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Fast convolution on the sphere
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We propose fast, exact and efficient algorithms for the convolution of two arbitrary functions on the sphere
which speed up computations by a factorO(AN) compared to present methods whereN is the number of
pixels. No simplifying assumptions are made other than band limitation. This reduces typical computation
times for convolving the full sky with the asymmetric beam pattern of a megapixel cosmic microwave back-
ground~CMB! mission from months to minutes. Our methods enable realistic simulation and careful analysis
of data from such missions, taking into account the effects of asymmetric ‘‘point spread functions’’ and far
side lobes of the physical beam. While motivated by CMB studies, our methods are general and hence
applicable to the convolution or filtering of any scalar field on the sphere with an arbitrary, asymmetric kernel.
We show in an Appendix that the same ideas can be applied to the inverse problems of map-making and beam
reconstruction by similarly accelerating thetranspose convolutionwhich is needed for the iterative solution of
the normal equations.
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I. INTRODUCTION

A major near-term objective in the field of cosmolog
today is to gain a detailed measurement and statistical un
standing of the anisotropies of the cosmic microwave ba
ground ~CMB!. While the theory of primary CMB anisot
ropy is well developed~see @1# for a review! and we are
facing a veritable flood of data from a new generation
instruments and missions, perhaps the single most limi
factor for interpreting these data is the exorbitant compu
tional cost involved in realistic mission simulation and ca
ful analysis of the data products@2,3#.

Important and computationally expensive tasks for b
simulation and analysis of microwave data are to simu
and to correct for the systematic errors due to imperfecti
of realistic microwave telescopes, such as beam asymme
and far side lobes. The effect of an asymmetric ‘‘po
spread function’’ is to distort the shapes of the detec
anisotropies. What makes far side lobes an important issu
the fact that the CMB anisotropy signal has an amplitude
one in 105 relative to the 2.7 K background. In regions
low galactic latitude, foregrounds from galactic synchrotr
radiation and dust emission are expected to exceed this
nal by many orders of magnitude over a wide range of f
quencies@4,5#. Even though CMB experiments will obvi
ously not target these regions to obtain measurements o
background anisotropy, the large amplitudes of these gala
sources may induce systematic errors even when ‘‘lookin
in directions far away from the galactic plane if the instr
ment allows diffraction of stray light into the detectors. So
system bodies, including the Earth, are other poss
sources of stray light.

To assess these problems and formulate solutions we
be able to compute the detector response at every pointin
0556-2821/2001/63~12!/123002~6!/$20.00 63 1230
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the telescope. The inputs are a physical model of
‘‘beam’’ over 4p steradian and a model of the ‘‘sky’’ con
taining both simulated signal as well as foreground sour
possibly including ground emission. Note that in the gene
case not just the direction of the pointing is important b
also the orientation of the beam about the pointing axis. T
detector response is then the solution to a quadrature p
lem at each orientation.

Analysis methods of CMB data have neglected this di
culty by assuming azimuthal symmetry of the beam wh
greatly simplifies the calculation@6–8#. Simulation work
which did include an asymmetric beam and far side lob
using pixel based methods@9–11# ran up against computa
tional challenges for angular scales smaller than one deg
running for hundreds of hours even with optimized adapt
mesh algorithms. Such algorithms are clearly inadequate
modern high resolution experiments which achieve reso
tions of a few minutes of arc.

In this paper we describe a numerical method wh
greatly accelerates the computations which are necessa
correctly account for realistic beam profiles in simulati
and analysis of directional data on the sphere. This
achieved by rewriting the problem in such a way that we c
take advantage of the Cooley-Tukey fast Fourier transfo
~FFT! algorithm.

The following section of this paper defines the gene
problem in terms of rotations of the beam with respect to
sky. We then introduce a geometrically motivated split of t
rotation operator in Sec. III. This enables us, in Sec. IV,
derive the general solution for the detector response forall
possible relative orientations of the beam and the sky wit
a given section on the sphere. Section V then discusses
solution and derives special cases from it, amongst others
well-known algorithm for convolution with azimuthally
©2001 The American Physical Society02-1
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symmetric kernels. We conclude in Sec. VI with a timin
example. An Appendix applies the same ideas to accelera
the computation of the transverse convolution, an opera
which becomes important in the inverse problem of m
estimation.

