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Dynamics of effective gluons

Stanisław D. Głazek
Institute of Theoretical Physics, Warsaw University, ul. Hoz˙a 69, 00-681 Warsaw, Poland

~Received 4 December 2000; published 1 May 2001!

Renormalized Hamiltonians for gluons are constructed using a perturbative boost-invariant renormalization
group procedure for effective particles in light-front QCD, including terms up to third order. The effective
gluons and their Hamiltonians depend on the renormalization group parameterl, which defines the width of
momentum-space form factors that appear in the renormalized Hamiltonian vertices. Third-order corrections to
the three-gluon vertex exhibit asymptotic freedom, but the rate of change of the vertex withl depends in a
finite way on regularization of small-x singularities. This dependence is shown in some examples, and a class
of regularizations with two distinct scales inx is found to lead to the Hamiltonian running coupling constant
whose dependence onl matches the known perturbative result from Lagrangian calculus for the dependence of
gluon three-point Green’s function on the running momentum scale at large scales. In the Fock-space basis of
effective gluons with smalll, the vertex form factors suppress interactions with large kinetic energy changes
and thus remove direct couplings of low-energy constituents to high-energy components in the effective
bound-state dynamics. This structure is reminiscent of parton and constituent models of hadrons.

DOI: 10.1103/PhysRevD.63.116006 PACS number~s!: 11.10.Gh, 11.15.2q, 12.38.Lg
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I. INTRODUCTION

Current studies of hadronic structure are guided by th
physical pictures. The first picture is based on the constitu
quark model, which serves as a classification of hadron
particle data tables@1#. Quantum numbers of a hadron in th
model correspond to a simple Hamiltonian with only kine
energy of two or three quarks and interquark potentials in
hadron rest frame, with no gluons. The second picture
provided by the parton model for hadrons in the infini
momentum frame@2#. Modern versions of the model intro
duce a slew of quarks and gluons with distribution functio
in variable x—a fraction of the hadron momentum that
carried by a parton. About half of the hadron momentum
carried by gluons, with mostly small values ofx, so that
many partons can share the hadron momentum. Bindin
partons is not described by the parton model. In the th
picture, hadrons are considered to be excitations of a c
plicated ground state~vacuum! that contains condensates
quarks and gluons. Understanding of hadronic structure
the third way relies on the assumed ground-state prope
@3#. Despite recent progress in experimental and theore
studies of hadronic structure, including the lattice appro
@4,5#, the three basic pictures are not yet unified in a sin
quantitative formulation of QCD. To connect constitue
quarks and partons with QCD degrees of freedom, one ne
a relativistic description of effective particles in quantu
field theory.

This paper describes a perturbative third-order calcula
of renormalized Hamiltonians for effective gluons in th
light-front Fock space. The effective gluons are derived i
boost-invariant renormalization group procedure for partic
@6#, which originates in the similarity approach to renorm
ization of Hamiltonians@7# and the notion of vertex form
factors for extended strongly interacting particles@8#. The
renormalization procedure provides a connection betw
the canonical quantum field theory and the concepts
bound-state constituents in the rest and infinite-momen
0556-2821/2001/63~11!/116006~18!/$20.00 63 1160
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frames. For simplicity, this paper is limited to gluons. Qua
effects in the gluon dynamics are mentioned only in pass
Gluons alone are worth a discussion since their interacti
are responsible for asymptotic freedom. This feature requ
understanding in Hamiltonian approach independently of
quark dynamics. Also, asymptotically free effective glu
interactions display specific sensitivity to the regularizati
of small-x singularities.

Section II presents the initial regularized Hamiltonian f
gluons. The Hamiltonian includes ultraviolet counterterm
that are calculable order by order in the procedure descr
in Sec. III. The procedure introduces vertex form factors
the effective gluon interactions. The form factor width p
rameterl is reduced from infinity down to the scale of ha
ronic masses through a solution of a differential equati
which eliminates large momentum transfers from the bou
state eigenvalue problem for effective gluons with smalll.
The coupling strength of the three-gluon vertex as a funct
of l is calculated in Sec. IV and analyzed in Sec. V. The
two sections show how asymptotic freedom of effective g
ons emerges in the light-front Fock space Hamiltonians
QCD. Section VI provides a short summary and a brief d
cussion of how the effective particle calculus can be app
to electron-hadron scattering in a simplest approximation

II. INITIAL HAMILTONIAN

The canonical light-front QCD Hamiltonian require
regularization and counterterms@9#. To regulate the Hamil-
tonian, momentap15p01p3 and p'5(p1,p2) are param-
etrized using the1 momentum ratiosx and relative trans-
verse momenta k' that will be described below
Regularization is imposed through factors that exclude la
uk'u and smallx, preserving all kinematical symmetries o
the light-front dynamics~i.e., the Poincare´ symmetries of the
surfacex15x01x350 in space-time!, and processes of cre
ation of particles from the bare vacuum are absent. Po
counting and the renormalization strategy for the abso
©2001 The American Physical Society06-1
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STANISŁAW D. GŁAZEK PHYSICAL REVIEW D 63 116006
coordinates,x25x02x3 andx'5(x1,x2) or p1 andp' @9#,
are modified when one goes over to the variablesx andk'.
However, key features remain similar and perturbative
sults described in the next sections agree with the expe
tion that the ultraviolet renormalization of light-front Hami
tonians involves functions ofx.

A. Canonical terms

The classical Lagrangian density for gluon fields is

L52
1

2
tr FmnFmn, ~2.1!

whereFmn5]mAn2]nAm1 ig@Am,An# andAm5Aamta, with
@ ta,tb#5 i f abctc. The Lagrangian implies equations of m
tion, ]mFmn5 ig@Fmn,Am#, and for fields satisfying thes
equations the canonical energy-momentum density tens
Tmn52Fama]nAa

a1gmnFaabFab
a /4.

In the gaugeAa150, the Lagrange equations constra
A2 to Ã25(1/]1)2]'A'2(2/]12) ig@]1A',A'# and the
independent field degrees of freedom areA'. The first term
in Ã2 is independent of the coupling constantg and can by
definition be included in a new constrained fieldAm5@A1

50, A25(1/]1)2]'A', A']. The second term can be kep
explicitly as part of the interactions. Using this conventi
and freely integrating by parts, one obtains an expression
the light-front energy of the constrained gluon field:

P25
1

2 E dx2d2x'Hux150 , ~2.2!

whereH5T12 and

1

2
T125HA21HA31HA41H@]AA#2, ~2.3!

with

HA252
1

2
A'~]'!2A', ~2.3a!

HA35gi]aAb
a@Aa,Ab#a, ~2.3b!

HA452
1

4
g2@Aa ,Ab#a@Aa,Ab#a, ~2.3c!

H@]AA#25
1

2
g2@ i ]1A',A'#a

1

~ i ]1!2 @ i ]1A',A'#a.

~2.3d!

This expression is a candidate for further consideration
analogy to QED@10–13#. A heuristic expression for the
quantum gluon energy operator is obtained by substitutio

Am5(
sc

E @k#@ tc«ks
m aksce

2 ikx1tc«ks
m* aksc

† eikx#x150 ,

~2.4!
11600
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where @k#5u(k1)k1d2k'/(16p3k1) and «ks
m 5(«ks

1

50,«ks
2 52k'«s

'/k1,«s
'). Heres numbers gluon spin polar

ization states andc is a color index. The creation and ann
hilation operators satisfy the commutation relations

@aksc ,ak8s8c8
†

#5k1d̃~k2k8!dss8dcc8, ~2.4a!

where d̃(p)516p3d(p1)d(p1)d(p2) and commutators
among alla’s and among alla†’s vanish. For all momenta
spins, and colors,akscu0&[0 andaksc

† creates bare gluon
from the stateu0&.

The plain insertion of Eq.~2.4! into P2 produces terms
with creation and annihilation operators appearing in all p
sible orders. All terms are then ordered so that creation
erators stand to the left of annihilation operators. The proc
of ordering produces commutators of creation and annih
tion operators, which lead to diverging integrals. All su
terms can be dropped at this stage entirely since they wil
either removed by regularization, in the case of modes w
k150, or, after regularization, they will be replaced by we
defined mass counterterms that result from a renormaliza
group procedure and contain free additive finite parts.

The ordered operator, denotedPquantum
2 , is highly diver-

gent. For example, a correction of orderg2 to the free energy
k25k'2/k1 of a single bare gluon stateuksc&5aksc

† u0& di-
verges due to integration over an infinite range of transve
momenta of virtual gluons that appear in the intermedi
states of second-order perturbation theory. The energy
rection diverges also due to small-x singularities. Namely,
the gluon momentumk1 can be shared by two intermedia
gluons carrying fractionsx and 12x. The sum over interme-
diate states involves an integral overx from 0 to 1, while the
polarization vectors of intermediate gluons providex and 1
2x in denominator of the integrand, cf.«ks

m in Eq. ~2.4!. As
another example, the productPquantum

2 Pquantum
2 is even more

divergent than the energy correction because it does not
tain the energy denominator that reduces the contribution
intermediate states with large momenta in perturbat
theory. Consequently, exp(2iPquantum

2 x1/2) as a candidate
for a unitary evolution operator in timex1, is not defined
before one regulatesPquantum

2 by limiting the range of mo-
mentum that the bare gluons may have.

