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We propose fast, exact and efficient algorithms for the convolution of two arbitrary functions on the sphere
which speed up computations by a facto¢\/N) compared to present methods whétéds the number of
pixels. No simplifying assumptions are made other than band limitation. This reduces typical computation
times for convolving the full sky with the asymmetric beam pattern of a megapixel cosmic microwave back-
ground(CMB) mission from months to minutes. Our methods enable realistic simulation and careful analysis
of data from such missions, taking into account the effects of asymmetric “point spread functions” and far
side lobes of the physical beam. While motivated by CMB studies, our methods are general and hence
applicable to the convolution or filtering of any scalar field on the sphere with an arbitrary, asymmetric kernel.
We show in an Appendix that the same ideas can be applied to the inverse problems of map-making and beam
reconstruction by similarly accelerating ttranspose convolutiowhich is needed for the iterative solution of
the normal equations.
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[. INTRODUCTION the telescope. The inputs are a physical model of the
“beam” over 41 steradian and a model of the “sky” con-

A major near-term objective in the field of cosmology taining both simulated signal as well as foreground sources
today is to gain a detailed measurement and statistical undepossibly including ground emission. Note that in the general
standing of the anisotropies of the cosmic microwave backease not just the direction of the pointing is important but
ground (CMB). While the theory of primary CMB anisot- also the orientation of the beam about the pointing axis. The
ropy is well developedsee[1] for a review and we are detector response is then the solution to a quadrature prob-
facing a veritable flood of data from a new generation oflem at each orientation.
instruments and missions, perhaps the single most limiting Analysis methods of CMB data have neglected this diffi-
factor for interpreting these data is the exorbitant computaeulty by assuming azimuthal symmetry of the beam which
tional cost involved in realistic mission simulation and care-greatly simplifies the calculatiof6—8]. Simulation work
ful analysis of the data producfg,3]. which did include an asymmetric beam and far side lobes

Important and computationally expensive tasks for bothusing pixel based method9-11] ran up against computa-
simulation and analysis of microwave data are to simulatéional challenges for angular scales smaller than one degree,
and to correct for the systematic errors due to imperfectionsunning for hundreds of hours even with optimized adaptive
of realistic microwave telescopes, such as beam asymmetri@sesh algorithms. Such algorithms are clearly inadequate for
and far side lobes. The effect of an asymmetric “pointmodern high resolution experiments which achieve resolu-
spread function” is to distort the shapes of the detectedions of a few minutes of arc.
anisotropies. What makes far side lobes an important issue is In this paper we describe a numerical method which
the fact that the CMB anisotropy signal has an amplitude ofjreatly accelerates the computations which are necessary to
one in 1@ relative to the 2.7 K background. In regions of correctly account for realistic beam profiles in simulation
low galactic latitude, foregrounds from galactic synchrotronand analysis of directional data on the sphere. This is
radiation and dust emission are expected to exceed this sigchieved by rewriting the problem in such a way that we can
nal by many orders of magnitude over a wide range of fretake advantage of the Cooley-Tukey fast Fourier transform
quencies[4,5]. Even though CMB experiments will obvi- (FFT) algorithm.
ously not target these regions to obtain measurements of the The following section of this paper defines the general
background anisotropy, the large amplitudes of these galactigroblem in terms of rotations of the beam with respect to the
sources may induce systematic errors even when “looking”sky. We then introduce a geometrically motivated split of the
in directions far away from the galactic plane if the instru- rotation operator in Sec. Ill. This enables us, in Sec. IV, to
ment allows diffraction of stray light into the detectors. Solarderive the general solution for the detector responsealfior
system bodies, including the Earth, are other possiblg@ossible relative orientations of the beam and the sky within
sources of stray light. a given section on the sphere. Section V then discusses the

To assess these problems and formulate solutions we musblution and derives special cases from it, amongst others the
be able to compute the detector response at every pointing @fell-known algorithm for convolution with azimuthally
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symmetric kernels. We conclude in Sec. VI with a timing
example. An Appendix applies the same ideas to accelerating
the computation of the transverse convolution, an operation
which becomes important in the inverse problem of map
estimation.

