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Complex visibilities of cosmic microwave background anisotropies
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We study the complex visibilities of the cosmic microwave background anisotropies that are observables in
interferometric observations of the cosmic microwave background, using the multipole expansion methods
commonly adopted in analyzing single-dish experiments. This allows us to recover the properties of the
visibilities that are obscured in the flat-sky approximation. Discussions of the window function, multipole
resolution, instrumental noise, pixelization, and polarization are given.
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[. INTRODUCTION erage of a wide range of angular scales with the resolution
and sensitivity determined by the aperture of each element of
The detection of the large-angle temperature anisotropy ahe array and the baselines formed by the array elements. A
the cosmic microwave backgroul@€MB) by the Cosmic desirable feature of the interferometer for CMB observation
Background ExploretCOBE) Differential Microwave Radi- is that it directly measures the power spectrum of the sky. In
ometer(DMR) experimen{ 1] provided important evidence addition, many systematic problems that are inherent in
of large-scale spacetime inhomogenities. Since then, margingle-dish experiments, such as ground and near field atmo-
CMB measurements have reported detections or upper limitspheric pickup, and spurious polarization signal, can be re-
of the CMB anisotropy power spectrum over a wide range ofjyced or avoided in interferometry. A brief account of the
scales[2]. Recently, BOOMERANG3] and MAXIMA [4]  interferometic CMB observations can be found in RafL).
data have revealed the structure of the first Doppler peafeyrently, several new interferometers including the Very
which arises from acoustic oscillations of the baryon-photong 4| Array (VSA) [12], Degree Angular Scale Interferom-
plasma on the last scattering surface. Future ground-bas%qer (DASI) [13], Cosmic Background Image(CBI) [14],

and balloon-borne experiments, and the upcoming NAS - - MIBA
Microwave Anisotropy Prob&MAP) satellite, will unveil :[End Array for Microwave Background AniSotroMIBA )

detailed features of the CMB anisotropy, thus allowing on tz]lrr?risbefg]rgtr?;IIt’oIv:rtirz]afiirrlsgzlzbziili?ouihz fimé :evrvill
to determine to a high precision a number of cosmologica ' P P Y,

parameterss] ave full polarizations, whereas the VSA, DASI, and CBI

The CMB is linearly polarized when the anisotropic ra- will not be polanzanpn sensitive |n!tlally. N )
diation is scattered with free electrons near the last scatterinlg The output of an interferometer is the visibility that is the
surface[6]. The degree of polarization is about one-tenth of-ourier transform of the intensity fluctuations on the sky. In
the temperature anisotropy at sub-degree scifés The this paper, we will study the CMB anisotropies in the visibil-
CMB polarization contains a wealth of information about theity space. There are several papers dealing with CMB anisot-
early universe as well. It provides a sensitive test of theopy data from interferomete{d6-19 and making explicit
re-ionization history as well as the presence of non-scalagontact of the visibility with the angular power spectrur in
metric perturbations, and improves the accuracy in determinspace that is frequently used in single-dish experiments
ing the cosmological parametd®]. So far, the current up- [11,20—22. All of them have treated the CMB sky as flat
per limit on the CMB linear polarization is 1@&K [9]. A due to the fact that typically a small field on the sky is
handful of new experiments, adopting low-noise receivers agiewed by the interferometer. This turns the analysis into a
well as long integration time per pixel, are underway or be-familiar two-dimensional Fourier transform problem. Here
ing planned 10]. rather than assuming the flat-sky approximation, we will per-

CMB experiments are commonly single-dish chopping in-form a full-sky analysis of the visibility. Although we then
struments, whose scanning strategy and data analysis prodeave to give up the relatively simple Fourier-transform for-
dure are well developed. In the last decade, interferometensialism, the bonus is that the angular power spectrum can be
were introduced to study the microwave sky. Recent addirectly transferred to the visibility space. Hence, the statis-
vancement in low-noise, broadband, GHz amplifiers, in adtics of the CMB visibilities is straightforwardly induced by
dition to mature synthesis imaging techniques, has made inthe Gaussian variables Irspace.
terferometry a particularly attractive technique for detecting The paper is organized as follows. In Sec. I, a brief ac-
CMB anisotropies. An interferometric array is intrinsically a count of the building block of CMB anisotropies is given.
high-resolution instrument well suited for observing small-We introduce the interferometric observation in Sec. I, and
scale intensity fluctuations, while being flexible in the cov-present the calculations of the CMB visibilities in Sec. IV.

The resolution in space is discussed in Sec. V, the instru-
mental noise and pixelization are introduced in Sec. VI, and

*Current address: Canadian Institute for Theoretical Astrophysicshe CMB polarization is treated in Sec. VII. Estimation of
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are made in Sec. VIII. Section IX is our conclusions and ) . .
discussion. (Q+IU)(8)=% & 2im—2Yim(®), (1)

Il. CMB ANISOTROPIES _ ,
wherear |, anda., , are Gaussian random variables, and
Before we study the interferometric observation of CMB _ .Y, . are spin-2 spherical harmonics. Details of the spin-

anisotropies, let us review the basic ingredients that argeighted spherical harmonics and their properties can be
based upon the multipole expansion of the Gaussian randofdund in Appendix A.
fields and commonly used in analyzing single-dish experi- |sotropy in the mean guarantees the following ensemble

ments S . o averages:
Polarized emission is conventionally described in terms of

the four Stokes parameterk Q,U,V), wherel is the inten-

* _

sity, Q and U represent the linear polarization, avdde- (@t rmarim)=Cndi dmm,
scribes the circular polarization. Since circular polarization

cannot be generated by Thomson scattering alone, the pa- <a;|fmfa2,lm>:(CEI+CBI)5I’I5m’m!

