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Chicken or the egg; or who ordered the chiral phase transition?
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We draw an analogy between the deconfining transition in the~211!-dimensional Georgi-Glashow model
and the chiral phase transition in~311!-dimensional QCD. Based on the detailed analysis of the former we
suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of
baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the
baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical tempera-
ture givesTc5180 MeV. In this scenario the binding of the instantons is not the cause but rather a conse-
quence of the chiral symmetry restoration.

DOI: 10.1103/PhysRevD.63.116007 PACS number~s!: 11.30.Rd
r
o

ir
s

s

de
o

tiv
on

g
ym
ve
rg
pin
tl
m
of

t
di
he
s-
e

dy
k
po
u
n
in
th
m
o
n

en
s of
s
al
en

3D
of

e

un-
and

ec-
I. INTRODUCTION

In this paper we suggest that the chiral symmetry resto
tion in QCD at high temperature is driven by the presence
baryons in the thermal ensemble. In this scenario the ch
symmetry is restored at the temperature at which the den
of the baryons~and antibaryons! in the thermal ensemble i
large enough so that they start to overlap in space.

There are two main properties of the baryon that ren
this proposal physically sensible. First, chiral properties
the baryon are the same as of a Skyrmion in the effec
chiral Lagrangian. That is, inside the baryon the chiral c
densate has the opposite sign to that in the vacuum@1,2#.
Thus if half of the space is filled with baryons, the avera
value of the chiral condensate vanishes and the chiral s
metry is restored. The second crucial property is that e
though the baryons are heavy, they are spatially very la
Thus the temperature at which the baryons start overlap
in space is not of the order of their mass, but is significan
smaller. We will present some rough estimates of this te
perature later on and will show that it is in the ballpark
180 MeV.

This mechanism is in a way a competing mechanism
the instanton binding, which has been advocated and stu
in @3#. According to the instanton binding scenario, it is t
binding of instantons into ‘‘molecules’’ that drives the re
toration of the chiral symmetry. In our scenario the symm
try is restored practically independently of the instanton
namics. However once the symmetry restoration has ta
place, the instantons are indeed bound in pairs by linear ‘‘
tential.’’ Thus the instanton binding is not the cause, b
rather the consequence of the chiral symmetry restoratio

Before discussing QCD we would like to make our po
on a simpler example, where one can show analytically
a similar mechanism is indeed responsible for a ther
phase transition. The case in point is the Georgi-Glash
model in 211 dimensions, and the transition is the deconfi
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ing phase transition. Many years ago Polyakov@4# showed
that this theory is confining. Ever since this model has be
used as a test ground for various ideas about the dynamic
confinement in 311 dimensional theories. It may perhap
seem surprising that we will be using it as a prototypic
example for chiral rather than confining dynamics. But th
again this remarkable model is full of surprises.

Let us first explain in what sense the dynamics of the
Georgi-Glashow model is similar to the chiral dynamics
QCD.

II. THE GEORGI-GLASHOW MODEL: SYMMETRIES,
ANOMALIES, INSTANTONS AND ‘‘BARYONS’’

Consider theSU(2) gauge theory with a scalar field in th
adjoint representation in 211 dimensions:

S52
1

2g2E d3xtr~FmnFmn!

1E d3xF1

2
~Dmha!21

l

4
~haha2v2!2G . ~1!

Here Am5( i /2) Am
a ta, Fmn5]mAn2]nAm1@Am ,An#, h

5( i /2) hata, andDmh5]mh1@Am ,h#.
In the weakly coupled regimev@g2, perturbatively the

gauge group is broken toU(1) by the large expectation
value of the Higgs field. The photon associated with the
broken subgroup is massless whereas the Higgs boson
the other two gauge bosonsW6 are heavy with the masses

MH
2 52lv2, MW

2 5g2v2. ~2!