While we are motivated by the goal of achieving and
interpreting precision measurements of the anisotropies of
the cosmic microwave background, the methods we present
are general and apply to the convolution or filtering of any
scalar field on the sphere with an arbitrary, asymmetric but
constant kernel. We generalize our methods to tensor fields
on the sphere in Ref12].

IIl. STATEMENT OF THE PROBLEM

Consider two band limited functions on the sphb(&)
ands( 37). For definiteness and to aid the imagination we will

refer to them in the following as thkeamand thesky, re- FIG. 1. Our coordinate system for efficient convolutions. The

spectively, but they could be completely general band limyeam is shown at the position corresponding?te35°, 6 =50°,
ited functions—in particular neither of them is constrained t04_—60°, =0° andw=0°. The cross-hairs on the beam mark its

be positive definite or even real. orientation, here shown fow=0. In the null position §= 6
The task is to compute the scalar product of the beam ané ¢.= ¢=w=0) the beam is aligned with theaxis, the vertical

the sky at a set of beam orientations. To describe these oreross hair pointing along increasingand the horizontal cross hair

entations, we use the Euler angtes,® andsz.l The con-  pointing along increasing.

volved signal for each beam orientatiod{,0,P,) can

then be written as ally only need one o8, b to be band limited as long as the
multipoles of the other are bounded las~. Then the r;u-
: _ TR Y Ty merical evaluation of the integral in Eql) takes O(L9)
T(®2,0.%) fdQV[D(q)z'(a'(pl)b](Y) s(v). D operations for each tuplel(;,®,®,). These integrals need
to be evaluated for a grid of beam locations that has to con-
Here the integration is over all solid angljs the operator tain at leastO(L®) grid points to allow subsequent interpo-
of finite rotations such thabb is the rotated beam, and the 1ation at arbitrary locations. Therefore the total computa-
asterisk denotes complex conjugation. tional csost for evaluating the convolution using E®). scales
If (&,,0,d,) can be written as a continuous function of 8 O(L") -
a parametet[0,T], say, then we call the ordered set of
tuples (®4(t),0(t),P,(t)) a scan path Note that Eq.(1) Il FACTORIZING THE ROTATION
assumes that time varying signals in the sky vary either on
time scales much longer than the duration of the scan or It is possible to simplify the evaluation of E€L) signifi-
much smaller than the integration time per sample. In theantly by factorizing the rotation into two auxiliary rotations
context of CMB missions this is a good approximation with such as
the exceptions of plane{$or long duration missions time
varying point sources, and atmospheric foregrounds. Of
these only atmospheric foregrounds present a problem for
the convolution, because they are extended—convolution
with a point source is a simple operation in position spacaye will define the various angles and motivate this split in
(the pixel basisand can be computed separately. Linearitythe following. Figure 1 is intended to illustrate this discus-
allows us to then add the results of ther £onvolution of  sjon.
extended sources to the point source convolution. To introduce these coordinates let us first conslasic
In the most general case, the band linfisee Eq.(4)  scan pathsimagine a scan path where the beam sweeps over
below for a definition of the beam and the sky atg and  the sky by scanning on rings of angular raditis [0,7/2).
Ls, respectively. Definé=min(L,,Ls). Note that we actu- The centers of these scanning circles lie on a ring of constant
latitude, a polar angl@: €[ 0,77) away from the north pole.
The anglegg €[ 0,27) selects a given scanning circle and is

1our Euler angle convention refers to active right handed rotation§l€fined as the longitude of its center, whie= [0,2) mea-
of a physical body in a fixed coordinate system. The coordinateSures the angle along each scanning ring defined as increas-
axes stay in place under all rotations and the object rotates arouridd in a right-handed way about the outward normal at the
thez y andzaxes by®,, ® and®,, respectively, according to the center, starting from zero at the southernmost point on the
right handed screw rule. ring. Hence, for such a basic scan path we can write the