While we are motivated by the goal of achieving a
interpreting precision measurements of the anisotropies
the cosmic microwave background, the methods we pre
are general and apply to the convolution or filtering of a
scalar field on the sphere with an arbitrary, asymmetric
constant kernel. We generalize our methods to tensor fi
on the sphere in Ref.@12#.

II. STATEMENT OF THE PROBLEM

Consider two band limited functions on the sphereb(gW )
ands(gW ). For definiteness and to aid the imagination we w
refer to them in the following as thebeamand thesky, re-
spectively, but they could be completely general band l
ited functions—in particular neither of them is constrained
be positive definite or even real.

The task is to compute the scalar product of the beam
the sky at a set of beam orientations. To describe these
entations, we use the Euler anglesF1 ,Q andF2.1 The con-
volved signal for each beam orientation (F1 ,Q,F2) can
then be written as

T~F2 ,Q,F1!5E dVgW @D̂~F2 ,Q,F1!b#~gW !* s~gW !. ~1!

Here the integration is over all solid angles,D̂ is the operator
of finite rotations such thatD̂b is the rotated beam, and th
asterisk denotes complex conjugation.

If ( F1 ,Q,F2) can be written as a continuous function
a parametertP@0,T#, say, then we call the ordered set
tuples „F1(t),Q(t),F2(t)… a scan path. Note that Eq.~1!
assumes that time varying signals in the sky vary either
time scales much longer than the duration of the scan
much smaller than the integration time per sample. In
context of CMB missions this is a good approximation w
the exceptions of planets~for long duration missions!, time
varying point sources, and atmospheric foregrounds.
these only atmospheric foregrounds present a problem
the convolution, because they are extended—convolu
with a point source is a simple operation in position spa
~the pixel basis! and can be computed separately. Linear
allows us to then add the results of the 4p convolution of
extended sources to the point source convolution.

In the most general case, the band limits@see Eq.~4!
below for a definition# of the beam and the sky areLb and
Ls , respectively. DefineL[min(Lb ,Ls). Note that we actu-

1Our Euler angle convention refers to active right handed rotati
of a physical body in a fixed coordinate system. The coordin
axes stay in place under all rotations and the object rotates ar
thez, y andz axes byF1 , Q andF2, respectively, according to th
right handed screw rule.
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ally only need one ofs, b to be band limited as long as th
multipoles of the other are bounded asl→`. Then the nu-
merical evaluation of the integral in Eq.~1! takesO(L2)
operations for each tuple (F1 ,Q,F2). These integrals need
to be evaluated for a grid of beam locations that has to c
tain at leastO(L3) grid points to allow subsequent interpo
lation at arbitrary locations. Therefore the total compu
tional cost for evaluating the convolution using Eq.~1! scales
asO(L5) .

III. FACTORIZING THE ROTATION

It is possible to simplify the evaluation of Eq.~1! signifi-
cantly by factorizing the rotation into two auxiliary rotation
such as

D̂~F2 ,Q,F1![D̂~fE ,uE,0!D̂~f,u,v!. ~2!

We will define the various angles and motivate this split
the following. Figure 1 is intended to illustrate this discu
sion.

To introduce these coordinates let us first considerbasic
scan paths. Imagine a scan path where the beam sweeps o
the sky by scanning on rings of angular radiusuP@0,p/2).
The centers of these scanning circles lie on a ring of cons
latitude, a polar angleuEP@0,p) away from the north pole.
The anglefEP@0,2p) selects a given scanning circle and
defined as the longitude of its center, whilefP@0,2p) mea-
sures the angle along each scanning ring defined as inc
ing in a right-handed way about the outward normal at
center, starting from zero at the southernmost point on
ring. Hence, for such a basic scan path we can write

s
e
nd

FIG. 1. Our coordinate system for efficient convolutions. T
beam is shown at the position corresponding tou535°, uE550°,
fE560°, f50° andv50°. The cross-hairs on the beam mark
orientation, here shown forv50. In the null position (u5uE

5fE5f5v50) the beam is aligned with thez axis, the vertical
cross hair pointing along increasingx and the horizontal cross hai
pointing along increasingy.
2-2
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FAST CONVOLUTION ON THE SPHERE PHYSICAL REVIEW D63 123002
convolution as set of scalar productsT(fE ,f). The anglesu
anduE are thought of as parameters which fixed to define
scanning geometry.

