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In most current models of inflation based on a weakly self-coupled scalar matter field minimally coupled to
gravity, the period of inflation lasts so long that, at the beginning of the inflationary period, the physical
wavelengths of comoving scales which correspond to the present large-scale structure of the Universe were
smaller than the Planck length. Thus, the usual computations of the spectrum of fluctuations in these models
involve extrapolating low-energy physi¢soth in the matter and gravitational segtorto regions where this
physics is not applicable. In this article we study the dependence of the usual predictions of inflation for the
spectrum of cosmological fluctuations on the hidden assumptions about super-Planck scale physics. We intro-
duce a class of modified dispersion relations to mimic possible effects of super-Planck scale physics, and find
that, given an initial state determined by minimizing the energy density, for dispersions relations introduced by
Unruh the spectrum is unchanged, whereas for a class of dispersion relations similar to those used by Corley
and Jacobsofwhich involve a more radical departure from the usual linear relatioportant deviations from
the usual predictions of inflation can be obtained. Some implications of this result for the unification of
fundamental physics and early Universe cosmology are discussed.
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I. INTRODUCTION There are good heuristic reasof8 to expect a scale-
invariant spectrum of fluctuations to emerge from inflation.
The inflationary Universe scenalfid] is the first theory of ~ Since de Sitter space is time-translation invariant, one should
the very early Universe to provide a mechanigdh for the expect the amplitude of the density fluctuatiatdd/M to be
production of density fluctuations on scales of cosmologicaindependent of the scalgabeled by the comoving wave
interest based on causal physisge also Ref3] for initial ~ Numbern) if measured at the time when the corresponding
idea3. The key point is that during the period of inflation wavelength crosses the Hubble radiysduring the inflation-
fixed comoving scales are stretched exponentially compare@ry period. Since microphysics cannot change the physical
to the Hubble radius. Thus, the wavelengths correspondingmplitude of the mass fluctuations while the wavelength is
to the present large-scale structure in the Universe and to tHarger thanl;, one therefore expec&M/M to be indepen-
measured cosmic microwave backgrou@MB) anisotro- ~dent of n when measured at the timg(n) when the scale
pies were equal to the Hubble radius about 50 Hubble exteenters the Hubble radius in the post-inflationary
pansion times before the end of inflation. This gives rise td~riedmann-Robertson-Walker period:
the possibility that causal physics acting before that time can
generate fluctuations on these scales while they are of sub- SM
Hubble length. V[n,tf(n)]=const, (&N
Most current models of inflation are based on weakly self-
coupled scalar matter fields minimally coupled to gravity. In
this context, quantum vacuum fluctuations providd a  which is the definition of a scale-invariant Harrison-
causal mechanism for generating fluctuations. In fact, th&el'dovich spectrunj11].
coupled linear metric and matter fluctuations can be quan- The time-translation invariance is, however, broken in the
tized in a unified mannef4]. The problem reduces to the current models of inflation. The calculations are done by
guantization of a free scalar field with a time-dependent maspicking an initial timet; (e.g., the beginning of the inflation-
(see, e.g., Refl5] for a comprehensive revigwAn initial  ary period, by choosing a specific state of the quantum fields
vacuum state thus undergoes squeezing during inflation, arat this time(e.g., the local Minkowski vacuum staft&0] or
this leads to the generation of fluctuations. According to thehe Bunch-Davies vacuufi2]), by evolving this state using
standard calculation$2,6—10, the predicted spectrum is the linearized equations of motion, and by finally calculating
scale invarian{modulo a mild deviation from scale invari- the correlation functions and expectation values of interest.
ance which stems from the time dependence of the Hubblin this context, the emergence of a scale-invariant spectrum
constant during the inflationary peripd of fluctuations is seen to arise from a subtle cancellation of
the wave number dependence in the initial state wave func-
tion and in the growth factor before Hubble radius crossing,
*Email address: martin@edelweiss.obspm.fr and thus depends explicitly on the initial state chosen. States
"Email address: rhb@het.brown.edu can be found13] which do not yield a scale-invariant spec-
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trum. Thus, it is clear that the prediction of a Harrison-used by Unrui 18] and by Corley and Jacobs¢@l]. As
Zel'dovich spectrum is not completely generic in currentpreferred initial states we will use either the state which
models of inflation. minimizes the energy density at the initial tihe following
There is, however, a much more serious potential problenthe approach of Brown and Dutt¢@3], or a naive generali-
for the claim that current models of inflation based onzation of the local Minkowski vacuum.
weakly self-coupled scalar fields generically lead to a scale- We find that in the case of Unruh’s dispersion relation,
invariant spectrum of fluctuations. Most of these models ofthe spectrum of density fluctuations is unchanged in the
inflation involve (see, e.g., Ref.14] for a recent reviewa  minimum energy density initial state. However, in the case
period of inflation much longer than the &Ofoldings of  of the family of dispersion relations generalizing the choice
inflation required to solve the horizon and flatness problemsf Corley and Jacobson, the choice of the minimum energy
of standard cosmology. Since wavelengths exponentiallylensity initial state leads to a spectrum of fluctuations which,
redshift during inflation, the physical wavelengths of thedepending on the specific member of the family of dispersion
modes which correspond to the present large-scale structurelations chosen, may be characterized by a tilt, by an expo-
in the Universe were, in those models, much smaller than theential factor, and by superimposed oscillations.
Planck length at the initial timg . Thus, the usual compu- Our work indicates that the prediction of a scale-invariant
tations of the spectrum of fluctuations involve extrapolatingspectrum in inflationary cosmology depends sensitively on
weakly self-coupled field theory coupled to classical gravityhidden assumptions about super-Planck-scale physics. This
into a regime where these theories are known to break dowras important implications for the attempts to unify funda-
This problem is analogous to the trans-Planckian problenmental physics and early Universe cosmology. It is now a
for black hole physicgsee Ref[15] for a recent overvieyv  rather nontrivial question under which conditions a unified
In black hole physics there is an arbitrarily large blueshifttheory of all forces such as string or M theory will lead to a
when following modes of Hawking radiation at future infin- scale-invariant spectrum, assuming for the moment that it
ity into the past, and the usual calculations of Hawking ra-does indeed lead to a period of inflation.
diation [16] seem suspedsee, e.g., Ref.17] for a discus- The outline of this paper is as follows. In Sec. Il we
sion of this point. demonstrate that the growth of linear density fluctuations,
In the case of the black hole problem, it was recentlygravitational waves and linear scalar matter fluctuations can
shown by UnruH 18], Broutet al.[19], Hambli and Burgess all be described in terms of the same framework: that of a
[20], and by Corley and Jacobsg®1] that the prediction of free scalar field with a time-dependent mass. In Sec. Il we
a thermal Hawking spectrum of black hole radiation is insenintroduce the two classes of modified dispersion relations
sitive to modifications of the physics at the ultraviolet end ofwhich will be used in the calculations. The quantization of
the spectrum. In these works, the dispersion relation of théhe scalar field in the time-dependent background and the
guantum fields was modifiedn ratherad hocways at en-  construction of theminimum energy densityitial state are
ergies larger than some ultraviolet sck}e and it was found reviewed in Sec. IV. Section V contains our calculations for
that the spectrum of radiation at future infinity at wave num-both classes of dispersion relations. Our results are summa-
bers much smaller thaky is insensitive to the modifications rized and discussed in the final section.
considered. In this sense, Hawking radiation from black

holes was shown to be an infrared effect. _Il. EQUIVALENCE BETWEEN COSMOLOGICAL
The obvious que;tlon is Wheth_er a _su_mlar _conclu5|on will PERTURBATIONS AND A EICTITIOUS
hold for the generation of fluctuations in inflationary cosmol- SCALAR FIELD