Thus perturbatively the theory behaves very much like el
trodynamics with spin one charged matter.
©2001 The American Physical Society07-1
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This theory has a global symmetry which will play a ve
prominent role in the following discussion. This is the ma
netic symmetry@5,6#. Classically the following gauge invari
ant current is conserved:

F̃m5emnlĥaFnl
a 2

1

g
emnleabcĥa~Dnĥ!b~Dlĥ!c ~3!

where ĥa5ha/uhu. This current defines a conserved char
through F5*d2xF̃0(x). The continuousUM(1) magnetic
symmetry generated by this charge is spontaneously bro
in the vacuum, and the massless photon is the Golds
boson which reflects this breaking in the spectrum.

However there are important quantum nonperturbative
fects that change this picture in significant ways. Those
of course the effects of monopole-instantons. The the
supports stable Euclidean configurations with finite actio

ha~xW !5 x̂ah~r !

Am
a ~xW !5

1

r
@eamnx̂n~12f1!1damf2

1~rA2f2!x̂ax̂m# ~4!

where x̂a5xa/r . In the presence of such a monopole t
magnetic current is not conserved, but rather has a n
vanishing divergence proportional to the monopole dens

]mF̃m5
4p

g
r. ~5!

The UM(1) magnetic symmetry is thusanomalousin the
quantum theory. It can be shown@6# that only the discreteZ2
subgroup is unaffected by anomaly and thus remains a s
metry in the full quantum theory.

Because of this anomaly the photon becomes a pse
Goldstone boson and acquires a finite mass. This mas
proportional to the density of monopoles, and is expon
tially small at weak coupling,mph

2 }exp$24pMW/g2%.
Another effect of the monopoles is confinement ofW6

bosons. The physically transparent way to see this is to c
sider the effective low energy description of the model.
discussed in detail in@6,1# the relevant degree of freedom
low energies is the scalar fieldV that creates a magneti
vortex of flux 2p/g. Under the anomalous magnetic rotatio
by the anglea it transforms as

V→ei (2p/g)aV ~6!

so that the conservedZ2 subgroup (a5g/2) acts on it by the
sign change. The low energy effective Lagrangian in ter
of the vortex field is

L5]mV* ]mV2l~V* V2m2!22
m2

4
~V21V* 2!

1z~emnl]nV* ]lV!2. ~7!
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The coupling constants in Eq.~7! are determined in the
weakly coupled region from perturbation theory and dilu
monopole gas approximation. In the weakly coupled reg
~assuming that theW6 bosons are much lighter than th
Higgs particle! we have

m25
g2

8p2
, l5

2p2MW
2

g2
,

m5mph , z}
1

g4MW

. ~8!

Heremph is the exponentially small nonperturbative phot
mass calculated by Polyakov@4#.

As discussed extensively in@6# the W-bosons appear in
this low energy description as solitons. They carry a u
winding number of the fieldV. PlacingW at a pointx forces
the phase ofV to wind along any curve that surroundsx. Due
to the fact that the global symmetry of the effective Lagran
ian is Z2 and notU(1), thelowest energy configuration tha
carries a unit winding is not rotationally symmetric hedg
hog, but rather a quasi-one-dimensional string-like confi
ration; see Fig. 1.

The energy of this configuration is proportional to th
length of the string with the string tension parametrically
order g2mph . A pair of heavyW1 and W2 separated by a
distanceR.1/mph is connected by a string and is confine
In fact a more careful analysis@7# reveals that when the
distanceR is large this ‘‘adjoint’’ string splits in two ‘‘fun-
damental’’ ones. The fundamental string in the effective L
grangian appears as a domain wall separating two poss
vacuum states of the fieldV, which are degenerate due t
spontaneous breaking of the magneticZ2. As shown in@7#
these fundamental strings repel each other, and thus
energetically favorable for the adjoint string to split into tw
fundamental ones. Due to the linear confinement, theW
bosons do not appear in the spectrum. The actual finite
ergy excitations are heavyW1-W2 bound states. Such
state naturally looks like a domain of one vacuum inside

FIG. 1. The string like configuration of the fieldV in the state of
unit charge (W boson!.
7-2
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CHICKEN OR THE EGG; OR WHO ORDERED THE . . . PHYSICAL REVIEW D 63 116007
other one see Fig. 2.1 Thus inside the bound state the val
of the order parameterV has the opposite sign that in th
surrounding vacuum.