B. Regularization

The first step in the regularization procedure is made
limiting the range of momentum integration in Eq.~2.4!; cf.
Ref. @9#. Let uk'u,V and k1.e1, with the understanding
that V→` ande1→0 when the regularization is being re
moved.

The lower bound onk1 implies that the regulated expres
sion for Pquantum

2 , denoted byPVe1
2 , does not contain any

terms with exclusively creation or annihilation operato
Such terms would be forced by a translationally invaria
integral overx2 to preserve momentumk1, while the mo-
mentum they would have to create or destroy is at leastne1,
wheren denotes the number of creation or annihilation o
erators in such terms, respectively. These two conditions
6-2
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DYNAMICS OF EFFECTIVE GLUONS PHYSICAL REVIEW D63 116006
incompatible. HencePVe1
2 does not contain terms that cou

alter the bare vacuum stateu0&. The coupling constantg is
assumed to be sufficiently small for stability of the regul
ized theory built on top ofu0&; cf. @14#.

The limits on absolute momenta inPVe1
2 violate the boost

invariance of light-front dynamics, and in the term~2.3d!
with inverse powers of]1, one may still have 0 in the de
nominator. To eliminate the violation of boost invariance a
regulate the 1/]1 singularities, PVe1

2 is further curbed
through the following step.

Interaction terms inPVe1
2 are modified so thatchangesof

the particle momenta are limited. In this work, the transve
momentum changes are limited by a parameterD and
changes ofx by a parameterd. As an example, it is useful to
consider the three-gluon vertex

HA3Ve15(
123

E @123#d̃~k11k22k3!@CVe1~123!a1
†a2

†a3

1CVe1* ~123!a3
†a2a1#. ~2.5!

Momentum conservation implies that one can writek1
1

5x1k3
1 , k1

'5x1k3
'1k12

' , k2
15x2k3

1 , k2
'5x2k3

'2k12
' , with

x11x251 andk12
' 5x2k1

'2x1k2
' . Herex1 , x2 , andk12

' are
invariant under seven kinematical transformations of lig
front dynamics. It is helpful to call the momentum carrie
together by all annihilated or created particles in a sin
vertex aparentmomentum in the vertex. In the vertex~2.5!,
k3 is a parent momentum. Also, a slash in a subscript is u
below to indicate that the momentum before the slash sig
considered to be a daughter of the parent momentum a
the slash sign. For example,k1

'5x1/3k3
'1k1/3

' , where x1/3

5x1 /x3 andk1/3
' 5k12

' .
The momentum changes in the vertex~2.5! are limited by

inserting a factorr Dd(k i /3
'2,xi /3) for each creation and annih

lation operator. Sincek3 is a parent momentum,x3/351 and
k3/3

' 50, and the regularization factor for the term~2.5!
equals r Dd(k'2,x)r Dd(k'2,12x), where x5x1/3 and k'

5k12
' . Factorsr Dd are chosen to have the form

r Dd~k'2,x!5r D~k'2!r d~x!u~x!, ~2.6!

where

r D~z!5exp~2z/D2! ~2.7!

and r d(x) suppresses the region ofx smaller thand. That
r D(z) falls off exponentially is a guarantee for ultraviol
convergence of all transverse momentum integrals that
pear in perturbation theory. Integrals that behave as lnD or
Dn with positiven for D→` will be called ultraviolet diver-
gent. The small-x regulating functionr d(x) must vanish suf-
ficiently quickly for x→0 to regulate all small-x singulari-
ties. In a sense to become clear in Sec. V, the factorsr d
considered in this work lie in the vicinity of two cases:

r d~x!5x/~x1d! ~2.8!

and
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Integrals that behave as lnd or dn with negativen will be
called small-x divergent. Mixing of the ultraviolet and
small-x regularizations through expressions of the ty
exp@2(k'2 /x)/D2# is discussed in Appendix E.

Every creation and annihilation operator in all vertices
the operatorPVe1

2 is supplied with a factorr Dd , k3 being
replaced by the corresponding parent momentum. Terms
contain four operators are recast as contracted product
terms with only three operators, which are already regula
This step produces regularization factorsr̃ that are given in
full detail in Appendix A. The instantaneous terms conta
ing inverse powers of]1 are regulated in the same way, b
interpreting the momentum that is transferred along the
verted]1 as a momentum carried by a virtual particle th
connects two vertices@11,12#. The fully regulated operato
PVe1

2 is denoted by@PVe1
2

#Dd .
In the last step of defining the initial HamiltonianHDd ,

the limits of V→` ande1→0 are taken withD andd kept
constant:

HDd5 lim
V→`

lim
e1→0

@PVe1
2

#Dd1XDd . ~2.10!

XDd denotes counterterms, which need to be found. T
cannot depend onV and e1 in all orders of perturbation
theory in the limitsV→` and e1→0, because all change
of finite momenta are now bounded by the parametersD and
d, and a finite momentum cannot be connected in a fin
number of fixed-size steps to the region of absolute cutoffV
ande1 when they are removed. Thus the regularization
rametersD andd define a theory whose ultraviolet structu
can be analyzed using perturbative renormalization gr
strategy independently ofV and e1 when these cutoff pa-
rameters are sent to their respective limits. The renormal
tion group procedure that provides means for finding
countertermsXDd order by order in perturbation theory i
described in the next sections. The initial Hamiltonian h
then the form@cf. Eq. ~2.3!#.

HDd5HA21HA31HA41H u]AAu21XDd , ~2.11!

where, for example,

HA25(
sc

E @k#
k'2

k1 aksc
† aksc ~2.12a!

and

HA35(
123

E @123#d̃~p†2p! r̃ Dd~3,1!@gY123a1
†a2

†a3

1gY123* a3
†a2a1#. ~2.12b!

These two terms are quoted from Appendix A, where
regulated canonical terms are listed and the notation is
plained.XDd will be discussed below and in the next se
tions. Note that the free Hamiltonian~2.12a! contains no
regularization. This is necessary to preserve kinemat
6-3
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light-front symmetries. Differences between the bare thr
gluon vertex~2.12b! and effective gluon vertex from Sec. V
are described there.

III. RENORMALIZATION GROUP PROCEDURE
FOR PARTICLES

In Eq. ~2.11!, HDd is expressed in terms of the creatio
and annihilation operators for bare gluons in regulated lo
theory. This section describes the renormalization group p
cedure@6# that is used in Sec. IV to rewrite the initial Hami
tonian HDd in terms of operators that create or annihila
effective gluons, instead of bare ones. The effective glu
operators are obtained by applying a unitary transforma
Ul to the initial bare operators. The effective operators
pend on the parameterl that labelsUl .

The parameterl has dimension of mass and distinguish
different kinds of effective gluons according to the followin
rule. Effective gluons of typel can change their relative
motion kinetic energy through a single effective interact
by no more than aboutl. The transformationUl is math-
ematically designed in perturbation theory so that result
interaction terms contain vertex form factors and the la
limit the kinetic energy changes by their width paramet
which equalsl. All Hamiltonians with differentl’s are
equal, and the rewriting does not introduce any change in
theory, although the same Hamiltonian appears differe
when expressed in terms of different gluons. For brevity,
effective gluons corresponding to some value ofl are re-
ferred to as gluons of widthl.

A. General features

The form factor width parameterl greatly differs from
the regularization cutoffs, because it may be kept finite, e
small, while the cutoffs have to be made extremely large
approximate the initial theory. Even if the expansion in ter
of bare particles is hopelessly complicated, a hadron m
still have a well-defined, convergent expansion in the ba
of effective constituents with small widthl.

Thanks to the vertex form factors, in the Fock-space ba
built from gluons of widthl, the effective Hamiltonian ma
trix elements quickly tend to zero when the effective gluo
change kinetic energy across the matrix element by m
than l. Therefore, the effective Hamiltonian matrix is na
row. This is important for applications to bound-state phys
because eigenstates of narrow matrices may have a s
number of dominant components@15#. In the case of had-
rons, the constituent model suggests that the intricate c
plexity of QCD is buried in the structure of constituents a
their interactions, while the number of effective constitue
is small. The success of perturbative QCD in reproduc
changes of deep inelastic structure functions with momen
transfer down to fairly small values suggests that the str
ture of effective constituents can be approximated using
turbation theory. The idea of effective particles is by
means new@17#. The new element is the renormalizatio
group procedure for effective particles in QCD.

The renormalization group procedure provides the me
to find countertermsXDd that have to be included in th
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initial Hamiltonian to compensate for the spurious effects
ultraviolet regularization. One takes advantage of the fo
factors in the Hamiltonian vertices in analogy to Ref.@7#.
The narrow dynamics can smear states of effective parti
with finite energy, only by less thannl towards high ener-
gies in nth-order perturbation theory. For to raise the fr
energy of a state bynl, the effective interaction must act o
the state aboutn times when the form factors die out expo
nentially for energy changing by more thanl. The highest-
ordern that is still independent ofD approaches̀ whenD
→`. Therefore, to obtain the ultraviolet regularizatio
independent results, at least in perturbation theory to all
ders, it is sufficient to demand that the Hamiltonian coe
cients in front of creation and annihilation operators w
finite l be independent of the ultraviolet regularizatio
Hence one can read the diverging structure of ultravio
counterterms from the coefficients: see Eq.~3.11!. However,
the effects of small-x regularization are not under control o
the renormalization group procedure and the coefficie
with finite l’s may depend onr d(x). The dependence ond
→0 sometimes drops out, but finite effects may remain,
will be shown with examples in Sec. V.