D(®,,0,®,)=D(¢e,0:,0D(,0,0). )
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convolution as set of scalar produdtése , ¢). The angles A simple explicit expression for the matrix elements
and O are thought of as parameters which fixed to define thej'mm,(¢2 ,0,¢4) can be given. One can define a real function
scanning geomgtry._ . d ,(6) such that

As a generalization of basic scan paths, we allow as a™"
further degree of freedom an additional right handed rotation D' P — e imdyy! g)e—im’ ¢1 6
of the beam about its outward axis by an angle m ($2.6.61) v (0) ' ©)
€[0m/2). Thus the dependence DBf on the Euler angleg; and ¢, is

Now we can see geometrically that all beam orientationgniy in terms of complex exponentials. While explicit for-
on generalized basic scan paths can be arrived at by succggy|as for thed-functions exis{13], they are more conve-

sively applying the two rotations in Ed2). Define as the niently computed numerically using their recursion proper-
null position of the beam when it is oriented along texis  ties[14].

0= 0g= ¢g=¢=w=0. Starting from the null position, act-  gypstituting into Eq.(5) and defining the three—
ing on it with D(¢, 0,w) rotates it about its axis by and  dimensional Fourier transform Gf(¢g , ¢, w) as
moves it out onto a ring with opening angiat an azi-

muthal angle¢. Then acting withD (¢, 6g,0) moves the Ty e
beam into position.

Using the factorization Eq2) we can re-write Eq(1) as :(Zi)sfozwdd’Edd’d“’T(d’E’¢’“’)eim¢Eim,(/)imﬁw’

T(¢E,¢,w>=f dQ;[D (e, 0e,0D(,6,0)b1(7)*s(7) (7)
(6, 6 fixed). (3y  We obtain

The functionT(¢g,¢,w) contains all possible integrals Tmm'm":Z slmdlmm'(0E)d|m’m"(0)bl*m”' (8)

for a given scanning geometry. In fact, for the special case
0= 0= m/2, these angles parametrize all possible orienta- . o . ) .
tions of the beam on the sky, i.epf , ¢, ) parametrize the This equation is the main result of this paper, in effect
group of rotations in three dimensions. It is well known thatgeneralizing fast 2D Fourier transform convolution from the
in this case these coordinates cover(®awice, but this can  Plane to the sphere. Its properties and specializations will be

angles to half its range. We defer removing this redundancinterpretation. We have arrived at E@) by writing convo-
until the end of our calculation. ution problems in such a way that the results are fields on

complete 3-tori instead of subsets of the 3-sphere, which is
the group manifold of rotations in 3 dimensions. Convolu-
tions over azimuthally symmetric and connected sections of

To exploit the form of Eq(3), it is expedient to represent the 2-sphergsuch as polar caps or annutan be param-
the functionss andb as well as the rotation operators in the etrized by# and g and hence can be extended to 3-tori as
spherical harmonic basis. A band limited functibpy) can ~ Shown. Since exponentials are a complete and orthonormal
be expanded in spherical harmonics as basis on the 3-torus and because we assumed tratb are
band-limited, theT,,,y,» contain all information about the
inverse transform, Eq3),

IV. SOLUTION

|
f(&>=I

L

T(¢e.p0)= X TyymemMeerimesime (g
wherey denotes a unit vector. For practical applications the o m = —L

ibnasri]dnilflilj:]zla:[nlzlf I?N((:ahgzgr;hzur?gt;zga f\;\l/%f;(raé ;(Ialrmusar?tci)t?gslbg;?-NOt all tuples (e, ¢,) correspond to distinct beam orien-
SI9 y. . ) qua tations but this redundancy is more than compensated for by
rying both anl and anm index vanish form>1|. This saves L
. . SR . the efficiency of the method.
having to write explicit limits for sums over azimuthal quan-

tum numbers.

