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Small, dense quark stars from perturbative QCD
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As a model for nonideal behavior in the equation of state of QCD at high density, we consider cold quark
matter in perturbation theory. To second order in the strong coupling constarthe results depend sensi-
tively on the choice of the renormalization mass scale. Certain choices of this scale correspond to a strongly
first order chiral transition, and generate quark stars with maximum masses and radii approximately half that of
ordinary neutron stars. At the center of these stars, quarks are essentially massless.
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Strongly interacting matter under extreme conditions carapplicable only in the chirally symmetric phase, when the
reveal new phenomena in quantum chromodynait@esD). quark chemical potentigt> u, . In this phase, the effects of
Compact stars serve as an excellent observatory to prolestrange quark massi,~100 MeV[18], are small relative
QCD at large density, as their interior might be dense enougto the quark chemical potentialg,>300 MeV. Thus we
to allow for the presence of chirally symmetric quark matter,take three flavors of massless quarks with equal chemical
i.e., quark star$1-13. potentials[1,19].

The usual model used for quark stars is a bag model, with  The thermodynamic potential of a plasma of massless
at most a correction- a from perturbative QCI¥6]. In the  quarks and gluons was calculated perturbatively-te? by
massless case, the first order correction cancels out in tilreedman and McLerraf2] and by Baluni[3], using the
equation of state, so that one ends up finally with a free gamomentum-space subtractidivOM) scheme. The MOM
of quarks modified only by a bag constant. If the bag concoupling is related to that in the modified mimimal substrac-
stant is fit from hadronic phenomenology, then the gross feajon scheme K1S) as[3,20-22
tures of quark stars are very similar to those expected for

neutron stars: the maximum mass~®2.Ms, with a radius oMOM WS MS
~10 km. =S 144 = (6
o ar

In this Rapid Communication we consider quark stars,
using the equation of state for cold, dense QCD in perturba- . .
tion theory to~ aZ [2,3]. These results are well known, and %s=.9/(47), with g the QCD coupling constant, and
our only contribution is to use modern determinations of the 151/48-(5/18)N¢, with Ny the number of massless fla-
running of the QCD coupling constafit4]. At the outset, we vors. (While we takeN;=3, W,f give formulas for_ arbitary
stress that we dnot suggest that the perturbative equation of V1 -) In the MS scheme, to- a5 the thermodynamic poten-
state is a good approximation for the densities of interest il iS then

quark stars. Rather, we use it merely as a model for the

equation of state of QCD. B Neut ag
To ~a?, there is significant sensitivity to the choice of (W)==—>11-2 -
the renormalization mass scale. Under our assumptions, we
find that this choice is tightly constrained by the physics. We 2 A ag\?
consider two illustrative values of this parameter. One choice —| G+ N¢ln—+| 11~ §Nf) In; (?> , 2

corresponds to a weakly first order chiral transiti@n no
true phase transitignand gives maximum masses and radii\yhere G=Gy—0.530N;+N(InN;, G,=10.374=.13 [23],
very similar to that of neutron stars. The second choice cor- | — . o . . —
responds to a strongly first order chiral transitid’s], and and A is the renormalization subtraction point. KIS

generates two types of stars. One type has densities a fe%heme, the thermodynamic potential is manifestly gauge in-

times that of nuclear matter, and looks like the stars of a/arlant. We take the scale dependence of the strong coupling

weakly first order chiral transition. In addition, however, constantas=ag(A) as[14,24
there is a new class of stgf,12], with densities much higher

than that of nuclear matter. For this new class, the maximum — A7 231 In(u) 4,8% 1\?
mass is~1Mg, with a radius~5 km. Other models with as(A)= -1 1-—5 ——+ || Inw-3
. . Bou B YU pBgu
nonideal behavior also generate small, dense quark stars
[8-11. Babo 5
Assume that the chiral phase transition occurs at a chemi- - 7 : 3
cal potentialu, [16]. Our perturbative equation of state is 8B1
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u=IN(AYA%9), Bo=11-2N;/3, B;=51—19N/3, and 3,
=2857-5033,/9+ 325N?/27. The scaleAys is fixed by

requiring thata =0.3089 atA=2 GeV [14]; for N;=3,
Eq. (3) gives A= 365 MeV.