rameterV decouples from the other components and will not
be considered. Let us defiffebe the temperature fluctuation
about the mean; then, the CMB anisotropies are completely (@3, ya-2im)=(Cg—Cg)) 8 Srm>
described by T,Q,U), where each parameter is a function
of the pointing directiore on the celestial sphere. " Co S 5
Considering the CMB as Gaussian random fields, we can (armazim) =~ Ccidi16mm, (2)
expand the Stokes parameterd 23,24
whereCy,, Cg/, Cg|, andCg, are respectively the anisot-
T@)=2> armYm(e), ropy, E polarization,B polarization, andl-E cross correla-
m tion angular power spectra.
Consider two pointingg; ande, on the celestial sphere.
i o — 2 Using the generalized addition theoré®l?2) and Eq.(2),
iU)(e)= a Yim(e), . . .
(Q-iU)(e) % 2im2Yim(€) we obtain the correlation functiof&5]

P 21+1
(T*(en)T(e))= 2 ——CriPi(cosp),

N . 2041 [(1—2)! |
(T*(@01Q(&) +1U &)= % o CaP(cospre 22

. . 2+ 1 L
<[Q(91)+|U(91)]*[Q(ez)+|u(ez)]>:z| ?(CEI"_CBI)ZYI—Z(,BuO)e W(agma),

- - 21+1 _
<[Q(e1)_|U(el)]*[Q(ez)+|U(ez)]>:E| V7 (Cei—Can 2Yia(B,0)e 2027, 3
|
where, a4, anda, are the angles defined in Appendix A. SYIm(é)‘)(_1)SSWI1r<125YIm(é)a ()

Therefore, the statistics of the CMB anisotropy and polariza-
tion is fully described by the four independent power spectravhere W, is the window function. For a simple single-dish
or their corresponding correlation functions. The detailsexperiment with Gaussian beamwidify, it was found that
about the evaluation of the power spectra can be found ih25]
Refs.[23,24).

In realistic CMB observations, as a result of the finite
beam size of the antenna and the beam switching mecha-
nism, a measurement is actually a convolution of the antenna
response and the Stokes parameters. This can be accountedn contrast to single-dish experiments that measure or dif-
by a mapping of the spherical harmonics in EL), ferentiate the signals in individual dishes, an interferometer

Wim=exp{—[I(I+1)—s?]o}. (5)

IIl. INTERFEROMETRIC OBSERVATION
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measures the correlation of the signals from different pairs ophysical size of the dish while the maximum spacing is lim-
the array elements. Let us consider a two-element instrumeiied by the size of the platform on which the dishes reside.
and a monochromatic electromagnetic source. The outpuf,he sampling can be described by a sampling funcir),
called thecomplex visbility of the interferometer is the time- which is zero where no data have been taken. One can then
averaged correlation of the electric fisldmeasured by two perform the inverse Fourier transform to form the so-called
antennae pointing in the same direction to the sky but at twalirty image:

different locationd 26]:

V(J)=<E1E§>=f deA(e,8,)l (8)e2™e,  (§) ID(X)=f duV(u)S(uye~2mux, (13)

whereu is the separation vectdbaseling of the two anten- Using the convolution theoremP=AlIxB, where B(x) is
nae measured in units of the observation wavelen§tie-  the synthesized beam that is the Fourier transforrs(af).
notes the primary beam with the phase tracking center pointsg in the flat-sky approximation the calculation is simplified
ing along the unit vectoey, and| is the intensity of the into a two-dimensional Fourier transform problem. However,
source. Note thaii is generally a three-dimensional vector, the CMB is a large source. Although it is valid to treat the
and thatV*(J) =V(— ﬁ) sinceA and| are real functions. _sky as flat du? to the small field of view c_)f the primary beam
In the following, we consider a primary antenna with in a single pointing, a larger scale CMB image requires mul-

- ; : tiple pointings on the sky. In addition, after replacing locally
Gaussian beamwidtix, given by the sphere by a plane, the global property of the CMB field is

— o 02207 obscured although there is a direct link between the angular
A(8,¢)=e b, (7 .
power spectrum and the power spectrum in the plane. There-

: - fore, in the following we will begin with the general form for
where @, ¢) are the polar angles with respectgg Antenna P
theory[(27(:2|'))states thgt g P the complex visibility in Eq(6).

AefoAz)\Z, with QA:f dQA(6,9), (8) IV. COMPLEX VISIBILITY OF CMB ANISOTROPY

) ) ) ] The CMB brightness fluctuation is related to the tempera-
where\ is the observation wavelengtf » is the field of  tyre fluctuation by

view, and the effective area is the aperature efficiency times
the physical area of the antenna:

AB —aBVAT ith B, 99.27(x) JysrtukK™?!
Aeff:naAphy- ) T T wit oT (0 Jysru '

14
Let us assume a circular dish with diameerthen, we have (149
N 2 whereB,, is the Planck function of the photon frequeney
Ub_W_D E- (10) and
In typical interferometric measurements, we havweD, heX
dictating a small),. Thus, for a single pointing, it is very f(x)= ———, where le_n{#)_
good to make the flat-sky approximation by decomposing (eX—1)2 100 GH
(15

e=ey+x, with x-=0, and [x|<1, (12

We write AT=T and then do the anisotropy angular power

meaning thak is a two-dimensional vector lying in the plane .
spectrum expansiofL).

