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Complex visibilities of cosmic microwave background anisotropies
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~Received 25 September 2000; published 14 May 2001!

We study the complex visibilities of the cosmic microwave background anisotropies that are observables in
interferometric observations of the cosmic microwave background, using the multipole expansion methods
commonly adopted in analyzing single-dish experiments. This allows us to recover the properties of the
visibilities that are obscured in the flat-sky approximation. Discussions of the window function, multipole
resolution, instrumental noise, pixelization, and polarization are given.
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I. INTRODUCTION

The detection of the large-angle temperature anisotrop
the cosmic microwave background~CMB! by the Cosmic
Background Explorer~COBE! Differential Microwave Radi-
ometer~DMR! experiment@1# provided important evidence
of large-scale spacetime inhomogenities. Since then, m
CMB measurements have reported detections or upper li
of the CMB anisotropy power spectrum over a wide range
scales@2#. Recently, BOOMERANG@3# and MAXIMA @4#
data have revealed the structure of the first Doppler p
which arises from acoustic oscillations of the baryon-pho
plasma on the last scattering surface. Future ground-b
and balloon-borne experiments, and the upcoming NA
Microwave Anisotropy Probe~MAP! satellite, will unveil
detailed features of the CMB anisotropy, thus allowing o
to determine to a high precision a number of cosmolog
parameters@5#.

The CMB is linearly polarized when the anisotropic r
diation is scattered with free electrons near the last scatte
surface@6#. The degree of polarization is about one-tenth
the temperature anisotropy at sub-degree scales@7#. The
CMB polarization contains a wealth of information about t
early universe as well. It provides a sensitive test of
re-ionization history as well as the presence of non-sc
metric perturbations, and improves the accuracy in determ
ing the cosmological parameters@8#. So far, the current up
per limit on the CMB linear polarization is 16mK @9#. A
handful of new experiments, adopting low-noise receivers
well as long integration time per pixel, are underway or b
ing planned@10#.

CMB experiments are commonly single-dish chopping
struments, whose scanning strategy and data analysis p
dure are well developed. In the last decade, interferome
were introduced to study the microwave sky. Recent
vancement in low-noise, broadband, GHz amplifiers, in
dition to mature synthesis imaging techniques, has made
terferometry a particularly attractive technique for detect
CMB anisotropies. An interferometric array is intrinsically
high-resolution instrument well suited for observing sma
scale intensity fluctuations, while being flexible in the co
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erage of a wide range of angular scales with the resolu
and sensitivity determined by the aperture of each elemen
the array and the baselines formed by the array element
desirable feature of the interferometer for CMB observat
is that it directly measures the power spectrum of the sky
addition, many systematic problems that are inherent
single-dish experiments, such as ground and near field at
spheric pickup, and spurious polarization signal, can be
duced or avoided in interferometry. A brief account of t
interferometic CMB observations can be found in Ref.@11#.
Currently, several new interferometers including the Ve
Small Array ~VSA! @12#, Degree Angular Scale Interferom
eter ~DASI! @13#, Cosmic Background Imager~CBI! @14#,
and Array for Microwave Background Anisotropy~AMiBA !
@15# are being built, with sensitivity about a fewmK per
beam. As for the polarization capability, the AMiBA wil
have full polarizations, whereas the VSA, DASI, and C
will not be polarization sensitive initially.

The output of an interferometer is the visibility that is th
Fourier transform of the intensity fluctuations on the sky.
this paper, we will study the CMB anisotropies in the visib
ity space. There are several papers dealing with CMB ani
ropy data from interferometers@16–19# and making explicit
contact of the visibility with the angular power spectrum inl
space that is frequently used in single-dish experime
@11,20–22#. All of them have treated the CMB sky as fla
due to the fact that typically a small field on the sky
viewed by the interferometer. This turns the analysis int
familiar two-dimensional Fourier transform problem. He
rather than assuming the flat-sky approximation, we will p
form a full-sky analysis of the visibility. Although we the
have to give up the relatively simple Fourier-transform fo
malism, the bonus is that the angular power spectrum ca
directly transferred to the visibility space. Hence, the sta
tics of the CMB visibilities is straightforwardly induced b
the Gaussian variables inl space.

The paper is organized as follows. In Sec. II, a brief a
count of the building block of CMB anisotropies is give
We introduce the interferometric observation in Sec. III, a
present the calculations of the CMB visibilities in Sec. I
The resolution inl space is discussed in Sec. V, the instr
mental noise and pixelization are introduced in Sec. VI, a
the CMB polarization is treated in Sec. VII. Estimation
signal to noise ratios for interferometric CMB measureme

s,
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are made in Sec. VIII. Section IX is our conclusions a
discussion.

II. CMB ANISOTROPIES

Before we study the interferometric observation of CM
anisotropies, let us review the basic ingredients that
based upon the multipole expansion of the Gaussian ran
fields and commonly used in analyzing single-dish exp
ments

Polarized emission is conventionally described in terms
the four Stokes parameters (I ,Q,U,V), whereI is the inten-
sity, Q and U represent the linear polarization, andV de-
scribes the circular polarization. Since circular polarizat
cannot be generated by Thomson scattering alone, the
rameterV decouples from the other components and will n
be considered. Let us defineT be the temperature fluctuatio
about the mean; then, the CMB anisotropies are comple
described by (T,Q,U), where each parameter is a functio
of the pointing directionê on the celestial sphere.

Considering the CMB as Gaussian random fields, we
expand the Stokes parameters as@23,24#

T~ ê!5(
lm

aT,lmYlm~ ê!,

~Q2 iU !~ ê!5(
lm

a2,lm 2Ylm~ ê!,
.
za
tr
il

ite
ch
n
un
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~Q1 iU !~ ê!5(
lm

a22,lm 22Ylm~ ê!, ~1!

whereaT,lm anda62,lm are Gaussian random variables, a
62Ylm are spin-2 spherical harmonics. Details of the sp
weighted spherical harmonics and their properties can
found in Appendix A.