All thermodynamic quantities follow consistently from
Q(w). The pressure is given by(u)=—Q(u), the quark
number density by(u)=(dp/du), and the energy density
by e=—p+un. Given our stated assumptions, the only

freedom we have in the model is the choice of the rz?thx.

To illustrate this, we take the values/u=1,2,3. Y R ZErya—
For reasons which will become clear later, we find the Chemical potential u (GeV)

CEOIC.EAl_ 2"? estpTuallyr:ntere:sggg. gta\r/t V\;Ith a ;1I'e?1/ large FIG. 1. The total pressure, relative to the pressure of an ideal
chemical potential, suc a’fi . ev, for whic Ps gas, pg; including terms to order-ag and to order~a§, as a
~.095 (for the purposes of discussion, assuRNye=3 at this _ =
scalg. The first order term decreases the ideal gas pressu}cgncnon of s A=2p.
by ~6%; the sum of the first and second order terms de-
creases the pressure by7 % of the ideal gas value. Because
the strong coupling constant runs relatively slowly withat
large i, even atu=1 GeV, whereas~.31, the first order
term decreases the ideal gas pressure only-20%; the
first and second order terms, by30%.

As can be seen from EQ), the perturbative expansion of — ] .
the thermodynamic potential is an expansion in a power sev¢ show the pressure foh=2u; it vanishes atpu,
ries not just inas, but in agdog(ey. The logarithm ofag =425 MeV, whereas~.65. This corresponds to a quark
arises from the plasmon effect, where the Debye masdensity ~4.3%,, where p, is the density of quarks in
squaredm? ~ agu?. Because gluons aT=0 have four- nuclear matter;3><.16/fm3. _ _
dimensional phase space in loop integrals, however, the plas- A Weakness in our model is how to match the equation of
mon effect is relatively innocuous, and only produces logaState for massless quarks, E@), onto that for massive
rithms, logfng /) ~log(y). quarks and hadroqs. The quark chemical potentlallmust be

This is in stark contrast to the perturbative expansion of2r9€r than one third of the nucleon rest mass, minus one

the free energy at nonzero temperature, 0. While there is third the bindi'ng energy of nuclgar mattm'>“mi“%,313
again a plasmon effecm,12D~asT2, because in loop integrals —5 MeV. While the pressure vanishesat;,, hadronic(or

static gluons aT#0 have a three dimensional phase Sp(,:we(’quark) matter certainly exists, with nonzero pressure, for all

the perturbative expansion is not in,, but in \ag. The = Hmin: Thus we imagine that a very "soft” equation of

T . state for massive quark&@nd hadrons matches onto the
series inyag is much worse behaved than thata#0, T equation of state in Eq2) at some> s, (see also below

=0, and does not converge until very high temperature . _
[25]. The convergence appears to improve after resumm::xtio%tonsequemly”“C cannot be much higher thay,,.

[26,21,22, or by using Padenethodg27]. It is this which limits the choice oA/ in our model. For
Consequently, the perturbative series for the thermodyA = u, =767 MeV. Itis absurd to think that the pressure

namic potential may be much better behaveg.at0 (and  of massive quarks could be small to densitie83p,. Thus

T=0) than atT+0 [28]. This does not imply that a given we do not consider this case further.

value of ag, which is adequate to compute the thermody- For A=3u, u.,=300 MeV when as~.6. By the

namic potential, works equally well for all other quantities. Hugenholtz—van Hove theorem, when the pressure vanishes,