Ly m=I
;2 fmYim(7), @

Invariance of the scalar product under a change of basis V. DISCUSSION
then allows us to re-write Eq3) as Several remarks about E¢9) are in order.
T(ge,4,0)=2 snlD(¢e,0e0D(¢,0,0)b]h, 1. Computational cost

Computing theT py m in EQ. (8) costsO(L*|sin 6|26/ 7)
operations. The factor and|sin 6| come from the fact that

= > SImDIr:M(quaaE!O)D:\:M/(Cﬁaayw)ber . the band limitL for the sky implies a band limi&26L/ 7 on
ImMM’ a ring of radius@ and hence the ranges mfandm’ can be
(5)  reduced by factors dfsin 6| and 26/, respectively, if the
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rings and the ring of ring centers are not great circles. Usindections. If this is the case, the beam has only slowly varying
the fast Fourier transforrFFT) algorithm, the inverse Fou- azimuthal structure, implying a cutoff wave numiérsuch
rier transform take€)(L3logL|sin 6[26/7) operations. If the  that by,~0 for m=M. In this case the computational cost

convolved sky is assumed to be real, we have for a total convolution scales &(L3M#@ sin 6g) .
. In the limit of an azimuthally symmetric beal=0, we
Tomm =T s (100 obtain anO(L%6 sin 6z) method. However, it is knowfi5]

. . that at least in principle there exist faster methods for con-
reducing memory and processor requirements by a factor 2,0|ution of a function on the full spheredE 0= 7/2) with
_ _ an azimuthally symmetric beam which scale as
2. Quadrature and interpolation O(L7[log(L)]?). We can show how this limit is obtained
In pixel space each evaluation ®{ ¢g,¢,w) is an ex-  from Eq. (8) by using the facts that thd'mm,(q-r/2) are the

plicit quadrature problem and hence necessarily approxXicoyrier coefficients of thed' (6) and that d! .(6)
mate. In our approach, all sums have a finite number of terms. (6). Then Eq.(8) reducesmtrg the form

and the results are exact as longsandb are band-limited. m

Quadrature issues only have to be dealt withb ibr s are

given in pixel space and we have to evaluate the beam and T(¢e.¢)=2 YVim(7— b, et m/2)bigSim,  (13)

sky multipole coefficient®,,, ands,,. The details of which m

pixeliza_tion to choose on the sphere and hOW to sol\_/e_ thi?Nhere the arguments of;,,, are the polar angle and the azi-
generalized quadrature problem for the multipole Coeﬁ'c'en%:uthal angle respectiveTy The algorithm F45] succeeds

are ?Utsl'de of thﬁ tsctc:]pe of éh'i work %li't an e_ff|C||ent art\ recisely in reducing the computational cost of evaluating
Pr?ﬁ ca approack 0 1%quad ra_ﬁj[)e p()jr_o em '3 imp fer?en this expression t@)(L%[log(L)]?) under the proviso of the
in the HEALPix package[16] and will be discussed in a future technical difficulties there outlined.

publlcgtlon[lj]. . We note here for completeness, that by choosing a delta
An interesting property Of_ Ed8) is that as long ak was function beam(and henceb,,,= const), we recover the Fou-
chosen appropriately one 1s guaranteed to have th_e COMer summation method for the spherical harmonic transform,
volvgd sky sampled suff|C|entIy. de.nsely for worry-free inter- described in Eqg5.2) to (5.4) in [14]. This computes Eq4)
polation on either of the three indices. on an equidistant coordinate grid by doing Fourier trans-
forms on latitudinal and longitudinal lines. The forward

A. Special cases transform is obtained by simply working all steps in reverse
We will now discuss certain special cases of E). (see Appendix
1. Total convolution 3. Basic scan paths