Many elements in the structure just discussed are v
similar to QCD with massless fermions. The analogy
have in mind is the following.

Classical axialUA(1) symmetry↔ classical magnetic
UM(1) symmetry.

Axial anomaly due to instantons↔ magnetic anomaly
due to monopoles.

Non-anomalous ZNf
subgroup of UA(1) ↔ non-

anomalousZ2 subgroup ofUM(1).
Spontaneous breaking ofZNf

by the chiral condensat

^c̄c&↔ spontaneous breaking ofZ2 by the vortex conden-
sate^V&.

Heavy baryons-Skyrmions: pockets of the otherZNf

vacuum↔ heavyW6 bound states: pockets of the otherZ2
vacuum.

There is another important similarity between the baryo
and the bound states in the Georgi-Glashow model. Both
heavy, but spatially large. In the Georgi-Glashow model,
mass of the bound state is roughlyM52MW , while the size
D is of the order of the inverse photon mass. Thus th
exists a parametric inequalityM@D21. In QCD of course
there is no parametric inequality of this type, since the the
does not have a dimensionless coupling constant. Neve
less the mass of the nucleon~940 MeV! is about ten times
bigger than its inverse diameter~the radius is R5.88 fm! @8#.

III. THE DECONFINING PHASE TRANSITION

While the zero temperature properties of the Geor
Glashow model just described have been known for qui
while, the finite temperature deconfining phase transition
been studied only very recently@1#. The dynamics of this
transition is quite interesting and turned out to be somew
unexpected.

1The domain walls themselves of course have a finite thicknes
order of the inverse photon mass.

FIG. 2. TheW1-W2 bound state as the domain of the oth
vacuum.
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A natural, but as it turns out misleading way to thin
about the deconfining transition is in terms of the dynam
of the monopole ‘‘plasma.’’ At zero temperature the pote
tial between monopoles is the 3D Coulomb potential 1/r and
therefore the monopole gas is in the ‘‘plasma’’ phase.
finite temperature, when one of the dimensions is compa
fied the potential at distancesr .T turns into two dimen-
sional Coulomb, that is logarithmic. The strength of the log
rithmic interaction is proportional to the temperature, and
temperatureTBKT5g2/2p the monopoles bind in pairs via
the Berezinsky-Kosterlitz-Thouless~BKT! mechansim.
Above this temperature the monopole gas is in the molec
phase. Since at zero temperature it is the monopole pla
effects that are responsible for confinement, one may
tempted to conclude that this BKT transition in the monop
gas is indeed the deconfining transition of the Geor
Glashow model@9#.

A more careful analysis however shows that the situat
is much more interesting. The dynamics of the transition
completely different, and the critical temperature is half t
value predicted by the monopole binding mechanism@1#.
The real culprit are not the monopoles but rather theW6

bosons, or equivalently their bound states. It may seem
first thatW can not possibly affect the transition, since th
are extremely heavy. However, even though their fugacity
very small at all temperatures of interest (exp$2MW/T% with
T}g2), their effect is long range and therefore strongly a
fects the infrared properties of the system. As should be c
from the preceding discussion, the presence ofW tends to
disorder the vortex fieldV, since inside the confining string
which are attached toW the phase ofV has maximal possible
variations. Thus when the density ofW’s is large enough, the
vacuum ofV becomes disordered and the magneticZ2 sym-
metry restoration occurs. The magnetic symmetry restora
is indeed equivalent to deconfinement as discussed in d
in @10#. The analysis of@1# shows that the transition occurs
the temperature at which the fugacity of theW bosons be-
comes equal to the ‘‘fugacity’’ of monopoles and in th
Bogomol’nyi-Prasad-Sommerfield~BPS! limit one has

exp$2MW /TC%5exp$24pMW /g2%, TC5
g2

4p
. ~9!