In the perturbative renormalization group procedure
deriving effective particles and their interactions, one ne
encounters genuine infrared singularities associated w
small energy denominators. This is explained below E
~3.10!, where the differences of invariant masses are ta
care of in analogy to differences of energies in the similar
renormalization group procedure for Hamiltonians@7#. The
perturbative denominators are effectively limited from belo
by l. The nonperturbative part of the dynamics with relati
motion kinetic energy changes smaller thanl is first tackled
when one proceeds to solve the effective Schro¨dinger equa-
tion. Since the form factors keep the effective dynamics i
well-defined range of energies, numerical methods may
ply in finding approximate solutions to the full theory@15#.

B. Construction of Hl

Let a commonly denote the bare operatorsaksc or aksc
† .

Operatorsa are transformed by the unitary operatorUl into
operatorsal that create or annihilate effective particles
width l, with identical quantum numbers:

al5UlaUl
† . ~3.1!

The initial HamiltonianHDd is rewritten in terms ofal ,
HDd5Hl(al). If quarks were included,HDd would corre-
spond to the QCD Hamiltonian written in terms of canonic
quarks and gluons, associated with bare partons or bare
rents.Hl for l comparable with masses would represent
same Hamiltonian written in terms of constituent quarks a
gluons. ApplyingUl , one obtains

Hl[Hl~a!5Ul
†HDd Ul . ~3.2!

Hl has the same coefficient functions in front of products
a’s as the effectiveHl has in front of the unitarily equivalen
products ofal’s. DifferentiatingHl with respect tol, one
obtains
6-4
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Hl852@Tl ,Hl#, ~3.3!

where Tl5Ul
†Ul8 . Here Tl is constructed below using th

notion of vertex form factors. For example, if an opera
without form factors has the structure

Ôl5E @k1k2k3#Vl~1,2,3!alk1

† alk2

† alk3
, ~3.4!

the operator with form factors is written asf lÔl and has the
structure

f lÔl5E @k1k2k3# f l~M12,M3!Vl~1,2,3!alk1

† alk2

† alk3
,

~3.5!

where

f l~M12,M3!5exp@2~M12
2 2M3

2!2/l4#. ~3.6!

For any operatorÔ expressible as a linear combination
products of creation and annihilation operators,f Ô contains
a form factor f l(Mc ,Ma) in front of each product, where
Mc and Ma stand for the total free invariant masses
particles created~c! and annihilated~a! through the product,
respectively. For gluons in Eq.~3.6!, M350.

The relative motion kinetic energy changes in interact
vertices of effective particles are limited by demanding t
Hl5 f lGl , with some unknownGl . Then one derives
equations forGl that result from the choice forf l and some
definition of Tl . In practice, one first usesUl to transform
the Hamiltonian toHl5 f lGl and then one calculates coe
ficients ofa’s in Gl , which are the same as the coefficien
of al in Gl . This calculation includes the construction ofTl

and proceeds as follows~the subscriptl is dropped for sim-
plicity of notation!:

H85 f 8G1 fG852@T,G0#2@T,GI #. ~3.7!

G is split into two parts. The free partG0 is bilinear ina’s and
independent of the coupling constantg. The remaining
interaction-dependent part is denoted byGI . In the present
work, G0 is taken to be independent ofl. The definitions of
f and G0 imply then that fG05G0 and f 8G050. Equation
~3.7! contains two unknownsT andGI . Without loss of gen-
erality, one assumes thatT→0 whenGI→0, and one expand
operators in powers ofGI with the goal of enabling the pro
cedure to work order by order. The expansion ofT starts
from the term of orderGI . Changes ofGI with l should start
from second power. If

fGI852 f @T,GI #, ~3.8!

then

@T,G0#5@~12 f !GI #8 ~3.9!

and

GI85@ fGI ,$~12 f !GI%G0
8 #, ~3.10!
11600
r

f

n
t

where the curly brackets with subscriptG0 indicate the solu-
tion for T that follows from Eq.~3.9!. The choice off made
above implies that perturbation theory forT andG does not
lead to small energy differences in the denominators, si
12 f vanishes quadratically with the energy difference.GI
contains only connected interactions because Eq.~3.10! has a
commutator on the right-hand side. The initial condition f
Eq. ~3.10! is provided byHDd , so that Eq.~3.10! in integral
form reads

Gl5HDd1 Èl

ds@ f sGIs ,$~12 f s!GIs%G0
#, ~3.11!

which allows one to find the countertermsXDd using the
condition that they remove the dependence on regulariza
from the second term for finitel and relative momenta o
interacting particles. The counterterms contain free fin
parts that need to be determined using experimental d
including symmetries such as Poincare´ symmetry of observ-
ables or current conservation. Finally,Hl5 f lGl .

C. Perturbation theory for GI l

This section contains formulas used in Sec. IV for solvi
Eq. ~3.11! in perturbation theory up to third order. Since th
perturbative expansion has formally the same structure a
scalar theory@18#, only the main steps are listed. In the fir
step,GIl is expanded into a series of termstn;gn:

GI5 (
n51

`

tn . ~3.12!

It immediately follows from Eq.~3.11! thatt1 is indepen-
dent ofl and equal to the second term in the initial Ham
tonian from Eq.~2.11!, i.e., Eq. ~2.12b!. One hast15a21
1a12, wherea21 denotes the first anda12 the second term
on the right-hand side of Eq.~2.12b!. The left subscript de-
notes the number of creation and the right subscript the n
ber of annihilation operators. The corresponding Ham
tonian interaction term is obtained by multiplying th
integrand in Eq. ~2.12b! by f l5exp@2(k11k2)

4/l4# and
transforminga’s into al’s.

For t25b111b311b131b22, Eq. ~3.10! implies

t285@$ f 8t1%, f t1#[ f 2@t1t1#, ~3.13!

wheref 25$ f 8% f 2 f $ f 8%, with the understanding that the firs
factor f in all terms of f 2 is for the first t in the square
brackets and the second factorf in all terms of f 2 is for the
secondt in the brackets. The square brackets denote all c
nected terms that result from contractions replacing produ
aiaj

† by commutators@ai ,aj
†#. The solution fort2 is then

t2l5F2l@t1t1#1t2` , ~3.14!

whereF2l5*`
l f 2 depends on incoming and outgoing m

menta in the two vertices formed by the operators in
square brackets. In the sequenceatabbtbcc, the three suc-
cessive configurations of particle momenta are labeled ba,
b, andc. To write down compact expressions forF2l , the
6-5
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symboluv5Muv
2 2Mvu

2 is defined, whereMuv
2 denotes the

free invariant mass of a set of particles from configuratiou
that are connected to the particles in configurationv by an
interactiontuv in the sequenceutuvv. Spectators of the in-
teractiontuv do not count. In this notation,

f l~Mab ,Mba!5exp@2~ab2/l4!#[ f ab . ~3.15!

The parent momentum for the vertex connecting two c
figurationsu andv is denoted byPuv , and in the following
equations,puv is written in place ofPuv

1 . In all expressions,
the minus component of the momentum of every gluon
given by the eigenvalue ofG05HA2 from Eq. ~2.12a!, i.e.,
k25k'2/k1. Thus, with the Gaussian vertex form factors

F2~a,b,c!5
pbaba1pbcbc

ba21bc2 @ f abf bc21#. ~3.16!

In Eq. ~3.14!,

t2`5HA41H @]AA#21XDd2 , ~3.17!

whereXDd2 denotes all ultraviolet counterterms proportion
to g2.

For third-order terms t35g211g121g411g141g32
1g23, Eq. ~3.10! gives

t385@ f t1 ,$~12 f !t2%8#1@$ f 8t1%, f t2#. ~3.18!

After integration,

t3l5F31l†t1@t1t1#‡2F32l†@t1t1#t1‡

1F2l@t2`t11t1t2`#1t3` , ~3.19!

where, for any sequenceatabbtbcctcdd,

F32~a,b,c,d!52F31~d,c,b,a!, ~3.20!

F31~a,b,c,d!5
pcbcb1pcdcd

cd21cd2 F ~pbdbd1pbaba!

3S f abf bcf cdf bd21

ab21bc21cd21bd22
f abf bd21

ab21bd2D
1pbd

bc21cd2

db S f abf bcf cd21

ab21bc21cd2

2
f abf bcf cdf bd21

ab21bc21cd21bd2D G . ~3.21!

The last term in Eq.~3.19! denotes counterterms proportion
to g3, i.e., t3`5XDd3 . The next section describes the calc
lation of g21. The calculation requires knowledge ofb11,
b22, andb31. For all terms,p i j 5p j i

† .