ogy. This is the question we will address in this paper. We

will consider a free scalar field in an inflationary background  Without loss of generality, the line element for the spa-
[de Sitter phase of a Friedmann-Robertson-Walker cosmokially flat Friedmann-Lemfditre-Robertson-Walke(FLRW)

ogy with scale factom(t)]. This scalar field can represent background plus the perturbations can be written in the syn-
the scalar metric fluctuations, the gravitational wave modeg¢hronous gauge according [24,25

or a matter scalar field on the fixed background geometry —

the case of most interest for cosmology corresponds to scalar Q.
metric fluctuations. We will modify the usual dispersion re- ds’=a?(75){ —d»°+ ij+h(7,n)Qd;; +h|(17,n);2'J
lation n
2 . .
W2=k2, k2= @ +hgu 7,0 Q;; dx'dx']. 3
L a L

wheren andk are the comoving and physical wave numbers,In this equation, the dimensionless quantitys the comov-
respectively, for values ok larger than some cutoff scale ing wave vector related to the physical wavevestdhrough

ke, and will calculate the predicted spectrum of fluctuationsthe relationk=n/a(#). » is the conformal time related to

in the modified theory for well-motivated initial quantum the cosmic timet by dt=a(#n)d». The functionsh andh,
states, states which in the unmodified theory coincide wittrepresent the scalar sector a@¢x') is the eigenfunction of

the state usually chosen as the initial state. The modifiethe Laplace operator on the flat spacelike hypersurfaces. The
dispersion relations which we use are the same as the onésnction hg,, represents the gravitational waves a@g(x')
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is the eigentensor of the Laplace operator. It is traceless and NPy (N)=Agn"s %, n3Pu(n)=An"T. (8)
transverse, namelyQ;'=Q;;"’=0. It is convenient to intro- .
duce the background quantity ») defined byy=—H/H?2, Let us now consider power law inflation models where

where a dot means differentiation with respect to cosmidhe scale factor is given bg(zn)=1o|7|**# whereg is a

time andH is the Hubble rateH=a/a. We can also write number such thag<—-2 andl, has the dimension of a
y=1—H'IH? whereH=a'l/a and a prime denotes differ- length. The advantage of this class of models is that every-

entiation with respect to the conformal time. thing can be calculated exactly. In the cgge —2 which
In the tensor sector, we define the quantity by hy,  Corresponds to exponential expansion, the letgtis noth-
= u/a. Then, the equation of motion is given pg6] ing but the Hubble radiu$y=a“/a’. The functionvy is a

constant given by=(B8+2)/(8+1) which vanishes foB

, , a =—2. We see that Eq(5) now reduces to Eq(4). The
25 a ur=0. (4)  spectral indices can be determined exactly and read
i T =28+ =2B+4.
Since gravitational waves do not couple to matter, the last Ns=2p+5, nr=2p+4 ©)
equation is valid for every type of matter. , We have the relationg— 1= n; which is valid exactly only
In the scalar sector, it is convenient to work with a re-¢, power law inflation.
sidual gauge invariant variableps defined by us Let us now consider a massless scalar fieldy,x) living

=[a/(H\y)](h' +Hyh), where we have supposeg#0. i q FLRW spacetime. It is convenient to Fourier decompose
The casey=0 must be treated separatélsee below. The  the field and to introduce the quantiiydefined according to
quantity ug is related to the gauge invariant Bardeen poten-p (, x)=[ 1/(27) %2 fdn(u/a)e™ . It is easy to show that

tial by ®F®=[Hy/(2n?)][us/(a\y)]' where the sub- the Klein-Gordon equation reduces to the following equation
script “SG” means “calculated in the synchronous gauge” for y:
[27]. Therefore, knowing the solution ferg permits the cal-

culation of the Bardeen variable. If matter is described by a
scalar field(the inflator), then one can show thaig obeys

the equation

n

"y n2__
K a

u=0. (10

This equation is exactly the same as E4) and Eq.(5).

Therefore, investigating the properties of cosmological per-

m ps=0. () turbations is equivalent to investigating the properties of a
fictitious scalar fieldb (#,x). In particular, the calculation of
the power spectrum of the scalar and tensor perturbations

;lt—)htehge:jS:yS_ittoe rcargii‘g?dnd'?hfnaosrfslt(:aazacs%qulo;ﬁat’t;l':.;exa reduces to the computation of the power spectrum of this
: ' Cﬁctitious scalar field. In the following, we will restrict our

solution to the perturbed Einstein equationsiig=0: there considerations to this case, having in mind that, in fact, we

are no density per.turbat|ons at aII..Th|s IS because when tr\ﬁill calculate the power spectra of cosmological perturba-
equation of state ip= —p, fluctuations of the inflaton are ti

not coupled to fluctuations of the perturbed metric. Coupling
occurs only as a result of the violation of the conditips

(aVy)”

pst|n?—

Let us make a last remark. Although it seems that we have
considered only a limited class of moddis., power law

P inflation), the previous analogy is in fact much more general.

Observable quantities can be computgd W_hen the Ir“t'a‘ﬁ'his is because the slow roll approximation, valid for a wide
power spectra are known. These are defined in terms of th

; . . "Qass of inflationary models, reduces to first order to power
two-point correlation functions. For the Bardeen potential, .., ;
law inflation.
one has
sinnr lll. TIME DEPENDENT DISPERSION RELATIONS
3
nr : P‘I’B(”'n)' In this section, we present the two classes of modified
(6) dispersion relations that will be used in this article. Let us
return to the equation of motio(iL0). In this equation, the
whereas for gravitational waves the correlator is given by presence of the term? is due to the differential operator
69,9, in the Klein-Gordon equation. In Fourier space, this

+odn sinnr 5 means that
— n°Pp(7,n),

+=dn
(0| ®g(7,x)Pg(7,x+r)|0)= fo —~

N ij =
<0|hlj(7]1X)h (77!X+r)|0> o n_nr ,
7 2_ 2_n_

() w =k =2 (1D
where we have writteh;; =hg,Q;; . We are specially inter-

ested in modes which are outside the horizon at the end dfhe dispersion relation is therefore linear in the physical
inflation, i.e.,n/(aH)<1. For these modes, the power spec-wave numbek: w=Kk. A possible alteration of the high fre-

tra do not depend on time and can be written as guency behavior of the Klein-Gordon equation can be ob-
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k\P
(E)
wherep is an arbitrary coefficient. For large values of the
Nvave number, this becomes a constentwvhereas for small

tained if we require the presence of a nonlinear function

F(K) such thatw=F(k) which, for physical wave numbers o=F(k)=Kkc tanh®
smaller than a new characteristic sclle, i.e., k<kc, re-
duces tow~k. This means that the? term in the Klein-
Gordon equation should now be replaced with a time depe

: (18

dentnZ¢(#) such that values this is a linear law as expected. According to(E2),
5 5 5 5 5 in the context of cosmology, we take
ner=a“(n)Fo(k)=a“(n)Fn/a(n)]. (12)
Wa( 77) N nlC P
We see that, in terms of comoving wave numbers, we obtain Ne( 7) = I tanhP 2maln) | (19

a time dependent dispersion relation. In what follows, we

Wi." consider two ex_plicit ?Xamp'e_s for_the functioes. wherel is the characteristic length correspondingkig
Given the modified dispersion relation, HG0) can now be  The argument of the hyperbolic tangent can also be rewritten
written as aslc/N(7). This means that whex=1., n.(7) tends ton.

a//

a

u+ ngﬁ n=0. (13 B. Generalized Corley-Jacobson dispersion relation

The dispersion relation utilized by Corley and Jacobson in

Let us analyze this equation in more detail. We can distinRef. [21] is given by the following expression:
guish three regimes. In region |, the wavelength of a given

4
mode

k
w2=F2(k)Ek2—k—2. (20)

