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Renormalized Hamiltonians for gluons are constructed using a perturbative boost-invariant renormalization
group procedure for effective particles in light-front QCD, including terms up to third order. The effective
gluons and their Hamiltonians depend on the renormalization group parametbich defines the width of
momentum-space form factors that appear in the renormalized Hamiltonian vertices. Third-order corrections to
the three-gluon vertex exhibit asymptotic freedom, but the rate of change of the vertex dépends in a
finite way on regularization of smaX-singularities. This dependence is shown in some examples, and a class
of regularizations with two distinct scales xis found to lead to the Hamiltonian running coupling constant
whose dependence armatches the known perturbative result from Lagrangian calculus for the dependence of
gluon three-point Green’s function on the running momentum scale at large scales. In the Fock-space basis of
effective gluons with smalk, the vertex form factors suppress interactions with large kinetic energy changes
and thus remove direct couplings of low-energy constituents to high-energy components in the effective
bound-state dynamics. This structure is reminiscent of parton and constituent models of hadrons.
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[. INTRODUCTION frames. For simplicity, this paper is limited to gluons. Quark
effects in the gluon dynamics are mentioned only in passing.
Current studies of hadronic structure are guided by threéluons alone are worth a discussion since their interactions
physical pictures. The first picture is based on the constituerire responsible for asymptotic freedom. This feature requires
quark model, which serves as a classification of hadrons i#nderstanding in Hamiltonian approach independently of the
particle data tablell]. Quantum numbers of a hadron in this quark dynamics. Also, asymptotically free effective gluon
model correspond to a simple Hamiltonian with only kinetic interactions display specific sensitivity to the regularization
energy of two or three quarks and interquark potentials in th®f smallx singularities.
hadron rest frame, with no gluons. The second picture is Section Il presents the initial regularized Hamiltonian for
provided by the parton model for hadrons in the infinite-gluons. The Hamiltonian includes ultraviolet counterterms
momentum framé2]. Modern versions of the model intro- that are calculable order by order in the procedure described
duce a slew of quarks and gluons with distribution functionsin Sec. lll. The procedure introduces vertex form factors in
in variable x—a fraction of the hadron momentum that is the effective gluon interactions. The form factor width pa-
carried by a parton. About half of the hadron momentum isameter\ is reduced from infinity down to the scale of had-
carried by gluons, with mostly small values Bf so that ronic masses through a solution of a differential equation,
many partons can share the hadron momentum. B|nd|ng cwlhICh eliminates Iarge momentum transfers from the bound-
partons is not described by the parton model. In the thircftate eigenvalue problem for effective gluons with small
picture, hadrons are considered to be excitations of a comthe coupling strength of the three-gluon vertex as a function
plicated ground statévacuum that contains condensates of Of A is calculated in Sec. IV and analyzed in Sec. V. These
quarks and gluons. Understanding of hadronic structure ifwo sections show how asymptotic freedom of effective glu-
the third way relies on the assumed ground-state propertiedNs emerges in the light-front Fock space Hamiltonians for
[3]. Despite recent progress in experimental and theoretic&?CD. Section VI provides a short summary and a brief dis-
studies of hadronic structure, including the lattice approact§ussion of how the effective particle calculus can be applied
[4,5], the three basic pictures are not yet unified in a singld0 electron-hadron scattering in a simplest approximation.
guantitative formulation of QCD. To connect constituent

guarks and partons with QCD degrees of freedom, one needs Il INITIAL HAMILTONIAN
a relativistic description of effective particles in quantum
field theory. The canonical light-front QCD Hamiltonian requires

This paper describes a perturbative third-order calculatiomegularization and counterterm8]. To regulate the Hamil-
of renormalized Hamiltonians for effective gluons in the tonian, momenta* =p°+ p* and p* = (p*,p?) are param-
light-front Fock space. The effective gluons are derived in eetrized using thet momentum ratiox and relative trans-
boost-invariant renormalization group procedure for particleverse momenta - that will be described below.
[6], which originates in the similarity approach to renormal- Regularization is imposed through factors that exclude large
ization of Hamiltoniang 7] and the notion of vertex form |«*| and smallx, preserving all kinematical symmetries of
factors for extended strongly interacting partic[@. The the light-front dynamicgi.e., the Poincareymmetries of the
renormalization procedure provides a connection betweesurfacex” =x°+x3=0 in space-timg and processes of cre-
the canonical quantum field theory and the concepts oétion of particles from the bare vacuum are absent. Power
bound-state constituents in the rest and infinite-momentumounting and the renormalization strategy for the absolute
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coordinatesx~ =x%—x3 andx* =(x!,x?) or p* andp* [9], where [k]=6(k")k"d?k'/(167°kT) and ef =(g,,
are modified when one goes over to the variablesid «*. =0,e,,=2k"e./k",e.). Hereo numbers gluon spin polar-
However, key features remain similar and perturbative reization states and is a color index. The creation and anni-

sults described in the next sections agree with the expectailation operators satisfy the commutation relations
tion that the ultraviolet renormalization of light-front Hamil-

tonians involves functions of. [Agge ’al’a’c’] - k+3(k— k') 87" scc (2.49
A. Canonical terms where 8(p)=16738(p*)8(pt)8(p?) and commutators
The classical Lagrangian density for gluon fields is among alla’s and among alk™’s vanish. For all momenta,
. spins, and colorsa,,¢/0)=0 anda,,. creates bare gluons
from the statd0).
=— _ mv
£ 2trF F v @1 The plain insertion of Eq(2.4) into P~ produces terms