At this temperature the mean distance between theW bosons
in the thermal ensemble becomes equal~comparable! to the
inverse mass of the photon. This point has a special sig
cance in terms of the bound states ofW1 and W2. As ex-
plained above these bounds states are essentially domai
the second vacuum (^V&52m) inside the bulk vacuum
^V&5m. The size of these domains is of the order of t
inverse photon mass. Thus the transition occurs precise
the temperature at which a finite fraction of the volume
the system is occupied by these domains of the sec

of
7-3
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vacuum.2 Indeed physically this is very reasonable. At t
point when^V&5m in half of the volume and̂V&52m in
the other half , the expectation value ofV over the whole
volume, and thus over the thermal ensemble vanishes. Th
precisely where the symmetry restoring transition has to
cur.

It was also shown in@1# that once the transition occurs
the potential between monopoles changes qualitatively. It
comes linear at large distances. Thus it is indeed true tha
monopoles are bound in pairs above the transition. Howe
this binding does not drive the phase transition but is rat
the consequence of the transition which is driven by an
tirely physically different mechanism—the overlap of th
bound states in the thermal ensemble.

This picture of the transition is very simple and has
certain feel of universality about it. It seems very likely th
a similar mechanism can operate in other cases. In partic
in view of the similarities between the Georgi-Glasho
model and chirally invariant QCD, we think that it is ver
interesting to explore whether the same mechanism is
sponsible for the chiral symmetry restoration. In the n
section we will make some very rough estimates of the tr
sition temperature assuming this is indeed the case.

IV. BARYON DRIVEN CHIRAL SYMMETRY
RESTORATION

Thus the picture of the chiral symmetry restoring pha
transition we advocate is the following. At finite temperatu
the thermal ensemble contains some number of baryons
antibaryons. Inside the baryon the sign of the chiral cond
satec̄c is opposite to that in the vacuum. As temperatu
increases the density of the baryons grows. At some poin
density is large enough so that half of the volume is filled
the chiral condensate of the opposite sign. At this tempe
ture the order parameter averaged over the thermal ense
vanishes and the chiral symmetry is restored.

The factor that works against the symmetry restoration
the high mass of the baryon. On the other hand there
several factors that help. First, the size of the baryon is la
In the following estimates we will use for the radius of th
baryon R5.88 fm @8#. Strictly speaking this is the charg
radius, however the radius of the region of the wrong-si
condensate is very similar@11#. Second, the entropy of th
baryons is quite large. In the two flavor case we will ta
into account nucleon and delta, including their spin and i
spin degrees of freedom. Third, the radius of the baryon
self depends on temperature and is believed to grow as
temperature rises. Although no reliable calculation of
swelling of the baryon size exists, it is reasonable to exp

2The exact fraction of the volume was not calculated in@1#. It
however follows from the results of@1# that this fraction is finite
and not suppressed by an exponential factor of the t
exp$2AMW /g2%. Since the dependence of theW fugacity on the
inverse temperature is exponential, this is enough to determine
critical temperature up to sub-leading corrections in powers
g2/MW .
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that the size increases by about 10–20 % at the critical t
perature due to the decrease ofFp . We will try to model this
last effect in a very simplistic way.

To estimate the critical temperature we approximate
baryon ensemble by a non-relativistic ensemble of free n
interacting particles. The density of particles in such an
semble is given by

n~T!5(
i

Ni S MiT

2p D 3/2

e2Mi /T ~10!

whereMi is the mass of the particle of speciesi andNi is the
number of degrees of freedom with this mass.

We estimate the critical temperature by equating the fr
tion of the volume occupied by the particle to 1/2. In all th
estimates we take the radius of all the relevant baryons to
equal. We will consider in the following the cases of 2 and
massless flavors as well as the realistic case of the mas
strange quark.