As a generalization of basic scan paths, we allow a
further degree of freedom an additional right handed rota
of the beam about its outward axis by an anglev
P@0,p/2).

Now we can see geometrically that all beam orientatio
on generalized basic scan paths can be arrived at by su
sively applying the two rotations in Eq.~2!. Define as the
null position of the beam when it is oriented along thez axis
u5uE5fE5f5v50. Starting from the null position, act
ing on it with D̂(f,u,v) rotates it about its axis byv and
moves it out onto a ring with opening angleu at an azi-
muthal anglef. Then acting withD̂(fE ,uE,0) moves the
beam into position.

Using the factorization Eq.~2! we can re-write Eq.~1! as

T~fE ,f,v!5E dVgW @D̂~fE ,uE,0!D̂~f,u,v!b#~gW !* s~gW !

(u, uE fixed). ~3!

The functionT(fE ,f,v) contains all possible integral
for a given scanning geometry. In fact, for the special c
u5uE5p/2, these angles parametrize all possible orien
tions of the beam on the sky, i.e. (fE ,f,v) parametrize the
group of rotations in three dimensions. It is well known th
in this case these coordinates cover SO~3! twice, but this can
be easily remedied by restricting the range of one of
angles to half its range. We defer removing this redunda
until the end of our calculation.

IV. SOLUTION

To exploit the form of Eq.~3!, it is expedient to represen
the functionss andb as well as the rotation operators in th
spherical harmonic basis. A band limited functionf (gW ) can
be expanded in spherical harmonics as

f ~gW !5 (
l 50

l 5Lf

(
m52 l

m5 l

f lmYlm~gW !, ~4!

wheregW denotes a unit vector. For practical applications
band limit Lf is chosen such that higher terms contribu
insignificantly. We use the notation where all quantities c
rying both anl and anm index vanish form. l . This saves
having to write explicit limits for sums over azimuthal qua
tum numbers.

Invariance of the scalar product under a change of b
then allows us to re-write Eq.~3! as

T~fE ,f,v!5(
lm

slm@D̂~fE ,uE,0!D̂~f,u,v!b# lm*

5 (
lmMM8

slmDmM
l* ~fE ,uE,0!DMM8

l* ~f,u,v!blM 8
* .

~5!
12300
e

a
n

s
es-

e
-

t

e
y

e

-

is

A simple explicit expression for the matrix elemen
Dmm8

l (f2 ,u,f1) can be given. One can define a real functi
dmm8

l (u) such that

Dmm8
l

~f2 ,u,f1!5e2 imf2dmm8
l

~u!e2 im8f1. ~6!

Thus the dependence ofD on the Euler anglesf1 andf2 is
only in terms of complex exponentials. While explicit fo
mulas for thed-functions exist@13#, they are more conve
niently computed numerically using their recursion prop
ties @14#.

Substituting into Eq. ~5! and defining the three–
dimensional Fourier transform ofT(fE ,f,v) as

Tmm8m9

5
1

~2p!3E0

2p

dfEdfdvT~fE ,f,v!e2 imfE2 im8f2 im9v,

~7!

we obtain

Tmm8m95(
l

slmdmm8
l

~uE!dm8m9
l

~u!blm9
* . ~8!

This equation is the main result of this paper, in effe
generalizing fast 2D Fourier transform convolution from t
plane to the sphere. Its properties and specializations wil
discussed in the next section. Here we give a geometr
interpretation. We have arrived at Eq.~8! by writing convo-
lution problems in such a way that the results are fields
complete 3-tori instead of subsets of the 3-sphere, whic
the group manifold of rotations in 3 dimensions. Convo
tions over azimuthally symmetric and connected sections
the 2-sphere~such as polar caps or annuli! can be param-
etrized byu anduE and hence can be extended to 3-tori
shown. Since exponentials are a complete and orthonor
basis on the 3-torus and because we assumed thats andb are
band-limited, theTmm8m9 contain all information about the
inverse transform, Eq.~3!,

T~fE ,f,v!5 (
m,m8,m952L

L

Tmm8m9e
imfE1 im8f1 im9v. ~9!