Isotropy in the mean guarantees the following ensem
averages:

^aT,l 8m8
* aT,lm&5CTld l 8 ldm8m ,

^a2,l 8m8
* a2,lm&5~CEl1CBl!d l 8 ldm8m ,

^a2,l 8m8
* a22,lm&5~CEl2CBl!d l 8 ldm8m ,

^aT,l 8m8
* a2,lm&52CCld l 8 ldm8m , ~2!

whereCTl , CEl , CBl , andCCl are respectively the anisot
ropy, E polarization,B polarization, andT-E cross correla-
tion angular power spectra.

Consider two pointingsê1 and ê2 on the celestial sphere
Using the generalized addition theorem~A12! and Eq.~2!,
we obtain the correlation functions@25#
^T* ~ ê1!T~ ê2!&5(
l

2l 11

4p
CTlPl~cosb!,

^T* ~ ê1!@Q~ ê2!1 iU ~ ê2!#&52(
l

2l 11

4p
A~ l 22!!

~ l 12!!
CClPl

2~cosb!e22ia2,

^@Q~ ê1!1 iU ~ ê1!#* @Q~ ê2!1 iU ~ ê2!#&5(
l
A2l 11

4p
~CEl1CBl!2Yl 22~b,0!e22i (a22a1),

^@Q~ ê1!2 iU ~ ê1!#* @Q~ ê2!1 iU ~ ê2!#&5(
l
A2l 11

4p
~CEl2CBl! 2Yl2~b,0!e22i (a21a1), ~3!
h

dif-
ter
whereb, a1, anda2 are the angles defined in Appendix A
Therefore, the statistics of the CMB anisotropy and polari
tion is fully described by the four independent power spec
or their corresponding correlation functions. The deta
about the evaluation of the power spectra can be found
Refs.@23,24#.

In realistic CMB observations, as a result of the fin
beam size of the antenna and the beam switching me
nism, a measurement is actually a convolution of the ante
response and the Stokes parameters. This can be acco
by a mapping of the spherical harmonics in Eq.~1!,
-
a
s
in

a-
na
ted

sYlm~ ê!→~21!s
sWlm

1/2
sYlm~ ê!, ~4!

where sWlm is the window function. For a simple single-dis
experiment with Gaussian beamwidthsb , it was found that
@25#

sWlm.exp$2@ l ~ l 11!2s2#sb
2%. ~5!

III. INTERFEROMETRIC OBSERVATION

In contrast to single-dish experiments that measure or
ferentiate the signals in individual dishes, an interferome
1-2
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COMPLEX VISIBILITIES OF COSMIC MICROWAVE . . . PHYSICAL REVIEW D63 123001
measures the correlation of the signals from different pair
the array elements. Let us consider a two-element instrum
and a monochromatic electromagnetic source. The out
called thecomplex visbility, of the interferometer is the time
averaged correlation of the electric fieldE measured by two
antennae pointing in the same direction to the sky but at
different locations@26#:

V~uW !5^E1E2* &5E dêA~ ê,ê0!I ~ ê!e2p iuW •ê, ~6!

whereuW is the separation vector~baseline! of the two anten-
nae measured in units of the observation wavelength,A de-
notes the primary beam with the phase tracking center po
ing along the unit vectorê0, and I is the intensity of the
source. Note thatuW is generally a three-dimensional vecto
and thatV* (uW )5V(2uW ) sinceA and I are real functions.

In the following, we consider a primary antenna wi
Gaussian beamwidthsb given by

A~u,f!5e2u2/2sb
2
, ~7!

where (u,f) are the polar angles with respect toê0. Antenna
theory @27# states that

Ae f fVA5l2, with VA5E dVA~u,f!, ~8!

where l is the observation wavelength,VA is the field of
view, and the effective area is the aperature efficiency tim
the physical area of the antenna:

Ae f f5haAphy . ~9!

Let us assume a circular dish with diameterD; then, we have

sb5
l

pD
A 2

ha
. ~10!

In typical interferometric measurements, we havel!D,
dictating a smallVA . Thus, for a single pointing, it is very
good to make the flat-sky approximation by decomposin

ê5ê01x, with x•ê050, and uxu!1, ~11!

meaning thatx is a two-dimensional vector lying in the plan
of the sky. Hence, the complex visibilty is reduced to t
two-dimensional Fourier transform of the sky intensity m
tiplied by the primary beam:

V~u![V~uW !e22p iuW •ê0.E dxA~x!I ~x!e2p iu•x, ~12!

whereu is the two-dimensional projection vector ofuW in the
x plane.

In a single-dish experiment, the resolution of the image
limited by the finite primary beamwidth. In contrast, the i
terferometric imaging has the resolution of the synthesi
beamwidth which is determined by the sampling of the v
ibility plane (u plane!, where the minimum spacing is th
12300
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physical size of the dish while the maximum spacing is li
ited by the size of the platform on which the dishes resi
The sampling can be described by a sampling functionS(u),
which is zero where no data have been taken. One can
perform the inverse Fourier transform to form the so-cal
dirty image:

I D~x!5E duV~u!S~u!e22p iu•x. ~13!

Using the convolution theorem,I D5AI!B, whereB(x) is
the synthesized beam that is the Fourier transform ofS(u).
So in the flat-sky approximation the calculation is simplifi
into a two-dimensional Fourier transform problem. Howev
the CMB is a large source. Although it is valid to treat th
sky as flat due to the small field of view of the primary bea
in a single pointing, a larger scale CMB image requires m
tiple pointings on the sky. In addition, after replacing loca
the sphere by a plane, the global property of the CMB field
obscured although there is a direct link between the ang
power spectrum and the power spectrum in the plane. Th
fore, in the following we will begin with the general form fo
the complex visibility in Eq.~6!.