of the sky. Hence, the complex visibilty is reduced to the
two-dimensional Fourier transform of the sky intensity mul-

tiplied by the primary beam: A. Infinite resolution limit

R . ) Let us concentrate on the power spectrum and neglect the
V(U)EV(U)efz"'”'e‘):f dxA(X)1(x)€?™ % (12)  effect of the primary beam by taking for now the infinite
resolution limit thatA=1; then, from Eq.(6) the complex

whereu is the two-dimensional projection vector ofin the ~ VisiPilty of the CMB anisotropy is written as

X plane. .
In a single-dish experiment, the resolution of the image is v(u)= a;BVVT(J), where VT(J):f deT(e)e?mu e,
limited by the finite primary beamwidth. In contrast, the in- Jr

terferometric imaging has the resolution of the synthesized (16)
beamwidth which is determined by the sampling of the vis-

ibility plane (u plang, where the minimum spacing is the Also expanding the phase factor in terms of spherical waves,
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ezwid~é:4w% i'j,(2u) Y (8) Y m(0), (17 0‘0155—

wherej, is the spherical Bessel junction ane-|u|, we ob-
tain

vT<G>=4w% ar mi' [1(27U) Y (0). (18)

For a fixed length of the baseline, E4.8) is analogous to a

measurement of the temperature anisotrapie) in real
space with a window function. So the statistics\Gf on a

sphere of radiusi in the visibility space is completely de- *C. . . . | ., . . . |

scribed by thear |, and the positively definite function 1 0 0

_ 2:2
l/(u)=167j(2mu). (19) FIG. 1. Solid and dotted curves are the interference functions

. . . . . . I)(u) with 277u=200 plotted using Eq(19) and the asymptotic
We will call this function theinterference functionEstima- expansion(26) respectively. The dashed curve is the flat-sky ap-

tion of theCy,'s can be made from the visibility data in'the proximation! %(u) in Eq. (22).
same way as one does for an anisotropy sky map, with the
sample variances determined by the coverage of the visibility
sphere.

Using Eq.(2), the two-point correlation function is given  In practice, the instrument is limited by a finite primary
by beamwidth given by the aperture function. Inserting the ap-

erture function with tracking directioa in Eqg.(16), we have

B. Finite primary beam

- - 1
(V3 (Un)Vr(Ug))=7— > (21+1)Crly(u)Py(cosp), . e
ol 20 VT(u,e)=f de'A(e’,e)T(e')e?mu-e (23

where P, is the Legendre polynomial and césU,;-U,.  Doing the expansion$l) and (17), assuming a Gaussian
Hence, the rms temperature anisotropy in a given visibility isrbeam(7), and using Eq(A13), Eq. (23) becomes

N . 1
2 /\/* - N o R
Vims=(VEVr()= 22 2 (21 1Cnli (W) Vr(U,9)=872 3 D ar ) ni'Z]1,2mU)Y n, (0)
I1my Iomy
(21)
. . 4 4 R

On the other hand, based on the flat-sky approximation, the X _nYE ()
authors in Ref[11] have obtained a different autocorrelation 21+1 V2,+1%5 272

function[Eq. (7) of Ref. [11]]: X oY) m (8)WY2(1 1, 15,m) (24)
-mYim 1,712,000

S(u)=(V3 (U)V(u))
1 where the square root of the window function is
:EZ (21+1)CplfS(u), (22) i
WA )= [ "a e R (8.0, (8.0,
(25

where

2
f —
()= GJ2'+1(4T’U)’ and (Y, is the spins spherical harmonicgésee Appendix

A). Equation(24) is the general result for the complex vis-
and J, ., is the Bessel function. A comparison betwden ibility of the CMB observed by an interferometer with two
and!{® is made in Fig. 1 with Zru=200. Both interference identical Gaussian primary beams separated by a baseline
functions have a high peak &t200 and drop rapidly as  However, it is difficult to get any useful information from its
>200. Whilel, is positively definite] [ is oscillatory about present form. In the following, we will pursue two configu-
the zero and has a lower peak. As such the latter wouldations for which Eq.(24) can be boiled down to useful
underestimate the rms fluctuation in a given visibility. Forforms. The first one is the “close-packed” configuration
instance, assuming a flat anisotropy power spectrum, we findith the dishes almost in touching, i.ei\~D. This con-
that the flat-sky rms visibility is about one-fourth of that in figuration is commonly adopted in CMB observations in or-
Eq. (21). der to maximize the size of the dish to obtain optimal sensi-
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tivity for signal detection. The second is the “widespread” Note that the window function has a Gaussian widithy,

configuration in which the length of the baseline is much~|

longer than the diameter of the dish, i.eA>D. This con-

min. and that it decreases with rapidly. The latter en-
ables us to retain onlpn=0 in them summation in Eq(24),

figuration is needed when one wants to resolve the fine struawhich then becomes

ture of an image.

1. Close packed

Let us start by analyzing the interference function, which

is composed of the spherical Bessel functjgi2u). Typi-

cally, the baselinei>1. For large argumeni, has a sharp
peak atl~2mu. The asymptotic expansion in the peaked

region (for [ ~27u>1) is given by[29]

-1/3
- 1/221/3

-2'%),

) 1
j|(27TU)~§U I+§

where

1 1/3

2mu= |+§

:
I+§ +y , (26)

and Ai(z) is the Airy function. Thus, for a fixed, the loca-
tion and width of the peak are approximately given by

Ikt 0.850=27u  and Al~152. (27)
In addition, the height of the peak is given by
j|pk(27-ru)z\/;2‘1/6I;k5/6Ai(—1), Ai(—1)=0.54.
(28)

In Fig. 1, we have used the asymptotic expangi@6) to

reproduce the interference function in E#j9). It shows that

the asymptote is a fairly good approximation.