Let us obtain the convolved sky at all possible beam ori- Consider an application where the convolution is required
entationsw on an equidistant coordinate grid i (corre-  only along a “basic scan path.” This is one of the proposed
sponding to the polar anglend ¢g (corresponding to the scan strategies for the Planck satellite mission. From our
azimuthal angle We will refer to this case as thetal con- definition of basic scan paths in Sec. Il we see that they
volution This can be achieved by evaluating E8) setting ~ correspond to setting=0 in Eq.(8). _
6= 6= /2. In this case we only need to knaﬁ%,m(w/Z). Computing the inverse Fourier transform of Ef) with

This means we only have to evaluate a single recursion re2 =0 just amounts to summing over’. Then only the two-
lation to evaluate the sum dnwhich simplifies the compu- dimensional Fourier transform
tation. The inverse FFT gives the desired result.

A.further simplification arises in this case fro_m the fact T (@=0)=> Slmd|r~nm/(0E)xlm’ (14)
that if 6= 7/2, not all components of ;v are indepen- [
dent. The redundancy in the parametrization where the polar _
angle ¢ €[0,27) leads to the symmetry remains to be evaluated. The quantity

T(¢e,d,0)=T(7+ g, 27— ), 7+ ). (17 leE% d . (6)bt, (15)

This translates into the identity
. can be precomputed. All in all the computational time
Tomm=(=D""" T (120 needed for evaluating these expressionsOid.26 sin 6g).

i i i i Storage requirements scale only@gL?) .
which cuts the required memory and computation time by & Ngte that in this case azimuthal symmetry of the beam
factor 2. does not necessarily imply reduced computational cost. If the
beam is concentrated at the north pole into a region ofgize
then X, will have m modes populated up tel~ 6/c.

In many practical situations the “beam” represents the Geometrically, the basic scan path corresponds to a
response function of an optical system with only mild imper-2-torus which is the section of the 3-sphere of rotations at

2. Exact or approximate azimuthal symmetry of the beam
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constantw. Note that in this case there is no redundancy in VI. CONCLUSIONS
the parametrization—every tupleg , ¢,0) corresponds to a

distinct beam orientation. This paper presents a general algorithm which greatly re-

duces the computational cost of convolving two band limited
but otherwise arbitrary functions on the sphere. The speedup
increases linearly with the smallest angular scale of the
A slight generalization of the previous case are scan pathsmoother of the two functions in the problem. The scalings
which are close to basic but include a variationdin from  of the necessary operation counts are discussed in detail in
scanning circle to scanning circle. Such paths result for exSec. V.
ample from precessing or “wobbling” the spin axis of &  We quote in the Appendix formulas showing how the
scanning satellite. ideas presented in this paper can be applied to the inverse
Such scan paths can be composed by computing severigloblem of “deconvolution” by speeding up the iterative
convolutions along basic scan paths for different anghes  sojution of the normal equation in an analogous way.
and.then choosi_ng scanning circles at will fr.om among the_se This paper focuses on the convolution of scalar valued
basic ones. This method suggests itself if the precessiofnctions on the sphere such as temperature, elevation, etc.
angle is small and hence a small number of convolutions i, orer to be able to deal with the polarization of the cosmic
sufficient to sample the variation idg. Convolutions at microwave background we extend the methods presented
points which do not coincide with sampling points can thenhere to tensor valued functions on the sphere in R,

be determined by interpolation. : . )
Another approach to this type of problem and further gen- The algorithms which are presented here are already be

eralizations are discussed in the next paragraphs. ing used as a core component of the prototype simulation
pipeline of the Planck satellite and are being implemented

