n
uh i u22ip/e21/2, A2'

1

2A2n
uh i u2ip/e21/2.

~79!

The result does not depend on the choice of the sign of
initial conditions. We see also another crucial difference
comparison with the previous case, see Eqs.~62! and ~63!:
this time, the coefficients are of the same order ine. There-
fore, the solution in region I is now given by a cosine inste
of by a pure phase

m I~h!5
1

A2n
U h

h i
U1/2

cosS 2p

e
lnU h

h i
U D . ~80!

The solution in region II is still given by plane waves. Th
matching at timeh1 permits the calculation of the coeffi
cientsB1 andB2. They read

B15
1

2n
A p

euh i u
expS 2 inh12

2p i

e
lnUh1

h i
U D , ~81!

B25
1

2n
A p

euh i u
expS inh11

2p i

e
lnUh1

h i
U D . ~82!

Again, there is an important difference in comparison w
the previous case: both coefficients are now nonvanish
The mode function in region II can be expressed as

m II~h!5
1

n
A p

euh i u
cosS nh2nh11

2p

e
lnUh1

h i
U D . ~83!

The function is proportional to 1/n instead of 1/An. The
determination of the constantC proceeds as previously an
leads to the spectrum

n3PF }n21cos2S 2p

e
1

2p

e
lnU 2p

nh i
U D . ~84!

A few remarks are in order here. First, the difference b
tween Eqs.~76! and ~84! demonstrates that the final resu
does depend on the choice of the initial conditions. Seco
the spectral index is now modified and isnS50 instead of
nS51 previously. Third, oscillations in the spectrum a
present. Ifn1 and n2 are two wave numbers such that th
argument of the cosine differs by a factor 2pp wherep is an
integer then one hasn2 /n15exp(pe). This means that unles
p is comparable toe21, n1, andn2 are almost equal. There
fore, the oscillations are very rapid.

n

1-9
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B. The Corley-Jacobson case

With the dispersion relation~21!, the equation of motion
becomes

m91mFn21n2(
q51

m
bq

~2p!2q S e n

uhu11bD 2q

2
a9

a G50. ~85!

This equation is valid for any scale factor of the forma(h)
5 l 0uhu11b. Unlike in Unruh’s case, we do not need
specifyb522.

We now need to discuss the form of the solution in reg
I. This crucially depends on the sign of the coefficientbm . In
the regime we are interested in, i.e.,l C@l(h i), one can re-
tain only the dominate term and the dispersion relation
be written as

neff
2 'n21n2bmS l C

l D 2m

. ~86!

This means that ifbm is positive, the dispersion relation re
mains real. Ifbm is negative the situation is more comp
cated. For very small value ofubmu, the dispersion relation
can remain real even in the regimel C@l(h i). However, it
seems a bit artificial to fine-tune the value ofubmu such that
this actually happens. Without this fine-tuning the dispers
relation certainly becomes complex. This last prope
should not be considered as a surprise. Indeed there
many situations in physics where complex dispersion re
tions appear. This is for example the case in hydrodynam
when one describes the damping of a sound wave in a fl
due to viscosity@29#. Then, the dispersion relation is give
by k5v/c1 iav2 wherea is a factor which depends on th
viscosity coefficients. In cosmology, other examples are
damping or damping of density perturbations due to neutr
decoupling@30#. In this paper, we choose to analyze bo
cases and writebm[submu with s561. Then, from Eqs.
~43! and~49!, the quantitiesm I(h i) andm I8(h i) take the form

m I~h i !5
s21/4

A2bg
uh i u1/22b/2, ~87!

m I8~h i !56 is1/4Abg

2
uh i u21/21b/2, ~88!

where we have definedb andg ~not to be confused with the
function g used in Sec. II! by the following expressions:

b[12m~11b!, g[
Aubmu

b~2p!m
emnm11. ~89!

From expressions~87! and ~88!, we deduce

m I8~h i !/m I~h i !56 is1/2bguh i ub21. ~90!