Vo(U,e)=

\/_sz 2 ar, IlleIlml(e)||2

I1my

X (2,4 1)j;,(27wu)Py (e-u)

1
Vlilo

w e (1-12)%052 (32)
In the close-packed configuration, we usually have the con-
dition thatAl>Al,. As such, as compared to the window
function, the interference function can be treated as a delta
function atl, =1y, wherel p+0.853=1ir. For | nip>1,

we havel p~1nin. Hence, we approximate
_ _ 2 2 1 _ 1 2,2
e (11292002 = o=(I1-Imin?op/2 (33)
\ Il|2 Imin
in Eq. (32), which then turns into the final form
~ \/ Ko
Vr(@)=elm === 3 ag Vin(@W?, (34
min
where the window function is
Wl:e*(lflmin)zoﬁ_ (35)

The result(34) shows that the baseline vector appears only in
the irrelevant phase factor, and thus that the close-packed

In the close-packed configuration, we denotes the miniinterferometric beam is similar to a single-beam antenna un-

mum spacing n,i,= 27U, where, from Eq(10),

| 2 D_2 2>1
min 77'{_0__ a .

(29

Because the dominant contribution in the summation in

Eq. (24) comes froml,=<I,;,, we can approximate the as-

sociate Legendre polynomial in the integrai2®) by [30]

P, "(cos)=1; "In(1,). (30

dergoing chopping and wobbling. In fact, this similarity has
been pointed out in an early CMB interferometric measure-
ment[17]. So when we attempt to construct a two-point cor-

relation function similar to Eq(20) with |u;|~]|u,|~D/\,

we obtain a pure phase function which does not contain any
useful information. The reason is simply that the correlation
over the domain in the space spanned hy, andu,, whose
size is still comparable to the size of the dish, is almost a
constant. In light of this, in Eq(34) we have replaced
V1(u,e) by V(e) to reflect that it is more legitimate to deal

with the visibility in e space than im space. Therefore, for

Hence, the integra(25) can be evaluated analytically for the close-packed configuration with a fixed baseline, we
certain I_imiting value_s of ;. The_ integration_is detailed in  should sampl&/+(e) at different parts of the sky by repoint-
Appendix B. Essentially, the window function can be ap-ing the entire telescope, and analyze the data in the same way

proximated by

2L+ 1 (I+m) YA 21,41 (I,+m)1]H2
/ ~ 1 1 2
Wl m =T <|1—m>!} { 4 <|2—m>J
1 - (o
(| | )m+1/2 / (ll I) blz (31)

as in the single-dish observation.

2. Widespread

In this case, the dominant contribution in thesumma-
tion in Eq.(24) comes from the rangl,i,<l,=<2wu, where
we can approximate the associate Legendre polynomial in
the integrand25) by [30]
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2 I'(l 1
PI(cosp)= \/; (2+—m;)sif V2p cos{

F |2+§

I+1+
Ziﬁ

1\ 7

Hence, the window functiof25) can be approximately evaluated as

21,41 T(y+m+ )T —m+1) " 21,41 T(L+m+ )T (L,-m+1) " o

47 4 3 2
|2+§

1242
WY1 4,15,m)= o (1-1)%0%2

1‘*2

3
2 _
r(|1+2

(37

We have detailed the integration in Appendix B. Note thaton eachu sphere, and the individual estimation has the cos-
the window function(37) has a very narrow Gaussian width mic variance as that from a full-sky observation of a single-
Alyw~Inin, When compared to the baseline lengtt277u.  dish experiment. Now, witiN uncorrelated pointings, the
As such, we can makg ~1,. Then, using the asymptotic cosmic variance will be reduced by a factor\@f.. Although
formula we observe just one universe and not an ensemble, interfero-
F(l+m+1) ( 3)tm—1/2 metric experiments allow more independent measurements

+= for I1>1, (39 of_the power spectrum, and are thus I_ess limited by the cos-
rli+ E 2 mic variance than single-dish experiments. However, the
2 widespread condition requires £2)Y3>1, implying a very
_ _ ) high resolution scale at which the primary CMB anisotropies
we can further approximate the window function as have very low power.
WY1l m) = (2m)3Zoe” (h-12%62, (39)

S . L V. INCREASING RESOLUTION
which is independent af in the asymptotic limit. Further-

more, when the conditioAl,<Al, is satisfied, the window We have learned in the previous section that the resolu-

function can be treated as a delta function: tion which we have inl space for a single pointing of the
2 am close-packed interferometer is equal to the size of the pri-
Wy, 1, m)=(27) b0 1, (40) mary beam. However, we can increase thesolution by