IV. INTERACTIONS OF EFFECTIVE GLUONS

This section describes the derivation of effective glu
dynamics in third-order perturbation theory in the coupli
constantgl that measures the strength of the effective thr
11600
-

s

l

-

-

gluon vertex in the HamiltonianHl(al). Since gl5g
1o(g3), the Hamiltonian terms of ordergl and gl

2 can be
calculated using an expansion in powers ofg before one
proceeds to the third-order terms that definegl . All calcu-
lations are carried out in the framework described in Sec.

In the rewritten HamiltonianHl(al), the terms that have
coefficients of order 1 are

H ~0!5(
sc

E @k#
k'2

k1 alksc
† alksc . ~4.1!

The subscriptl indicates thatalksc annihilate andalksc
†

create effective gluons of widthl. The effective gluons can
also be interpreted as having a spatial transverse width on
order of 1/l for moderate values ofx. This interpretation is
explained below Eq.~4.3!.

The terms inHl(al) that have coefficients orderg are
~see Appendix A for details of the notation!

H ~1!5(
123

E @123#d̃~p†2p! f l~M12,0! r̃ d~x1!

3@gY123al1
† al2

† al31gY123* al3
† al2al1#, ~4.2!

where

r̃ d~x!5r d~x!r d~12x!, ~4.3!

and the form factorf l(M12,0)5exp@2k 12
'4/(x1x2l2)2# falls

off as a function of the relative transverse momentum a
rate that depends onx carried by gluons. For moderate value
around 1/2, the transverse momentum width is on the or
of l/2, but for x approaching 0, the transverse momentu
width of the vertex becomes very small, leading to a spre
of the interaction strength in the transverse spatial directio
Thus the coupling of effective gluons to the wee region
quite different from the canonical coupling in Eq.~2.12a!.

Terms with coefficients of orderg2 are derived by chang
ing a to al in tl25bl111bl311bl131bl22 and by insert-
ing form factors as described in Sec. III B. The contributi
of t2` includes a counterterm induced by the ultravio
regularizationr D . Namely, to evaluate the termsbl11 one
needs to know the countertermb`11. It follows from Eq.
~3.14! that

bl115(
sc

E @k#
ml

2

k1 aksc
† aksc , ~4.4!

where

ml
25

g2

16p3 E
0

1 dx

x~12x!
E d2k'

1

k1 F2l~k,K,k!

32(
12

uY12ku2r̃ k,1
2 1m`

2 , ~4.5!

and the last termm`
2 is contributed by the countertermb`11.

The structure ofb`11 is known here from hindsight: i.e., th
regularization dependence of the integral in Eq.~4.5! results
6-6



n

-
su
om

er
e
y

ir

-

is

,
ar-

-

x

c-

-
ng

er

DYNAMICS OF EFFECTIVE GLUONS PHYSICAL REVIEW D63 116006
in a number that depends on the functionr D(k2), but does
not depend on the gluon quantum numbers. One hask2

5k'2/k1, K25(M21k'2)/k1, M25k'2/@x(12x)#, and
r̃ k,1 is given at the end of Appendix A. The sum over qua
tum numbers of intermediate two-gluon states isS12uY12ku2
5Nck

2@111/x211/(12x)2#5k2P(x)/@2x(12x)#, where
P(x) is the Altarelli-Parisi gluon splitting functionPGG(x)
@19#. HereNc53 denotes the number of colors.

Assuming that for somel5l0 the effective gluon mass
squared should have the valuem0d

2 , one can calculate the
counterterm massm`

2 from Eq. ~4.5!. The resulting effective
mass takes the form

ml
25m0d

2 1
g2

16p3 E
0

1 dx rdm~x!

x~12x!
E d2k'

1

k1

3@F2l2F2l0
#k2P~x!/@x~12x!#, ~4.6!

which is independent of the ultraviolet regularization:

r dm~x!5@ r̃ d~x!#25r d
2~x!r d

2~12x!. ~4.7!

To find a more convenient notation forml
2, the arbitrary,

possiblyd-dependent numberm0d
2 can be replaced by an ex

pression that follows from a second-order perturbative re
for a single effective gluon mass correction obtained fr
the eigenvalue equation forHl(al). This expression intro-
duces a new parametermd

2 that would equal the second-ord
result for physical gluon mass squared, if such gluons
isted. The present paper does not discuss effects that ma
induced by different choices ofmd in effective gluon Hamil-
tonians calculated to orders higher thang3 or in solving the
effective Schro¨dinger equation withHl(al). With the form
factor f of Eq. ~3.15!, one obtains

ml
25md

21
g2

~4p!2 E
0

1

dx rdm~x!P~x!E
0

`

dzexp@22z2/l4#,

~4.8!

while the counterterm mass is

m`
2 5md

21
g2

~4p!2 E
0

1

dx rdm
~x!P~x!

3E
0

`

dzexp@24zx~12x!/D2#. ~4.9!

Inclusion of nf flavors of quarks with bare massesmf pro-
duces an additional term in the integrand in Eq.~4.8! equal to
S f 51

nf Qf(x)exp@22zf
2/l4#, with Qf(x)5122x(12x)

12mf
2/zf resembling the gluon splitting function into a pa

of massive quarks of flavorf and zf5z1mf
2/@x(12x)#.

Quarks would also add( f 51
nf Qf(x) to P(x) in Eq. ~4.9!.

Note that for convergence of the integral overx in the effec-
tive mass term~4.8!, it is sufficient that the regulating func
tion behaves asr d(x);xe with e.0. In the counterterm
~4.9!, r d(x) has to vanish at smallx at least as fast asx1/21e.
11600
-

lt

x-
be

Having the result forbl11, one replaces the barea with
effectiveal . The second-order effective gluon mass term

H ~2!115(
sc

E @k#
ml

2

k1 alksc
† alksc . ~4.10!

Other terms of orderg2 are derived following the same path
but they do not require ultraviolet counterterms for regul
ization adopted in Sec. II.

Of main interest to this work is the termgl21 whose cal-
culation involvest1 , b11, b22, andb31. Details of the cal-
culation are described in Appendixes B and C. Equation~B1!
for gl21 has the following structure@cf. Eq. ~3.11!#:

gl215g`211E dx d2k'@FlC1D#RD . ~4.11!

Fl denotes form factors that multiply termsC, which means
that momentum integrals in termsC cannot produce a depen
dence on the ultraviolet regularization factorsRD in the limit
D→`. The first step in calculatinggl21 is to evaluate the
terms*DRD and find their dependence onRD , to construct
the countertermsg`21. This step is carried out in Appendi
C, including nf flavors of quarks, with the result@see Eqs.
~B9! and ~C18!# that

g`215(
123

E @123#d̃~k11k22k3!
g3

16p3 g`a1
†a2

†a3 ,

~4.12!

where

g`5Y123

2p

3
ln

D

m
$Nc@111h~x1!#22nf%1gfinite

~4.13!

and

h~x1!56E
x1

1

dx rdt~x!F 2

12x
1

1

x2x1
1

1

xG
29r̃ d~x1!E

0

1

dx rdm~x!F1

x
1

1

12xG1~1↔2!.

~4.13a!

r̃ d(x1) is given by Eq.~4.3!, r dm(x) by Eq. ~4.7!, andr dt(x)
by Eq. ~B4a!. The counterterm partgfinite removes finite ef-
fects of ultraviolet regularization. It contains unknown fun
tions ofx1 that multiply the structuresY12, Y13, Y23 in Y123,
and the additional structureY4 : see Eqs.~C10! and ~C15!.
Here gfinite differs from canonical terms, but it does not in
fluence the third-order running of the Hamiltonian coupli
constant.

Having found the counterterm, one obtains a finite answ
for gl21 in the limit D→`:
6-7
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gl215(
123

E @123#d̃~p†2p!@Wl12Y121Wl13Y131Wl23Y23

1Wl4Y4#a1
†a2

†a3 , ~4.14!

where the four coefficientsWl are functions ofx1 andk12
'2.

The complete expression forgl21 is given in Appendix B.
The effective three-gluon interaction term of orderg3 in
Hl(al) is H (3)211H (3)12, whereH (3)125H (3)21

† and

H ~3!215 f lUlgl21Ul
† . ~4.15!

The operatorUl is unitary with accuracy to terms of orde
higher than third, and its action is equivalent here to cha
ing a’s to al’s as in lower-order terms.

V. THREE-GLUON VERTEX

This section describes the running coupling constantgl

that appears in Hamiltonian interaction vertices written
terms of gluons of widthl. The word ‘‘running’’ means
changing withl. The coupling constant is defined throug
the strength of the three-gluon vertex for some value ofx1

5x0 whenk12
' →0, in direct analogy to the coupling consta

in f3 theory in six dimensions@18# or electric charge in the
Thomson limit in QED. The effective three-gluon vertex is
sum of H (113)21 and H (113)21

† , whereH (113)5H (1)1H (3)

and

H ~113!215(
123

E @123#d̃~p†2p! f l@Vl12Y121Vl13Y13

1Vl23Y231Wl4Y4#al1
† al2

† al3 , ~5.1!

with f l5exp$2@k 12
'2/(x1x2l2)#2%. The effective vertex con-

tains creation and annihilation operators for effective gluo
of width l, instead of the bare ones in Eqs.~2.12b! and
~4.14!. This change is reflected by the presence of the fo
factor f l , which strongly suppresses the emission of eff
tive gluons with transverse momentum larger thanx1x2l.
The vertex functionsVl12(x1 ,k12

'2), Vl13(x1 ,k12
'2), and

Vl23(x1 ,k12
'2) are used below to evaluate the running co

pling constant. The fourth functionWl4(x1 ,k12
'2) multiplies

Y4 , which is distinct from canonical structures.Wl4 is inde-
pendent ofl in the limit k12

' →0 and does not contribute t
the running coupling constant.