with creation and annihilation operators appearing in all pos-
whereF#"=g*A"— 9"A*+ig[ A*,A”] andA*=A%t? with  sible orders. All terms are then ordered so that creation op-
[t8,tP]=if3P%°. The Lagrangian implies equations of mo- erators stand to the left of annihilation operators. The process
tion, ¢,F*"=ig[F*",A,], and for fields satisfying these of ordering produces commutators of creation and annihila-
equations the canonical energy-momentum density tensor tfon operators, which lead to diverging integrals. All such
THY= —FaragrA® 4+ g””Fa“'BFiBM. terms can be dropped at this stage entirely since they will be
In the gaugeA®* =0, the Lagrange equations constrain either removed by regularization, in the case of modes with
A~ to A =(1/9")29 At —(2/9+?)ig[at A+,AL] and the k* =0, or, after regularization, they will be replaced by well-
independent field degrees of freedom Afe The first term  defined mass counterterms that result from a renormalization

in A~ is independent of the coupling constanand can by group procedure and contain free additivg fir)ite par.ts.
definition be included in a new constrained fieddt=[A* The ordered operator, denot@ sy is highly diver-
=0, A =(1/0")20* A", A*]. The second term can be kept gent. For example, a correction of ordgrto the frTee energy

1 1 . - 2 . _ .
explicitly as part of the interactions. Using this conventionk =K “/k™ of a single bare gluon stateoc)=ay,|0) di-
and freely integrating by parts, one obtains an expression foferges due to integration over an infinite range of transverse

the light-front energy of the constrained gluon field: momenta of virtual gluons that appear in the intermediate
states of second-order perturbation theory. The energy cor-

1 rection diverges also due to smallsingularities. Namely,
P_:Ef dx™d** H]y+ o, (2.2 the gluon momenturk™ can be shared by two intermediate
gluons carrying fractiong and 1—x. The sum over interme-
whereH=T*" and diate states involves an integral ovefrom 0 to 1, while the

polarization vectors of intermediate gluons providand 1
L —x in denominator of the integrand, cff, in Eq. (2.4). As
5T =Hazt Hpst Hast Hisnnge, (2.3 another example, the ProduBf P quanumiS €ven more
divergent than the energy correction because it does not con-
with tain the energy denominator that reduces the contribution of
intermediate states with large momenta in perturbation

1 theory. Consequently, exp{PyanuX /2) as a candidate
— 2 quantu
Haz=— EAL(‘?L) AL (233 fora unitary evolution operator in time*, is not defined
before one regulateB,nym Py limiting the range of mo-
HA3=gi&aAZ[A“,AB]a, (2.3  Mentum that the bare gluons may have.
1 ) a a B. Regularization
Hps= = 797 Aa.Ag] [A®,AP]2, (2.39

The first step in the regularization procedure is made by
limiting the range of momentum integration in Eg.4); cf.
Ref.[9]. Let |k*|<Q andk™>e", with the understanding
that Q—o and e”—0 when the regularization is being re-

(2.30 moved.
The lower bound o™ implies that the regulated expres-
This expression is a candidate for further consideration irsion for P,nym denoted byP, ., does not contain any
analogy to QED[10-13. A heuristic expression for the terms with exclusively creation or annihilation operators.
quantum gluon energy operator is obtained by substitution:Sych terms would be forced by a translationally invariant
integral overx™ to preserve momenturk®’, while the mo-
_ C i —ikx_ yc ¥ 4T aikx mentum they would have to create or destroy is at Irast
AM_; [KILE ek el Bkrel™ I ~o wheren den)c/)tes the number of creation or )::mnihilation op-
(2.9 erators in such terms, respectively. These two conditions are

1., 1
H[HAA]ZZ 592[|5+AL,AL]a(i(9+)2[|[9+AL,AL]3_
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incompatible. Henc®, . does not contain terms that could I s(X)=6(x—95). (2.9

alter the bare vacuum stal®. The coupling constang is . ] )

assumed to be sufficiently small for stability of the regular-Integrals that behave as énor 6" with negativen will be

ized theory built on top ofo); cf. [14]. called smallx divergent. Mixing of the ultraviolet and
The limits on absolute momenta Ry, . violate the boost ~SMallx rggularzlzgno_ns through expressions of the type

invariance of light-front dynamics, and in the terf®.3d ex — (k< /X)/A. lis d|scuss_e.d N Appendix E. . .

with inverse powers of*, one may still have 0 in the de- Every creatlon and annihilation operator in all vertices in

nominator. To eliminate the violation of boost invariance andthe operatorP,, . is supplied with a factor 5, ks being

regulate the %' singularities, P, . is further curbed replaqed by the corresponding parent momentum. Terms that

through the following step € contain four operators are recast as contracted products of

) g e terms with only three operators, which are already regulated.
Intergctlon terms |rPQE+.ar-e mod|f|e-d so thathangesof This step proguces regpularization factorghat are g):]/ive% in
the particle momenta are limited. In this work, the transversg, | getajl in Appendix A. The instantaneous terms contain-
momentum changes are limited by a parameferand i, inverse powers of* are regulated in the same way, by
changes ok by a parameted. As an example, itis useful 0 jyierpreting the momentum that is transferred along the in-
consider the three-gluon vertex vertedd* as a momentum carried by a virtual particle that

_ connects two verticegl1,12. The fully regulated operator
Hasner = >, f [123]8(ky+ko—k3)[Co.+(123alajas P,.+ is denoted by P, _.]xs-
1 In the last step of defining the initial Hamiltonia, s,
+C;‘)€+(123)a§a2a1]. (2.5 the Iitmitts of Q— ande”—0 are taken withA and & kept
constant:

Momentum conservation implies that one can wrkg ) ) _

=x:k3 , K =X.K5 + kip, Ki =Xoka , Kb =XokE — ki, With Has=lim, lim . [Po]astXas. (210

X1+ X,=1 andkg,=X,k; —x; K5 . Herexy, x,, andxy, are

invariant under seven kinematical transformations of light-Xas denotes counterterms, which need to be found. They
front dynamics. It is helpful to call the momentum carried cannot depend o) and € in all orders of perturbation
together by all annihilated or created particles in a singldheory in the limitsQ—o and e"—0, because all changes
vertex aparentmomentum in the vertex. In the vertéx 5),  of finite momenta are now bounded by the parameteasd

ks is a parent momentum. Also, a slash in a subscript is used and a finite. momentum cannot be connected in a finite
below to indicate that the momentum before the slash sign igumber of fixed-size steps to the region of absolute cufaffs
considered to be a daughter of the parent momentum aftéde” when they are removed. Thus the regularization pa-
the slash sign. For exampli; =Xy, + 13, Wherexy; rametersA andédeflr!e a theory w_hose uItraV|oI_et structure
can be analyzed using perturbative renormalization group
strategy independently d? and e when these cutoff pa-
rameters are sent to their respective limits. The renormaliza-
. ; . tion group procedure that provides means for finding the
lation operator. Sincks is a parent momentungs=1 and coun?ertelramg(m order by oprder in perturbation theor;g/] is

l _ . .
23’3;|2’r ar(1d ltzhi)rre%u@'zﬁ“;)n fv?/ﬁtsrre Ti;he ;ird(ﬁ'ﬁ) described in the next sections. The initial Hamiltonian has
q AslK™ S X) M as(K™ 5, ' =Xu3 K then the formcf. Eq. (2.3)].

= k1,. Factorsr , 5 are chosen to have the form

=X1 /X3 and kj3= K1,.
The momentum changes in the ver{@®) are limited by
inserting a factorM(Kﬁ,g,xi,g) for each creation and annihi-

Hpys=Ha2+Hpaz+Hpa+Hjan2+ Xy s, (2.11)
Fas(K 20 =T 4 (k" )1 5(X) 6(x), 2.6 Ao TSI EATT oA R

where, for example,
where

5 kJ_Z
ra(z)=exp(—2z/A%) (2.7) Haz=2 f [K] (e @koclkos (2.129

andr 4(x) suppresses the region gfsmaller thané. That
r,(z) falls off exponentially is a guarantee for ultraviolet and
convergence of all transverse momentum integrals that ap-

ear in perturbation theory. Integrals that behave as dm _ WY B Tt
2” with Eositiven for A— o will be called ultraviolet diver- HAg_gs J [123]5(p"=PIas(3. D0 Y10913285
gent. The smalk regulating functiorr s(x) must vanish suf- s
ficiently quickly for x—0 to regulate all smabk singulari- +9Y1r3a,8]. (2.12h
ties. In a sense to become clear in Sec. V, the faatgrs

considered in this work lie in the vicinity of two cases: These two terms are quoted from Appendix A, where all

regulated canonical terms are listed and the notation is ex-
r s(X)=x/(x+ 8) (2.8)  plained. X, s will be discussed below and in the next sec-
tions. Note that the free Hamiltoniaf2.12g9 contains no
and regularization. This is necessary to preserve kinematical
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light-front symmetries. Differences between the bare threeinitial Hamiltonian to compensate for the spurious effects of
gluon vertex(2.12b and effective gluon vertex from Sec. V ultraviolet regularization. One takes advantage of the form

are described there. factors in the Hamiltonian vertices in analogy to REf].
The narrow dynamics can smear states of effective particles
IIl. RENORMALIZATION GROUP PROCEDURE with finite energy, only by less tham\ towards high ener-
FOR PARTICLES gies innth-order perturbation theory. For to raise the free

) ) _energy of a state bg\, the effective interaction must act on

In Eq. (2.11), H,; is expressed in terms of the creation he state aboun times when the form factors die out expo-
and annihilation operators for bare gluons in regulated |°Catl1entially for energy changing by more than The highest-
theory. This section describes the renormalization group prog,dern that is still independent oA approachese when A
cedure[6] that is used in Sec. IV to rewrite the initial Hamil- .~ Therefore, to obtain the ultraviolet regularization-
tonian H,; in terms of operators that create or annihilateingependent results, at least in perturbation theory to all or-
effective gluons, instead of bare ones. The effective gluoyers it is sufficient to demand that the Hamiltonian coeffi-
operators are obtained by applying a unitary transformatioRients in front of creation and annihilation operators with
Uy to the initial bare operators. The effective operators definjite \ be independent of the ultraviolet regularization.
pend on the parametarthat labelsis, . _ . Hence one can read the diverging structure of ultraviolet

The parametex has dimension of mass and distinguishescqoynterterms from the coefficients: see E2)11). However,
different kinds of effective gluons according to the following the effects of smalk regularization are not under control of
rule. Effective gluons of typa can change their relative the renormalization group procedure and the coefficients
motion kinetic energy through a single effective interactionith finite \’s may depend om s(x). The dependence of

by no more than abouk. The transformatiori/, is math- .o sometimes drops out, but finite effects may remain, as
ematically designed in perturbation theory so that resultingy;ij| be shown with examples in Sec. V.