Let us first consider the two flavor case. The only baryo
important for the transition are the nucleon and the delta w
Mn5938 MeV andMD51232 MeV. We have checked nu
merically that including the Roper resonance does not af
the results. The fraction of the volume occupied by t
nucleons and deltas at temperatureT is

f ~T!58
4pR~T!3

3 S MnT

2p D 3/2

e2Mn /T

3H 114S MD

Mn
D 3/2

e(Mn2MD)/TJ ~11!

where the entropy factor is 2(2S11)(2I 11) for particle-
antiparticle, spin and isospin degrees of freedom. In this
mula we allowed for the temperature dependence of
nuclear radius. Neglecting this effect first, we plot the fra
tion f (T) in Fig. 3. The striking feature of this plot is that a
the action happens in the relatively narrow window betwe
T5150 MeV andT5215 MeV. Note that this temperatur
range is indeed much lower than the baryon mass and i
the right ball-park for the chiral phase transition. The val
of the critical temperature we extract from this graph isTc
5213 MeV.

e

he
f

FIG. 3. In two flavor QCD the fraction of the volume occupie
by the nucleons and deltas as function of temperature. The p
transition temperature isT5213 MeV. The radius of particles is
assumed to be temperature independent.
7-4
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We next try to take into account the swelling of th
baryon radius with temperature. Our simple ansatz for
dependence is

R~T!5R~0!1
1

Ms~T!
2

1

Ms~0!
~12!

with Ms , the mass of thes particle,

Ms~T!5
Fp~T!

Fp~0!
Ms~0!. ~13!

The rationale for this is the following. The chiral orde
parameterc̄c couples directly to thes particle. Inside the
nucleon the chiral order parameter has a negative sign. It
to relax to its vacuum value on the outside. This relaxat
happens either through the ‘‘phase rotation’’ ifs-particle is
very heavy, or through the change in thes-field itself. In the
latter case the distance over which it happens should
equal to the inverses-mass. Closer to the phase transition,s
becomes light and effective in the relaxation of the ord
parameter field. Equation~12! is a simple interpolation be
tween the low temperature situation, wheres is heavy and
unimportant and the closer-to-criticality situation, where
does indeed contribute significantly to the size. The formu
Eq. ~13!, is just the simple linears-model type relation. We
do not insist that Eq.~12! has any precision, but we believ
that it gives a rough estimate of the effect.3 We take
Ms(0)5600 MeV andFp(0)593 MeV.

3We note that a similar effect of the change ofFp with tempera-
ture and the associate change in the size of the bound state is
present in the Georgi-Glashow model. Just like in QCD it is due
thermal fluctuations of the light particles, which in 3D are lig
photons. The reason we did not discuss it here, is that it is p
metrically sub-leading. That is, it affects the correction to the va
of the critical temperature at relative orderg2/MW . Since QCD
does not have a free parameter, the effect is likely to be m
important in QCD and therefore should be taken into account.
effect of pions should disappear inSU(N) theories for largeN,
since at largeN both the inetraction of pions is weak and the ratio
the proton mass to its inverse size is parametrically large.

FIG. 4. In two flavor QCD the fraction of the volume occupie
by the nucleons and deltas. The dependence of the radius on
perature is given by Eq.~14!. The transition temperature isT
5195.5 MeV.
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To use this relation we still need to know the depende
of Fp on the temperature. In the lowest order in temperat
it is given by @12#

Fp~T!5Fp~0!S 12
T2

12Fp~0!2D . ~14!

The Pade´ resummed expression which should better rep
sent the situation closer to criticality (Tc) has been propose
in @13#

Fp
2 ~T!

Fp
2 ~0!

5
12T2/Tc

2

12 2
3 ~T2/Tc

2!~12T2/Tc
2!

. ~15!