In particular, the gaps for color superconductivity are non-the ratio of the total energy to the baryon numbelEi#

perturbative, ¢~ exp(~1//ag) [29,17, and much smaller =3, . For iron, E/A=930 MeV. Thus forA =3, E/A
values ofag appear to be required to reliably compute theng,ucz 900 MeV, and, as suggested by Bodmer and Witten
[30]. In QCD, effective models find that even when [4 5] strange quark matter is absolutely stable relative to
~400 MeV, these gaps are at mostl00 MeV [17]. AS  hadronic matter.
the relative Change in the thermodynamic potential is only While possib]e, we prefer an alternate view. Our pertur-
~(¢/)?, then, for the equation of state in QCD, color su- pative equation of state is valid only in the chirally symmet-
perconductivity is never a large effect. ric phase, foru>u . Perhaps whep <, the true equa-
To truly know how well perturbation theory converges attjon of state is close to our perturbative model, but vanishes
u#0, itis imperative to compute the thermodynamic poten-smoothly asu— umi,- As discussed later, this is a model for
tial to ~a’§. Unlike the case off #0, which is sensitive to  a weakly first ordefor no) chiral phase transition.
nonperturbative effects from static magnetic gluons from The structure of a quark star is determined by the solution
~ a3 on, atu#0 (andT=0), the entire power series i, is  to the Tolman-Oppenheimer-VolkofTOV) equations[1].
well defined[29]. For the TOV equations, all that matters is the relationship

< o 54
IS > o -

Pressure p/p,

I
)
T

We now use the perturbative calculation of the thermody-
namic potential foru<<1 GeV. Since both terms- «4 and

~ a§ have negative coefficients, ag(u) increases with de-
creasingu, eventually the pressure vanishes. While it is
clearly invalid using perturbation theory when=0, it at
least provides a well defined model of dense QCD. In Fig. 1
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together, so the maximum mass and radius satisfy a simple
scaling relationM .~ Rmax~ 1/B*? [5].

For the chemical potentials of relevance to a quark star,
somewhat surprisingly we find numerically that the pressure
in Eqg. (2) can be well approximated by the effective bag
model, Eq.(4). This can be seen from Fig. 2, where the

relationship between pressure and energy is very nearly lin-

L Ao ear. WhenA =3, the pressure agrees with a bag model
e =H with BY=140 MeV and a.y=.626 to within 2% for

e n:300—470 MeV. This is close to the usual value in the

MIT bag model,BY*=145 MeV [31]. When A=2p, the
pressure agrees with a bag model \Aﬁiﬁfz 199 MeV and
A= .628 to within 4% foru:425—650 MeV.

Consequently, the mass radius relationships for our quark
atars agree well with a bag equation of state.¥6%, the
fMaximum masses and radii scale according-tbBL?. The

Pressure (GeV/fma)

1 2
Energy density (GeV/fma)
FIG. 2. Equation of state for cold quark matter, fﬁ‘,u=2,3.

between pressure and energy density. This is shown in Fig.

for A/p=2,3. The numerical solution of the TOV equations ghane of the mass radius curve is also the same as for a bag
gives the mass radius relationships of Fig. 3. For any solup,qqe| Notably, light quark stars have small radii. This is
tion to the TOV equation, the chemical potential reaches it?because for light stard <M, , the chemical potential at
maximum value at the center of the star; as one goes out ifhe center of the star is near,, and the equation of state is
radius, the chemical potential decreases, and equals conirolied by that of massless fields, minus a bag constant.
(where the pressure vanisbleﬂ the edge of the s'Far. For our results forA = 2u can be compared to other equa-
=3, the maximum mass ¥y~ 2.14M e . Atthis mass, ions of state for dense QCEB—12. All of these can be
the radius iRya=12 km; the chemical potential at the cen- iewed as models in which there is nonideality at a scale
ter of the star iqu~456 MeV, which corresponds to a quark gjgnificantly higher than nuclear matter densities. Reference
density ofprmax=5.1pg. WhenA=2u, My,~1.08Mq. At [8] uses the results of Ref2], but finds standard results,
this mass, the radius Ry,~5.81 km; the chemical poten- M .~2.0M. Referencd9] finds dense stars, with .,

tial at the center igt~649 MeV, corresponding to a quark ~1.4M, and Rp,»~7.0 km; however, they do not suggest
density of pma= 15p0- that there could be two types of compact, hadronic stars, as