When k12
' →0, all three vertex functionsVl i j , for i j

512,13,23, vary withl equally. Using results from Appen
dix D without quarks, one can introduce a single function

Wl~x!5Vl i j ~x,0'!2Vl0i j ~x,0'!

52
g3

48p2 Nc@111h~x!# ln
l

l0
, ~5.2!

to describe the behavior of all three functionsVl i j (x,0')
5gr̃d(x)1Wl(x) for finite x andl in the limit d→0.

Wl(x) depends onx through h(x). The caseh(x)50
corresponds to the standard asymptotic freedom result@16#
11600
-

s

-

-

in the following sense. At a certain value ofl5l0 , the three
potentially different numbersgl0i j [Vl0i j (x0,0') can be set

equal to a common valueg05gl0
by adjusting finite parts of

the counterterm~4.13! to match the gauge symmetry resu
from the bare canonical Hamiltonian of QCD. Forh(x)50,
the choice ofx0 does not matter as long asd is negligible in
comparison tox0 and 12x0 . Then, for lÞl0 , the three
coupling constants remain equal,gl i j 5Vl i j (x0,0')5gl

5g01Wl(x0)1o(g0
5), with g5g0 in Wl(x0), or

gl5g02
g0

3

48p2 11Nc ln
l

l0
. ~5.3!

Expressingg0 by gl in the differential Eq.~3.10! or in its
integrated forms, Eq.~3.11! or Eq. ~5.3!, in the perturbative
expansion up to third order ingl , one has

l
d

dl
gl5b0gl

3, ~5.4!

with

b052
11Nc

48p2 , ~5.5!

which is equal to theb-function coefficient in Feynman cal
culus in QCD. Thus, if one identifies the effective Ham
tonian form factor width parameterl with the running mo-
mentum scale in Feynman diagrams, the standard result f
off-shell S-matrix calculus would be recovered in effectiv
Hamiltonians in the caseh(x)50.

The function h(x) is determined by the initial Hamil-
tonian and small-x regularization factorr d in it through Eq.
~4.13a!. In the limit d→0, for r d of Eq. ~2.8!,

h~x!512F31
12x2x2

~12x!~122x!
ln x1

~12x!22x

x~122x!
ln~12x!G

~5.6!

and, in the case ofr d from Eq. ~2.9!,

h~x!512 ln min~x,12x!. ~5.7!

These two cases are shown in Fig. 1 along with case~c!,
which corresponds toh(x)50. The vertex functionV(x) in
Fig. 1 is defined by

g0V~x!5g01Wl~x! ~5.8!

and plotted usinga05g0
2/(4p)50.1 for l05100 GeV and

Nc53. In part ~d! of Fig. 1, the value ofV(1/2) is plotted
againstl. The sharp cutoff case~b! of u(x2d) is visibly
different from ~c!, which corresponds toh(x1)50, but the
continuous case~a! of x/(x1d) differs from ~c! only by 8%.
By extrapolation, the results~a! and ~b! suggest that there
may exist a regularization factorr d(x) that matches the cas
~c!. The mathematical structure of Eq.~4.13a! and the Eu-
clidean integrals in Feynman diagrams with dimensio
regularization @20# both hint at the power-law function
r d(x)5xd. Inspection shows that, in the limitd→0,
6-8
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FIG. 1. Change of the effective gluon vertex functionV(x) from Eq. ~5.8! with the widthl varying froml05100 GeV down to 100
MeV, for three different small-x regularization functions: ~a! r d5x/(x1d), ~b! r d5u(x2d), and~c! r d5xdu(x2e). Part~d! shows the
dependence ofV(1/2) onl for the three cases, correspondingly. The case~c!, dashed line, matches the QCD running coupling constant re
obtained from Feynman diagrams. Note the dynamical suppression of the effective gluon coupling for extreme values ofx in cases~a! and
~b!. See the text for details.
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r d~x!5xdu~x2e! ~5.9!

leads toh(x1)50 for all fixed values ofx1 between 0 and 1
as long ase/d→0. This result sets a path for developing
connection between the Hamiltonian dynamics of effect
gluons in the light-front Fock space and Feynman diagra
for Green’s functions in the Lagrangian calculus@16#.

The second scalee in Eq. ~5.9! is required to regulate
linear small-x divergences such as in the mass counterte
in Eq. ~4.9!. Details of r d(x) at x;e are not important for
pointwise convergence ofh(x1) to 0, and a whole class o
regularizations with a second scalee!d gives the same re
sult. Ultraviolet regularizations using invariant mass sof
small-x divergences in the mass counterterms so that the
ond scalee appears unnecessary, but such regularizati
mix small-x effects with largek' divergences: see Appendi
E. In evaluation ofh(x1), factorization of the ultraviolet
renormalization group flow inl from small-x effects requires
d→0. The small-x behavior of other terms in this limit has t
be compared with the size ofg to discuss the validity of the
perturbative analysis. The warning is warranted by the f
11600
e
s

s

n
c-
s

ct

that in Fig. 1, where the value ofa;0.1 forl on the order of
100 GeV is taken from phenomenology based on Feynm
diagrams,g0;1.1.1.

Figure 1 shows that small-x regularizations of Eqs.~2.8!
and~2.9! lead to a suppression of effective gluon interactio
when x1 moves away from 1/2 fork12

' →0, where f l→1.
They also slow down the rate of growth of the couplin
constant with loweringl. Similar results follow forf l de-
pending onp2 instead ofM2. Herel2 is replaced byk3

1l
and one loses boost invariance, but in the ra
(l1k3

1)/(l2k3
1) the dependence onk3

1 cancels out.
Thorn @21# calculated the diverging part of a four-poin

gluon Green’s function using theA150 gauge and integrat
ing Feynman diagrams first overk2. Using sharp cutoffs
k1.e1 anduk'u<L in the remaining integrals, Thorn foun
that to understand asymptotic freedom from the cutoff
pendence of Green’s functions, one has to include direct
crossed box diagrams that cancel skewp1-dependent terms
from the three-point function whose own cutoff dependen
had opposite sign to the asymptotic freedom. Lepage
Brodsky @13# developed a whole formalism for hard exclu
6-9
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sive processes involving hadrons. Perry@22# used their rules
in old fashioned perturbation theory to obtain the ultravio
diverging part of a set of third-order terms in the qua
gluon-quark off-energy-shell vertex function, with simila
cutoffs to Thorn’s. In the limit of ultraviolet cutoffs being
sent to infinity, Perry found asymptotic freedom in the cut
dependence of the quark-gluon vertex function. Irrelev
parts diverged as functions of the small-p1 cutoff and de-
pended on the off-shell energy parameter, but Perry repo
that they could be made small by using an invariant m
cutoff. In calculations of the Green’s functions, small ener
denominators require an extra step of setting a lower bo
on the transverse momenta and factorization of the contr
tions from below. Such contributions complicate issues t
arise in the introduction of the renormalization scale at sm
scales, and gluon coupling must be brought under con
@23#. The dependence on the energy-shell parameter invo
Hamiltonian eigenvalues, which depend on a solution of
hadronic binding problem.

Effective Hamiltonians are different and are calculat
differently from Green’s functions. Asymptotic freedom a
pears in the dependence of the Hamiltonian vertices on
width l. The width may be finite and adjusted to the scale
processes one is interested in, independently of the diver
ultraviolet cutoffs. Thus, for example, Thorn’s results f
Green’s functions calculated in the scattering theory for g
ons in asymptotic states do not contradict the results of
paper, which concern Hamiltonian vertices for gluons
width l in a boost-invariant approach, independently of a
non-boost-invariant regularization cutoffs on individual ba
gluon momenta, such as those studied in Thorn’s work. N
also thatUl is unitary and the procedure involves no wa
function renormalization, in distinction from the standa
renormalization group concept, and no Ward identity is us
l effectively limits energy denominators from below, so th
issues of binding are clearly separated from logarithmic e
lution of effective Hamiltonians. No off-shell energy param
eter is introduced. In summary, no need arises to rely on
arbitrary ultraviolet regularization, no extra lower bound
momenta is needed, and no off-shell energy paramete
introduced. The notion of effective constituents is then
natural candidate for the phenomenology of hadronic w
functions@24# to be put on the firm ground of Hamiltonia
quantum mechanics, with an open path to make connec
with diagrammatic techniques@25# for scattering amplitudes

Although the renormalized Hamiltonian vertices display
tendency to decouple dynamics of effective gluons from
small-x region, manyx-dependent terms completely drop o
from the third-order running of the coupling constant. The
terms require careful investigation since vacuum effects m
enter through the small-x region @14#. Once these terms ar
calculated in detail using the perturbative procedure, t
can be subsequently studied in the Schro¨dinger equations
with effective Hamiltonians beyond perturbation theory.
particular, variational studies could aim at understand
gluon condensation and spontaneous chiral symmetry br
ing, including the cases where the number of flavors
11600
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proaches the critical value at which asymptotic freedom g
away @26#. The small-x regularization clearly interfaces in
this transition: see Eq.~4.13!.