interaction terms contain vertex form factors and the latter | the perturbative renormalization group procedure for
limit the kinetic energy changes by their width parameter,geriving effective particles and their interactions, one never
which equalsx. All Hamiltonians with different\’s are  encounters genuine infrared singularities associated with
equal, and the rewriting does not introduce any change in thgpq| energy denominators. This is explained below Eg.
theory, although the same Hamiltonian appears differently3 10, where the differences of invariant masses are taken
when expressed in terms of different gluons. For brevity, the:are of in analogy to differences of energies in the similarity
effective gluons corresponding to some valueloére re-  yanormalization group procedure for Hamiltonidi®. The

ferred to as gluons of width. perturbative denominators are effectively limited from below
by A. The nonperturbative part of the dynamics with relative
A. General features motion kinetic energy changes smaller thars first tackled

The form factor width parametex greatly differs from When one proceeds to solve the effective Sdimger equa-
the regularization cutoffs, because it may be kept finite, evetion- Since the form factors keep the effective dynamics in a
small, while the cutoffs have to be made extremely large tgvell-defined range of energies, numerical methods may ap-
approximate the initial theory. Even if the expansion in termsP!Y in finding approximate solutions to the full thedry5].
of bare particles is hopelessly complicated, a hadron may
still have a well-defined, convergent expansion in the basis B. Construction of H,
of effective constituents with small widtk.

Thanks to the vertex form factors, in the Fock-space basi
by'lt from gluon§ of widthh, the effective Hamlltonllan ma- operatorsa, that create or annihilate effective particles of
trix eleme_nts _qwckly tend to zero when Fhe effective gluonsWidth \, with identical quantum numbers:
change kinetic energy across the matrix element by more
than A. Therefore, the effective Hamiltonian matrix is nar- a,=U,alf] . (3.2
row. This is important for applications to bound-state physics
because eigenstates of narrow matrices may have a smdthe initial HamiltonianH, s is rewritten in terms ofa, ,
number of dominant component$5]. In the case of had- H,,;=H,(a,). If quarks were includedH , 5 would corre-
rons, the constituent model suggests that the intricate conspond to the QCD Hamiltonian written in terms of canonical
plexity of QCD is buried in the structure of constituents andquarks and gluons, associated with bare partons or bare cur-
their interactions, while the number of effective COﬂStituentSrents_H)\ for X comparable with masses would represent the
is small. The success of perturbative QCD in reproducingsame Hamiltonian written in terms of constituent quarks and
changes of deep inelastic structure functions with momenturgluons. Applyingl4, , one obtains
transfer down to fairly small values suggests that the struc-
ture of effective constituents can be approximated using per- H,=H,(a) =u{H AsU - (3.2
turbation theory. The idea of effective particles is by no
means new[17]. The new element is the renormalization H, has the same coefficient functions in front of products of
group procedure for effective particles in QCD. a’s as the effectived, has in front of the unitarily equivalent

The renormalization group procedure provides the meanproducts ofa,’'s. Differentiating H, with respect to\, one
to find countertermsX, s that have to be included in the obtains

Let a commonly denote the bare operatas,. or a;,. .
Dperatorsa are transformed by the unitary operatdy into
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H =—[Ty  Hy\], (3.3y  where the curly brackets with subscrig indicate the solu-
tion for 7 that follows from Eq.(3.9). The choice of made
where T, =114, . Here 7, is constructed below using the above implies that perturbation theory fétand G does not
notion of vertex form factors. For example, if an operatorlead to small energy differences in the denominators, since
without form factors has the structure 1—f vanishes quadratically with the energy difference.
contains only connected interactions becausg Ed0 has a
- commutator on the right-hand side. The initial condition for
OA:J [k1k2k3]vk(1’2’3)a;rk1a1kzakk3' (34 Eq.(3.10 is providedgbyHM, so that Eq(3.10 in integral
form reads
the operator with form factors is written 450, and has the

A
structure Gy=Hjust J; defGis {(1=f9)Gistg . (3.1D

A Tt
fKOK_J [k1k2k3]fk(M12'M3)V>\(1’2'3)akk1akkzahka’ which allows one to find the counterternm¥, s using the
(3.5 condition that they remove the dependence on regularization
from the second term for finitda and relative momenta of
where interacting particles. The counterterms contain free finite
_ _ 2 224 parts that need to be determined,using experimental data,
F(Muz, Mz) =ex — (M= M3)“/\7]. (3.6 including symmetries such as Poincaggmmetry of observ-

N . i L ables or current conservation. Finalli, =f,G, .
For any operatoO expressible as a linear combination of

products of creation and annihilation operatdté, contains

a form factorf, (M., M,) in front of each product, where , . , . )

M, and M, stand for the total free invariant masses of This section contains formulas used in Sec. IV fo_r solving

particles createéc) and annihilateda) through the product, Eq. (3.1]). in perturbqnon theory up to third order. Since the'

respectively. For gluons in EG3.6), M5=0. perturbative expansion has fo_rmally the same structure as in
The relative motion kinetic energy changes in interactionScar theory18], only the main steps are Ilstegl. In the first

vertices of effective particles are limited by demanding thaSteP:91x IS expanded into a series of termg~g™:

H,=f,G,, with some unknownG, . Then one derives o

equations foiG, that result from the choice fdr, and some G=> 7. (3.12

definition of 7, . In practice, one first usds, to transform n=1

the Hamiltonian toH, =f, G, and then one calculates coef- . ) o

ficients ofa’s in G, , which are the same as the coefficients 't immediately follows from Eq(3.11) that 7, is indepen-

of a, in G, . This calculation includes the constructionZyf ~ dent ofA and equal to the second term in the initial Hamil-

and proceeds as followi¢he subscriph is dropped for sim-  tonian from Eq.(2.1D), i.e., Eq.(2.12D. One hasr; =y,