This ratio will out turn to be important in the calculation o
the various coefficients determined by the matching pro
dure. To go further, we need to treat the casess561 sepa-
rately.
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1. The case sÄÀ1, bmË0

In region I, the equation of motion for the mode functio
reduces to

m91n2
bm

~2p!2m S e n

uhu11bD 2m

m50. ~91!

For a negative coefficientbm , the exact solution of Eq.~91!
can be expressed in terms of modified Bessel functions
follows:

m I~h!5A1uhu1/2I n~z!1A2uhu1/2Kn~z!, ~92!

wheren[1/(2b) and where the functionz(h) is defined by
the following expressionz(h)[guhub. The coefficientsA1
andA2 are determined by the initial conditions given in Eq
~87! and~88!. These coefficients should satisfy the system
equations

A1I n~zi !1A2Kn~zi !5uh i u21/2m I~h i !, ~93!

2A1I n21~zi !1A2Kn21~zi !5
uh i u1/22b

gb
m I8~h i !, ~94!

wherezi denotes the value ofz(h) at timeh5h i . The exact
solution forA1 andA2 can be expressed as

A15guh i ub21/2m I~h i !Kn21~zi!

3F12
uh i u12b

gb

m I8~h i !

m I~h i !

Kn~zi !

Kn21~zi !
G , ~95!

A25guh i ub21/2m I~h i !I n21~zi !

3F11
uh i u12b

gb

m I8~h i !

m I~h i !

I n~zi !

I n21~zi !
G . ~96!

In the derivation of the previous expressions, we used
exact equation (I nKn211I n21Kn)(z)51/z. Since, whenl C
@l(h i), the argumentzi is large we can now rewrite thes
equations using the asymptotic formulas for Bessel functi
of large arguments@31#. Notice that it is necessary to go t
the second order in the expansion of the modified Bes
functions. We obtain

A1'S p

2 D 1/2

g1/2m I~h i !uh i ub/221/2e2ziF1616
2n21

2g
uh i u2bG ,

~97!

A2'S 1

2p D 1/2

g1/2m I~h i !uh i ub/221/2eziF1717
122n

2g
uh i u2bG .

~98!
1-10
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For the sake of completeness, we pursue the calculation
both choices of the sign of the initial conditions. Let us ag
use an index ‘‘u’’ for the upper choice and ‘‘l ’’ for the lower
choice. We obtain

A1
u52S p

2 D 1/2

g1/2m I~h i !uh i ub/221/2e2zi, ~99!

A2
u5S 1

2p D 1/2

m I~h i !uh i u2b/221/2
2n21

2g1/2
ezi, ~100!

A1
l 5S p

2 D 1/2

m I~h i !uh i u2b/221/2
122n

2g1/2
e2zi, ~101!

A2
l 52S 1

2p D 1/2

g1/2m I~h i !uh i ub/221/2ezi. ~102!

The exponential factor always determines the behavior of
coefficients for any power ofuh i u. This impliesA1

u'A1
l '0.

We also see the following crucial effect: it turns out that f
one choice of the sign of the derivative the first term in t
squared bracket in Eqs.~97! and~98! cancels whereas for th
other choice it is no longer the case. This has as a co
quence that the dependence ong is not the same. Sinceg
depends onn, the n dependence ofA2

u and A2
l is not the

same. We haveA2
u}g21A2

l .
The second step of the calculation is to perform

matching of the solutions at the timeh5h1. This will allow
us to express the coefficientsB1 and B2 in terms of the
coefficientsA1 andA2. In region II, the solution is given by
plane waves. Therefore, the coefficientsB1 andB2 are now
solutions of the equations

B1einh11B2e2 inh15A1uh1u1/2I n~z1!1A2uh1u1/2Kn~z1!,

~103!

B1einh12B2e2 inh152
gb

in
A1uh1ub21/2I n21~z1!