This formula assumes that the symmetry isO(4)5SU(2)
3SU(2). Using Eq.~14! the graph for the fractionf (T) is
given on Fig. 4. The critical temperature isT
5195.5 MeV.

Using Tc5195.5 in Eq.~15! we obtain Fig. 5 with the
critical temperatureT5179 MeV. Thus the swelling of the
baryon radius has an effect of reducing the critical tempe
ture by about 15%.

It is interesting to see how the value of the critical tem
perature depends on the number of flavors. ForNf53 case
we should consider the baryon octet and decouplet. To g
rough idea here we will neglect the temperature depende
of the radius. In the idealized chirally symmetric three flav
case we take the octet mass as the mass of the nucleon
the decouplet mass as the mass of the delta. The resu
curve is plotted on Fig. 6.

lso
o

a-
e

re
e

m-
FIG. 5. Same as in Fig. 4 but with Eq.~15! andTc5195.5. The

transition temperature isT5179 MeV.

FIG. 6. Fraction of the volume occupied by the baryons
three massless flavors. The transition temperature isT5181 MeV.
7-5
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The critical temperature isT5181 MeV. This is some 30
MeV lower than the corresponding value for theNf52 case.
The same trend exists in the lattice data@14#. In our approach
this is easily understandable: it is the direct consequenc
having roughly three times as many active baryons forNf
53 as forNf52.

Taking instead the physical masses for the octet and
couplet members we get Fig. 7 withTc5195.5 MeV.

V. DISCUSSION

The surprising result of our numerical estimates is t
even though the baryon mass is around 1 GeV, the bar
overlap mechanism leads to critical temperature of order
MeV for Nf52, and about 30 MeV lower forNf53. These
numbers are perfectly reasonable and are in qualita
agreement with the lattice results which giveTc5173
68 MeV for Nf52 andTc515468 MeV for Nf53 @14#.
Of course our estimates are very rough and suffer from m
uncertainties. For example, it is not clear that the fraction
the volume must be really 1/2. It may be enough to fil
smaller fraction, since the baryon has a pion tail which its
also contributes to disordering of the condensate. This wo
push the value of the critical temperature down. We a
completely neglected the interaction between the baryo
which start to be important precisely in the region of den
ties we are interested in.4 There is also an uncertainty of th
dependence of the baryon radius on the temperature.

Our discussion of effects due to the thermal bath of m
sons has been very rudimentary. Partly this effect has b
taken into account by allowing for the temperature dep
dence of f p ~for more details see@12,13# and references
therein! which leads to the renormalization of the bary
parameters. This reduction in the value off p is due to direct
disordering of the chiral vacuum by the thermal pions. T
fact that the critical temperature we obtain is always low
than the inputTc in Eq. ~15! is in our view an indication tha
the disorder due to baryons takes precedence over the d
pion effects. The thermal production of vector and axial m

4We also neglected the fact that baryons are fermions. This e
is however rather small, and we have checked numerically
using Fermi-Dirac rather than Boltzmann distribution changes
value of the critical temperature by about 1 MeV.

FIG. 7. Same as in Fig. 6 but with realistic baryon masses.
transition temperature is atT5195.5 MeV.
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sons we believe is less relevant since they are almos
heavy as baryons, but contrary to baryons have no di
disordering effect on the vacuum.

Since at this time we do not know how to take the
effects into account in a well defined calculational fram
work, our discussion has been rather qualitative. It is ho
ever encouraging that the numbers fall in the right ball-par5