C. Perturbation theory for G,

plicity of notation): +ay,, Wherea,, denotes the first and,, the second term
on the right-hand side of Eq2.12h. The left subscript de-
H =1t'G+{G' =—[T,Go]l-[7.G/]. (3.7  notes the number of creation and the right subscript the num-

ber of annihilation operators. The corresponding Hamil-
G is splitinto two parts. The free pa@ is bilinear ina's and  tonian interaction term is obtained by multiplying the
independent of the coupling constagt The remaining integrand in Eq.(2.12b by f,=exd—(k;+ky)*\*] and
interaction-dependent part is denoted &y In the present transforminga’s into a,’s.
work, G, is taken to be independent af The definitions of For 7,=B11% Ba1t B1zt B2z, EQ.(3.10 implies
f and G, imply then thatfGy=G, and f'G,=0. Equation
(3.7) contains two unknowng andg, . Without loss of gen- rp=[{f"m}, fr = [ m171], (3.13
erality, one assumes th@-0 wheng,— 0, and one expands
operators in powers af, with the goal of enabling the pro- Wheref,={f"}f —f{f’}, with the understanding that the first
cedure to work order by order. The expansionZotarts factor f in all terms of f, is for the first 7 in the square
from the term of Ordegl . Changes Ogl with N should start brackets and the second facfan all terms Offz is for the

from second power. If secondrin the brackets. The square brackets denote all con-
nected terms that result from contractions replacing products
G/ =—1[T.G/], (3.8 aa by commutator§a; ,a/]. The solution forr, is then
then Tox=— fz)\[ T]_Tl] + T2 » (314)
[7.G0]=[(1-1)G]’ (3.9  where F,,=[f, depends on incoming and outgoing mo-

menta in the two vertices formed by the operators in the
square brackets. In the sequerag,,b7,.C, the three suc-
cessive configurations of particle momenta are labeled,by
b, andc. To write down compact expressions 6k, , the

and

G =016 {(1-1)Glg 1. (3.10
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symboluv = M2 — M?, is defined, whereu’, denotes the gluonsvertex in the HamiltoniarH, (a,). Sian 9n=9
free invariant mass of a set of particles from configuration +0(g"), the Hamiltonian terms of ordeg, andgy can be
that are connected to the particles in configuratiohy an  calculated using an expansion in powers gbefore one

interactionr,, in the sequencer,,v. Spectators of the in- proceeds to the third-order terms that defgye All calcu-
teractionr,, do not count. In this notation, lations are carried out in the framework described in Sec. .

In the rewritten Hamiltoniaid, (a,), the terms that have
fAu(Map, Mpa)=exd —(ab?’\*)]=f,,. (3.19  coefficients of order 1 are

The parent momentum for the vertex connecting two con-
figurationsu andv is denoted byP,,, and in the following
equationsp,, is written in place ofP, . In all expressions,

the minus component of the momentum of every gluon ISThe subscripth indicates thata, .. annihilate andaika—c
given Lb2y t?e elgenvqlue dfg=Haz2 .from Eq.(2.123, i.e,,  create effective gluons of width. The effective gluons can
k™=k=“/k™. Thus, with the Gaussian vertex form factors, g|so be interpreted as having a spatial transverse width on the
order of 1A for moderate values of. This interpretation is
foofo —17. 3.1 explained below Eq(4.3).
a’+bc? [apfoe=1]. (219 The terms inH, (a,) that have coefficients ordey are
(see Appendix A for details of the notatipn

kLZ
H<O)=§;f J’ [k]k_JraIkoca)\ka-c- 4.1

ba+pybc
]-‘z(a,b,c)= Ppal Puc
b
In Eq. (3.14),
T2 = Has+Hpganz+Xa s, (3.17 H(1)21223f[123]3(DT_p)fx(Mlsz)Ta(Xl)

whereX, s, denotes all ultraviolet counterterms proportional M- +
to g. X[9Y12@ 18y 28031 G Yo 3@ 281], (4.2

For third-order terms 73= yy1+ vioF+ Va1t Y14t Y32
+ v,3, EQ.(3.10 gives

ma=[fr {(1=1) 7} T+ [{f" 71}, f75]. (3.18

After integration,

where
Ts(X)=T145X)rs(1—x), 4.3

and the form factof, (M ,,0)=exd — k 14/ (X1x,\?)?] falls

off as a function of the relative transverse momentum at a
rate that depends oncarried by gluons. For moderate values
around 1/2, the transverse momentum width is on the order
of N/2, but for x approaching 0, the transverse momentum
width of the vertex becomes very small, leading to a spread
of the interaction strength in the transverse spatial directions.
Thus the coupling of effective gluons to the wee region is
quite different from the canonical coupling in E@.123.

Tan=Fanl il i1 ]1— Faall 71711 71]

+f2)\[7'2xT1+7'17'200]+ T30 s (319
where, for any sequencer,,b r,.C7.qd,

fsz(a,b,c,d):_.7:31(d,c,b,a), (32@

pchb+ pchd

Fa(a,b,c,d)= W[(pbdb(jJr Ppaba)

fanfocfcafba—1 fanfpa—1

ab?+bc?+cd?+bd? ab’+bd?

bc?+cd?
+pbd db

fabfbcfcd_ 1
ab’+bc?+cd?

~ fapfocfeafpa—1
ab®+bc*+cd’+bd?