N(m)=(2m/n)a(7), (14) c

In this article, we consider a more general case and write
is much smaller than the characteristic lengtkl-. The
nonlinearities in the dispersion relation play an important m
role and the solution of the equation of motion depends on w?=k>+ kZE bq<
the particular form of=(k). A crucial issue is that the mode a=1
no longer behaves as a free wave initially. As a consequence, o ) o
the choice of initial conditions cannot be done in the usualvhere thebq area priori arbitrary coefficients. Let us sup-
way. In region II, the wavelength of the mode is larger thanPOS€ that the previous sum only contqlns the.last term. The
the characteristic length but still smaller than the HubblePhysics depends on th_eZS|gnlm§. If by, is negative, them
radius| c<\<l,,. In this case, one can consider the disper-vanishes fork=ke|bn| ~*™. Beyond this point, the disper-
sion relation to be linear, i.eQ(7)~0 and neglect the term SioN relation becomes complex. The Corley-Jacobson case

k |2d
) , (21)

ke

a’la. Therefore, the solution can be expressed as corresponds tan=1 andb;=—1. In the context of cosmol-
ogy, the previous ansatz gives rise to the following function
pi(m)=B1e"7+Bye "7, (15)  MNer(n):
. . . . . . m 2
Finally, in region IlI, the mode is outside the Hubble radius: ) 5 o by [lc\*,
. ; S - 9 | = q
A>1,, and the solutiorithe growing modgis given by Net( 7) =N"+N Zﬁ (2m2\ a n=. (22)
pan(77)=Cal), 168 Again, whenh> | then the effective comoving wave num-
. . ber simply reduces tn. On the other hand, when<I., one
whereC is an dependent constant. This constant has to bg, ¢ i ¢
determined by performing the matching pfand ' at the
times of transition between regions | and Il and regions Il b | \2m
and lll, », and #,, respectively. Then, the spectrum can be néﬁm—m £ pam+2 (23
calculated and reads (2m)2™\ a

2 The different dispersion relations used in this article are

—n3 2

=n°|C|*. 17 displayed in Fig. 1 together with the dispersion relation con-
sidered in Ref[22] denoted “KG.”

Let us now turn to the first example of a time dependent

modified dispersion relation. IV. QUANTIZATION OF A MASSIVE SCALAR FIELD

“

3 _ 13

n°Pes=n
@ a

The aim of this section is to develop a Lagrangian and
Hamiltonian formalism for the system described above. We
The dispersion relation used by Unruh in Rdfg], in the  will show that considering a time-dependent dispersion rela-
context of black holes physics, is tion is equivalent to giving a time-dependent mass to the

A. Unruh’s dispersion relation
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T whereN(n, ») is a time-dependent factor which will be fixed
Jacobson/Corley b ;>0 | below. Next, the action given in EqR4) expressed in terms
of the new variablej,(7) takes the form

2

Yol

! !

1 r g% 1
@wnwn +ﬁ ~Nta

L s [an[
3 F Standard - R

—m(ﬁﬂL; ('/féﬁﬂ//nllfﬁ’)

“Jacobson/Corley b <0 ]
\ L b

. (27)

1 2 *
- mneﬁ‘pn‘ﬂn

We can now calculate the conjugate momenturion). Its
k definition isp,=d £,/ ¢ () whereL, is the Lagrangian
density(the bar indicates that one calculates the Lagrangian
FIG. 1. Sketch of the different dispersion relations. in Fourier spacewhich one can deduce from the previous
equation. The conjugate momentum reads
fictitious scalar field. The main purpose of this section is to
discuss the initial conditions. As already mentioned previ-
ously, when the wavelength of a mode is smaller than the pﬂ:@
critical lengthl -, the mode does not behave as a free wave

because the dispersion relation in this region is no longefhe Hamiltonian can be determined using the following re-
w=K. As a consequence, it is no longer possible to imposeation:

!

%— Ewn

N/

Ve - (28)

the usual initial condition at n=%, ie., u

—e "7~ m/\2n. Another method must be used. Following Ho=p* +p* o~ L, (29)
Ref.[23], we will choose the state which initially minimizes nornTn

the energy density of the field. Inserting the expressions of the Lagrangian and of the con-

jugate momentum in this definition, we obtain
A. Lagrangian and Hamiltonian formalisms

We now study a massive fictitious scalar fieldwhose Ho=N?p,p} + m(wnp;‘ + 47 pn)
action is given by aN
' 1 2 *
, .0 a 2 % a’ - %' + _zneffwnwn : (30
S:f dﬂf 3+dn MnMn +_2/u“nﬂn_g(lunlu“n+:u*n:“n ) N
R a

The explicit quantization can now be carried out. We express
the Fourier componen#, and its conjugate momentupy, in

—nZaunul |. (24)  terms of creation and annihilation operators, satisfying the
usual commutation relatiofc, ,c;r]z 8(n—r), according to
In this equation, the scalar field has been Fourier expanded NG
according to yn=\h(c,+ct ), po= ﬁ(cn—cin). (31)

1 ; The Hamiltonian operator is obtained by plugging the previ-
— n-x
P(n.x)= 312 g( )f dngq(m)e™ ™, (25 ous expressions into EG30) and requiring that % /2" be
(27) 7 . o e
present in each mode, which fixes the normalization faldtor

and p,(#n) denotes the complex Fourier component of the'© he

field. We can easily check that the Lagrange equation of
motion for the quantityw,(7) leads to Eq(13).

We are now in a position where we can pass to the Ham"Where  is the “comoving frequency” defined byo(7)

tpnian formalism. Our first move is to perform the following —n,. Although we use the same notation for convenience,
time-dependent transformation this frequency should not be confused with the physical fre-
guency which appears in EgE8) and (20) and which can
obtained by multiplying the comoving frequency by a factor
1/a. The Hamiltonian reads

N?=2w(7), (32)

1
Mn(m)= N 7) In(m), (26)
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The functionau, andv, can be reexpressed in terms of three

hw
H=J 3dn T(Cncﬁ c,ncin) other arbitrary functions(#), 6,(#n), and¢,(7). Follow-
R ing this path would lead to the squeezed state formalism.
. , However, we will not need it in this article.
+ﬁ(a\/5) (ch cl—c_.cp) (33
2 a\/; —nvn —n%n/ |-

B. Fixing the initial conditions
This Hamiltonian has the usual structure. The first term is - e previous considerations permit to fix the initial value
just a collection of harmonic oscillators whereas the secong)
term represents the interaction between the background a
the perturbations. This term is responsible for the phenoma
enon of particle creation, which is a squeezing effect. In a
static spacetime, the pump functiom(w)’/(a\w) vanishes
and the interaction part of the Hamiltonian disappears. The
field operator can be expressed as

the mode functionu,(7;) and its derivativeu, (7;) for

y choice of functiorn()(#), i.e., for any time dependent
ispersion relation.

It is straightforward to check that the function

+v;‘)=i(un+v:), (42

N

anw(un

- N dn
7,X)= 3/2J CoNany
a(n) (2m) 20(7) satisfies Eq(13).! From Egs.(38) and(39), we see that the
X[cy(7)em*+cl(n)e . (34) initial conditions for the two functiom,, andv,, are given by
" " Up(7=7)=1 and v,(p=7)=0. Therefore, the initial
The time evolution of the creation and annihilation operatorsalue of the mode functiop can be written as
and therefore of the quantum scalar field is calculated by
means of the Heisenberg equation

1 1
. d m(n=1n)= = : (43
it g Colm =[cn,H1. (35) " 2wl 2neg
Using the form of the Hamiltonian derived previously, one
gets the fo”owing equations of motion: Let us now turn to the determination ﬂf(??: 7]i). It will be
found by the requirement that the energy density is mini-
c, (a\/g)' mized. The stress energy tensor can be obtained from the
iﬁd—zﬁw(n)cnﬂﬁ—\/—cfn, (36)  action(24) with the help of the standard definition. In terms
K avo of the Fourier components,,, the energy density reads
dc! ajw)’
ih—“=—ﬁw(77)c;+ih( Yo) C_p. (37)
dy avw A f=dn| o, o@N)
P_MJOE Inibn — aN (nthn + 7))

The solution of these equations is a Bogoliubov transforma-
tion which can be written as N a,zw o NIZ()[/ P l/,*+2a’N’ b
5 ¥n o ¥n Netn “an Yn .