1
gb

in
A2uh1ub21/2Kn21~z1!, ~104!

where z1 is the value of the functionz(h) at h5h1. The
exact solution of this system of equations can be easily fo
and reads

einh1B15
A1

2
uh1u1/2I n~z1!F11

igb

n
uh1ub21

I n21~z1!

I n~z1! G
1

A2

2
uh1u1/2Kn~z1!F12

igb

n
uh1ub21

Kn21~z1!

Kn~z1! G ,
~105!
12350
or
n

e

e-

e

d

e2 inh1B25
A1

2
uh1u1/2I n~z1!F12

igb

n
uh1ub21

I n21~z1!

I n~z1! G
1

A2

2
uh1u1/2Kn~z1!F11

igb

n
uh1ub21

Kn21~z1!

Kn~z1! G .
~106!

Much simpler~approximate! formulas can be obtained if on
notices that the argument of the Bessel function is a
number

z15guh1ub@1, ~107!

essentially becausee is a small number in realistic cases.
very simple estimate allows us to quickly check the valid
of this approximation. We takem51, ub1u51, b522.2
which would correspond to a spectral index ofnS50.6 for
power law inflation ande51025 as already discussed in th
previous section. We can then estimatez1 for n54p which
corresponds to the mode which reenters horizon today
which consequently mainly determines the value of the c
mic microwave background~CMB! quadrupole anisotropy
We find z1'4.73104. Therefore, we can again use th
asymptotic behavior of the Bessel function to simplify t
previous equations. Putting all these ingredients together
find3

B1'
A2

2 S p

2g D 1/2

uh1u1/22b/2e2 inh12z12 ip/4, ~108!

B2'
A2

2 S p

2g D 1/2

uh1u1/22b/2einh12z11 ip/4. ~109!

As a consequence, the solution in region II can be written

m II~h!5A2S p

2g D 1/2

uh1u1/22b/2e2z1cos~nh2nh12p/4!.

~110!

The last step of the calculation is to perform the match
at h5h2 when the mode leaves the Hubble radius~boundary
between regions II and III!. As already mentioned, in regio
III, the nondecaying solution is the super-Hubble functi
given by

m III ~h!5Ca~h!. ~111!

Repeating the same procedure as for Unruh’s case, the s
tra can easily be calculated and read

n3PF
l }n2b14e2(zi2z1)cos2~nh22nh12p/4!, ~112!

3In order to be able to neglect the terms proportional toA1, we
make use of the fact thatuh i u@uh1u.
1-11
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n3PF
u }n2b1222me2(zi2z1)cos2~nh22nh12p/4!.

~113!

We see that the spectrum depends explicitly on the in
conditions chosen. We can check that the tilt is correct
noticing thatn3PF }A2

2, g}nm11 and using the relation be
tweenA2

u andA2
l already mentioned. From now on, we co

centrate on the lower case which corresponds to an unm
fied tilt and study the expression of the correspond
spectrum in more details~for convenience, we drop the sub
script l ). First, as mentioned above, we see that the pow
law part is not modified in comparison with the usual ca
i.e., the spectral index is stillnS52b15. Second, there ar
oscillations in the spectrum since the argument of the co
can be written as~considering for simplicityubmu51)

2pu11bu2S e

2p D 1/(11b)

n(21b)/(11b)2p/4. ~114!

However, contrary to Unruh’s case with Minkowski initia
conditions, no logarithmic dependence is present. Inter
ingly enough, forb522, the oscillations disappear. Th
most important part concerns the exponential factor. The
tor zi2z1 is equal tozi2z15guh i ub(12uh1ub/uh i

b)'guh i ub

5zi since we haveuh i u@uh1u. The factorzi can be rewritten
in such a way that the dependence onn is explicit

zi5
Aubmu

b~2p!m
emuh i u12m(11b)nm11. ~115!