IV. COMPLEX VISIBILITY OF CMB ANISOTROPY

The CMB brightness fluctuation is related to the tempe
ture fluctuation by

DBn5
]Bn

]T
DT, with

]Bn

]T
.99.27f ~x! Jy sr21 mK21,

~14!

whereBn is the Planck function of the photon frequencyn,
and

f ~x!5
x4ex

~ex21!2
, where x.1.76S n

100 GHzD .

~15!

We write DT[T and then do the anisotropy angular pow
spectrum expansion~1!.

A. Infinite resolution limit

Let us concentrate on the power spectrum and neglec
effect of the primary beam by taking for now the infini
resolution limit thatA51; then, from Eq.~6! the complex
visibilty of the CMB anisotropy is written as

V~uW !5
]Bn

]T
VT~uW !, where VT~uW !5E dêT~ ê!e2p iuW •ê.

~16!

Also expanding the phase factor in terms of spherical wav
1-3
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KIN-WANG NG PHYSICAL REVIEW D 63 123001
e2p iuW •ê54p(
lm

i l j l~2pu!Ylm* ~ ê!Ylm~ û!, ~17!

where j l is the spherical Bessel junction andu5uuW u, we ob-
tain

VT~uW !54p(
lm

aT,lmi l j l~2pu!Ylm~ û!. ~18!

For a fixed length of the baseline, Eq.~18! is analogous to a
measurement of the temperature anisotropyT(ê) in real
space with a window function. So the statistics ofVT on a
sphere of radiusu in the visibility space is completely de
scribed by theaT,lm and the positively definite function

I l~u!516p2 j l
2~2pu!. ~19!

We will call this function theinterference function. Estima-
tion of theCTl’s can be made from the visibility data in th
same way as one does for an anisotropy sky map, with
sample variances determined by the coverage of the visib
sphere.

Using Eq.~2!, the two-point correlation function is give
by

^VT* ~uW 1!VT~uW 2!&5
1

4p (
l

~2l 11!CTlI l~u!Pl~cosu!,

~20!

where Pl is the Legendre polynomial and cosu5û1•û2.
Hence, the rms temperature anisotropy in a given visibility

VTrms
2 [^VT* ~uW !VT~uW !&5

1

4p (
l

~2l 11!CTlI l~u!.

~21!

On the other hand, based on the flat-sky approximation,
authors in Ref.@11# have obtained a different autocorrelatio
function @Eq. ~7! of Ref. @11##:

S~u!5^VT* ~uW !VT~uW !&

5
1

4p (
l

~2l 11!CTlI l
f s~u!, ~22!

where

I l
f s~u!5

2

u
J2l 11~4pu!,

and J2l 11 is the Bessel function. A comparison betweenI l

and I l
f s is made in Fig. 1 with 2pu5200. Both interference

functions have a high peak atl;200 and drop rapidly asl
.200. WhileI l is positively definite,I l

f s is oscillatory about
the zero and has a lower peak. As such the latter wo
underestimate the rms fluctuation in a given visibility. F
instance, assuming a flat anisotropy power spectrum, we
that the flat-sky rms visibility is about one-fourth of that
Eq. ~21!.
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e
ty

s

e

ld
r
d

B. Finite primary beam

In practice, the instrument is limited by a finite prima
beamwidth given by the aperture function. Inserting the
erture function with tracking directionê in Eq. ~16!, we have

VT~uW ,ê!5E dê8A~ ê8,ê!T~ ê8!e2p iuW •ê8. ~23!

Doing the expansions~1! and ~17!, assuming a Gaussia
beam~7!, and using Eq.~A13!, Eq. ~23! becomes

VT~uW ,ê!58p2 (
l 1m1

(
l 2m2

aT,l 1m1
i l 2 j l 2

~2pu!Yl 2m2
~ û!

3A 4p

2l 111
A 4p

2l 211(m 2mYl 2m2
* ~ ê!

3 2mYl 1m1
~ ê!W1/2~ l 1 ,l 2 ,m!, ~24!

where the square root of the window function is

W1/2~ l 1 ,l 2 ,m!5E
0

p

db be2b2/2sb
2
Yl 2m* ~b,0!Yl 1m~b,0!,

~25!

and sYlm is the spin-s spherical harmonics~see Appendix
A!. Equation~24! is the general result for the complex vis
ibility of the CMB observed by an interferometer with tw
identical Gaussian primary beams separated by a baselinuW .
However, it is difficult to get any useful information from it
present form. In the following, we will pursue two configu
rations for which Eq.~24! can be boiled down to usefu
forms. The first one is the ‘‘close-packed’’ configuratio
with the dishes almost in touching, i.e.,ul;D. This con-
figuration is commonly adopted in CMB observations in o
der to maximize the size of the dish to obtain optimal sen

FIG. 1. Solid and dotted curves are the interference functi
I l(u) with 2pu5200 plotted using Eq.~19! and the asymptotic
expansion~26! respectively. The dashed curve is the flat-sky a
proximationI l

f s(u) in Eq. ~22!.
1-4
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tivity for signal detection. The second is the ‘‘widespread
configuration in which the length of the baseline is mu
longer than the diameter of the dish, i.e.,ul@D. This con-
figuration is needed when one wants to resolve the fine st
ture of an image.

1. Close packed

Let us start by analyzing the interference function, wh
is composed of the spherical Bessel functionj l(2pu). Typi-
cally, the baselineu@1. For large argument,j l has a sharp
peak at l;2pu. The asymptotic expansion in the peak
region ~for l;2pu@1) is given by@29#

j l~2pu!;
1

2
u21/221/3S l 1

1

2D 21/3

Ai ~221/3y!,

where

2pu5S l 1
1

2D1yS l 1
1

2D 1/3

, ~26!

and Ai(z) is the Airy function. Thus, for a fixedu, the loca-
tion and width of the peak are approximately given by

l pk10.8l pk
1/352pu and D l I; l pk

1/3. ~27!

In addition, the height of the peak is given by

j l pk
~2pu!.Ap221/6l pk

25/6Ai ~21!, Ai~21!.0.54.
~28!