The last term in Eq(3.19 denotes counterterms proportional
to g3, i.e., 73..= X, 53. The next section describes the calcu-
lation of y,,. The calculation requires knowledge 6f,

B2z, and B, For all terms,mj = .

IV. INTERACTIONS OF EFFECTIVE GLUONS

. (3.2)

Terms with coefficients of ordeg? are derived by chang-
ing ato a, in 7,,=By11T Brz1+ BrizT Braz and by insert-
ing form factors as described in Sec. Il B. The contribution
of 7,, includes a counterterm induced by the ultraviolet
regularizationr,, . Namely, to evaluate the ternp, ;; one
needs to know the counterterp,q;. It follows from Eq.
(3.19 that

2

M\
Brn=2 | K7 Bkoclioe (4.4

where

, 9% (1 dx

1
_ 2 1
M)\_16,n_3 OX(l_X)fd K k+~7:2)\(kaak)

ng Y 5+ 12, (4.5

This section describes the derivation of effective gluonand the last termu2 is contributed by the counterterg, ;.
dynamics in third-order perturbation theory in the couplingThe structure 0f3..14 is known here from hindsight: i.e., the
constanig, that measures the strength of the effective threeregularization dependence of the integral in Ej5) results
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in a number that depends on the functiof(«?), but does Having the result forB, 11, one replaces the basewith

not depend on the gluon quantum numbers. One khas effectivea, . The second-order effective gluon mass term is
=kt2/k", KT=(M?+k 2)/k", M?=k*2/[x(1—x)], and

Ty.1is given at the end of Appendix A. The sum over quan- Mf

tum numbers of intermediate two-gluon stateig|Y /> H(2)11=2 f [k] kTaIkgcaxkgc. (4.10
=Nck?[1+ 12+ 1/(1—x)?]= k®P(x)/[2x(1—X)], where 7e

P(x) is the Altarelli-Parisi gluon splitting functiof®g(x)

[19]. HereN.= 3 denotes the number of colors. Other terms of ordeg? are derived following the same path,

Assuming that for soma =\ the effective gluon mass but they do not require ultraviolet counterterms for regular-
squared should have the valyg,, one can calculate the ization adopted in Sec. II.

counterterm masg? from Eq. (4.5). The resulting effective Of main interest to this work is the term,,; whose cal-
mass takes the form culation involvesry, B11, B2, andB3;. Details of the cal-

culation are described in Appendixes B and C. Equa(&i)
1 for y\,1 has the following structurgcf. Eq. (3.1D)]:

k+

g% [1dXTrs,(X)

2_ 2 2
M lu’05+ 16’773 0 X(l—X)

K

X[ For— Far J?P()[X(1=x)], (4.6
which is independent of the ultraviolet regularization: F, denotes form factors that multiply tern® which means
that momentum integrals in tern@&cannot produce a depen-
r(sﬂ(x):[‘r‘s(x)]zz ra(x)r3(1—x). (4.7)  dence on the ultraviolet regularization fact&s in the limit

A—oo. The first step in calculating, »; is to evaluate the
To find a more convenient notation for?, the arbitrary, terms/DR, and find their dependence @ , to construct
possib|y5.dependent r"_'”*nbe‘[(z)(S can be rep|aced by an ex- the COUntertermS/le. This Step is carried out in Appendix
pression that follows from a second-order perturbative resufe, includingn; flavors of quarks, with the resulsee Egs.
for a single effective gluon mass correction obtained from(B9) and(C18] that
the eigenvalue equation fat,(a,). This expression intro-
duces a new parametﬂé that would equal the second-order ~ -
result for physical gluon mass squared, if such gluons ex-  Y=21~ 122:3 f [123]5(k, +ko—Ks) 753 718283,
isted. The present paper does not discuss effects that may be (4.12
induced by different choices qf 5 in effective gluon Hamil-
tonians calculated to orders higher thgthor in solving the
effective Schrdinger equation wittH, (a,). With the form
factor f of Eq. (3.15), one obtains

3

where

T A
9? 1 - Y“ZYHTIH ;{Nc[ll+ h(X1) 1—2Nn¢} + Yfinite
wi=ul+ @’ fo dX r5,(X)P(X) Jo dzexd —27%/\%], (4.13

4.9 and

while the counterterm mass is

1 2 1
2 1 h(x1)=6f dxrg(X)|——+—+=
W=t s [ dxr, (0P “ L% X=X
(4’77) 0 “ L 1
—9?'5(X1)j0 dx I’[gp'(X) ;‘Fm +(1<-2).

xJ:dzexr[—4zx(1—x)/A2]. (4.9
(4.133

Inclusion of n; flavors of quarks with bare massas pro-
duces an additional term in the integrand in E8) equal to L
by Eq.(B4a). The counterterm par,i removes finite ef-

Nt _ 4 i —1— —

EfZl?f(X)eXF[ 2;?/)\ ) with ) Qf(x)_ 1_ 2)_((1 X) . fects of ultraviolet regularization. It contains unknown func-
+2m¢/z; resembling the gluon splitting function into a pair 454 ofx, that multiply the Structure¥ 5, Yqa, Ya3in Yios

. 2 ’ ’ L)
of massive quarks of flavof and z;=z+m{/[x(1-X)].  and the additional structuré,: see Eqs(C10 and (C15).
Quarks would also ad&{" ,Q¢(x) to P(x) in EqQ. (4.9.  Here g, differs from canonical terms, but it does not in-
Note that for convergence of the integral oxan the effec-  fluence the third-order running of the Hamiltonian coupling
tive mass tern{4.8), it is sufficient that the regulating func- constant.
tion behaves ag s(x)~x€ with €>0. In the counterterm Having found the counterterm, one obtains a finite answer
(4.9), r 5(x) has to vanish at smatlat least as fast as/?"€.  for y,,; in the limit A—oe:

Ts(Xy) is given by Eq.(4.3), r5,(x) by Eq.(4.7), andr s(x)
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m=§3 J [123]8(p"— P)[ W 15Y 101 Wi 13Y 15+ Wy 3Y 53

+W, Y, ]alala,, (4.14
where the four coefficient#/, are functions ok, and 2
The complete expression for,,, is given in Appendix B.
The effective three-gluon interaction term of ordgt in
H)\(a)\) is H(3)21+ H(3)12, WhereH(3)12: H23)21 and

H 3)21= fLlly Yraidy - (4.19

The operatoi/, is unitary with accuracy to terms of order
higher than third, and its action is equivalent here to chang:

ing @'s to a,’s as in lower-order terms.

V. THREE-GLUON VERTEX

This section describes the running coupling constant

that appears in Hamiltonian interaction vertices written in

terms of gluons of width\. The word “running” means

changing with\. The coupling constant is defined through

the strength of the three-gluon vertex for some value0f

=Xo Whenx1,—0, in direct analogy to the coupling constant

in ¢° theory in six dimensiongl8] or electric charge in the

PHYSICAL REVIEW D 63 116006

in the following sense. At a certain value ot \ g, the three
potentially different numberg, ;; EV)\Oij(xo,ol) can be set
equal to a common valuj;bzgAo by adjusting finite parts of

the countertern(4.13 to match the gauge symmetry result
from the bare canonical Hamiltonian of QCD. Ruofx) =0,
the choice ofky does not matter as long @is negligible in
comparison toxy, and 1—Xgy. Then, forN#\g, the three
coupling constants remain equaj;,)\” VM](XO,O )=ay\
=go+ W, (X0) +0(g5), with g=gqo in W) (xo), or

3

g A
0x=0o— 211N In (5.3

Expressinggg by g, in the differential Eq.(3.10 or in its
integrated forms, Eq3.11) or Eq. (5.3), in the perturbative
expansion up to third order ig, , one has

d 3
A agx:ﬁogw (5.9
with
1IN,
BOZ_ 48772’ (55)

Thomson limit in QED. The effective three-gluon vertex is awhich is equal to thes-function coefficient in Feynman cal-

sum of Hy 43y, and H(1+3)21, whereH 1 3y=H)+H,
and

H113)21= gs f [123]3(pt— P) Al Va12Y 12+ VaisY1s
+Vy23Y 25+ WysY4lal al a5, (5.9
with f, =exp{—[«k15/(x,x2A?)]2}. The effective vertex con-

of width A, instead of the bare ones in Eq2.12h and

tains creation and annihilation operators for effective gluonsh( ) 12[ 1-
X) =
(

(4.14. This change is reflected by the presence of the form

culus in QCD. Thus, if one identifies the effective Hamil-
tonian form factor width parameter with the running mo-
mentum scale in Feynman diagrams, the standard result from
off-shell Smatrix calculus would be recovered in effective
Hamiltonians in the cask(x)=0.

The functionh(x) is determined by the initial Hamil-
tonian and smalk regularization factor s in it through Eq.
(4.133. In the limit 5—0, for r 5 of Eq. (2.8),

factor f, , which strongly suppresses the emission of effec-

tive gluons with transverse momentum larger thgmo\.
The vertex functionsVx(x1,x12), Vyis(X1,x32), and

Vyo3(X1,x32) are used below to evaluate the running cou-

pling constant. The fourth functioWM(xl,KiZz) multiplies
Y., which is distinct from canonical structured/, , is inde-
pendent of\ in the limit k;,—0 and does not contribute to
the running coupling constant.

When «1,—0, all three vertex functions/,;;, for ij
=12,13,23, vary with\ equally. Using results from Appen-
dix D without quarks, one can introduce a single function

W, (x) =V, (x,0") — Vi (x,0")

g° A
__WNC[11+h(X)]|n)\_O, (52)
to describe the behavior of all three functiov;;ij(x,ol)
=(gT s(X) + W, (x) for finite x and\ in the limit §—0.

W, (x) depends orx through h(x). The caseh(x)=0
corresponds to the standard asymptotic freedom r¢&6]t

X—x? (1-x)2=x
+ 1_X)(1_2X)Inx+ X(1=2x) In(1—x)
(5.6
and, in the case afs from Eq.(2.9),
h(x)=12In min(x,1—X). (5.7

These two cases are shown in Fig. 1 along with dase
which corresponds tb(x)=0. The vertex functio’/(x) in
Fig. 1 is defined by

9oV (X) =g+ W\ (X) (5.9
and plotted usinqv0=g(2)/(47r)=0.1 for Ay=100 GeV and
N.=3. In part(d) of Fig. 1, the value of/(1/2) is plotted
againstA. The sharp cutoff caséb) of (x— &) is visibly
different from (c), which corresponds th(x;)=0, but the
continuous casén) of x/(x+ ) differs from(c) only by 8%.
By extrapolation, the result&) and (b) suggest that there
may exist a regularization factog(x) that matches the case
(c). The mathematical structure of EGt.139 and the Eu-
clidean integrals in Feynman diagrams with dimensional
regularization[20] both hint at the power-law functions
r 5(x)=x°. Inspection shows that, in the limit— 0,