The important factor in this expression isemuh i u12m(11b)

since the other ones are of order 1. It can be rewritten a

emuh i u12m(11b)5F l C

a~h i !
Gm

uh i u, ~116!

and must be considered as large sinceuh i u@1 and
l C /a(h i)' l C /l(h i)@1, at least for wave numbers not to
different from 2p. This means that the influence of the e
ponential factor is dominant and is responsible for a hu
increase of the spectrum at largen. This is illustrated if we
write the spectrum forb522 andm51

n3PF }eAn2
, ~117!

whereA@1. Such a spectrum is almost certainly in cont
diction with observations.

We end this subsection with the calculation of the sp
trum in the case where the initial state is the minimum
ergy density state. We restart from the exact expressions
the coefficientsA1 and A2, see Eqs.~95! and ~96!. Using
Eqs.~50!, we have

uh i u12b

gb

m I8~h i !

m I~h i !
56

i

Abm
Fl~h i !

l C
Gm

!1, ~118!

since, initially, l C@l(h i). As a consequence, we can deri
a compact approximate expression for the coefficientsA1
andA2
12350
l
y

di-
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e
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A1'0, A2'
1

A2p
g1/2uh i ub/221/2m I~h i !e

zi. ~119!

Notice that these formulas are valid for any choice of t
sign ofm I8(h i). The rest of the calculation proceeds as abo
and leads to (ubmu51)

n3PF 5n2b141meAnm11
cos2F2pu11bu

2S e

2p D 1/(11b)

n(21b)/(11b)2p/4G . ~120!

The main difference in comparison with the spectrum of
previous section is the presence of a modified tilt. The sp
tral index is now given bynS52b151m.

2. The case sÄ1, bmÌ0

When the dispersion relation is real, the solution in reg
I can be expressed in terms of usual Bessel functions

m I~h!5A1uhu1/2Jn~z!1A2uhu1/2J2n~z!, ~121!

wheren andz(h) have already been defined previously. T
coefficientsA1 and A2 are now solutions of the following
system of equations:

A1Jn~zi !1A2J2n~zi !5m I~h i !uh i u21/2, ~122!

2A1Jn~zi !1A2J2n~zi !5
m I8~h i !

gb
uh i u1/22b. ~123!

Using the relation expressing the Wronskian@J2n Jn21
1J2n11Jn#(z)52 sin@p/(2b)#/(pz), and performing some
straightforward algebraic manipulations, exact expressi
can be easily found. They read

A15
pg

2 sin~pn!
uh i ub21/2m I~h i!J12n~zi !

3F12
uh i u12b

gb

m I8~h i !

m I~h i !

J2n~zi !

J12n~zi !
G , ~124!

A25
pg

2 sin~pn!
uh i ub21/2m I~h i !Jn21~zi !

3F11
uh i u12b

gb

m I8~h i !

m I~h i !

Jn~zi !

Jn21~zi !
G . ~125!

These expressions are not valid ifn51/(2b) is an integer
and this particular case must be treated separately. In
article, we assume that this does not happen. Since the s
tion in region II is still given by plane waves, the derivatio
of exact expressions for the coefficientsB1 andB2 proceeds
as before. Explicit matching of the mode function and of
derivative leads to
1-12
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einh1B15
A1

2
uh1u1/2Jn~z1!F11 i

gb

n
uh1ub21

Jn21~z1!

Jn~z1! G
1

A2

2
uh1u1/2J2n~z1!F12 i

gb

n
uh1ub21

J2n11~z1!

J2n~z1! G ,
~126!

2 inh1B25
A1

2
uh1u1/2Jn~z1!F12 i

gb

n
uh1ub21

Jn21~z1!

Jn~z1! G
1

A2

2
uh1u1/2J2n~z1!F11 i

gb

n
uh1ub21

J2n11~z1!

J2n~z1! G .
~127!

Having all the relevant exact expressions at our disposa
can now start to do some approximations based on the
that zi is a big number. For convenience, we introduce t
new definitions@not to be confused with the functionsx(h)
andy(h) introduced in Sec. IV B#

x~h![z~h!1
pn

2
2

p

4
, y~h![z~h!2

pn

2
2

p

4
.

~128!