Col( 1) =Un(7)Cal( 7)) + (7L o(m), (39) a2 " oNZ T EER AN e

Yy =u* ) +o* . (44)
Cn(m)=ug (m)cp(m)+vy (m)C_n(7), (39

where we have introduced two new functiong(#z) and
vn(7). These functions satisty,(7)|>—|va(7)|>=1 in or-
der for the commutation relation given to be preserved i
time. Let us notice thati, and v, do not depend on the
vector n but only on its modulus. Inserting the previous ,

equations in Eqs(36) and(37), one obtains the equation of = fnfn ~ Mn Hn W_hiCh is a t?me independent qut_antitas
motion for these two functions can be checked in calculatindW(n)/d» and using the

equation of motion fom,]

We now define the functions(#) andy(#) as the real and
imaginary parts of the ratiof,/¢,=x+iy, respectively.
Mrhen, the initial energy density can be expressed in terms of
xi=x(n=mn), Yi=Y(n=mn;) and the WronskianW(n)

_du (aw)’
i ——=ho(p)uy+ih——=0v*, (40)
dn aJo
1t should be noticed thaf, is not exactly the mode function
do (a\/;), introduced before. It is dimensionle@sstead of dimension/%c)
i% _”:ﬁw( uat+ih * (41 and depends only on the modulosin the same manner, we now
dn a\/a deal with a “new” function ¢,,=Ngu,, .
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A = W(n) (aN)’ a’2 If the dispersion relation is standard, théh=0 and the
p=— AJ dn— x2+y?—2 Nt ot N2 mode is initially free: locally, it does not feel the curvature of
Amca’Jo i a a space-time and behaves as it were flat. In this case, the two

possible choices of initial conditions discussed above coin-

, (45) cide.
Two last comments are in order before ending this sec-
tion. Let us first remark that the concept of an initial state

whereN anda are also evaluated at the initial time. Notice Which minimizes the energy density of the field could be
that, while deriving the previous equation, we used the facProblematic in a region where the dispersion relation be-
that the Wronskians of., and ¢, are related by a factdd2. ~ comes complex, as is the case for the Corley-Jacobson dis-
The “vacuum” used in this article is defined as the statePersion relation wittb,,<0, since the energy needs not to be
which initially minimizes the energy density. The variation bounded from below in such a situation. We are not aware of

of the previous expression with respectdoandy; leads to ~ @ny more obvious method than the one used here to deal with

this case.
5 . W(n) [ 2 (aN)’ 1, Finally, although we ha\{e.m.tr.oduced two |n|t|al_ states, it
Sp= dn——1 —| x;— i+ | Y- X should be clear that the minimizing energy state is the only
472at)o 2i i aN : physical vacuum state. The instantaneous Minkowski

vacuum is considered here only to stress the fact that the

choice of the initial conditions becomes more crucial than in
Y- (49 the standard situation where one can show that a large class

of initial states leads to the same specti2@] (although, as
Demanding thatsp=0, one deduces the initial values »f already mentipned in the Introductiqn, it is pos;iplg to find
andy [ef%;nples which do not belong to this class of initial states

! !

Xi =;( 7))+ W( 7i), Yi= T Negp. (47) V. ANALYTICAL SOLUTIONS

2(aN)r a12 N/Z a’'N’

2
+
aN

Xi——F —Ngg— —5 —
i a2 eff N2 aN

_ - . o In this section, we calculate the spectrum of fluctuations
These expressions can be simplified. Using the explicit fornfor the two classes of dispersion relations introduced in Sec.

of the functionN(n, %), one can write IIl. We focus on a fixed comoving wave numbeiand pro-
ceed as follows. We solve the equation of motion in each of
N o the three regiongdefined in Sec. Il separately. The coeffi-
N 20" (48 cients of the two fundamental solutions in region | are fixed

by the initial conditions discussed above. Then, we explicitly
perform the matching oft andu’ at the transitions between
regions | and II, which occurs at a time denoted 4y and
between regions Il and Ill, which occurs at time, to obtain

he coefficients of the two fundamental solutions in region
II, from which the spectrum can be calculated.

At the time = 7, it is reasonable to considar<|; (oth-
erwise, the whole problem studied here would be pointless
Then, for Unruh’s dispersion relation, one find¢'/N
~a'/2a and for the Corley-Jacobson dispersion relation, on
hasN'/N~—ma’/2a. In addition,a’/a is very small in the
limit where the conformal time goes te sincea’/a(7;)
=(1+pB)/| 5| and|n;|>1. Therefore, one gets that /4,
~iy;. On the other hand, we haye,= ¢,,/N. Combining
this formula with the previous one, one obtajp§+N’/N

The time 7, is when the mode crosses the Hubble radius,
which is given by

lo

=iy, - Neglecting again the terid’/N, we finally arrive ly(7)= | 7|27 A, (51)
at 11+ 8]
o Neg Thus, the condition
w (p=m)==i\ -~ (49
[4(72) =N(72) (52
The initial conditions are now completely fixed and given by
Egs.(43) and (49). boils down to

Let us also mention that it is possible to adopt another

choice of initial conditions which corresponds to the “in- o
stantaneous Minkowski vacuum” ag= 7;: namely, | 70| = T|1+B|' (53
1 n . . -
w(m)=—, wu'(y)==i \ﬁ (50) The geometry of space-time is |Ilustrat_ed in I_:|g. 2. _
' \/ﬁ ' 2 We start this section with Unruh’s dispersion relation.
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N5 i S EESE—— : ] (49). In the approximation wherg> \, they are solutions of
\ 1 (note that we do not yet use the fact tlais smal)
LR
X X 1 € 1/2
Aq| i1+ Ag| 7] =5 ;| 7il % (58
Physical wavelength A=27/na(n)
T
Ay T+ Ao [T = F \/; ml Y2 (59
The exact solution of this system of equations can be written
as
| |
¢ . e 1 1 [el 2in
FIG. 2. Sk ' i A=V ———— o\ | 12—, (60)
. 2. Sketch of the evolution of a physical mode throughout 1-x/%,2 V7 €X5
the three regions defined in the text. The dashed region is the region
where the dispersion relation is modified. 1 1 2i
A :|,7_|1/2—X2 _ _\/E( _”T) (61)
A. Unruh's case 2 1-Xp/%1 2 V €Xy
The equation of motion for the mode function can bey; is gt this point that we use the fact thais small. To first
written as order in a systematic expansion in this parameter we obtain
472 lc \P] @ i(e\¥1 2ix 2i 2i
0 i ) o _ife)L_aim 2w ) 2w
a {Ié \(7) al* (54) Ar=gl ] |- ]ex — [l ],
(62)
This equation can be solved exactly in region | only if the
scale factor is given by(n)=I4/| 7|, i.e., in the caseg8= i[e\¥1 2ix 2iw Qi
— 2. Fortunately, this corresponds to the de Sitter space-time, A2~ 8\ 2 Ti— ex Tlnl 7il |-
the prototypical model of inflationary cosmology. Note that (63)

in this casd, is the Hubble radiugsee Eq(51)]. In region I,

the hyperbolic tangent is approximatively one sifg&\  \We now pursue the calculation for both choices of the sign
initially. Therefore, Eq(54) reduces to of the initial conditions. We introduce an index* for the
upper choice and I for the lower choice. This leads to