In Fig. 1, we have used the asymptotic expansion~26! to
reproduce the interference function in Eq.~19!. It shows that
the asymptote is a fairly good approximation.

In the close-packed configuration, we denotes the m
mum spacingl min52pu, where, from Eq.~10!,

l min;2p
D

l
5

2

sb
A 2

ha
@1. ~29!

Because the dominant contribution in thel 2 summation in
Eq. ~24! comes froml 2& l min , we can approximate the as
sociate Legendre polynomial in the integrand~25! by @30#

Pl 2
2m~cosb!. l 2

2mJm~ l 2b!. ~30!

Hence, the integral~25! can be evaluated analytically fo
certain limiting values ofl 1. The integration is detailed in
Appendix B. Essentially, the window function can be a
proximated by

W1/2~ l 1 ,l 2 ,m!.F2l 111

4p

~ l 11m!!

~ l 12m!! G
1/2F2l 211

4p

~ l 21m!!

~ l 22m!! G
1/2

3
1

~ l 1l 2!m11/2

sb

A2p
e2( l 12 l 2)2sb

2/2. ~31!
12300
c-
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Note that the window function has a Gaussian width,D l W
; l min , and that it decreases withm rapidly. The latter en-
ables us to retain onlym50 in them summation in Eq.~24!,
which then becomes

VT~uW ,ê!.A2psb (
l 1m1

(
l 2

aT,l 1m1
Yl 1m1

~ ê!i l 2

3~2l 211! j l 2
~2pu!Pl 2

~ ê•û!
1

Al 1l 2

3e2( l 12 l 2)2sb
2/2. ~32!

In the close-packed configuration, we usually have the c
dition thatD l W@D l I . As such, as compared to the windo
function, the interference function can be treated as a d
function at l 25 l pk , where l pk10.8l pk

1/35 l min . For l min@1,
we havel pk; l min . Hence, we approximate

1

Al 1l 2

e2( l 12 l 2)2sb
2/2;

1

l min
e2( l 12 l min)2sb

2/2 ~33!

in Eq. ~32!, which then turns into the final form

VT~ ê!.eil minû•ê
A2psb

l min
(
lm

aT,lmYlm~ ê!Wl
1/2, ~34!

where the window function is

Wl5e2( l 2 l min)2sb
2
. ~35!

The result~34! shows that the baseline vector appears only
the irrelevant phase factor, and thus that the close-pac
interferometric beam is similar to a single-beam antenna
dergoing chopping and wobbling. In fact, this similarity h
been pointed out in an early CMB interferometric measu
ment@17#. So when we attempt to construct a two-point co
relation function similar to Eq.~20! with uuW 1u;uuW 2u;D/l,
we obtain a pure phase function which does not contain
useful information. The reason is simply that the correlat
over the domain in theuW space spanned byuW 1 anduW 2, whose
size is still comparable to the size of the dish, is almos
constant. In light of this, in Eq.~34! we have replaced
VT(uW ,ê) by VT(ê) to reflect that it is more legitimate to dea
with the visibility in ê space than inuW space. Therefore, fo
the close-packed configuration with a fixed baseline,
should sampleVT(ê) at different parts of the sky by repoint
ing the entire telescope, and analyze the data in the same
as in the single-dish observation.

2. Widespread

In this case, the dominant contribution in thel 2 summa-
tion in Eq.~24! comes from the rangel min! l 2&2pu, where
we can approximate the associate Legendre polynomia
the integrand~25! by @30#
1-5
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Pl 2
m~cosb!.A2

p

G~ l 21m11!

GS l 21
3

2D sin21/2b cosF S l 21
1

2Db1S m2
1

2D p

2 G . ~36!

Hence, the window function~25! can be approximately evaluated as

W1/2~ l 1 ,l 2 ,m!.F 2l 111

4p

G~ l 11m11!G~ l 12m11!

G2S l 11
3

2D G 1/2F 2l 211

4p

G~ l 21m11!G~ l 22m11!

G2S l 21
3

2D G 1/2
sb

A2p
e2( l 12 l 2)2sb

2/2.

~37!
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We have detailed the integration in Appendix B. Note th
the window function~37! has a very narrow Gaussian wid
D l W; l min , when compared to the baseline length;2pu.
As such, we can makel 1; l 2. Then, using the asymptoti
formula

G~ l 6m11!

GS l 1
3

2D ;S l 1
3

2D 6m21/2

for l @1, ~38!

we can further approximate the window function as

W1/2~ l 1 ,l 2 ,m!.~2p!23/2sbe2( l 12 l 2)2sb
2/2, ~39!

which is independent ofm in the asymptotic limit. Further-
more, when the conditionD l W!D l I is satisfied, the window
function can be treated as a delta function:

W1/2~ l 1 ,l 2 ,m!.~2p!23/2sbd l 1l 2
. ~40!

Plugging Eqs.~40! and~A15! into Eq.~24!, we finally obtain

VT~uW !.A8psb(
lm

aT,lmi l j l~2pu!Ylm~ û!, ~41!

which does not depend on the tracking direction. The str
ture of this equation is similar to Eq.~18!, and thus the
discussions following Eq.~18! in Sec. IV A are equally ap-
plied to Eq.~41!.

It is interesting to note that the Galactic cut due to hu
contamination from the Galactic plane in single-dish expe
ments is not a concern at all in interferometry, since
contamination in the visibility space comes from the inst
mental noise only. So the ideal observational strategy is
point the interferometer to the cleanest part of the sky
measure the visibilities on the wholeu sphere. However, in
practical situations the actual coverage of theu sphere is
usually limited by the instrumental setup.

Although the visibility~41! is reduced by the finite beam
size, it enables us to make independent measurements o
visibility by pointing the telescope to different uncorrelat
patches of the sky. Suppose that we have madeN uncorre-
lated pointings and a fullu-sphere coverage for each poin
ing. Then, we can estimate theCTl’s from the visibility data
12300
t
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on eachu sphere, and the individual estimation has the c
mic variance as that from a full-sky observation of a sing
dish experiment. Now, withN uncorrelated pointings, the
cosmic variance will be reduced by a factor ofAN. Although
we observe just one universe and not an ensemble, interf
metric experiments allow more independent measurem
of the power spectrum, and are thus less limited by the c
mic variance than single-dish experiments. However,
widespread condition requires (2pu)1/3@1, implying a very
high resolution scale at which the primary CMB anisotrop
have very low power.