Not all tuples (fE ,f,v) correspond to distinct beam orien
tations but this redundancy is more than compensated fo
the efficiency of the method.

V. DISCUSSION

Several remarks about Eq.~8! are in order.

1. Computational cost

Computing theTmm8m9 in Eq. ~8! costsO(L4usinuEu2u/p)
operations. The factorsu andusinuEu come from the fact that
the band limitL for the sky implies a band limit}2uL/p on
a ring of radiusu and hence the ranges ofm andm8 can be
reduced by factors ofusinuEu and 2u/p, respectively, if the
2-3
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BENJAMIN D. WANDELT AND KRZYSZTOF M. GÓRSKI PHYSICAL REVIEW D 63 123002
rings and the ring of ring centers are not great circles. Us
the fast Fourier transform~FFT! algorithm, the inverse Fou
rier transform takesO(L3logLusinuEu2u/p) operations. If the
convolved sky is assumed to be real, we have

Tmm8m95T2m2m82m9
* , ~10!

reducing memory and processor requirements by a facto

2. Quadrature and interpolation

In pixel space each evaluation ofT(fE ,f,v) is an ex-
plicit quadrature problem and hence necessarily appr
mate. In our approach, all sums have a finite number of te
and the results are exact as long ass andb are band-limited.
Quadrature issues only have to be dealt with ifb or s are
given in pixel space and we have to evaluate the beam
sky multipole coefficientsblm andslm . The details of which
pixelization to choose on the sphere and how to solve
generalized quadrature problem for the multipole coefficie
are outside of the scope of this work but an efficient a
practical approach to the quadrature problem is implemen
in theHEALPix package@16# and will be discussed in a futur
publication@17#.

An interesting property of Eq.~8! is that as long asL was
chosen appropriately one is guaranteed to have the
volved sky sampled sufficiently densely for worry-free inte
polation on either of the three indices.

A. Special cases

We will now discuss certain special cases of Eq.~8!.

1. Total convolution

Let us obtain the convolved sky at all possible beam o
entationsv on an equidistant coordinate grid inf ~corre-
sponding to the polar angle! and fE ~corresponding to the
azimuthal angle!. We will refer to this case as thetotal con-
volution. This can be achieved by evaluating Eq.~8! setting
u5uE5p/2. In this case we only need to knowdm8m

l (p/2).
This means we only have to evaluate a single recursion
lation to evaluate the sum onl, which simplifies the compu-
tation. The inverse FFT gives the desired result.

A further simplification arises in this case from the fa
that if uE5p/2, not all components ofTmm8m9 are indepen-
dent. The redundancy in the parametrization where the p
anglefP@0,2p) leads to the symmetry

T~fE ,f,v![T~p1fE,2p2f,p1v!. ~11!

This translates into the identity

Tmm8m9[~21!m1m9Tm2m8m9 , ~12!

which cuts the required memory and computation time b
factor 2.

2. Exact or approximate azimuthal symmetry of the beam

In many practical situations the ‘‘beam’’ represents t
response function of an optical system with only mild imp
12300
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fections. If this is the case, the beam has only slowly vary
azimuthal structure, implying a cutoff wave numberM such
that blm;0 for m>M. In this case the computational co
for a total convolution scales asO(L3Mu sinuE) .