To help understand these rgsults, itis useful to compare tQ¢ find for A = 2. Referencé10] uses a Schwinger-Dyson
the equation of state of a nonideal bag model: model, and findsM ,,~0.7M o and R.~9.0 km. Refer-

enceq11] and[12] use models with massive quasiparticles,
4) so that the masses act as a type of nonideality. Reference
[11] findS M 5~ 0.8M o andR,,~4.0 km; Ref[12] finds
Mma=1.3Mg and Ry4~10.0 km. We note that in
B.i is an effective bag constant, and the paramaigmea-  Nambu—Jona-Lasino models, stars with a quark core do not
sures deviations from ideality. A common choice is to takearise, even at the maximum mdd4s].
a.¢ from the thermodynamic potential to one loop order, What about the manifestly nonperturbative phase in
with a fixed value of the coupling constantis=1  which chiral symmetry is spontaneously brokens u,? To
—2as/ [6]. In a bag model, the relationship between pres-understand this, consider an expansion in a large number of
sure and energy density is linears (e—4B)/3, irrespective  colors[32]. The usual larg&\, limit is to let N.— at fixed
of the value ofas;. Thus we can uniformly scale €, andB ~ N;. Since quark loops are suppressed in this limit, however,
gluons are only affected by quarks whan-N¥* or larger.
This is in contrast with the transition at a nonzero tempera-
ture, which occurs at a temperatheNg [33]. We then con-
sider a generalized lardd,. limit, in which N;—oo at fixed
N /N, [34-36. The quark thermodynamic potential §
~—N¢N.u?, and the quark number density~N¢Nu3. In
this limit, ,uX~N2, as at nonzero temperature.

For the purposes of our discussion, all that matters is that
baryon massesz~N.. The baryon chemical potential is
related to the quark chemical potential ag=N.x~N..
When the baryons are nonrelativistic, so their Fermi mo-
mentak;~1, the baryon number density iﬁ3~d5k?. The
degeneracy of baryons is at leasiN;, and could easily be
larger, ~Nf2. The baryon thermodynamic potential (sa-
ively) QB~—dBk?/mB. For ki~1, however, everything is

Ny 4 .
Q(u)=— Zaef‘f:“ + Begf;
4ar

2.4

06

Mass in solar mass units
n

4 6 8 10 1I2 14
Radius (km)

FIG. 3. Mass-radius relation of the quark star E/r,u=2,3.
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fine: the baryon density is-N; that of quarks, and)g mass decreases. It is necessary for the chiral transition to be

<(1/Ny)Q. In terms of the quark chemical potential, how- weakly first order, or a smooth crossover, for the mass-radius

ever, u=pug/N¢; with my=mg/N;, u~my+k?/(2mgN;) ~ curve to be continuous. _

+ ... . Thatis, fork;~1, the region inw over which had- The second possibility is that the equation of state for

rons are a reasonable descriptiorsiisall, ~1/N2. Also, the ”.‘aSS'eSS quarks does not mgtch smooth_ly Onto thgt for mas-
¢ ’ sive quarks, with a strongly first order chiral transitidrb].