V. INCREASING RESOLUTION

We have learned in the previous section that the res
tion which we have inl space for a single pointing of th
close-packed interferometer is equal to the size of the
mary beam. However, we can increase thel resolution by
combining several contiguous pointings of the telesco
This is analogous to the Fraunhofer diffraction in optics,
which narrower interference fringes are obtained by us
many apertures. In Ref.@11#, they have demonstrated a ca
in which the resulting aperture in theu plane can be made
much narrower by consideringN3N pointings on a regular
grid. Here we can show the increase ofl resolution by com-

bining various pointings ofVT(uW ,ê) in Eq. ~24!. The sim-
plest case is to sum over all pointing directions:

E dVVT~uW ,ê!58p2sb
2(

lm
aT,lmi l j l~2pu!Ylm~ û!,

~42!

where we have used the orthonormality condition~A7! to
evaluate the integration. This shows that thel resolution is
now determined by the interference function rather than
window function. It means that the resolution inl is in-
creased fromD l W to D l I . Since Eq.~42! is a general result,
it can be applied to the widespread configuration in S
IV B 2 as well, where thel resolution is already given by
D l I . Thus we conclude that in interferometry thel resolution
1-6
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can be increased by combining telescope pointings up
limit set by the intrinsic interference function.

VI. INSTRUMENTAL NOISE

In the single-dish CMB experiment, a pixelized map
the CMB smoothed with a Gaussian beam is created. In e
pixel, the signal has a contribution from the CMB and fro
the instrumental noise. A convenient way of describing
amount of instrumental noise is to specify the rms noise
pixel, spix , which depends on the detector sensitivitys and
the time spent observing each pixel,tpix : spix5s/Atpix. The
noise in each pixel is uncorrelated with that in any oth
pixel and is uncorrelated with the CMB component. LetVpix
be the solid angle subtended by a pixel. Usually, given a t
observing time,tpix is directly proportional toVpix . Thus,
we can define a quantityw21, the inverse statistical weight
per unit solid angle, to measure the experimental sensiti
independent of pixel size@31#:

w215Vpixspix
2 . ~43!

In interferometry, the instrumental noise is usually spe
fied by the image sensitivity per synthesized beam area@28#:

DI 5
1

hsha

2kBTsys

Aphy

1

A2NbNp

1

ADnt int

, ~44!

wherekB is the Boltzmann constant,Tsys andhs are respec-
tively the system temperature and efficiency,Nb andNp are
respectively the numbers of baselines and polarizationsDn

is the bandwidth of the observation frequency,t int is the
integration time, andha andAphy are defined in Sec. III. Fo
example, the number of baselines formed byNa antennae is
Nb5Na(Na21)/2. In Eq.~44!,

2kBTsys

Aphy
.3.91231010 JyS n

100 GHzD
2S Tsys

100 KD S l

D D 2

.

~45!

With regard to CMB observations, because a given base
u is sensitive only to a narrow range ofl centered at abou
2pu, it is more suitable to use the sensitivity per baseline
polarization given by Eq.~44! with Nb51 andNp51:

sb5
1

hsha

2kBTsys

Aphy

1

A2Dn

. ~46!

Let us consider a simple two-element interferometer w
baselineu. For the one in close-packed configuration, it
convenient to describe the instrumental noise on a pixeli
sky map as in the single-dish experiment, withVpix5VA

andspix5sb /Atpix, for which w21 is specified on the celes
tial sphere. In the widespread configuration, we can adopt
same strategy but now on a pixelizedu sphere. The size o
the pixel can be chosen as the resolution inu, i.e, Vpix
;(Du/u)2, and the noise in this pixel is alsospix

5sb /Atpix. Sincel;2pu, we haveVpix;(D l I / l )2. Hence,
we can assignw21 on theu sphere.
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VII. POLARIZATION

It is a routine for radio interferometers to measure t
polarization of the radiation field@32#. Polarization measure
ments are generally made using a pair of feeds on each
tenna. Usually, the feeds are sensitive to orthogonal circ
or linear polarizations. For instance, if the dual-polarizati
feeds measure the right and left circular polarizations, th
the output will be the four correlationŝRR* &, ^RL* &,
^LR* &, and ^LL* &. They can be related to the four Stoke
parameters (I ,Q,U,V). Denoting their associated visibilty
functions by (VI ,VQ ,VU ,VV), we have

^RR* &5VI1VV ,

^LL* &5VI2VV ,

^RL* &5VQ1 iVU[V1 ,

^LR* &5VQ2 iVU[V2 , ~47!

where we have neglected the parallactic angle of the f
with respect to the sky and the leakage from one polariza
channel to the other polarization channel. Similiar to E
~23!, we have

V6~uW !5E dê8A~ ê8,ê!~Q6 iU !~ ê8!e2p iuW •ê8. ~48!

It is difficult to analyze these equations in general. W
thus proceed with the analysis using the flat-sky approxim
tion, i.e.,û•ê.0. Let us first set up a rectangular coordina
(êx ,êy ,êz), and chooseê5êx ; then, it can be shown tha
~see Appendix C!

Zê8
2

Zpû
2
e2p iuW •ê8.~2pu!4e22iuue2p iuW •ê8, ~49!

Zpê8
2

Zû
2
e2p iuW •ê8.~2pu!4e2iuue2p iuW •ê8, ~50!

whereuu5û•êy is the polar angle ofuW in theuW plane parallel
to the êy-êz plane, and the basis (êy ,êz) is used to defineQ
andU. As such, Eq.~48! becomes

V1~uW !.~2pu!24e2iuuE dê8A~ ê8,ê!~Q1 iU !~ ê8!