Then, using the expressions of the Bessel functions for la
arguments@31#, we find

A1'7 i S pg

2 D 1/2

uh i ub/221/2
m I~h i !

sin~pn!
e6 ixi, ~129!

A2'6 i S pg

2 D 1/2

uh i ub/221/2
m I~h i !

sin~pn!
e6 iy i, ~130!

wherexi[x(h i) and yi[y(h i). The correct matching time
is

uh1u5S ne

2p D 1/~11b!

bm
1/2m~11b!, ~131!

see Ref.@32#, and is equal to the time at whichl51C if
bm51. In the following, for simplicity, we considerbm
51. In the same manner, the coefficientsB1 andB2 can be
expressed as

B1'S 1

2pg D 1/2

uh1u1/22b/2e2 inh1~A1cosy12 iA1 siny1

1A2 cosx12 iA2 sinx1!, ~132!

B2'S 1

2pg D 1/2

uh1u1/22b/2einh1~A1cosy11 iA1 siny1

1A2 cosx11 iA2 sinx1!, ~133!

where x1[x(h1) and y15y(h1). Our next move is to re-
place the expressions ofA1 andA2, see Eqs.~129! and~130!,
in the previous formula. This leads to
12350
e
ct

e

B157 i
m I~h i !e

2 inh1

2 sin~pn!
Uh1

h i
U1/22b/2

e6 ixi~cosy12 i siny1

2e7 ipncosx11 ie7 ipn sinx1!, ~134!

B257 i
m I~h i !e

inh1

2 sin~pn!
Uh1

h i
U1/22b/2

e6 ixi~cosy11 i siny1

2e7 ipncosx12 ie7 ipn sinx1!. ~135!

Then, the mode function at timeh5h2 ~which is the rel-
evant quantity for the determination of the constantC) can
be expressed as

m II~h2!57 i
m I~h i !

2 sin~pn!
Uh1

h i
U1/22b/2

e6 ixi. ~136!

From this equation, the expression of the spectrum can
easily established and reads

n3PF }n2b14. ~137!

Let us analyze this spectrum in more detail. The first rem
is that the tilt is unchanged and that the spectral index
given by the usual expressionnS52b15. The second re-
mark is that the exponential dependence has disappea
This is due to the fact that, fors51, this factor becomes a
pure phase. We recover the usual result as pointed out in
@33#.

Let us finally turn to the case where the initial conditio
are those which correspond to the instantaneous Minkow
vacuum. Restarting from the exact expressions for the c
ficientsA1 andA2, see Eqs.~124! and~125!, and using Eqs.
~50!, we find

A1'S pg

2 D 1/2

uh i ub/221/2
m I~h i !

sin~pn!
sinxi , ~138!

A2'2S pg

2 D 1/2

uh i ub/221/2
m I~h i !

sin~pn!
sinyi . ~139!

Inserting these equations into the exact formulas giving
coefficientsB1 andB2, we obtain

B1'
m I~h i !e

2 inh1

2 sin~pn!
Uh1

h i
U2b/211/2

3~sinxi cosy12 i sinxi siny12sinyi cosx1

1 i sinyi sinx1!, ~140!
1-13
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B2'
m I~h i !e

inh1

2 sin~pn!
Uh1

h i
U2b/211/2

3~sinxi cosy11 i sinxi siny12sinyi cosx1

2 i sinyi sinx1!. ~141!

We are now in a position where we can write the express
of the mode function at timeh5h2. It reads

m II~h2!5
m I~h i !

2 sin~pn!
Uh1

h i
U2b/211/2

@B̃~n!ein(h22h1)

1B̃* ~n!e2 in(h22h1)#, ~142!

where the functionB̃(n) is defined by

B̃~n![sinxi cosy12 i sinxi siny12sinyi cosx1

1 i sinyi sinx1 . ~143!

Then, one can writeB̃(n) as B̃(n)[uB̃ueic and defineB̄(n)
as B̄(n)[uB̃(n)ucos(nh22nh11c). It follows that the spec-
trum can be written as

n3PF }n2b141muB̄~n!u2. ~144!