We note that our scenario relates to the instanton bind
scenario of@3# in very much the same way as the actu
transition in 3D Georgi-Glashow to the monopole bindi
scenario@9#. In the chirally symmetric phase the potenti
between instantons should be linear whatever the mecha
that drives the transition is. This is simple to understand
high temperatures. Consider the correlation function of so
local operator which is not invariant under the axialUA(1)
but is invariant under the non-anomalousZNf

and also under

the chiral SU(Nf)3SU(Nf). A good example of such an
operator is ’t Hooft’s effective interaction vertex@17# T. At
high temperature where the instanton gas is dilute and
turbation theory valid, the calculation of the correlation fun
tion ^T(x)T* (y)& is dominated by the contribution of th
instanton-antiinstanton pair at pointsx and y. One expects
this correlation function to approach a constant value at la
distance and the leading correction to be exponen
^T(x)T* (y)&}@exp$2mux2yu%1z#. In terms of the
instanton-antiinstanton potential this translates into linear
tential which is screened at large distances. The screenin
the consequence of the ‘‘breaking’’ of the string betwe
instantons, whereby an extra instanton-antiinstanton pair
pears when the distancex2y is too large@18#. Thus just like
in 3D we expect that the binding of instantons into pairs
the chirally symmetric phase is a consequence of the ph
transition even if the transition itself is driven by a noni
stanton mechanism.

ct
at
e

5Because of the uncertainties in our estimates one has to be
ful using them in some situations. For example a straightforw
application of our argument would lead one to conclude that in
ordinary nuclear matter, chiral symmetry should be restored alre
at zero temperature, since the packing fraction of the baryon
close to one. In fact, however the critical density at which the ch
symmetry is restored is thought to be 2.5 to 3 times the nuc
matter density@15#. There is a significant difference however b
tween the finite temperature and finite density situations. At fin
temperature, due to the Boltzmann factor the dependence of
temperature on the packing fraction is essentially logarithmic. T
a change of order one in the packing fraction does not lead
significant change in the value of the critical temperature. On
other hand critical density is directly proportional to the packi
fraction, and is thus very sensitive to any changes in it. One
certainly imagine dynamical effects which change the packing fr
tion from our naive estimates especially when a system is relativ
dense. For example at finite chemical potential the size of the re
inside the baryon where the order parameter is negative can sh
This is consistent with the Skyrme model calculations of the si
of baryons with higher baryon number@16#. A change of some 20
percent would be enough to push the effective packing frac
significantly below one, and thus push the system deep into chir
symmetric phase.

e
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An interesting property of the mechanism we suggest
quite distinct largeNc behavior. The mass of the baryon
proportional toNc . On the other hand the multiplicity of th
lightest baryons scales as a power ofNc . For example in
Skyrme model with 2 flavors one hasI 5J
51/2,3/2,5/2, . . . ,Nc/2 baryons with masses6

M5m0Nc1
1

Nc
m1I ~ I 11!. ~16!

The degeneracy factor is (2I 11)2 which ~after summation
over spins! leads to the overall extra factorNc

3 . Thus at large
Nc the critical temperature predicted by the baryon over
mechanism isTc;Nc / ln NcT0 whereT0 is by order of mag-
nitude of LQCD . This temperature grows withNC

7 On the
other hand the deconfinement phase transition temperatu
the pure Yang-Mills theory is believed to beO(1) in the
largeNc limit and is parametrically smaller thanTc . Thus it
is likely that at some critical number of colors the chir
symmetry restoration temperature becomes larger than
deconfinement temperature.

Some arguments have been advanced to the effect th
the chiral transition happens at lower temperature, it a
drives deconfinement@20#. Thus at smallNc only one tran-
sition in QCD with fermions is observed. On the other ha
if the deconfinement happens earlier, the chiral symmetr
not necessarily restored above this, first transition. In fact
common wisdom is that the confinement and the chiral sy
metry breaking are due to different sectors of QCD dyna
ics. If chiral symmetry is still broken above the deconfini
transition, the baryons should still exist there as bound st
of quarks, even though the quarks themselves may be
confined. Thus the chiral symmetry restoring transition d
to the baryon overlap mechanism can still run out its turn
Tc5O(Nc). In this case for large enough number of colo
the theory will have two distinct phase transitions: first t
deconfining one and later the chirally restoring one. If t
critical Nc is not too large, it may be possible to see t
second transition in lattice simulations.