In the limit of an azimuthally symmetric beam,M50, we
obtain anO(L3u sinuE) method. However, it is known@15#
that at least in principle there exist faster methods for c
volution of a function on the full sphere (u5uE5p/2) with
an azimuthally symmetric beam which scale
O„L2@ log(L)#2

…. We can show how this limit is obtaine
from Eq. ~8! by using the facts that thedmm8

l (p/2) are the
Fourier coefficients of thedmm8

l (u) and that dm0
l (u)

5Plm(u). Then Eq.~8! reduces to the form

T~fE ,f!5(
lm

Ylm~p2f,fE1p/2!bl0slm , ~13!

where the arguments ofYlm are the polar angle and the az
muthal angle, respectively. The algorithm by@15# succeeds
precisely in reducing the computational cost of evaluat
this expression toO„L2@ log(L)#2

… under the proviso of the
technical difficulties there outlined.

We note here for completeness, that by choosing a d
function beam~and henceblm5const), we recover the Fou
rier summation method for the spherical harmonic transfo
described in Eqs.~5.2! to ~5.4! in @14#. This computes Eq.~4!
on an equidistant coordinate grid by doing Fourier tra
forms on latitudinal and longitudinal lines. The forwar
transform is obtained by simply working all steps in rever
~see Appendix!.

3. Basic scan paths

Consider an application where the convolution is requi
only along a ‘‘basic scan path.’’ This is one of the propos
scan strategies for the Planck satellite mission. From
definition of basic scan paths in Sec. III we see that th
correspond to settingv50 in Eq. ~8!.

Computing the inverse Fourier transform of Eq.~8! with
v50 just amounts to summing overm9. Then only the two-
dimensional Fourier transform

Tmm8~v50!5(
l

slmdmm8
l

~uE!Xlm8 ~14!

remains to be evaluated. The quantity

Xlm[(
M

dmM
l ~u!blM* ~15!

can be precomputed. All in all the computational tim
needed for evaluating these expressions isO(L3u sinuE).
Storage requirements scale only asO(L2) .

Note that in this case azimuthal symmetry of the be
does not necessarily imply reduced computational cost. If
beam is concentrated at the north pole into a region of sizs
thenXlm will have m modes populated up toM;u/s.

Geometrically, the basic scan path corresponds to
2-torus which is the section of the 3-sphere of rotations
2-4
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FAST CONVOLUTION ON THE SPHERE PHYSICAL REVIEW D63 123002
constantv. Note that in this case there is no redundancy
the parametrization—every tuple (fE ,f,0) corresponds to a
distinct beam orientation.

4. Perturbations about basic scan paths

A slight generalization of the previous case are scan p
which are close to basic but include a variation inuE from
scanning circle to scanning circle. Such paths result for
ample from precessing or ‘‘wobbling’’ the spin axis of
scanning satellite.

Such scan paths can be composed by computing se
convolutions along basic scan paths for different anglesuE
and then choosing scanning circles at will from among th
basic ones. This method suggests itself if the preces
angle is small and hence a small number of convolution
sufficient to sample the variation inuE . Convolutions at
points which do not coincide with sampling points can th
be determined by interpolation.

Another approach to this type of problem and further g
eralizations are discussed in the next paragraphs.

5. Other special cases

Other potentially interesting special cases of Eq.~8! can
be worked out by fixing any of the parameters to spec
values and evaluating the inverse transform, analogous to
calculation for basic scan paths. For example one obt
expressions for

~i! All possible beam orientations along a circle of co
stant latitudeuE . In this casef andv have the same mean
ing; formally, Tmm8m95Tmm8dm8m9 and we obtain an
O(L2M sinuE) method:

Tmm85(
l

slmdmm8
l

~uE!blm8
* . ~16!

~ii ! Individual scanning rings of a basic scan path. He
v50, and the only free parameter isf.

The details of the calculations for this and similar cas
are now easy exercises.

6. Generalizations

Further, it is clear from the derivation that more gene
types of paths can be constructed by factorizing the rota
operator more than twice, so as to generate for examp
ring of ring of rings, etc. For particular applications some
these may be advantageous, for example if they simplify
interpolation problem on the output ring set. A specific e
ample is the precessing scan path mentioned in a prev
subsection. Inserting another rotation operatorD̂(0,uP ,fP)
between the two operators in Eq.~2!, and settingv50 pro-
duces a set of rings whose centers lie on circles of radiusuP
aboutuE . This may simplify the interpolation problem. Th
rotation corresponding tofP can be sampled sparsely ifuP
is small (MP;sinuP sinuEL with obvious notation! and the
interpolation problem becomes simpler.
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VI. CONCLUSIONS

This paper presents a general algorithm which greatly
duces the computational cost of convolving two band limit
but otherwise arbitrary functions on the sphere. The spee
increases linearly with the smallest angular scale of
smoother of the two functions in the problem. The scalin
of the necessary operation counts are discussed in deta
Sec. V.