The spectral index is given bynS52b151m, i.e., it differs
from the standard one but is equal to the spectral index
tained in the cases521 for instantaneous Minkowski initia
conditions. The factoruB̄(n)u2 is of order one and produces
complicated oscillatory pattern.

In conclusion, the resulting spectrum in the case of
Corley-Jacobson dispersion relation is very different fro
the usual spectrum calculated using an unmodified disper
relation, and different from what is obtained using Unruh
relation, even for initial conditions which minimize the e
ergy.

VI. DISCUSSION AND CONCLUSIONS

We have studied the dependence of the predictions
inflationary cosmology for the spectrum of fluctuations
hidden assumptions about super-Planck-scale physics.
motivation for our work is that in most current models
inflation, the period of exponential expansion lasts so lo
that at the beginning of inflation, scales of cosmological
terest today had a physical wavelength much smaller than
Planck length, and the theories used to compute the spec
of fluctuations are known to break down on these scales

We studied the problem by replacing the dispersion re
tion of a free field theory which is used to compute the sp
trum in the standard approaches by a modified disper
relation, the modifications only being important on leng
scales smaller than a cutoff lengthl C ~which we expect to be
given by the Planck length!. We considered two classes o
dispersion relations, based on the ones considered by U
@18# ~class A! and by Corley and Jacobson@21# ~class B!,
respectively, in their studies of thetrans-Planckian problem
of black hole physics. Admittedly, modifying the physics
12350
n
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e

on

of

he

g
-
he
um

-
-
n

uh

this way is a veryad hocway of taking into account possibl
effects of super-Planck-scale physics, chosen for mathem
cal simplicity. We do not want to introduce mode-mode co
pling in order to keep the computations simple. However,
order to demonstrate that there is a possible problem for
robustness of the usual predictions of inflation it is sufficie
to construct one example of a modified theory which leads
different predictions.

For a nonstandard dispersion relation the choice of ini
state becomes more difficult. We considered two choic
both of which coincide with the usual initial state in the ca
of the standard dispersion relation. The first~and better mo-
tivated! choice is the state which minimizes the energy de
sity, the second choice is the naive generalization of the ‘
cal Minkowski vacuum.’’

We have shown that for class A dispersion relations
usual predictions of inflationary cosmology are recovered~in
the case of exponential inflation! if the initial state minimizes
the energy density. In particular, the spectrum of fluctuatio
is scale invariant. If the initial state is chosen to be the ‘‘loc
Minkowski vacuum,’’ then the resulting spectrum has a
and superimposed oscillations.

In contrast, for class B dispersion relations and an ini
state which minimizes the energy density, the resulting sp
trum of fluctuations is in generalnot scale invariant. The
precise nature of the spectrum depends sensitively
whether the dispersion relation turns complex or rema
real. In the complex case, the spectrum is characterized b
exponential factor~more power in the blue, i.e.,nS.1), a tilt
~compared to the ‘‘standard’’ predictions! which depends on
the precise initial conditions, and superimposed oscillatio
The exponent, the tilt, and the precise oscillatory pattern
pend on the specific member of the class of dispersion r
tions chosen. For a spectrum which remains real, the u
result is unchanged.

The reason why for class A dispersion relations the us
predictions of inflation are maintained is that the time ev
lution during the period when the mode wavelength
smaller than the cutoff scale is adiabatic. This emerges fr
our calculations, but an intuitive way of understanding t
result is that at all times the effective frequency of the mo
is larger than the Hubble rate and the initial vacuum st
therefore adjusts itself adiabatically to track the instan
neous vacuum state, thus leading to the same state at timh1
as in the theory with unmodified dispersion relation.4 For
class B dispersion relations, in contrast, the dispersion r
tion varies too quickly as a function of time while the scale
smaller than the critical lengthl C and hence the evolution i
not adiabatic.