VI. CONCLUSION

Coefficients of products of creation and annihilation o
erators for effective gluons of widthl in the renormalized
light-front QCD Hamiltonian contain vertex form factorsf l

and vary withl in a perturbatively calculable way. Obtaine
in third-order perturbation theory, the effective three-glu
vertex with vanishing transverse momentum is a linear fu
tion of lnl. The coefficient of lnl matches the coefficient o
ln Q that appears in the running coupling constant dep
dence on the running scaleQ in the Lagrangian calculus fo
Green’s functions. This happens for small-x regularizations
of the type r d(x)5xdu(x2e) in the limit d→0 for e/d
→0. For other regularizations, such asr d(x)5x/(x1d) or
r d(x)5u(x2d), the coefficient of lnl contains an additive
term h(x), defined in Eq.~4.13a! and described in Sec. V
Here h(x) suppresses interactions at smallx in addition to
the suppression implied by the vertex form factorsf l .

In the effective particle light-front Fock-space basis
gaugeA150, asymptotic freedom is a consequence o
single effective gluon containing a pair of bare gluons. T
component amplifies the strength with which effective g
ons can split into effective gluons whenl gets smaller. The
mechanism is the same as in the case of scalar particles i
dimensions@18#, although the source of lnl is different.
Namely, in scalar theory it is the integration over addition
transverse momentum dimensions, while in QCD it is t
transverse momentum factors in gluon polarization vecto
In a perturbative description of processes characterized
physical momentum scaleQ, using Hl(al), there will ap-
pear powers ofgl and lnQ/l. ForQ/l51, lnQ/l50, so that
the theoretical predictions will have the form of a series
powers of the asymptotically free running coupling const
gQ .

The dynamics of effective particles includes binding, d
scribed through the Schro¨dinger equation withHl(al). Ini-
tial studies of some simplified bound-state eigenvalue pr
lems for light-front QCD Hamiltonian matrices have recen
been carried out for heavy quarkonia@27# and gluonium
states@28#, reporting reasonable results. Although the effe
tive particle approach described here is different, the bou
state equations resulting from the second-order perturba
theory may be similar. So the initial studies suggest that
effective particle approach should be tested in application
bound states of constituent quarks and gluons.

Besides the bound-state dynamics of low-energy cons
ents in the hadronic rest frame, the boost-invariant effec
particle approach provides a theoretical tool for studies
layers of hadronic structure in other frames of reference,
cluding the infinite-momentum frame. The theory is sim
plest, and in lowest order of the same type as for quarks
gluons, in the case of electron-hadron interactions thro
one-photon exchange. In the case of massive vector bos
there exist three instead of only two polarization states
the choice of gaugeA150 is not directly available. A
6-10
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scheme to attempt the more complicated theory was for
lated by Soper@29# in massive QED, but the required reno
malization procedure for Hamiltonians with massive gau
bosons is completely undeveloped in comparison to the
rent status of renormalization in Lagrangian calculus@30#.

Physical processes that involve one-photon excha
have amplitudes proportional toe2. To obtain an amplitude
for a simplest scattering event with large momentum tran
that involves strong interactions, it is sufficient to calcula
the strong subprocess only to orderg2 and study cross sec
tions to ordere4g2. The complete initial Hamiltonian con
tains four terms,

H5HQED1Heqg1HQCD1X, ~6.1!

where the second term includes couplings of quarks to p
tons and instantaneous electromagnetic coupling of qu
and electrons. The transformationUl of Eq. ~3.1! can be
calculated from the trajectory ofHlQCD alone, together with
the required counterterms inX. Then the HamiltoniansHeqg
can be rewritten in terms of quarks and gluons of widthl.
This step produces a dependence on regularization, w
should be removed by additional counterterms inX. Here
QED degrees of freedom are not changed. The resulting
fective Hamiltonian dynamics can be then tested for cov
ance using perturbative expansion for the amplitudee1e2

→hadrons including terms of ordere2, e2g, and e2g2,
which contribute to the cross section through orderse4 and
e4g2.

Such tests are of interest since the renormalization gr
for particles produces light-front Hamiltonians without refe
ence to the vacuum structure and scattering amplitudes,
wave function renormalization and Ward identities do n
enter the Hamiltonian. In a much simplified model witho
gauge symmetry, an adjustment of finite parts of coun
terms led to covariant scattering with proper threshold
havior @31#. It should be verified in the Hamiltonian ap
proach based on Eq.~6.1! if QCD binding effects known in
orderg2 interfere with obtaining covariant results. Genuine
11600
u-

e
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e

r

o-
ks

ch
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t
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-

perturbative fourth-order test calculations in QED shou
verify if in the limit d→0 the perturbative Hamiltonian ap
proach is able to produce fully covariant results for obse
ables through adjustment of finite parts of the ultravio
counterterms that contain otherwise undetermined functi
of x.
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APPENDIX A: DETAILS OF THE INITIAL
HAMILTONIAN

The initial QCD Hamiltonian for gluons in Eq.~2.11!
contains the following terms:

HA25(
sc

E @k#
k'2

k1 aksc
† aksc , ~A1!

HA35(
123

E @123#d̃~p†2p! r̃ Dd~3,1!@gY123a1
†a2

†a3

1gY123* a3
†a2a1#, ~A2!

where

Y1235 i f c1c2c3F«1* «2* •«3k2«1* «3•«2* k
1

x2/3

2«2* «3•«1* k
1

x1/3
G , ~A2a!

with «[«' andk[k1/3
' ,

HA45 (
1234

E @1234#d̃~p†2p!
g2

4
@JA41234a1

†a2
†a3

†a4

1XA41234a1
†a2

†a3a41JA41234
* a4

†a3a2a1# , ~A3!
6-11
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H @]AA#25 (
1234

E @1234#d̃~p†2p!g2@~J@]AA#21234a1
†a2

†a3
†a41H.c.!1X@]AA#21234a1

†a2
†a3a4#, ~A4!
te
um

ai

po

le
d

as-
no-

tum
ing
s is
ent

r
n-
p† and p are the total momenta of created and annihila
particles, respectively. For the vertex with parent moment
p and daughter momentad andp2d, the regulating function
in Eq. ~A2! is r̃ Dd(p,d)5r Dd(p,d)r Dd(p,p2d), where
r Dd(p,d)5r D(kd/p

'2 )r d(xd/p)u(xd/p), with xd/p5d1/p1

[xd /xp and kd/p
' 5d'2xd/pp'. Equations ~2.6! to ~2.9!

complete the definitions of r̃ Dd(p,d). Also, r̃ p,d
[ r̃ Dd(p,d). The momentum integration measures cont
the same factors as in Eq.~2.4! for each indicated particle.

APPENDIX B: EXPRESSION FOR gl21

Equation~3.19! gives

gl215F3l8@a12a21a21#211F2l2@b`22a21#21

1F2l2@a12b`31#211F3l4†@a12a21#11a21‡21

1F2l@a12b`31#211F2l2@b`11a21#21

1F3l2†a21@a12a21#11‡211F2l

1

2
@b`22a21#21

1F2l@a21b`11#211g`21. ~B1!

The terms are grouped and ordered in one-to-one corres
dence to Fig. 2, so that using the labels from Fig. 2, Eq.~B1!
reads

g215F38~a!1F22~b!1F22~c!1F34~d!1F2~e!

1F22~ f !1F32~g!1F2

1

2
~h!1F2~ i !1~ j !.

~B2!

In all terms, the external gluon quantum numbers are labe
in the same way: 1 and 2 refer to the created gluons an
11600
d

n

n-

d
3

to the annihilated one. The intermediate momenta are
signed the numbers 6, 7, and 8. For example, using the
tation from Appendix A, we havek1

'5x1/7k7
'1k16

' , where
k16

' [k1/7
' , x1/7[x1 /x. Also, k68

' 5k'2(12x)k12
' /x2 , k16

'

52x1k'/x1k12
' , andk78

' 5k'. All coefficients of creation
operators ought to be symmetrized with respect to quan
numbers of gluons 1 and 2, and only one way of contract
the intermediate gluon annihilation and creation operator
included, so that the displayed numerical weights repres
the result of all possible contractions. Thus, in Fig. 2~b!, only
one ordering of vertices fromb`22 is included and the facto
of 2 is put in front. The black dots in Fig. 2 indicate cou
terterms,b`11 in cases~f! and~i!, andg`21 in case~j!. Thick

FIG. 2. Graphical illustration of Eq.~B1!.
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lines with transversal bars denote the combined contribut
of the termsHA4 and H @]AA#2 from Eqs. ~A3! and ~A4!,
b`225XA41X@]AA#2, andb`315JA41J@]AA#2. Since these
terms are independent of the transverse momenta and
three-gluon verticesa12 and a21 are odd in the transvers
11600
s

the

momentum, both termse andh in Eq. ~B2!, represented by
diagrams~e! and ~h! in Fig. 2, are equal zero.