47?3122
p'+| ————|u=0. (55 i [ e)\3R 2i
n ATZ 1—6(;) GX4_T|H|7]i|), (64)
Note that, in fact, the form of this last equation is indepen-
dent of the precise forrfi.e., the hyperbolic tangenof the . 1le\¥  [2ix
dispersion relation in the regimg>\. It is just necessary to A= 5(‘) EX%TW 77i|), (65)
assume thaF (k) goes to a constant. We see that the result
depends in an essential way on the dimensionless parameter 1( e\ 12 i
e=lc/l,. At this point, we have assumed nothing about the Al= —(—) exp( ——In| 77i|)1 (66)
value of the ratid ¢ /l,. However, physically, it is clear that 2\m €
e<1. One would expect the cutoff length to be given by the . 3 )
Planck length Kc~1p), wheread o~ 10l if the spectrum A= '_(E) exp{m—wlnl _|) (67)
of fluctuations is COBE normalized. In this case, we have 2 16\ = € i)
€~10""°. In the following, we will use an expansion in terms
of this parameter. The exact solution of E§5) is Therefore, one hagy>A!Y, A=A} and only one branch of
the solution(56) survives. Then, the solution in region | can
() =Aq| g1+ Ag| 7|2, (56)  be expressed as
where the exponents, andx, are given by o1 el 2im | g
,u|'(7])—§ TGX +Tln—_ . (68
11 | 160 : K
X1.2 22 e 57 Let us now turn to region Il. As already mentioned above,
in this region, the solution is given by
It is now time to fix the coefficientd&; andA,. They are _ _
completely determined by the initial conditiorig3) and wn(n)=B.e""+B,e """ (69

123501-8
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The coefficientB; andB, are determined by the matching In the limit when the parameter is small, an expansion of
of this solution with the solutioi68) at the timez,. Conti-  the previous expressions leads to the following formulas:
nuity of u andu' yields

el 7| | 2im |\ 2imle—112 dimle—1/2
inmy 4 —iny, — , Ay~ e e,
inB;e inB,e 2( p- ) exp + c In|— il 2\/—|77|| 27 2\/—|7h|
(70) (79)
_ o » o \Y2 2 7 The result does not depend on the choice of the sign of the
inB,e""—inBye "M== | exp ¥—In]— initi iti ial di i
1 2 el n e ml) initial conditions. We see also another crucial difference in

comparison with the previous case, see EG&) and (63):

(71) this time, the coefficients are of the same ordee.iThere-
The solution can be found easily and reads fore, the solution in region | is now given by a cosine instead
of by a pure phase

Blzi(lil)exp( AT +2—7T), (72)
2\/ﬁ € 7 € 1 |9 1/2
| | M(ﬂ)z\/ﬁ P 5<—In —‘) (80)
Bz=i(1:1)exp(+2'—w|n m_Am (73)
2\/ﬁ € 7i

The solution in region Il is still given by plane waves. The
atching at timen,; permits the calculation of the coeffi-

As a consequence, the solution in region Il also contains onl
g 9 ientsB; andB,. They read

one branch.
Finally, we must solve the mode equation in region Ill. As
already mentioned, the nondecaying mode is 1 T 27 |y
Bi=— —ex;{—innl —In ) (81
mm=Ca(n). (74 n Vel il i
The coefficientC is fixed by the matching of the mode func-
i i 771
tion when the mode crosses the horizonyat® One gets B,= o / ex;{ inp,+ ) (82)
|772| 27 p(72)
C= Mn(ﬂz) 1, (79

Again, there is an important difference in comparison with

Therefore, regardless of the choice of the sign of the initiafN® Previous case: both coefficients are now nonvanishing.
conditions, we havéC|=1/n%2 and as a result The mode function in region Il can be expressed as

3
Pq) on (76) 1 = 2 m
, . Hi(m)=— cog ny— n7]1+—ln
We see that, whe=—2, the final answer is not changed n |77.| 7

compared to what is obtained without the modification of the

dispersion relation, i.e., we get a scale invariant SpectruMy . function is proportional to /instead of 1{n. The

ns=1[see Eq(9)]. determination of the consta proceeds as previously and
We now discuss different initial conditions. We adopt theleads to the spectrum P P y

“instantaneous Minkowski” initial conditions given by Eqgs.
(50). Of course, the form of the solution in region | is still the

) . (83

same but, now, the coefficiends, andA,, are different. The 03 2 2m 2_7T| 2m
exact expressions for these coefficients can now be written as nPgcnco € + € Ly nyl ) (84)
n i B iXo
A=+ \[Zx |7;|| ( _m) (77) A few remarks are in order here. First, the difference be-
i tween Egs.(76) and (84) demonstrates that the final result
i i does depeno! on th_e choice of _the initial .condit_ions. Second,
A,=+ \ﬁ | 7]t XZ( 17 —% ) (78)  the spectral index is now modified andng=0 instead of
2X1— X%y n| 7 ns=1 previously. Third, oscillations in the spectrum are

present. Ifn; andn, are two wave numbers such that the
argument of the cosine differs by a factotr@ wherep is an
2To be more precise, we should take the decaying mode in regiofiteger then one has, /n, =exp(pe). This means that unless
Il into account and match botle and x’ at time 7,. This only P is comparable t&~*, n;, andn, are almost equal. There-

changes the result by an unimportant constant of order 1. fore, the oscillations are very rapid.

123501-9



JEROME MARTIN AND ROBERT H. BRANDENBERGER PHYSICAL REVIEW D63 123501

B. The Corley-Jacobson case 1. The case s —1, b,,<0
With the dispersion relatiof21), the equation of motion In region |, the equation of motion for the mode function
becomes reduces to
m 2q
b en ! 2m
” 2 2 q _ | = b n
u'+plnc+n =0. (85 y . 2 Om € _
=1 (24 Zq( 1+B) a ©+n n=0. (91
( ) |7]| (27T)2m |7]|1+B

This equation is valid for any scale factor of the foatw)

=lo|7|**#. Unlike in Unruh’s case, we do not need to For a negative coefficier,,, the exact solution of Eq91)

specify B=—2. can be expressed in terms of modified Bessel functions as
We now need to discuss the form of the solution in regionfollows:

I. This crucially depends on the sign of the coefficibpt In

the regime we are interested in, i.ez>\(#;), one can re- wi(m) =AY (2)+ Ay 9| YK (2), (92)

tain only the dominate term and the dispersion relation can

be written as wherev=1/(2b) and where the functior(») is defined by

2m the following expressiorz(z)=vy|5|°. The coefficientsA,
) (86)  andA, are determined by the initial conditions given in Egs.
(87) and(88). These coefficients should satisfy the system of
equations

e
n2e~n’+ nzbm(x

This means that ib,, is positive, the dispersion relation re-
mains real. Ifb,, is negative the situation is more compli-
cated. For very small value db|, the dispersion relation Al (i) +AK () =] " 2m(), (93
can remain real even in the regirhe=>\(7;). However, it

seems a bit artificial to fine-tune the value|bf,| such that | ;| V2D

this actually happens. Without this fine-tuning the dispersion —A;l,_,(z)+AK,_1(z)= —b,u,’( i) (94
relation certainly becomes complex. This last property Y

should not be considered as a surprise. Indeed there exist

many situations in physics where complex dispersion relawherez denotes the value @ ») at time = ;. The exact
tions appear. This is for example the case in hydrodynamicsolution forA; andA, can be expressed as

when one describes the damping of a sound wave in a fluid

due to viscqsity{229]. Theq, the dispersipn relation is given A=y 7|2 Y20, (9K - 1(Z)

by k= w/c+iaw” wherea is a factor which depends on the

viscosity coefficients. In cosmology, other examples are silk ||* P i () K (z)
damping or damping of density perturbations due to neutrino x| 1= yo o () K,_1(z)] (99
decoupling[30]. In this paper, we choose to analyze both
cases and writd,=s|by| with s==1. Then, from Egs. A b—1/2 |
(43) and(49), the quantitieg.,(7;) and | (7;) take the form 2= Y ml” il -1(2)
1-b 7
X X | (z
- 1/4 I “|14 |77||b M (7;) l Zi) . (96)
/J'I(ni): \/m|77i| ' (87) Y Ml(ﬂi) V_l(zi)
In the derivation of the previous expressions, we used the
1O L4 Q |- L2+br2 exact equationI(,K,_,+1,_1K,)(z)=1/z. Since, when ¢
wi (m)==*is 517l : (88) . :
>\(7;), the argumeng; is large we can now rewrite these