Let us now be more quantitative about the previous d
cussion. In region I, Eq.~13! can be written as

m91neff
2 m5m91a2~h!vphys

2 ~n,h!m50, ~145!

where vphys is the physical frequency defined byvphys

[(1/a)An21a2V2(n,h)/ l C
2 . The latter can be considered a

4We thank Bill Unruh for making this point to us.
1-14
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constant as long as its characteristic time scale of evolu
is small compared to the Hubble time, i.e., as long as
have adiabaticity. Therefore, let us define an ‘‘adiabatic
coefficient’’ a according to

a~n,h![U H
1

vphys

dvphys

dh
U , ~146!

where we recall thatH[a8/a. When a@1, adiabaticity is
satisfied and Eq.~145! reduces to the equation of motion
the Unruh case, Eq.~55!. In this situation, we know that the
final spectrum is unmodified since there is an exact can
lation of the n dependence in the minimizing energy sta
and in the growth factor before Hubble radius crossing wh
results in the usual spectrum. The previous argument sh
that an unmodified spectrum is expected whena@1 in the
region where the dispersion relation is modified. Let us a
note in passing that for the standard case,a51, since the
time scale of evolution ofvphys(n,h) and of the Hubble rate
is the same.

We have calculated the adiabaticity coefficient for the d
ferent cases treated in this article. The result is displaye
Fig. 3. Whenh goes to2`, we havel C@l whereasl C
!l whenh goes to zero.

We see that there exists a clear difference between
ruh’s case and the Corley-Jacobson cases. In the Unruh
a goes to infinity whenl C@l and adiabaticity is preserved
Whenbm,0, the adiabaticity coefficient reaches zero at
time whenv50 . Then, adiabaticity is progressively ree
tablished. The coefficienta goes to infinity and there is a
divergence whendv/dh50 . In the regime whenl C!l, a
goes to 1 as it should since the various dispersion relat
all become similar to the standard one. The previous con
erations explain why the final spectrum can be modified
the Corley-Jacobson case with a complex dispersion rela
but not in Unruh’s case.

We conclude that it is possible that in models of inflati
based consistently on a unified theory at the Planck scale

FIG. 3. Sketch of the time evolution of the adiabaticity coef
cient a for the dispersion relations.
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predictions for fluctuations will not coincide with the usu
predictions from our current inflationary Universe mode
Generalizing from our results, a crucial issue appears to
whether the evolution of the quantum states correspondin
the fluctuations will be adiabatic on length scales sma
than the Planck scale.

Our results point to the possibility that the interaction b
tween fundamental physics and cosmology may be m
richer than hitherto assumed. It is not only a question oif
and how fundamental physics leads to inflation; a mu
richer question iswhat the specific predictions of thefunda-
mental modelof inflation will be, assuming for the sake o
argument that such afundamental modelexists.

It is not surprising that super-Planck-scale physics m
modify the usual predictions of inflation. One model of th
early Universe motivated by string theory, the pre-big-ba
cosmology@34# based on dilaton gravity, leads to a supere
ponential period of early evolution in which the Hubble co
stant is increasing, and where the predicted spectrum of
lar metric fluctuations is not scale invariant@35#. It would be
interesting to analyze the predictions of other models of
flation based on string theory, taking into account the evo
tion on string scales. One toy model in which this quest
could be analyzed is the nonsingular Universe@36# based on
higher derivative terms in the gravitational action.

In the context of the models studied here, it would
interesting to explore whether the minimum energy dens
initial state is an attractor in a similar sense that the lo
Minkowski vacuum is in standard inflationary cosmolog
@28#. Note that models of inflation based on a strongly int
acting theory~such as the model analyzed in Ref.@37#! do
not suffer from thetrans-Planckian problem discussed in th
paper. In strongly interacting theories, perturbations are g
erated at all times at a fixed physical scale, and a sc
invariant spectrum results based on the Heuristic argum
mentioned in the Introduction. In such theories, however,
presence of strong interactions makes it hard to calculate
amplitude of the resulting spectrum.
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