3Zê8
2

Zpû
2
e2p iuW •ê8,

V2~uW !.~2pu!24e22iuuE dê8A~ ê8,ê!~Q2 iU !~ ê8!

3Zpê8
2

Zû
2
e2p iuW •ê8. ~51!

Using Eqs.~1! and ~A11!, and following the steps to reac
Eq. ~24!, we obtain
1-7
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V6~uW !.8p2e62iuu (
l 1m1

(
l 2m2

a72,l 1m1
i l 2 j l 2

~2pu!

3 72Yl 2m2
~ û!A 4p

2l 111
A 4p

2l 211(m 2mYl 2m2
* ~ ê!

3 2mYl 1m1
~ ê!W1/2~ l 1 ,l 2 ,m!, ~52!

where

W1/2~ l 1 ,l 2 ,m!5E
0

p

db be2b2/2sb
2

72Yl 2m* ~b,0! 72Yl 1m~b,0!.

~53!

It has been shown that the window function for polarizati
measurements in single-dish experiments is well appr
mated by that for anisotropy as long asl @2 @25# @also see
Eq. ~5!#. This result can also be applied to Eq.~53!. So we
can approximate the window function~53! by Eq. ~25!, and
hence the subsequent analyses are the same as we
treated the anisotropy in the previous sections. The only
ferences are the overall phase factor containinguu , the
spherical harmonics of spin 2, and thatuW lies in theuW plane.

For example, in the widespread configuration, we hav

V6~uW !.A8psbe62iuu(
lm

a72,lmi l j l~2pu! 72Ylm~ û!.

~54!

Analogous to Eq.~3!, by using Eqs.~2! and ~A12!, we can
construct four independent two-point correlation functio
from Eqs.~41! and ~54!. They are

^VT* ~uW 1!VT~uW 2!&.
sb

2

8p2 (
l

~2l 11!CTlI l~u!Pl~cosu!,

^V1* ~uW 1!V1~uW 2!&.
sb

2

2p
e22iu(

l
A2l 11

4p
~CEl1CBl!

3I l~u! 2Yl 22~u,0!,

^V2* ~uW 1!V1~uW 2!&.
sb

2

2p
e2i (uu1

1uu2
)(

l
A2l 11

4p

3~CEl2CBl!I l~u! 2Yl2~u,0!,

^VT* ~uW 1!V1~uW 2!&.
sb

2

2p
e2iuu2(

l

2l 11

4p
A~ l 22!!

~ l 12!!

3CClI l~u!Pl
2~cosu!, ~55!

whereuuW 1u5uuW 2u5u, and the separation angleu5uu1
2uu2

.
Hence, the rms total polarization in a given visibility is
12300
i-

ave
f-

s

VPrms
2 [^V1* ~uW !V1~uW !&.

sb
2

8p2 (
l

~2l 11!

3~CEl1CBl!I l~u!. ~56!

VIII. ESTIMATION OF SIGNAL TO NOISE RATIOS

In the previous sections, we have presented the basic
sults that can allow us to lay out the strategy in CMB inte
ferometric observations and to deal with the observed d
First of all, it is useful to make some simple estimates of
CMB signal to noise ratios for the upcoming CMB interfe
ometers.

For a close-packed interferometer, the CMB anisotro
signal in a given visibility is given by ST

5(]Bn /]T)VTrms/A2, where, from Eq.~34!,

VTrms[^VT* ~ ê!VT~ ê!&1/2

.
1

A2

sb

l min
F(

l
~2l 11!CTle

2( l 2 l min)2sb
2G1/2

, ~57!

while the noise limitN is given byDI , Eq. ~44!. Hence, we
estimate the signal to noise ratio per single pointing as

ST

N
.1.6hsAhaANbNpf ~x!

3S Dn

10 GHzD
1/2S t int

h D 1/2S 100 GHz

n D S 100 K

Tsys
D S D

1 mD
3F 1

~mK!2

1

l min
2 (

l
~2l 11!CTle

2( l 2 l min)2sb
2G 1/2

, ~58!

wheref (x) is given by Eq.~15!. This formula is also applied
for the CMB polarization except replacingCTl by CEl
1CBl .

To estimate the S/N ratios, we simply neglect t
B-polarization power spectrum, and approximate the anis
ropy and E-polarization spectra forl 5300–1000 respec
tively by

l ~ l 11!CTl.2p~DT!2, DT.50 mK,

l ~ l 11!CEl.2p~DE!2, DE.5 mK. ~59!

Let us consider a close-packed interferometer with 19 dis
in the hexagonal configuration. Then, it has 171 baseline
total, and the number of shortest baselines is 42. ForD
51.2 m, n530 GHz, Nb542, andNp52, the minimum
spacing l min52pu.2pD/l.754. Hence the anisotrop
andE-polarization S/N ratios are respectively given by
1-8
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ST

N
.3hsAhaS Dn

10 GHzD
1/2S t int

h D 1/2S 100 K

Tsys
D S DT

50 mKD ,

SE

N
.0.3hsAhaS Dn

10 GHzD
1/2S t int

h D 1/2S 100 K

Tsys
D S DE

5 mKD .

~60!

If we switch to a higher frequencyn590 GHz while fixing
l min.754, then the dish size should be reduced toD
50.4 m. ForNb542 andNp52, we would expect the sam
S/N ratios as forn530 GHz. However, corrected for th
Rayleigh-Jeans limit, we find that the prefactor in theST /N
is reduced to 2.5, whereas in theSE /N the prefactor is 0.25

IX. CONCLUSIONS AND DISCUSSION

We have presented a full-sky analysis of the monoch
matic CMB complex visibilities. First of all, an exact expre
sion for the sky power spectrum is obtained in Eq.~21!. It
has an advantage over the flat-sky approximation for the
terference function being positively definite, whereas
flat-sky interference function is rapidly oscillating about t
zero. In the latter, care must be taken in summing overl for
a flat spectrum due to significant cancellations@11#. More-
over, we have found that the flat-sky approximation gen
ally underestimates the power spectrum.