_ _ equations using the asymptotic formulas for Bessel functions
where we have defindolandy (not to be confused with the ¢ large argument§31]. Notice that it is necessary to go to

function y used in Sec. )Iby the following expressions: the second order in the expansion of the modified Bessel
\/ﬁ functions. We obtain
b=1-m(1+p), y=—— ™M™+, (89)
b(2m)™ ) 12 12 b/2—1/24— 2v-1
_ Ay~ 5) yoom(n) | il e 11— Ear
From expressiong87) and(88), we deduce
, . _ (97)
i () () = =i82Dry| P~ (90)
This ratio will out turn to be important in the calculation of 1\ P B b2
the various coefficients determined by the matching proceA2~ onl 7 i (70) | il et 1+1+ 2y [ 7).
dure. To go further, we need to treat the casest 1 sepa-
rately. (98)
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For the sake of completeness, we pursue the calculation for A i vb l,_1(21)
: : o i ML 4 b—1' v-1{4
both choices of the sign of the initial conditions. Let us agaire " "*B,= 7| 7Y (20)| 1 T|771 Tz
use an index U” for the upper choice and I*’ for the lower e
choice. We obtain A, i yb K,-1(z1)
_“ 1/2 e p—1_v-1\71/
+ 2 |771| KV(Zl) 1+ n |771| KV(Zl) .
ar 1/2
Agzz(i) ,yl/ZIul( 7]I)| 7’i|b/2_ l/2e—Zi, (99) (106)
Much simpler(approximatg formulas can be obtained if one
1\ 12 2p—1 notices that the argument of the Bessel function is a big
T N[, | —bl2—1/2 z
Az—<277) ()| il 212 e, (100  number
z=v|m|°>1, (107
12 _
T Cb-1pl T2 , - - -
A= 2 (7)) 7] 22 e T (101 essentially becauseis a small number in realistic cases. A
Y

very simple estimate allows us to quickly check the validity
of this approximation. We taken=1, |b;|=1, B=-2.2
| 1\ " b2 12 which would correspond to a spectral indexmf=0.6 for
A2:2<ﬂ) v (7)) il e’ (102 power law inflation and=10"° as already discussed in the
previous section. We can then estimatefor n=4 which
] ) ) corresponds to the mode which reenters horizon today and
The exponential factor always determines the behalwor of th&hich consequently mainly determines the value of the cos-
coefficients for any power dfy;|. This impliesAj~A;~0.  mic microwave backgroundCMB) quadrupole anisotropy.
We also see the following crucial effect: it turns out that forwe find z,~4.7x 10*. Therefore, we can again use the
one choice of the sign of the derivative the first term in theasymptotic behavior of the Bessel function to simplify the

squared bracket in Eq97) and(98) cancels whereas for the previous equations. Putting all these ingredients together, we
other choice it is no longer the case. This has as a consgng?3

guence that the dependence gris not the same. Sincg

depends om, the n dependence oAy and A} is not the A, |12 ' '
same. We havéyey 1A} . B~ 7(2—> | 7pq| Y2 Pl2gminm 2y —iml4 (108

The second step of the calculation is to perform the Y
matching of the solutions at the timg= #,. This will allow 1
us to express the coefficien®, and B, in terms of the N& o | 1| V2 b2ginny 2y +iml4 (109
coefficientsA; andA,. In region I, the solution is given by 27212y K '
plane waves. Therefore, the coefficieBs andB, are now
solutions of the equations As a consequence, the solution in region Il can be written as
B1e" 71+ Bye” "= Ag [ 71| (21) + Agl 71| YK (21), |12

ma(7) :Az(_) | 4|2~ icog nyp— Ny — 7/ 4).
(103 2y
(110
inny — vb b 1/2 The last step of the calculation is to perform the matching
B1e71—Bye = — T A P, 1(21) at = 7, when the mode leaves the Hubble radiosundary
between regions Il and Il As already mentioned, in region
yb _ Ill, the nondecaying solution is the super-Hubble function
+ FA2|771|b V2K, -1(21), (104 given by
where z; is the value of the functioz(#) at »=#»,. The mn(m)=Ca(n). (1171
exact solution of this system of equations can be easily found
and reads Repeating the same procedure as for Unruh’s case, the spec-
tra can easily be calculated and read

. Al |’)/b | _1(21)

in — 1/2 b-1_%
e""1B,= 7| 7l ,(z)] 1+ T' Ty P!, «n26+4e2@ -2 co(ny,—ny,— wl4), (112

Az iyb Ky-1(z1)
_‘ 1/2 _ p—1_v-1\7L/
+ 2 |7]1| KV(Z].) 1 n |7]1| KV(Zl) ’

3In order to be able to neglect the terms proportionalto we
(105 make use of the fact thaty;|>| 7.
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3pu 2B+2-2mu2(z—2z4) _ _
n3Py =n e?@-cog(ny,—ny,— wl4). 1
(113 A1=0, Ap~——= 7" n P2 P (e, (119

N

We see that the spectrum depends explicitly on the initial
conditions chosen. We can check that the tilt is correct byNotice that these formulas are valid for any choice of the
noticing thatn®Pg, « A3, y=n™*! and using the relation be- sign of u|(7;). The rest of the calculation proceeds as above
tweenAj andA), already mentioned. From now on, we con- and leads to|by,|=1)
centrate on the lower case which corresponds to an unmodi-
fied tilt and study the expression of the corresponding
spectrum in more detaildor convenience, we drop the sub-
scriptl). First, as mentioned above, we see that the power-
law part is not modified in comparison with the usual case, | €
i.e., the spectral index is stiigc=28+5. Second, there are 2
oscillations in the spectrum since the argument of the cosine
can be written agconsidering for simplicityb,,|=1) The main difference in comparison with the spectrum of the

previous section is the presence of a modified tilt. The spec-
N@ERIAHE) _ A (114 tral index is now given byng=28+5+m.