We quote in the Appendix formulas showing how th
ideas presented in this paper can be applied to the inv
problem of ‘‘deconvolution’’ by speeding up the iterativ
solution of the normal equation in an analogous way.

This paper focuses on the convolution of scalar valu
functions on the sphere such as temperature, elevation,
In order to be able to deal with the polarization of the cosm
microwave background we extend the methods prese
here to tensor valued functions on the sphere in Ref.@12#.

The algorithms which are presented here are already
ing used as a core component of the prototype simula
pipeline of the Planck satellite and are being implemen
for use by the MAP mission. To give an example for t
timing gains one makes by applying this method, we co
puted the following case: both sky and beam were inter
lated and pixelized very densely, with millions of pixels ea
to resolve the steep variations over many orders of ma
tude. The band limit was somewhat generously chosen aL
51024. Then the convolution of the sky with the beam o
single detector for a whole year of mission data, consist
of (2049)2;43106 convolved samples along a basic sc
path was generated in less than 15 minutes on a single
con Graphics R10000 processor. This compares with sev
days of computation on a severely coarsened sampling
with several hundred times fewer samples on the same
chine, using the adaptive mesh method@11#. For the same
resolution which we achieved with our methods, the adap
mesh code would have run for months.

Using our methods, future CMB missions can go beyo
having to approximate the treatment of realistic beams. O
methods lend themselves to being used in conjunction w
iterative map-making methods to remove from the data a
facts which are due to beam distortions and far side lo
~see Appendix!.

Lastly, we feel that the geometric constructions, analog
to group properties and algebraic results we introduce in
article are useful more generally for CMB data analysis. W
are currently exploring these issues, with promising first
sults @18#.
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APPENDIX: THE DECONVOLUTION PROBLEM

We sketch here how to set up the inverse problem
reconstructing the true sky from the convolved observatio
If we start with a noise free set of convolutions, then t
equation to be inverted in order to estimate the true unde
ing sky is, schematically,

As5d. ~A1!

Here,s is the true sky,d is the vector containing the time
ordered data after observation. The convolution operato
represented byA.

The least-square estimator for the true sky,ŝ then satisfies
the normal equation

ATAŝ5ATd. ~A2!

For a perfect observation with a delta function beam,ATA
[1. So it may be reasonable to expect that we can m
-

lu-
rt

12300
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progress by considering a mildly imperfect optical syste
and consider iterative techniques for solving the norm

equation. In this case the ability to solve forŝ iteratively~e.g.
using a conjugate gradient technique! relies on convergence
which is assured up to numerical effects because the no
matrix ATA is positive definite and being able to compu
the matrix products in Eq.~A2! quickly. The application of
A can be computed efficiently using the formulas set ou
Secs. IV and V. We now find an algorithm for the efficie
application ofAT, the transpose convolution.

The transpose convolution acts on the time–ordered d
One can think of it as runnning through all samples a
superposing beam patterns on the sky, one for each obse
tion, in the direction and orientation the beam had when t
sample was taken. This gives rise to a smoothed sky m
which we denote byy(gW ).

We can write down the expression for the transpose c
volution AT in a similar way to Eq.~3!
the
y~gW !5E dfEdfdv@D̂~fE ,uE,0!D̂~f,u,v!b#~gW !* T~fE ,f,v!. ~A3!

Now the derivation is analogous to the one preceding Eq.~8!. Doing the convolution in spherical harmonic space yields
spherical harmonic coefficientsylm in terms of the Wignerd functions as

ylm5 (
m8m9

dmm8
l

~uE!dm8m9
l

~uE!blm9
* Tmm8m9 . ~A4!

This formula can be evaluated, generalized or applied to special cases just as we showed in Sec. V for Eq.~8!.
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