) ) ] ] combining several contiguous pointings of the telescope.
Plugging Eqs(40) and(A15) into Eq.(24), we finally obtain  This is analogous to the Fraunhofer diffraction in optics, in
which narrower interference fringes are obtained by using
Vi(U)= 870y, armi'[(27U)Ym(U),  (41) ~ many apertures. In RefL1], they have demonstrated a case

fm in which the resulting aperture in theplane can be made

much narrower by considering X N pointings on a regular

which does not depend on the tracking direction. The StruCg iy Here we can show the increasel sésolution by com-
ture of this equation is similar to Eq18), and thus the

discussions following Eq(18) in Sec. IV A are equally ap- Pining various pointings oW/r(u,€) in Eq. (24). The sim-
plied to Eq.(41). plest case is to sum over all pointing directions:
It is interesting to note that the Galactic cut due to huge
contamination from the Galactic plane in single-dish experi-
ments is not a concern at all in interferometry, since the SN2 2 1F .
contamination in the visibility space comes fror%/ the instru- dQWVr(u.e)=8m Ub%‘ Arimt 1 (27U) Yim( ),
mental noise only. So the ideal observational strategy is to (42
point the interferometer to the cleanest part of the sky and
measure the visibilities on the wholesphere. However, in
practical situations the actual coverage of thesphere is where we have used the orthonormality conditi@v) to
usually limited by the instrumental setup. evaluate the integration. This shows that theesolution is
Although the visibility (41) is reduced by the finite beam now determined by the interference function rather than the
size, it enables us to make independent measurements of tindow function. It means that the resolution Inis in-
visibility by pointing the telescope to different uncorrelated creased fromil,, to Al,. Since Eq(42) is a general result,
patches of the sky. Suppose that we have mddencorre- it can be applied to the widespread configuration in Sec.
lated pointings and a fulll-sphere coverage for each point- IV B 2 as well, where thd resolution is already given by
ing. Then, we can estimate tla&;,'s from the visibility data  Al,. Thus we conclude that in interferometry theesolution
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can be increased by combining telescope pointings up to a VIl. POLARIZATION

limit set by the intrinsic interference function. It is a routine for radio interferometers to measure the

polarization of the radiation fieltB2]. Polarization measure-
VI. INSTRUMENTAL NOISE ments are generally made using a pair of feeds on each an-
In the single-dish CMB experiment, a pixelized map of tenna. Usually, the feeds are sensitive to orthogonal circular
the CMB smoothed with a Gaussian beam is created. In eac® linear polarizations. For instance, if the dual-polarization
pixel, the signal has a contribution from the CMB and from feeds measure the right and left circular polarizations, then
the instrumental noise. A convenient way of describing théhe output will be the four correlationsRR*), (RL*),
amount of instrumental noise is to specify the rms noise pefLR”*), and(LL*). They can be related to the four Stokes
pixel, opix, Which depends on the detector sensitiitgnd ~ Parameters I(Q,U,V). Denoting their associated visibilty
the time spent observing each pixgly: =5/ V. The  functions by ¥;,Vq,Vy,Vy), we have
noise in each pixel is uncorrelated with that in any other

pixel and is uncorrelated with the CMB component. Dgf;, (RR* )=V +Vy,
be the solid angle subtended by a pixel. Usually, given a total
observing timef is directly proportional to},;,. Thus, (LL*)=V,—Vy,
we can define a quantity %, the inverse statistical weights
per unit solid angle, to measure the experimental sensitivity K\ iV =
independent of pixel sizE31]: (RL)=VotiVy=V.,
W= 0p00, . (43) (LR*)=Vqo—iVy=V_, (47)

~ Ininterferometry, the instrumental noise is usually speciwhere we have neglected the parallactic angle of the feed
fied by the image sensitivity per synthesized beam E28R  ith respect to the sky and the leakage from one polarization
channel to the other polarization channel. Similiar to Eq.

Al= 1 2kgTsys 1 (23), we have

1
- NsNa  Apny V2NpN, \/Aytint’

wherekg is the Boltzmann constari,s and 75 are respec- Vt(U):f de’A(e’,e)(Q=xiU)(e)e?™ e, (49
tively the system temperature and efficienbl, andN, are
respectively the numbers of baselines and polarizatiaps,
is the bandwidth of the observation frequenty, is the

(44)

It is difficult to analyze these equations in general. We
X S . ; thus proceed with the analysis using the flat-sky approxima-
integrattion time, andy, andAp,, are defined in Sec. lll. For tion, i.e.,u-e=0. Let us first set up a rectangular coordinate
example, the number of baselines formedMyantennae is . .0~ O° ~ A P _ 9
Np=N,(N,—1)/2. In Eq.(44), (ex.ey,€,), and choosee=e,; then, it can be shown that
ae (see Appendix €

2kgTsys o v 2 Teys (N2
Aphy =3.912<10° % 755Gyl | 100 K/ D) 0%, 8262 = (27ru)te~ 2 fug?il ¢ (49)
(45)
With regard to CMB observations, because a given baseline 55,6592””8':(27TU)492i0“€‘2”i“'e,, (50

u is sensitive only to a narrow range btentered at about
21ru, it is more suitable to use the sensitivity per baseline pe

vhered,=u- e, is the polar angle ofi in theu plane parallel
polarization given by Eq(44) with Ny=1 andN,=1: . Y b g P P

to thee,-€, plane, and the basig(,e,) is used to defin®
1 2kaT 1 andU. As such, Eq(48) becomes
B!sys