Another interesting issue is the fate of the hot chira
symmetric ground state when it is cooled. If the chiral tra
sition is second or weakly first order there should be
appreciable hysteresis and thus during cooling the sys
should follow through the same states as during heating
in reverse order. This would imply production of baryo
antibaryon pairs in the initial stages of cooling and sho
lead to the production of baryon-rich final states in mid
pidity in collision processes which create quark-glu
plasma in the intermediate stage. If the transition is stron
first order there may be large hysteresis and cooling co
proceed along a different root than heating.

6For discussion of more general case including the strange q
see for example@19#.

7Interestingly although the temperature grows withNC , at large
Nc it is parametrically smaller than the baryon mass with the s
pression factor 1/lnNc .
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Our suggestion in this paper is in large measure motiva
by the analogy with the 3D Georgi-Glashow model. W
should mention that the analogy is of course not perfect. T
main new element in QCD is the existence of the continu
chiral symmetry in addition to the non-anomalous discr
axial one. Thus there are massless pions in the game, w
was not the case in our 3D example. Thus for example
following question has to be answered. The direct con
quence of the baryon mechanism is the vanishing of the
ral condensate. It however does not directly tell us that
pions become massive. In principle the situation when
order parameter vanishes, but there are still massless
ticles around is possible. It is in fact quite generic in 2 d
mensional systems due to Coleman theorem. Howeve
seems to us very unlikely that similar situation can be s
tained in 4D. Thus we believe that once the condensate v
ishes, pions will acquire a mass. It is interesting and imp
tant to identify a dynamical mechanism through which this
achieved.8

Another aspect of QCD dynamics which is different com
pared to 3D Georgi-Glashow theory, is the role of instanto
at zero temperature. In the Georgi-Glashow model,
monopole-instantons bring about the anomaly in the m
netic UM(1) symmetry, but they are not responsible for t
spontaneous breaking of the residualZ2 group. The sponta-
neous breaking is there already on the perturbative level.
the other hand in QCD it is believed that both the anomal
breaking ofUA(1) and the spontaneous breaking of the
sidual chiral symmetry are due to instanton dynamics. T
one may be more inclined to believe that the symmetry r
toration transition in QCD is also linked to the instanto
physics. However we stress that it is not at all necessary
the mechanism of the symmetry restoration is just elimi
tion of the mechanism that brought about the symme
breaking in the first place. Thus although it is logically po
sible that the instanton binding in QCD occurs at lower te
perature than the baryon overlap, this question can only
settled by a reliable calculation. The numerical results of@3#
indicate that the critical temperature for the instanton bind
is by about 30 MeV lower than our estimate. However giv
the uncertainties of the calculation of@3# and even more so
the qualitative level of our estimates here, we feel that mu
more work has to be done before a definite conclusion can
drawn on this point.

How does one distinguish between different possi
mechanisms is not an easy question. On the qualitative l
however, in the baryon overlap mechansim the symme
restoration is due to large fluctuations of the phase of
order parameter rather than of its magnitude. Thus th
should be a sharp distinction between this scenario and,
the transition in the linears model. The quantity to measur
in this case is the ‘‘square’’ of the order parameter, or in t
case of two flavors, rather the ’t Hooft vortex. If the trans
tion is driven by large phase fluctuations, the average vark

- 8We are grateful to Victor Petrov for raising this question a
interesting and heated discussions on the subject.
7-7
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of the ’t Hooft vertex should change very little across t
transition, since it is itself an invariant operator. If on t
other hand, like in the linears model the magnitude of the
order parameter becomes small at criticality, so should th
Hooft vertex. Such a measurement in the lattice gauge the
would be very interesting.9

9One has to be careful to appropriately smear the ’t Hooft ver
to get rid of the ultraviolet contributions, which otherwise can e
ily blur the picture.
gy

as

11600
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We think that the scenario we presented in this pape
physically quite appealing and simple, and thus further w
to check its validity is certainly warranted.
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