+1
N3P =n2B+4+meA™ “c02l 2 7|1+ B

1(1+B)
) n@+A)I(1+B) _ 77/4}, (120

e \1(1+p)
+ —_ —
2a/1+ 81 o)
. ) o 2. The case 51, b,,>0
However, contrary to Unruh’s case with Minkowski initial
conditions, no logarithmic dependence is present. Interes
ingly enough, forB=—2, the oscillations disappear. The
most important part concerns the exponential factor. The fac- 172 12
: =A J,(2)+A J_.(2), 121
tor 2~ 2, is equal toz~z,= | n|*(1—|m:|Y| 1)~ 7| m° wlm)=Adln B0 @+ Aoz, (A28
=z, since we haveé;|>|7,|. The factorz; can be rewritten
in such a way that the dependencerois explicit

_ When the dispersion relation is real, the solution in region
1 can be expressed in terms of usual Bessel functions

wherev andz(») have already been defined previously. The
coefficientsA; and A, are now solutions of the following

NH " B system of equations:
i= €Mt ApmeL, (115
PEm ALd(z)+Ad_ ()= ()| | Y2, (122
The important factor in this expression ||t~ ™*A) ,
since the other ones are of order 1. It can be rewritten as —AlJV(Zi)+AzJ—V(Zi)=M|;:i) | 71| 120, (123
I m
"ol a(;i) il (118 Using the relation expressing the Wronskigd_,J, ;

. . +J_,.13,](2)=2 sinM#/(2b)]/(72), and performing some
and must be considered as large sintg|>1 and  gpaightforward algebraic manipulations, exact expressions
|C/a( ﬂl)mlcl)\(ﬂ|)>1, at least for wave numbers not too can be eas”y found. They read

different from 2. This means that the influence of the ex-

ponential factor is dominant and is responsible for a huge Ty

increase of the spectrum at largeThis is illustrated if we A= m|ﬂi|b_mﬂ|(ﬂi)31—y(zi)
write the spectrum foB=—2 andm=1

—b ’
3p o pAN P i () 3o (@)

P e, @19 ok Yo w(mi) Jio(2)) (124
whereA>1. Such a spectrum is almost certainly in contra-
diction with observations. o my b_1/2

We end this subsection with the calculation of the spec- Ar=3 S p— Li° ™ omi(0)3,-1(2)

trum in the case where the initial state is the minimum en-
ergy density state. We restart from the exact expressions for |l* P i () I (z)
the coefficientsA; and A,, see Eqgs(95) and (96). Using x| 1+ yo o () I,_1(z)] (129

Egs.(50), we have

These expressions are not validiif=1/(2b) is an integer
|7 4 (118 and this particular case must be treated separately. In this
vbo ow(m) T \/b—m article, we assume that this does not happen. Since the solu-
tion in region Il is still given by plane waves, the derivation
since, initially,| >\ (7). As a consequence, we can derive of exact expressions for the coefficieldg andB, proceeds
a compact approximate expression for the coefficighfs as before. Explicit matching of the mode function and of its
andA, derivative leads to

m

|1—b
<1,

A7)
lc

wy (77) i
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- A1 yb J,-1(z1) ()€ N gy [V27B2
inpp — _ -~ 1/2 A b-1"% — =i I *ixj el
e""1B, 2 |72 Y9,(20) | 11 n |71 3.z B: 2simy) |7 e "i(cosy; —i siny;
Aol b a(Ze) —e* ™ cosx;+ieT ™ sinxy), (134
[T (20| 1= = Tz |
(126 Yelnm v2-bl2
B,= i palm)e™™) M e*Xi(cosy, +i siny;
2sinmv) |7
e~ inmp :&| |1/2J (2) 1_i7_b| |b—1‘]”;(zl) . _— )
27 il A n ! J,(21) —e*'™cosx,—ie T ™ sinx,). (139
AZ 1/2 . ’yb b_l‘]—v+1(zl)
+?|’71| J-u(21) 1+'T|771| J_(z;) |° Then, the mode function at timg= 1, (which is the rel-

12 evant quantity for the determination of the const&)tcan
(127) be expressed as

Having all the relevant exact expressions at our disposal we

can now start to do some approximations based on the fact wm) | p|b202
that z; is a big number. For convenience, we introduce two n(72) = Fi s | 2 e . (136)
2sin(mv)| 7

new definitiong not to be confused with the functiong »)
andy(#) introduced in Sec. IV B

From this equation, the expression of the spectrum can be
s an my a . .
x(n)=z(n)+ > 7 y(n)=z(n)— -7 easily established and reads

(128
. . . N3Py ocn2f*4, (137
Then, using the expressions of the Bessel functions for large
argumentg31], we find

Let us analyze this spectrum in more detail. The first remark

. %:i(ﬂ) 1/2| |12 LS/ (129 is that the tilt is unchanged and that the spectral index is
1 2 K sin(v) ' given by the usual expressians=28+5. The second re-
mark is that the exponential dependence has disappeared.
[ y\ 12 c1n () This is due to the fact that, fa=1, this factor becomes a
Ap==i (7) ]2 zsin(—mj)e*'yi, (130 pure phase. We recover the usual result as pointed out in Ref.

[33].
Let us finally turn to the case where the initial conditions

wherex;=x(7;) andy;=y(z;). The correct matching time " o \vhich correspond to the instantaneous Minkowski

is : .
vacuum. Restarting from the exact expressions for the coef-
ne\1/(1+8) , ficientsA; andA,, see Eqs(124) and(125), and using Egs.
1 1 1
|7/1|=(§) by A, (13)  (50), we find
see Ref[32], and is equal to the time at which=1¢ if my| Y2 wi(70)

T ) . L . A~ —2 -1 PN L 138
bn=1. In the following, for simplicity, we consideb, 1~ 5 | il sin(ap) o (138
=1. In the same manner, the coefficieBtsandB, can be
expressed as

1/2
1\ . A %_(”_7) oz ) 139
B]_% ( m | 7]1|1/27b/287m nl(Alcosyl_ |A1 Sinyl 2 2 | 77I| S||'(’7TV) Yi ( )
+ A, cosx;—iA, sinX,), 132 . . . o
2 ! 2 v (132 Inserting these equations into the exact formulas giving the
2 coefficientsB,; andB,, we obtain
1 1/2—b/24in ; ;
BZ% m |7]1| e ”1(Alcosy1+lA1 sinyq
Na—inmg —b/2+1/2
+ A, cosx, +iA, sinX,), (133 B~ M i
2sinmv) |

wherex;=x(74) andy;=y(%,). Our next move is to re-
place the expressions 8f; andA,, see Eqs(129 and(130),
in the previous formula. This leads to +i siny; sinx,), (140

X (sinx; cosy,—i sinx; siny,—siny; cosx,
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wi( 7)€ | gy | TPRH2 this way is a veryad hocway of taking into account possible
By~ 2sinm) | effects of super-Planck-scale physics, chosen for mathemati-
V) | 7 AN 4
cal simplicity. We do not want to introduce mode-mode cou-
X (sinx; cosy; +i sinx; siny; —siny; cosx, pling in order to keep the computations simple. However, in
o ) order to demonstrate that there is a possible problem for the
—isiny;sinx,). (14D yopustness of the usual predictions of inflation it is sufficient

to construct one example of a modified theory which leads to
Yitferent predictions.
For a nonstandard dispersion relation the choice of initial

We are now in a position where we can write the expressio
of the mode function at timey= 7. It reads

wi(m) || 7022 _ state becomes more difficult. We considered two choices,
wn(m2) = S —l‘ [B(n)e"(72=71) both of which coincide with the usual initial state in the case
2sinmv) | 7, of the standard dispersion relation. The fishd better mo-

tivated choice is the state which minimizes the energy den-
sity, the second choice is the naive generalization of the “lo-
cal Minkowski vacuum.”
We have shown that for class A dispersion relations the
usual predictions of inflationary cosmology are recovened
the case of exponential inflatipif the initial state minimizes
+i siny; sinx; . (143 the energy density. In particular, the spectrum of fluctuations
is scale invariant. If the initial state is chosen to be the “local
Then, one can writ®(n) asB(n)=|B|e'” and defineB(n) Migkowski_ vacuurcr]1,” thﬁn _the resulting spectrum has a tilt
B — | and superimposed oscillations.
332(2;; Li%glﬁ;s;]@:é Nt ¢). It follows that the spec In cé)ntras?, for class B dispersion relations and an initial
state which minimizes the energy density, the resulting spec-
n3Pq,scn2/3*4+m|§(n)|2. (144) trum' of fluctuations is in generalot scale invarian"[.. The
precise nature of the spectrum depends sensitively on