The nonzero terms are listed in the order of their appe
ance in Eq.~B2!, using the conventiong215Sng21(n) , with
n ranging froma to j, and
g21~n!5(
123

E @123#d̃~k11k22k3!
g3

16p3

1

2
g~n!a1

†a2
†a3 , ~B3!

g~a!58
Nc

2
i f c1c2c3E

x1

1 dx rdt~x!

x~12x!~x2x1!
E d2k'r Dt~k'!

F3l~a!

k3
12 k68

i k16
j kk«~a!

i jk 1~1↔2!, ~B4!

where

r dt~x!5r d ~x!r d ~12x!r d ~x1 /x!r d @~x2x1!/x#r d @~x2x1!/x2#r d @~12x!/x2#, ~B4a!

r Dt~k'!5exp@22~k68
'21k16

'21k'2!/D2#, ~B4b!

F3l~a!

k3
12 5

2xM16
2 1M2

M16
4 1M4 H ~Mbd

2 1x2M68
2 !F f 68f bdf 16f 21

M68
4 1Mbd

4 1M16
4 1M42

f 68f bd21

M68
4 1Mbd

4 G2
M16

4 1M4

Mbd
4 F f 68f 16f 21

M68
4 1M16

4 1M4

2
f 68f bdf 16f 21

M68
4 1Mbd

4 1M16
4 1M4G J 1

xM16
2 1x2M68

2

M16
4 1M68

4 H ~2M22M12
2 !F f f caf 16f 6821

M41~M22M12
2 !21M16

4 1M68
4

2
f f ca21

M41~M22M12
2 !2G2

M16
4 1M68

4

M22M12
2 F f f 16f 6821

M41M16
4 1M68

4 2
f f caf 16f 6821

M41~M22M12
2 !21M16

4 1M68
4 G J , ~B4c!

M25
k'2

x~12x!
, ~B4d!

M68
2 5

x2
2k68

'2

~x2x1!~12x!
, ~B4e!

M16
2 5

x2k16
'2

x1~x2x1!
, ~B4f!

with f u5exp@2u2/l4#, bd5Mbd
2 5M68

2 /x21M12
2 , ca5M22M12

2 , f [ f cd , cd5M2, and

«a
i jk5«1*

j«2*
i«3

kF12
x

x2x1
1

1

x1
2

2x

x1
1

x

~12x!x1
1

xx2

~12x!x1
1

xx2

~x2x1!x1
G1«1*

k«2*
i«3

j F 1

x2x1
2

1

12xG
1«1*

k«2*
j«3

i F 2x2

~12x!~x2x1!G1«1*
i«2*

k«3
j F x2

~12x!~x2x1!G1«1*
i«2*

j«3
kF 2x2

x2x1
1

xx2

~12x!~x2x1!G
1«1*

j«2*
k«3

i F 2x2

~12x!x1
2

xx2

~12x!~x2x1!x1
G1«1* «2* Fd ik«3

j x2

~12x!2 1d jk«3
i x2

~12x!x
1d i j «k

3S xx2

~x2x1!22
x2

12xD G
1«1* «3Fd jk«2*

i S x

~12x!~x2x1!
2

1

xD2d i j «2*
k xx2

~12x!~x2x1!22d ik«2*
j xx2

~12x!2~x2x1!G
1«2* «3Fd i j «1*

k 2x2

~x2x1!2 1d jk«1*
i x2

x~x2x1!
2d ik«1*

j S xx2

~12x!2x1
2

x2

~x2x1!x1
D G . ~B4g!

g~b!52
Nc

2
i f c1c2c3E

x1

1 dx rdt~x!

x~12x!
E d2k'r Dt~k'!

F2l~b!

k3
1 «~b!1~1↔2!, ~B5!
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where

F2l~b!

k3
12 5

2M22M12
2

~M22M12
2 !21M4 ~ f acf 21!, ~B5a!

«~b![«b
'k'5«1* «2* «3kS 12s~b!2

1

x
2

1

12xD1«1* «3«2* kS 1

x
1

s~b!

12xD1«2* «3«1* kS 1

12x
1

s~b!

x D , ~B5b!

ands(b)5(x11x)(x2112x)/(x2x1)2,

g~c!52
2Nc

2
i f c1c2c3E

x1

1 dx rdt~x!

~x2x1!~12x!
E d2k'r Dt~k'!

F2l~b!

k3
1 «~c!1~1↔2!, ~B6!

where

F2l~c!

k3
1 5

x2M68
2 1Mbd

2

M68
4 1Mbd

4 ~ f 68f bd21!, ~B6a!

«~c![«c
'k68

' 5«1* «2* «3k68S 2x2

x2x1
1

x2s~c!

12x D1«1* «3«2* k68S 212s~c!1
x2

12x
1

x2

x2x1
D1«2* «3«1* k68S 2x2

12x
1

x2s~c!

x2x1
D ,

~B6b!

ands(c)5(x12x1x1)(12x11)/x2.

g~d!1g~ f !54NcY123E
0

1 dx rdm~x!

x~12x!
E d2k'r Dm~k'!k'2F11

1

x2 1
1

~12x!2GFF3l~d!

x2
2k3

12 1
F2l~ f !

x2k3
1M2G14Y123

F2l~ f !

x2k3
1 m̃d

21~1↔2!,

~B7!

where

F3l~d!

x2
2k3

12 1
F2l~ f !

x2k3
1M2 5

1

x2
2

M12
2 2x2M2

M12
4 1M2 H FM2S 1

x2
1x2D1M12

2 GF f 2f bdf 1221

2M41~M2/x21M12
2 !21M12

4 2
f f bd21

M41~M2/x21M12
2 !2G

2
M41M12

4

M2/x21M12
2 F f 2f 1221

2M41M12
4 2

f 2f bdf 1221

2M41~M2/x21M12
2 !21M12

4 G J 1
M12

2

x2M2

f 12f
221

M12
4 12M4 , ~B7a!

Mbd
2 5M2/x21M12

2 , sinceM68
2 [M2 in termsd and f ~heref is a subscript, not a form factor!, f 12[ f ad , ad5M12

2 ,

F2l~ f !

x2k3
1 5

f 1221

x2M12
2 , ~B7b!

r dm(x) is given in Eq.~4.7!, r Dm(k')5r D
4 (k'2), and 2g2m̃d

2516p3md
2.

g~g!1g~ i !52NcY123E
0

1 dx rdm~x!

x~12x!
E d2k'r Dm~k'!k'2F11

1

x2 1
1

~12x!2GFF3l~g!

k3
12 1

F2l~ i !

k3
1M2G12Y123

F2l~ i !

k3
1 m̃d

21~1↔2!,

~B8!

where
116006-14
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F3l~g!

k3
12 1

F2l~ i !

k3
1M2 5

2M12
2

M2

f 12f
221

M12
4 12M42

M21M12
2

M41M12
4 H ~2M22M12

2 !F f 2f caf 1221

2M41~M22M12
2 !21M12

4 2
f f ca21

M41~M22M12
2 !2G

1
M41M12

4

M12
2 2M2 F f 2f 1221

2M41M12
4 2

f 2f caf 1221

2M41~M22M12
2 !21M12

4 G J , ~B8a!

with ca5M22M12
2 , and

F2l~ i !

k3
1 52

f 1221

M12
2 , ~B8b!

g ( j )5g`1(1↔2), whereg` denotes the counterterm coefficient in

g`215(
123

E @123#d̃~k11k22k3!
g3

16p3 g`a1
†a2

†a3 , ~B9!
d
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whose dependence on the quantum numbers 1, 2, an
needs to be found.

APPENDIX C: ULTRAVIOLET DIVERGENT TERMS IN
gl21

The three-gluon vertex is given by Eqs.~B4!–~B9!. The
ultraviolet diverging parts of termsb andc vanish. This can
be seen by changing the variables so that the sum of squ
of relative transverse momenta in three subsequent ver
in Eq. ~B4b! is written as

h68k68
'21h16k16

'21hk'25zr'21xk12
'2, ~C1!

where z5h681h16x1
2/x21h, r'5k'2jk12

' , j5@h68(1
2x)/x21h16x1 /x#/z, and x5@h68h16(x2x1)2/(xx2)2

1h68h(12x)2/x2
21h16h#/z. The coefficientsh are intro-

duced for identification of the finite parts of the counterter
that may contain functions ofx1 . All h’s are equal to 2 in
Eq. ~B4b!. Using the variabler', the potentially diverging
relative transverse momentum integrals in termsb andc can
be written as

g~b!div522
Nc

2
i f c1c2c3E

x1

1

dx rdt~x!

3E d2r'e2zr'2/D2 k'

k'2 «~b!
' 1~1↔2!,

~C2a!

g~c!div52
Nc

2
i f c1c2c3E

x1

1

dx rdt~x!

3E d2r'e2zr'2/D2 k68
'

k68
'2x2

«~c!
' 1~1↔2!.