) . As the thermodynamic potential approaches the ideal gas
From this largeN, argument, we conclude that a hadronic limit at large u, and vanishes at,, this requires that the

description is gpphcablenlym a very narrow region Ofix; pressure is small at a value @f > . Below u,, by

for larger w, still of order one, a quark description is appro- construction the pressure of massive quarks is small, with a
priate. This need not be a true phase transition; rather, simplygqft” equation of state[38].

that the thermodynamic potential may be very difficult to

: : : ! This occurs if A=2u. At the maximum massu
compute in terms of hadrons, but relatively simple in terms_ 649 MeV at the center it., <649 MeV, most of the star
of quarks. For example, wheky~N2?, so u—mg~1/N,, o X ’

is composed of massless quarks. As the mass of the star
naively Qg~—dgN¥?~NY%0). This cannot be right — the decreases, so does the amount in the chirally symmetric
thermodynamic potential of baryons cannot dominate that ophase. If the chiral phase transition is strongly first order,
quarks. The only resolution is that there are cancellations —eventually one jumps to a second branch, in which the
analogous to those which occur for baryon-meson couplingshemical potentials are always w, throughout the star.
[37] — which greatly reduce the baryon thermodynamic po-Stars on this second branch are composed only of massive
tential, so that it is comparable to that of quarks. In otherquarks and hadrons, with a maximum mass and radius like
words, the hadronic thermodynamic potentiaist*soften” that of “ordinary” neutron stars. A strong first order chiral
wheneveru —mg> 1N2. transition is necessary to ensure that there are two, distinct
Once one is away from thigiarrow) hadronic window in branches. Using toy models for_the thermodynamic potenual,
11, the appropriate equation of state far< s, is that for nur_nerlc_ally we obtained sqlutlons to the TOV equations
massive quarks. There are then two possibilities. which .dlsplay two branches: we patched a thermodynamic
The first is that the thermodynamic potential for masslesspmentlal for massive quarks, fw.:<'“‘3~'“)(’ onto that for
quarks matches, more or less smoothly, onto that of massiJu2SSIess quarks, far>y.. In this case, our stars of mass-
quarks. This requires either a weakly first order chiral tran—les.s quarks constitute a third class of compact stars, after
- : . white dwarfs and “ordinary” neutron stafg,12).
sition, or perhaps just crossover. Belawy, asu— umin the
quark thermodynamic potential vanishes in a fashion typical,

of massive particles; within- 1/Ng of uip, @ hadronic de-  pact halo objectMACHO) project has also reported micro-
scription is applicable. o lensing events for the Large Magellanic Cloud with masses
This is illustrated by the choicA =3u. For a star at its M=0.15-0.M, [39]. For a weakly first order chiral phase
maximum mass, at the centgr~456 MeV; as the radius transition, if MACHO events are hadronic stars, they must
increasesy decreases, untik= u i, at the surface. Thus, if h_aye large radii. For a strongly first order chiral phase tran-
w, <456 MeV, there is chirally symmetric quark matter at sition[15], MACHO events could be quark stars, with small

the center of the star, but for larger radii, one enters first 42dii, and pulsars might represent the second branch. We
phase with massive quarks, and finally, a hadronic shell. stress that our numbers for the maximum mass and radius are

meant only to be suggestive. Even so, we believe that our
conclusions are qualitatively correct; a we@k no chiral
hase transition leads to one type of compact objects; a
t?rongly first order chiral transition, to two.

binding energy of nuclear matter is automaticaH;UNi.

Consequently, for both the choicAs=3u and 2u, all of
our quark stars are, properly speaking, hybrid stars, wit
shells of massive quarks, and then hadrons. For stars near t
maximum mass, we assume this mantle is thin, and does no
greatly alter its properties. As the mass of the star decreases, We thank R. Harlander, J. Lenaghan, A. Peshier, K. Ra-
however, so does the central density; eventually, the entiragopal, A. Rebhan, K. Redlich, D. Rischke, and especially
star is composed entirely of massive quarks and hadrons. At. McLerran for fruitful discussions. We thank the U.S. De-
this point, the relationship between the star’'s mass and radiysartment of Energy for their support under Contract No. DE-
is no longer like that of Fig. 3. Instead, it looks like that of AC02-98CH10886; E.S.F., for the support of CNBgazil);
nonrelativistic matter, for which the radius increases as thend J.S.-B., for the support of RIKEN and BNL.
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