The spectral index is given bys=28+5+m, i.e., it differs ~ Whether the dispersion relation turns complex or remains
from the standard one but is equal to the spectral index op€al- In the complex case, the spectrum is characterized by an
tained in the cass= — 1 for instantaneous Minkowski initial €XPonential factofmore power in the blue, i.ens>1), a tilt

conditions. The facto||1§(n)|2 is of order one and produces a (compared to the “standard” predictionahich depends on

complicated oscillatory pattern the precise initial conditions, and superimposed oscillations.
In conclusion, the resulting.spectrum in the case of theThe exponent, thg .t"t’ and the precise oscillatqry pattern de-
Corley-Jacobson dispersion relation is very different fromFi)gQ(Sj gﬁotshsnsﬁ):%?f;:Smggﬁi:qOvzﬁ?fhcggrsnsagsd'rsegfr?&nJ;lgl
the usual spectrum calculated using an unmodified dispersiotn ' P '

relation, and different from what is obtained using Unruh’sreSUIt is unchanged. . . .
. L . . L The reason why for class A dispersion relations the usual
relation, even for initial conditions which minimize the en-

ergy prc_adiction; of inflation_are maintained is that the time evo-
' lution during the period when the mode wavelength is
smaller than the cutoff scale is adiabatic. This emerges from

VI. DISCUSSION AND CONCLUSIONS our calculations, but an intuitive way of understanding the

We have studied the dependence of the predictions giesult is that at all times the effective frequency of the mode
inflationary cosmology for the spectrum of fluctuations on!S larger than the Hubble rate and the initial vacuum state
hidden assumptions about super-Planck-scale physics. ThRerefore adjusts itself adiabatically to track the instanta-
motivation for our work is that in most current models of N€OUS vacuum state, thus leading to the same state atime
inflation, the period of exponential expansion lasts so londS N the theory with unmodified dispersion relatfoRor
that at the beginning of inflation, scales of cosmological in-class B dispersion relations, in contrast, the dispersion rela-
terest today had a physical wavelength much smaller than tHion varies too quickly as a function of time while the scale is
Planck length, and the theories used to compute the spectrupfinaller than the critical length and hence the evolution is
of fluctuations are known to break down on these scales. Not adiabatic. o _ _

We studied the problem by replacing the dispersion rela- L€t us now be more quantitative about the previous dis-
tion of a free field theory which is used to compute the spec€ussion. In region I, Eq(13) can be written as
trum in the standard approaches by a modified dispersion w2 yo 2 _
relation, the modifications only being important on length W N = "+ @) wpnyd 0, ) w=0, (149
scales smaller than a cutoff lendth (which we expect to be \yhere wpnys IS the physical frequency defined byps

given by the Planck lengihWe considered two classes of ——— 5 )
dispersion relations, based on the ones considered by Unrdfi(1/2) yn®+a?0%(n, n)/IZ. The latter can be considered as

[18] (class A and by Corley and Jacobsd@l] (class B,
respectively, in their studies of theans-Planckian problem
of black hole physics. Admittedly, modifying the physics in  “we thank Bill Unruh for making this point to us.

+B*(n)e N2 )], (142
where the functiorB(n) is defined by

B(n)=sinx; cosy; —i sinx; siny; —siny; cosx,
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10 ' T ] predictions for fluctuations will not coincide with the usual
Bi Srcoimonfleby bos ] predictions from our current inflationary Universe models.
Onrun b ] Generalizing from our results, a crucial issue appears to be
6L . i ] whether the evolution of the quantum states corresponding to
S ; 7 the fluctuations will be adiabatic on length scales smaller
4r ] than the Planck scale.

[ Py ] Our results point to the possibility that the interaction be-
_r el B, tween fundamental physics and cosmology may be much
0 placebsen/Lorley b >0 - - - ‘ richer than hitherto assumed. It is not only a questiorif of

and how fundamental physics leads to inflation; a much
n richer question isvhatthe specific predictions of thieinda-

mental modebf inflation will be, assuming for the sake of
FIG. 3. Sketch of the time evolution of the adiabaticity coeffi- argument that such fandamental modedxists.
cient « for the dispersion relations. It is not surprising that super-Planck-scale physics may
modify the usual predictions of inflation. One model of the
constant as long as its characteristic time scale of evolutiogarly Universe motivated by string theory, the pre-big-bang
is small compared to the Hubble time, i.e., as long as weosmology{34] based on dilaton gravity, leads to a superex-
have adiabaticity. Therefore, let us define an “adiabaticityponential period of early evolution in which the Hubble con-

coefficient” a according to stant is increasing, and where the predicted spectrum of sca-
lar metric fluctuations is not scale invarig56]. It would be
_ H interesting to analyze the predictions of other models of in-
a(n,m)=|—7 dwpnys|’ (149 fiation based on string theory, taking into account the evolu-

tion on string scales. One toy model in which this question
could be analyzed is the nonsingular Univef36] based on

where we recall that{=a'/a. When o> 1, adiabaticity is higher derivative terms in the gravitati_onal actiqn.

satisfied and Eq(145) reduces to the equation of motion in . N the context of the models studied here, it would be
the Unruh case, EG55). In this situation, we know that the [nteresting to explore whether the minimum energy density
final spectrum is unmodified since there is an exact cancellitial state is an attractor in a similar sense that the local
lation of then dependence in the minimizing energy state Minkowski vacuum is |n.stan.dard inflationary cosmqlogy
and in the growth factor before Hubble radius crossing whicH28]- Note that models of inflation based on a strongly inter-
results in the usual spectrum. The previous argument showRCting theory(such as the model analyzed in RE37]) do
that an unmodified spectrum is expected when1 in the not suffer from thet_ransPIe_mck|an problem dlscu_ssed in this
region where the dispersion relation is modified. Let us als@@Pe€r- In strongly interacting theories, perturbations are gen-
note in passing that for the standard case; 1, since the _erate.d at all times at a fixed physical scale_, gnd a scale-
time scale of evolution ofyn,dn, 7) and of the Hubble rate invariant spectrum results_based on the ngrlst|c arguments
is the same. mentioned in the Introduction. In such theories, however, the

We have calculated the adiabaticity coefficient for the dif-PréSence of strong interactions makes it hard to calculate the
ferent cases treated in this article. The result is displayed i@MPlitude of the resulting spectrum.

Fig. 3. When# goes to—«, we havel->\ whereasl| ¢
<\ when 7 goes to zero.

We see that there exists a clear difference between Un-
ruh’s case and the Corley-Jacobson cases. In the Unruh case,We are grateful to Lev Kofman, Dominik Schwarz,
a goes to infinity wherl c>\ and adiabaticity is preserved. Carsten Van de Bruck, and in particular Bill Unruh for
Whenb,,<0, the adiabaticity coefficient reaches zero at thestimulating discussions and useful comments. We acknowl-
time whenw=0 . Then, adiabaticity is progressively rees- edge support from the Brown-CNRS University Accord
tablished. The coefficient goes to infinity and there is a which made possible the visit of J.M. to Brown during which
divergence whew/d#»=0 . In the regime wheh-<\, « most of the work on this project was done, and we are grate-
goes to 1 as it should since the various dispersion relationfsil to Herb Fried for his efforts to secure this Accord. One of
all become similar to the standard one. The previous considis (R.B.) wishes to thank Bill Unruh for hospitality at the
erations explain why the final spectrum can be modified inUniversity of British Columbia during the time when this
the Corley-Jacobson case with a complex dispersion relatiowork was completed. J.M. thanks the High Energy Group of
but not in Unruh’s case. Brown University for warm hospitality. The research was

We conclude that it is possible that in models of inflationsupported in part by the U.S. Department of Energy under
based consistently on a unified theory at the Planck scale thHéontract No. DE-FG02-91ER40688, Task A.
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