~C2b!
11600
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Both terms contain an integral of the same structure,

I'5E d2k'
k'

k2 exp@2z~k'2v'!2/D2#, ~C2c!

and limD→` I'5pv', which is a finite ultraviolet regular-
ization effect with no divergence. Thanks to the regulariz
tion factorsr dt , these terms can be integrated overx and the
resulting function ofx1 depends on the choice of the coef
cientsh. If they were chosen to depend onx, an arbitrarily
complex, ultraviolet-regularization-dependent finite functi
of x1 can be obtained, butg (b)div5g(c)div50. Next,

g~g1 i !div52NcY123r̃ d~x1!E
0

1

dx rdm~x!E
m2

` p dk2

k2 e24k2/D2

3x~12x!F11
1

x2 1
1

~12x!2G1~1↔2!. ~C3!

m2 is an arbitrary parameter inserted here to simplify t
notation for the well-defined integral overk2 at small k
when the terms with form factors are written explicitly an
the small denominator effect is absent. One also obtains

g~d1 f !div52g~g1 i !div . ~C4!

The logarithmically diverging term~C3! appears then with a
factor of 23 in the counterterm coefficientg` in Eq. ~B9!.
Its finite contribution to the counterterm is a finite numb
timesY123.

The remaining termg (a) of Eq. ~B4! contains the tenso
k i jk5k68

i k16
j kk contracted with« (a)

i jk and the latter does no
depend on the transverse momenta. The ultraviolet regu
ization dependence comes only from

FF3l~a!

k3
12 G

D

5
x2

M2M68
2 , ~C5!
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and using Eq.~C1! one obtains

g~a!div58
Nc

2
i f c1c2c3E

x1

1

dx rdt~x!
12x

x2
I i jk«~a!

i jk 1~1↔2!,

~C6!

where

I i jk5E d2r'e2zr'2/D2 k68
i k16

j kk

k'2k68
'2 . ~C7!

The ultraviolet-regularization-dependent part ofI i jk can be
evaluated using Feynman’s trick to combine denomina
and making similar steps as in Eq.~C2!:

@ I i jk #D5
p

2

x1

x

12x

x2
Fk12

i d jk2k12
k d i j

1
x2x11xx2

x1~12x!
k12

j d ikG ln D

uk12
' u

. ~C8!

A number of finite terms are obtained that depend on
choice of coefficientsh in Eq. ~C1!. The terms include also a
new tensor structurek12

i k12
j k12

k /k12
2 . Inserting@ I i jk #D in place

of I i jk in Eq. ~C6!, one obtains

g~a!div58
Nc

2
i f c1c2c3E

x1

1

dx rdt~x!
12x

x2
@ I i jk #D«~a!

i jk 1~1↔2!,

~C9!

where

i f c1c2c3
12x

x2
@ I i jk #D«~a!

i jk 5p ln
D

uk12
' u

@c12Y121c13Y13

1c23Y23#, ~C9a!

and

c125
2

12x
1

1

x2x1
1

1

x
1

~12x!2

x2
2 2

2

x2
, ~C9b!

c135
2

12x
1

1

x2x1
1

1

x
1

~12x!2

x2
22, ~C9c!

c235
2

12x
1

1

x2x1
1

1

x
2

~12x!2

x2
2 2

11x2

x2
22,

~C9d!

with

Y125 i f c1c2c3«1* «2* •«3k12, ~C10a!

Y1352 i f c1c2c3«1* «3•«2* k12

1

x2/3
, ~C10b!

Y2352 i f c1c2c3«2* «3•«1* k12

1

x1/3
. ~C10c!

The counterterm should cancel the divergence, so that
11600
rs

e

05g~a!div1g~d1 f !div1g~g1 i !div1g`div1~1→2!

52Ncp ln
D

m H 2E
x1

1

dx rdt~x!@c12Y121c13Y131c23Y23#

23@Y121Y131Y23# r̃ d~x1!E
0

1

dx rdm~x!x~12x!F11
1

x2

1
1

~12x!2G J 1g`div1~1↔2! ~C11!

and

g~ j !div52Y123

2Ncp

3
ln

D

m
@111h~x1!#, ~C12!

where

h~x1!56E
x1

1

dx rdt~x!F 2

12x
1

1

x2x1
1

1

xG
29r̃ d~x1!E

0

1

dx rdm~x!F1

x
1

1

12xG1~1↔2!.

~C13!

The ultraviolet countertermg`21 has the form~B9!, where

g`5Y123

2Ncp

3
ln

D

m
@111h~x1!#1gfinite . ~C14!

Different choices of the coefficientsh in Eq. ~C1! lead to
different finite termsgfinite , which demonstrates a finite de
pendence on the ultraviolet regularization. To restore the
variance of observables, the finite terms must be then
lowed to contain unknown functions ofx1 that multiply three
structuresY12, Y13, andY23 from Eq. ~C10! and the fourth
structure

Y45 i f c1c2c3«1* k12•«2* k12•«3k12/k12
2 . ~C15!

Inclusion ofnf flavors of quarks produces ing ( j )div addi-
tional diverging terms of the form

22pnf ln
D

m
@cf 12Y121c f13Y131cf 23Y231cf mY123#,

~C16!

where

cf 1252E
x1

1

dx
124x12x21x1

2x2
2 1~1↔2!, ~C17a!

cf 1352E
x1

1

dx
124x12x21x1

2x2
1~1↔2!,

~C17b!

cf 2352E
x1

1

dx
2214x22x2~11x2!1x1x2

2x2
2 1~1↔2!,

~C17c!
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cf m5E
0

1

dx
23

8
2@122x~12x!#1~1↔2!.

~C17d!

After simplifications, integration, and symmetrization, t
fermion contribution turns out to be not sensitive to smax
regularization and changes Eq.~C14! to

g~ j !div52Y123

2p

3
ln

D

m
$Nc@111h~x1!#22nf%.

~C18!

APPENDIX D: Wl„x… IN Eq. „5.2…

Wl12(x1 ,k12
'2), Wl13(x1 ,k12

'2), andWl23(x1 ,k12
'2) in Eq.

~4.14! all become equal toWl(x1) whenk12
' 50. The calcu-

lation of Wl(x1) is based on the extraction of the coefficien
of terms linear ink12

' , which form Yi j for i j 512, 13, 23.
The procedure employs the following facts. The se
interaction termsd andg, and mass countertermsf andi from
Fig. 2, contribute through

g3

16p3 NcE
0

1

dxE d2k'

k'2 x~12x!F11
1

x2 1
1

~12x!2G
3@5 f 214 f f bd24 f 2f bd22 f 323u~m22k2!#.

~D1!

m is introduced only for simplification and is canceled in t
full formula for the dependence ofWl(x1) on l. In the term
g (a) , the renormalization group factor of Eq.~B4c! contrib-
utes to the dependence ofWl(x1) on l only through a small
A expansion of

FF3l~a!

k3
12 G

l

52
x2

@M680
2 22x2A#M2 f f 16f 68, ~D2!

whereA5k'k12
' /(x2x1) and the added subscript 0 indicat

thatk12
' is set equal 0. Other parts do not contribute beca

when the form factorsf are expanded, no dependence onl is
generated due to dimensional reasons and the remaining
tors cannot contribute since they are multiplied by the diff
ences of the form factors and there is an identity
v,

sa

11600
-

e

ac-
-

E
0

` dz

z
@e2az2/l4

2e2bz2/l4
#5

1

2
ln

b

a
, ~D3!

which shows thatl drops out. The expansion inA in Eq.
~D2! produces the same tensor structure as in Eq.~C8!,
which leads then to Eq.~5.2!.

APPENDIX E: REGULARIZATION MIXING
FOR x AND k�

Regularization with invariant masses implies that the
efficients h in Eq. ~C1! become equal toh51/x11/(1
2x), h685x2 /(x2x1)1x2 /(12x), and h165x/x11x/(x
2x1). These coefficients diverge whenx→x1 or x→1. In
mass counterterms, the coefficienth is the same. When inte
grating over transverse momenta in mass counterterms
r D(2hk'2), one obtains in Eq.~4.9! only a logarithmically
divergent integral overx and a regularization factor of th
form r d(x)5xd is sufficient to regulate it. In other words, i
place of the second scalee, in r d from Eq. ~5.9!, one can
consider regularizations of transverse divergences that
vide additional damping of the small-x region. The question
is what are the consequences of the mixing of largek and
small x in gl21. Most representative is Eq.~B4!. Although
all threeh’s can grow tò , x is limited and does not excee
1/(x1x2), reaching this value at the ends of the integrati
range, whilej51 when x5x1 and drops down to 0 atx
51. Therefore,xk12

'2/D2 in the exponent is always a sma
number and vanishes whenD→` without contributing to
the regularization dependence. On the other hand, the c
ficient z grows to infinity at the ends of the integration regio
in x. This way the ultraviolet regularization factor dependi
on invariant masses changes the small-x singularities. The
same phenomenon occurs in a simpler form in the insta
neous terms involving 1/]12. The instantaneous terms them
selves do not contain an integration overk', but the integra-
tion occurs when these terms are included in the dynam
The logarithmically divergent integrals overk' produce
logarithms ofz asD-independent remnants of the ultraviol
regularization and one cannot exclude arbitrary functions
x in finite parts of the ultraviolet counterterms, includin
integrals that strengthen small-x logarithmic divergences. In-
variant mass regularizations, including a small gluon masm
@6#, provide additional damping forx;m2/D2.
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