A full-sky expression in Eq.~24! for the CMB complex
visibility is our main result. It serves as the basis for anal
ing the l resolution in a given visibility, especially when
large sky scanning is needed in order to obtain a high re
lution in l space. We have shown in Eq.~42! that the full-sky
scanning can increase thel resolution from maximalD l
;D/l to D l; l 1/3. One should further check whether th
resolution increases linearly with the sky coverage.

We have worked out two limiting cases of the visibili
equation~24! in which the statistics of the visibility become
transparent. First, we have shown that the close-packed
terferometer is functioning like a single-dish switching e
periment. Therefore, on the issue of obtaining a highl reso-
lution, it is important to study and compare the efficiency
the usual method of synthesis imaging of the sky against
of the aforementioned sky scanning method. Second,
have suggested for the widespread configuration that
should analyze the visibility data on theu sphere. We have
also pointed out that the interferometry can in principle
duce the cosmic variance in single-dish experiments by
taining differentu spheres via multiple pointings of the tele
scope to uncorrelated patches of the CMB sky. It
interesting to study how to implement this concept in pr
tical situation.

In this paper, we have performed the calculations ass
ing a monochromatic electromagnetic source, and allowin
nonvanishing geometrical delayt5luW •ê0, which measures
the elapsed time for the wavefront reaching one antenna
then the other. However, when observing with a finite ba
width Dn , one usually correlates signals at two separ
points on the same wavefront in order to obtain full fring
This can be done by including within the interferomet
system a computer-controlled phase delay to compensat
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t @26#. As a consequence, the interferometer response is

V~uW ,t!5E
n02Dn/2

n01Dn/2

V~uW ,n!e2p i tndn. ~61!

This is a Fourier transform with conjugate variablesn andt,
and can be inverted to extract the desiredV(uW ,n).

Finally, we remark that CMB interferometric observatio
are radically different from traditional radio interferometr
We certainly need more studies on several important iss
such as observational strategy,l-space resolution and mosa
icing, optimal estimation of the power spectra, point sou
and other foreground subtraction, and ground pickup
moval.
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APPENDIX A: SPIN-WEIGHTED SPHERICAL
HARMONICS

The spin-weighted spherical harmonics are related to
representation matrices of the three-dimensional rota
group. If we define a rotationR(a,b,g) as being composed
of a rotationa aroundêz , followed byb around the newêy8

and finally g around êz9 , the rotation matrix ofR will be
given by @33#

D2sm
l ~a,b,g!5A 4p

2l 11sYlm~b,a!e2 isg. ~A1!

An explicit expression of the spin-s spherical harmonics
is1 @33,34#

sYlm~u,f!5~21!meimfF2l 11

4p

~ l 1m!!

~ l 1s!!

~ l 2m!!

~ l 2s!! G1/2

3sin2l S u

2D(
r

S l 2s

r D S l 1s

r 1s2mD
3~21! l 2s2rcot2r 1s2mS u

2D , ~A2!

where

max~0,m2s!<r<min~ l 2s,l 1m!. ~A3!

1In Ref. @33#, the sign (21)m is absent. We have added the sign
order to match the conventional definition forYlm .
1-9
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Note that the ordinary spherical harmonicsYlm50Ylm . Us-
ing the expression~A2!, one can show the symmetry

D2sm
l ~a,b,g!5Dm2s

l ~g,b,a!. ~A4!

They have the conjugation and parity relations

sYlm* ~u,f!5~21!m1s
2sYl 2m~u,f!, ~A5!

sYlm~p2u,f1p!5~21! l
2sYlm~u,f!. ~A6!

They satisfy the orthonormality condition and the comple
ness relation

E dV sYl 8m8
* ~u,f! sYlm~u,f!

5d l 8 ldm8m , ~A7!

(
lm

sYlm* ~u8,f8! sYlm~u,f!

5d~f82f!d~cosu82cosu!. ~A8!

Therefore, a quantityh of spin weight s defined on the
sphere can be expanded in spin-s basis:

h~u,f!5(
lm

h lm sYlm~u,f!, ~A9!

where the expansion coefficientsh lm are scalars.
The raising and lowering operators,Z andZp, acting onh

of spin weights, are defined by@33#

Zh52~sinu!sF ]

]u
1 i cscu

]

]fG~sinu!2sh,

Zph52~sinu!2sF ]

]u
2 i cscu

]

]fG~sinu!sh. ~A10!

When they act on the spin-s spherical harmonics, we hav
@33#

ZsYlm5@~ l 2s!~ l 1s11!#1/2
s11Ylm ,

ZpsYlm52@~ l 1s!~ l 2s11!#1/2
s21Ylm . ~A11!

Using these raising and lowering operations, one can ob
the generalized recursion relation@25#, which allows one to
construct easily the high-l spin-weighted harmonics from th
low-l harmonics.

From the rotation group multiplication law, one can d
rive the generalized addition theorem@25#

(
m

s1
Ylm* ~u1 ,f1! s2

Ylm~u2 ,f2!

5A2l 11

4p
~21!s12s2

2s1
Yls2

~b,a2!e2 is1a1, ~A12!
12300
-
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whereb is the separation angle between the two pointin
(u1 ,f1) and (u2 ,f2) on the celestial sphere. Connectin
them by a geodesic,a1 and a2 are the angles between th
geodesic and the longitudes passing through (u1 ,f1) and
(u2 ,f2) respectively. Whens15s250, Eq.~A12! reduces to
the familiar addition theorem for spherical harmonics. Sim
larly, we have

sYlm~u1 ,f1!5A 4p

2l 11(m8
sYlm8~b,a2!

3eisa1
2m8Ylm~u2 ,f2!. ~A13!

Furthermore, using the symmetry relation~A4! and the addi-
tion theorem~A12!, we obtain

(
m

2mYl 2s1
* ~u1 ,f1! 2mYl 2s2

~u2 ,f2!