Sp= .
b MsTa Aphy V2A,

Let us consider a simple two-element interferometer with
baselineu. For the one in close-packed configuration, it is X &2 §2g2miu-e’
convenient to describe the instrumental noise on a pixelized eu ’
sky map as i\/n_the single-dish experiment, with,;, =5
and o= S, /sy, for whichw ™1 is specified on the celes- > —4,-2i6 VA IV T
tial spphere. In tr?e widespread configuration, we can adopt the V- (W)=(2mu)e uj de’A(e’,e)(Q-iu)(e’)
same strategy but now on a pixelizadsphere. The size of 2 2 iy
the pixel can be chosen as the resolutionuini.e, )y X005 : (51)
~(Au/u)?, and the noise in this pixel is alsoriy
=S,/ \tpix. Sincel ~27u, we haveQ,;,~(Al,/1)2. Hence, Using Egs.(1) and (A11), and following the steps to reach
we can assignv~ ! on theu sphere. Eq. (24), we obtain

(46)
v+(ﬁ):(2wu)—4e2“’uf de’A(e’,e)(Q+iU)(e’)
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2

1)~ Q2% 2i0, B iloi -
V.(u)=8me llEml |22mz asz),m,l 2J1,(2mU) V%rmSE<Vi(u)V+(u))~ — E (21+1)
/ X(Cg+Cgpli(u). 56
+2Y|2m2(u 2|2+12 —mlemz(e) (Cei+Ca)li(w) (56)
X _mY|lm1(é)W1’2(|1,|2,m), (52 VIIl. ESTIMATION OF SIGNAL TO NOISE RATIOS

In the previous sections, we have presented the basic re-
where sults that can allow us to lay out the strategy in CMB inter-
ferometric observations and to deal with the observed data.
- 9 2 First of all, it is useful to make some simple estimates of the
W1/2(|1,|2,m)=J dB Be 2% oY (B.0) =2Y1,m(B0).  CMB signal to noise ratios for the upcoming CMB interfer-
0 (53) ometers. _ _
For a close-packed interferometer, the CMB anisotropy

signal in a given \visibility is given by S;
It has been shown that the window function for polarlzat|on_(o7B 19T)Vymel 2, Where, from Eq(34),

measurements in single-dish experiments is well approxi-

mated by that for anisotropy as long las2 [25] [also see

Eq. (5)]. This result can also be applied to E§3). So we Virme= (VX (&)V1(8))Y2

can approximate the window functidf3) by Eq. (25), and

hence the subsequent analyses are the same as we have

treated the anisotropy in the previous sections. The only dif- \/f | E (21+1)Cpe(~Imin” %, (57)
ferences are the overall phase factor containiéhyg the min

spherical harmonics of spin 2, and thaties in theu plane.
For example, in the widespread configuration, we have while the noise limitN is given byAl, Eq. (44). Hence, we
estimate the signal to noise ratio per single pointing as

Ve (W)= VBmape™ % aspmi'[i(27U) 2Yim(U). s
(64 1= L167sV7a NNy f(x)

" A, \Y2(t,:\Y?/100 GHz (100 K|/ D
10 GHZ | h v Teys /11 m

1/2
2 (214 1)Cye” (~'min %1 , (58

Analogous to Eq(3), by using Egs(2) and (A12), we can
construct four independent two-point correlation functions
from Eqgs.(41) and(54). They are

S ol
<V¥<ul>vT<u2)>zQ 2 (21+1)Cql (u)P(cosb),

( K)z IfT'IIn

wheref(x) is given by Eq(15). This formula is also applied

. _ af, . 2l+1 for the CMB polarization except replacin@t, by Cg
(VE(U)V-(Up))= 52 2 \[=—(Cei+Cay) +Ca.
7 ! 7 To estimate the S/N ratios, we simply neglect the
X1,(u) ,Y,_2(6,0), B-polarization power spectrum, and approximate the anisot-
ropy and E-polarization spectra fot=300-1000 respec-
tively by
2I+1

<vt<61>v+(ﬁz>>~2 e (%m0 3
[(1+1)Cry=2m(AT)?, AT=50 uK,

X (Cg=Cgli(u) 2Y2(6,0),

2
- - oy 2141 [(1-2)!
<V-’F(U1)V+(U2)>2 27T92|0u22 477 (l +2)|
! ' Let us consider a close-packed interferometer with 19 dishes

><CC|I|(u)P,2(cos¢9), (55) in the hexagonal configuration. Then, it ha_ls 17_1 baselines in
total, and the number of shortest baselines is 42. Bor
R R =12 m, v=30 GHz, N,=42, andN,=2, the minimum
where|u;|=[uy|=u, and the separation angle=6, —6,,.  spacing | ,i,=27u=27D/\=754. Hence the anisotropy
Hence, the rms total polarization in a given visibility is and E-polarization S/N ratios are respectively given by

I(I+1)Cg=2m(AE)%2, AE=5 uK. (59)
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Sr 3n7 A, VYt Y2100 K\ AT 7 [26]. As a consequence, the interferometer response is
N~ 27V 10 GHZ |\ 'h Teys /150 uK/’ o A2

V(U :J V(U v)emd. 61
S g g r [ 2 V204 \12/100 K|[ AE U=y U g (61
N VT 10 GHZ \h] | Teys /1B uK)

(60) This is a Fourier transform with conjugate variableand 7,

] ] o and can be inverted to extract the desik&di V).
If we switch to a higher frequency=90 GHz while fixing Finally, we remark that CMB interferometric observations
Imin=754, then the dish size should be reducedo gre radically different from traditional radio interferometry.
=0.4 m. ForNp=42 andN,=2, we would expect the same \ye certainly need more studies on several important issues
SIN ratios as forv=30 GHz. However, corrected for the gych as observational stratedyspace resolution and mosa-
Rayleigh-Jeans limit, we find that the prefactor in BN jcing, optimal estimation of the power spectra, point source
is reduced to 25, whereas in t%/N the prefaCtor is 0.25. and other foreground subtraction’ and ground p|Ckup re-
moval.
IX. CONCLUSIONS AND DISCUSSION