for use by the MAP mission. To give an example for the
timing gains one makes by applying this method, we com-
Other potentially interesting special cases of BB).can  puted the following case: both sky and beam were interpo-
be worked out by fixing any of the parameters to specialated and pixelized very densely, with millions of pixels each
values and evaluating the inverse transform, analogous to the resolve the steep variations over many orders of magni-
calculation for basic scan paths. For example one obtaintide. The band limit was somewhat generously chosen as
expressions for =1024. Then the convolution of the sky with the beam of a
(i) All possible beam orientations along a circle of con-single detector for a whole year of mission data, consisting
stant latitudedg . In this casep andw have the same mean- of (2049F~4x 10° convolved samples along a basic scan
ing; formally, Tomwm=Tmmwémm and we obtain an path was generated in less than 15 minutes on a single Sili-
O(L?M sin 6z) method: con Graphics R10000 processor. This compares with several
days of computation on a severely coarsened sampling grid
with several hundred times fewer samples on the same ma-
= [ * chine, using the adaptive mesh metHdd]. For the same
Trum 2| S O8) Biry (18 resolution which we achieved with our methods, the adaptive
mesh code would have run for months.
. . i i i Using our methods, future CMB missions can go beyond
(ii) Individual scanning rings of a basic scan path. Hereqaying to approximate the treatment of realistic beams. Our

4. Perturbations about basic scan paths

5. Other special cases

»=0, and the only free parameterds o methods lend themselves to being used in conjunction with

The details of the calculations for this and similar casesterative map-making methods to remove from the data arti-

areé now easy exercises. facts which are due to beam distortions and far side lobes
(see Appendix

6. Generalizations Lastly, we feel that the geometric constructions, analogies

Further, it is clear from the derivation that more generalto group properties and algebraic results we introduce in this

types of paths can be constructed by factorizing the rotatioﬁ:gcéir?rei#seefrl gr?r:e ?ﬁgseéa}!ggrs Cv'\\//ilti d?ct)?n?sr;ﬁly?ilrss.tvr\ﬁ
operator more than twice, so as to generate for example .\ y exp 9 ’ P 9

ring of ring of rings, etc. For particular applications some ofSUItS[18]'

these may be advantageous, for example if they simplify the

interpolation problem on the output ring set. A specific ex-

ample is the precessing scan path mentioned in a previous ACKNOWLEDGMENTS
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APPENDIX: THE DECONVOLUTION PROBLEM progress by considering a mildly imperfect optical system

We sketch here how to set up the inverse problem of’md cfon5|der iterative techniques for solving the normal

reconstructing the true sky from the convolved observationséduation. In this case the ability to solve ®iteratively (e.g.
If we start with a noise free set of convolutions, then theUsing a conjugate gradient technigjuelies on convergence,
equation to be inverted in order to estimate the true underlywhich is assured up to numerical effects because the normal
ing sky is, schematically, matrix ATA is positive definite and being able to compute
the matrix products in EqA2) quickly. The application of
As=d. (Al) A can be computed efficiently using the formulas set out in
Secs. IV and V. We now find an algorithm for the efficient
gpplication ofAT, thetranspose convolution
The transpose convolution acts on the time—ordered data.
One can think of it as runnning through all samples and
superposing beam patterns on the sky, one for each observa-
tion, in the direction and orientation the beam had when that

Here,s is the true skyd is the vector containing the time-
ordered data after observation. The convolution operator i
represented b.

The least-square estimator for the true skihen satisfies
the normal equation

ATAS=ATd. (A2) sample was taken. Ttns gives rise to a smoothed sky map
which we denote by(vy).
For a perfect observation with a delta function beanhA We can write down the expression for the transpose con-

=1. So it may be reasonable to expect that we can makwolution AT in a similar way to Eq(3)

y(y)= f dpedpdw[D(de, 00D (¢, 0,0)b](7)* T(de, b, ). (A3)

Now the derivation is analogous to the one preceding(Bg.Doing the convolution in spherical harmonic space yields the
spherical harmonic coefficients,, in terms of the Wigned functions as

Yim= 2 dlmmr( aE)dlmme( Og) b|*m/f-|—mm' m” - (A4)
m/m"

This formula can be evaluated, generalized or applied to special cases just as we showed in Sec. \8jor Eq.
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