5A2l 11

4p
~21!s12s2

2s1
Yls2

~u22u1,0!

3eis1f1e2 is2f2. ~A14!

As long as the two pointings are identical, this becomes

(
m

2mYl 2s1
* ~u,f! 2mYl 2s2

~u,f!5
2l 11

4p
ds1s2

. ~A15!

APPENDIX B: WINDOW FUNCTION

The window functionW1/2( l 1 ,l 2 ,m) in Eq. ~25! is

W1/25E
0

p

db be2b2/2sb
2
Yl 2m* ~b,0!Yl 1m~b,0!

5F2l 111

4p

~ l 12m!!

~ l 11m!! G
1/2F2l 211

4p

~ l 22m!!

~ l 21m!! G
1/2

I , ~B1!

where

I 5E
0

p

db be2b2/2sb
2
Pl 1

m~cosb!Pl 2
m~cosb!, ~B2!

and we restrictm>0. This has already included the ca
with m,0, becauseW1/2( l 1 ,l 2 ,m)5W1/2( l 1 ,l 2 ,2m).

Since the Gaussian function in the integral~B2! has a
width of sb; l min

21 , we approximate the associate Legend
polynomial as@30#
1-10
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Pl
m~cosb!;A2

p

G~ l 1m11!

GS l 1
3

2D sin21/2b cosF S l 1
1

2Db1S m2
1

2D p

2 G for l @ l min ,

Pl
2m~cosb!; l 2mJm~ lb! for l; l min ,

Pl
m~cosb!;~21!m

~ l 1m!!

m! ~ l 2m!! S b

2 D m

for l ! l min . ~B3!

Then, the integral can be integrated analytically for certain limiting values ofl 1 and l 2.
For l 1; l min and l 2; l min ,

I 5
~ l 11m!!

~ l 12m!!

~ l 21m!!

~ l 22m!! E0

p

db be2b2/2sb
2
Pl 1

2m~cosb!Pl 2
2m~cosb!

.
~ l 11m!!

~ l 12m!!

~ l 21m!!

~ l 22m!!

1

l 1
ml 2

mE0

`

db be2b2/2sb
2
Jm~ l 1b!Jm~ l 2b!

5
~ l 11m!!

~ l 12m!!

~ l 21m!!

~ l 22m!!

sb
2

l 1
ml 2

m
e2( l 1

2
1 l 2

2)sb
2/2I m~ l 1l 2sb

2!, ~B4!

whereI m is the modified Bessel function, which has the limiting form

I m~x!;
1

A2px
ex for x@1. ~B5!

When l 1l 2sb
2@1, we have

I .
~ l 11m!!

~ l 12m!!

~ l 21m!!

~ l 22m!!

1

~ l 1l 2!m11/2

sb

A2p
e2( l 12 l 2)2sb

2/2. ~B6!

Hence this gives the result in Eq.~31!.
For l 1@ l min and l 2@ l min ,

I .
2

p

G~ l 11m11!

GS l 11
3

2D
G~ l 21m11!

GS l 21
3

2D E
0

p

db be2b2/2sb
2
sin21b cosF S l 11

1

2Db1S m2
1

2D p

2 GcosF S l 21
1

2Db1S m2
1

2D p

2 G

.
1

p

G~ l 11m11!

GS l 11
3

2D
G~ l 21m11!

GS l 21
3

2D E
0

`

db e2b2/2sb
2
cos@~ l 12 l 2!b#

5
G~ l 11m11!

GS l 11
3

2D
G~ l 21m11!

GS l 21
3

2D
sb

A2p
e2( l 12 l 2)2sb

2/2. ~B7!

Hence this gives the result in Eq.~37!.
Furthermore, we have found that whenl 2@ l min , I is subdominant forl 1< l min . Whenl 2; l min , I is subdominant for both

l 1@ l min and l 1! l min .
123001-11
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APPENDIX C: FLAT-SKY APPROXIMATION

We are going to evaluate

Z2
2Zp1

2e2p iuê1•ê2, ~C1!

under the condition thatê1•ê2.0. This condition corre-
sponds to the flat-sky approximation whenuW 5uê1 is the
baseline vector andê2 is the telescope pointing direction
The reader may refer to Refs.@23,24,11# for different ap-
proaches.

Using Eqs.~17!, ~A11!, and~A12!, we obtain

Zp1
2e2p iuê1•ê254p(

l
i l j l~2pu!

3F2l 11

4p

~ l 12!!

~ l 22!! G
1/2

Yl 22~ ê1•ê2 ,a1!

524p(
l

i l j l~2pu!
2l 11

4p

~ l 12!!

~ l 22!!

3Pl
22~ ê1•ê2!, ~C2!

where we have substituteda1.p/2 under the flat-sky ap
proximation. From the recursion relation

Pl
m12~x!12~m11!

x

A12x2
Pl

m11~x!1~ l 2m!

3~ l 1m11!Pl
m~x!50, ~C3!
.

J

k,

l,

12300
whenx.0 andm522, we have

Pl~x!.2~ l 12!~ l 21!Pl
22~x!. ~C4!

As such, Eq.~C2! can be approximated as

Zp1
2e2p iuê1•ê2.4p(

lm
i l j l~2pu!l ~ l 11!Ylm* ~ ê1!Ylm~ ê2!.

~C5!

Applying the operatorZ2
2 to Eq. ~C5! and doing the approxi-

mation ~C4! again, we find that

Z2
2Zp1

2e2p iuê1•ê2.e22iuu(
l

i l j l~2pu!l 2~ l 11!2

3~2l 11!Pl~ ê1•ê2!, ~C6!

whereuu5p/22a2. Sincej l is a sharply peaked function a
l;2pu for 2pu@1, we can approximate the factorl 2( l
11)2 in Eq. ~C6! by (2pu)4 and then take it out of thel
summation. Hence we obtain Eq.~49!. We can follow the
same steps to derive Eq.~50!.
n.

R.
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