We have presented a full-sky analysis of the monochro- ACKNOWLEDGMENTS

matic CMB complex visibilities. First of all, an exact expres-  Thea author would like to thank D. Bond. T.-H. Chiueh. H.
sion for the sky power spectrum is obtained in E2). It |jang 3 Lim, K.-Y. Lo, U.-L. Pen, S. Prunet, and R. Sub-
has an advantage over the flat-sky approximation for the inganmanyan for their useful discussions. He is also grateful to

terference function being positively definite, whereas thes|Ta for their hospitality during his sabbatical year, where
flat-sky interference function is rapidly oscillating about the ., J<t of the work has been done. This work was supported in

zero. In the latter, care must be taken in summing 6¥er o by the National Science Council, ROC under Grants
a flat spectrum due to significant cancellatigag]. More- N 5c89-2112-M-001-001 and NSC87-37047F.
over, we have found that the flat-sky approximation gener-

ally underestimates the power spectrum.
A full-sky expression in Eq(24) for the CMB complex
visibility is our main result. It serves as the basis for analyz-

ing the| resolution in a given visibility, especially when @ The spin-weighted spherical harmonics are related to the
large sky scanning is needed in order to obtain a high resqgpresentation matrices of the three-dimensional rotation
lution in | space. We have shown in Eg2) that the full-sky group. If we define a rotatioR(«,8,y) as being composed

scanning can increase tHeresolution from maximalAl : - ~
~DI/\ to Al~I*3 One should further check whether the of a rotationa arounde, , followed by 5 around the neve,

resolution increases linearly with the sky coverage. and finally y arounde;, the rotation matrix ofR will be
We have worked out two limiting cases of the visibility 9iven by[33]

equation(24) in which the statistics of the visibility becomes 2

transparent. First, we have shown that the close-packed in- | [ 47 —is

terferometer is functioning like a single-dish switching ex- Dsnl@.B,7)= 2|+1~°'Y'm('8’a)e A

periment. Therefore, on the issue of obtaining a Higbkso-

lution, it is important to study and compare the efficiency of ~ An explicit expression of the spis-spherical harmonics

the usual method of synthesis imaging of the sky against thas' [33,34]

of the aforementioned sky scanning method. Second, we

have suggested for the widespread configuration that one .

should analyze the visibility data on thesphere. We have Yim(6,8)=(—1)MeM?

also pointed out that the interferometry can in principle re-

duce the cosmic variance in single-dish experiments by ob- P [—s [+s

taining differentu spheres via multiple pointings of the tele- ><sinz'(—> E r r+s—m

scope to uncorrelated patches of the CMB sky. It is 2)%

interesting to study how to implement this concept in prac-

tical sitl_Jation. _ X(—1) "5 Tcofr+s- m(f) , (A2)
In this paper, we have performed the calculations assum- 2

ing a monochromatic electromagnetic source, and allowing a

nonvanishing geometrical delay=\U-&,, which measures Where
the elapsed time for the wavefront reaching one antenna and
then the other. However, when observing with a finite band-
width A, one usually correlates signals at two separate
points on the same wavefront in order to obtain full fringe.

This can be done by including within the interferometric 1in Ref.[33], the sign (- 1)™ is absent. We have added the sign in
system a computer-controlled phase delay to compensate forder to match the conventional definition féf,, .

APPENDIX A: SPIN-WEIGHTED SPHERICAL
HARMONICS

2141 (I+m)! (I—m)!]¥?

47 (I+s)! (I—9)!

max 0,m—s)<r<=min(l—s,l +m). (A3)
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Note that the ordinary spherical harmoni¥¢g,=,Y . Us-  where B is the separation angle between the two pointings

ing the expressioA2), one can show the symmetry (0,,¢1) and (@,,¢,) on the celestial sphere. Connecting
| | them by a geodesiay; and «, are the angles between the
Dlsn(a,B,7)=Dp_o(v.8,@). (A4)  geodesic and the longitudes passing through,$;) and
] . ] . (0,,¢,) respectively. Whes; =s,=0, Eq.(A12) reduces to
They have the conjugation and parity relations the familiar addition theorem for spherical harmonics. Simi-
Yi(0.H=(-1" Y, (6.9), (a5 wehave

Yim(m— 0,8+ m)=(—1)"_Yn(6,6). (AB) e
Yin(01.60)=\57772 Yim(Boaz)

They satisfy the orthonormality condition and the complete-
ness relation

XeSM_ 1 Yin(02,42).  (AL3)
dQ Y], (6,6) sYim(6, )
J Virm (0, 4) Yim( 6,6 Furthermore, using the symmetry relatigh4) and the addi-
= 81 (A7) tion theorem(A12), we obtain
i (0,0") Y im(0,
2 YIl(0/:97)sYin(6.9) S Y (0160) i (02:)
=0(¢p' — ¢)d(cosh’ —cosh). (A8) - \/m sy o p
Therefore, a quantityy of spin weights defined on the =N gy TU Y1027 01.0)

sphere can be expanded in sgibasis: < @iS1b1a- 1S (A14)

¢>=% Mim Yim( 0, &), (A9)

As long as the two pointings are identical, this becomes

where the expansion coefficientg,, are scalars.

The raising and lowering operatogs,andd, acting ony 21+
of spin weights, are defined by33] % ~mYs (0,0) —mYi-5,(0,0)= —— 55, (A1D)
d gl
On=—(sing)® —+| csoﬁ— (sin@) 37y,
I APPENDIX B: WINDOW FUNCTION
i, d The window functionW*?(1,l,,m) in Eq. (25) is
On=—(sing) % ——| csoﬁ 79 (sin®)%n. (A10)

. . . T a2 0_2
\[lglg]en they act on the spis-spherical harmonics, we have  \ya2_ JO dg pe P2 be;m(ﬁ,O)Yllm(ﬂ 0)

21,+1 (I,—m)t]¥2
47 (Iﬁm)!} o (BY

OsYim=[(I1=8)(I+s+1)]1V%, 1Y),

21+ 1 (1 -m) Y
| 4w (l;+m)!

3Yim=—[(+s)(I=s+D]¥% 1Y, (AlD)

Using these raising and lowering operations, one can obtaiwhere
the generalized recursion relatip®5], which allows one to
construct easily the highspin-weighted harmonics from the
low-I harmonics.

From the rotation group multiplication law, one can de-
rive the generalized addition theord2b]

= fwdﬁ Be‘ﬁz’z"ﬁP[:(cosﬂ)P{‘;(cos,B), (B2)
0

* and we restrictm=0. This has already included the case
2 5 Yin(01,62)5,Yin( 6, 42) with m<0, becaus&V*(1,,1,,m)=W%1,1,,—m).
Since the Gaussian function in the integ(82) has a

/2|+1 width of op~I1_L , we a imate th iate L d
— S1—Sp —|sla1 b min» pproximate € associlate Legenare

123001-10



COMPLEX VISIBILITIES OF COSMIC MICROWAVE ...

2r(l+m+1) ., 1 1\ =
P"(cosB)~ ;—35m B co (I+§ B+ m—z > for
i+
2
P/ "M(cosp)~1"mIn(IB) for I~Ipi,
[+m)! m
PP(COSB)NFD”‘M(?) for 1<lpin.

Then, the integral can be integrated analytically for certain limiting valudg ahdl,.
Forl;~Imin andlo~Iyin,

_(I1+m)! (I,+m)!
_(|1_m)! (I;—m)!

Jowd,B Be‘ﬂz’z‘fﬁP,—lm(cosﬁ)szm(cos/s’)

~(I1+m)! (I,+m)! 1
C(l=m)! (I=m)!

f "4 Be P 203,(118)In(128)
0

(g tm)t (I +m)! o
C (= m)! (lp—m)! mym

2,2, 2
(24136212 2
e 1129/ (111,00),

wherel , is the modified Bessel function, which has the limiting form

I m(X)~ et for x>1.

1
\V2mX
Whenl,l,08>1, we have

~(Il+m)! (I,+m)! 1 oy

~(Ii=m)! (I,—m)! (|1|2)m+1/2\/ﬂ

e (1-12%002

Hence this gives the result in E(B1).
For 11>, andlo=>1 i,

| 2T (l;+m+1) I'(l,+m+1)
T 3
2

1T(;+m+1) T'(l,+m+1)

el

2

w

2

1
m-3

o

jwdﬂ Be F127isin1 cos{( [+ % ,3+(
0

3
rlit3) Tt

3 foodﬂ 97’82/2(%005{“ 1—12) B8]
F('1+§ 0

T(l,+m+1) T(l,+m+1) oy

B 27

e (1122052

il 2 il 2
1t 2t 5

Hence this gives the result in E7).

I—i-:L
272
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(B3)

(B4)

(B5)

(B6)

m-3)

T
Brim=3 E}

(B7)

Furthermore, we have found that whies 1 ,;,,, | is subdominant fot;<I,;,. Whenl,~1 i, | is subdominant for both

[1>] hin and << in -
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APPENDIX C: FLAT-SKY APPROXIMATION whenx=0 andm=—2, we have
We are going to evaluate

525262 mivér &, 1) PiX)==(1+2)(1 = 1)P; *(x). (C4)
under the condition thag,-e,=0. This condition corre-
sponds to the flat-sky approximation wherFue, is the

baseline vector an@, is the telescope pointing direction.

The reader may refer to Reff23,24,1] for different ap- 2 oiue s " R R

proaches. fe?muer 2= 4 > i) (2mW)I (1 + 1) Yiin(e) Yim(2).
Using Egs.(17), (A11), and(A12), we obtain " 5

As such, Eq(C2) can be approximated as

Fe2muer 2= 47> il (2mu)
! Applying the operatoﬁg to Eq.(C5) and doing the approxi-

21+1 (1+2)1]%2 . mation (C4) again, we find that
m (=21 Yi-o(er-ep,aq)
N 21+1 (1+2)! o _
:—4772| | j|(2ﬂTU)? (I—2) 6%6%62”'%1'922672'0‘12 i|j|(27TU)|2(|+1)2
X Py 2(e;-ep), (C2)

X(21+1)Py(e;- &), (C6)
where we have substitutedl; = 7/2 under the flat-sky ap-

proximation. From the recursion relation

where§,= 72— «,. Sincej, is a sharply peaked function at

2 X il |~27u for 27ru>1, we can approximate the factdf(l
PP (x)+2(m+1) FPI )+ (1=m) +1)% in Eq. (C6) by (27u)* and then take it out of thé
X summation. Hence we obtain EGI9). We can follow the
X (I+m+1)P(x)=0, (C3)  same steps to derive E(0).
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