116006-8



DYNAMICS OF EFFECTIVE GLUONS PHYSICAL REVIEW D63 116006

width

80 100

FIG. 1. Change of the effective gluon vertex functigfx) from Eg. (5.8) with the width\ varying from\ =100 GeV down to 100
MeV, for three different smalk regularization functions: (a) r ;=x/(x+ 8), (b) r 5= 8(x— &), and(c) r 5=x°6(x— €). Part(d) shows the
dependence of(1/2) on\ for the three cases, correspondingly. The dasedashed line, matches the QCD running coupling constant result
obtained from Feynman diagrams. Note the dynamical suppression of the effective gluon coupling for extreme waluessdga) and
(b). See the text for details.

r,s(x)=x50(x— €) (5.9 that in Fig. 1, where the value af~0.1 for\ on the order of
100 GeV is taken from phenomenology based on Feynman
diagramsgo~1.1>1.
leads toh(x4) =0 for all fixed values ok, between 0 and 1, Figure 1 shows that smativegularizations of Eqs(2.8)

as long ase/6—0. This result sets a path for developing a anq(2.9) lead to a suppression of effective gluon interactions
connection between the Hamiltonian dynamics of effective, ;. x, moves away from 1/2 fowt,—0, wheref,—1

gluons in the light-front Fock space and Feynman diagramﬁ.hey also slow down the rate of growth of the coupling

for Green's functions in the Lagrangian calcufu$]. constant with lowering\. Similar results follow forf, de-

The second scale in Eqg. (5.9 is required to regulate . . 2 - +
linear smallx divergences such as in the mass counterterm@€nding onp instead ofM". Herer is replaced by A

in Eq. (4.9. Details ofr s(x) atx~e are not important for and one loses boost invariance, but in the ratio
pointwise convergence df(x;) to 0, and a whole class of (M1Ks)/(A;k3) the dependence da cancels out.
regularizations with a second scale s gives the same re- ~ Thorn [21] calculated the diverging part of a four-point
sult. Ultraviolet regularizations using invariant mass softengluon Green'’s function using th&" =0 gauge and integrat-
smallx divergences in the mass counterterms so that the segig Feynman diagrams first ovde™. Using sharp cutoffs
ond scalee appears unnecessary, but such regularizationk™>e™ and|k*|<A in the remaining integrals, Thorn found
mix smallx effects with largex* divergences: see Appendix that to understand asymptotic freedom from the cutoff de-
E. In evaluation ofh(x,), factorization of the ultraviolet pendence of Green'’s functions, one has to include direct and
renormalization group flow i from smallx effects requires crossed box diagrams that cancel skeivdependent terms
6—0. The smallx behavior of other terms in this limit has to from the three-point function whose own cutoff dependence
be compared with the size gfto discuss the validity of the had opposite sign to the asymptotic freedom. Lepage and
perturbative analysis. The warning is warranted by the facBrodsky[13] developed a whole formalism for hard exclu-
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sive processes involving hadrons. Pd2g] used their rules proaches the critical value at which asymptotic freedom goes
in old fashioned perturbation theory to obtain the ultravioletaway [26]. The smallx regularization clearly interfaces in
diverging part of a set of third-order terms in the quark-this transition: see Eq4.13.

gluon-quark off-energy-shell vertex function, with similar

cutoffs .to.T.horn’s. In the limit of ult_raviolet cutpffs being VI. CONCLUSION

sent to infinity, Perry found asymptotic freedom in the cutoff o _ o
dependence of the quark-gluon vertex function. Irrelevant Coefficients of products of creation and annihilation op-
parts diverged as functions of the smpll- cutoff and de- €rators for effective gluons of width in the renormalized
pended on the off-shell energy parameter, but Perry reporteight-front QCD Hamiltonian contain vertex form factofg

that they could be made small by using an invariant mas§nd vary with\ in a perturbatively calculable way. Obtained

cutoff. In calculations of the Green'’s functions, small energy!n third-order perturbation theory, the effective three-gluon

denominators require an extra step of setting a lower boun}ﬂertex with vamshmg' t'ransverse momentum is a Imgar func-
on the transverse momenta and factorization of the contrib 10" Of INA. The coefficient of Ik matches the coefficient of
tions from below. Such contributions complicate issues tha Q that appears n the running couplmg constant depen-
arise in the introduction of the renormalization scale at smalffo cc " the running scal@ n the Lagrangian calculus for

scales. and aluon counling must be brouaht under contra reen’s functions. This happens for smaltegularizations
23] The d 9 | P tﬁ’ el 9 or ool the typer ;) =x’6(x—e) in the limit 5—0 for e/
- | N€ dependence on e energy-Snell parameter INVOVES, o ey regularizations, such ag(x)=x/(x+ ) or

Hamiltonian eigenvalues, which depend on a solution of thqﬁ(x): 6(x—5), the coefficient of I\ contains an additive

hadronic binding problem. _ term h(x), defined in Eq(4.133 and described in Sec. V.
Effective Hamiltonians are different and are calculatedHereh(X) suppresses interactions at smalin addition to

differeptly from Green'’s functions. Asympt'otic fregdom aP- the suppression implied by the vertex form factéys
pears in the dependence of the Hamiltonian vertices on the | the effective particle light-front Fock-space basis in

processes one is interested in, independently of the divergingngle effective gluon containing a pair of bare gluons. This
ultraviolet cutoffs. Thus, for example, Thorn's results for component amplifies the strength with which effective glu-
Green’s functions calculated in the scattering theory for gluons can split into effective gluons whangets smaller. The
ons in asymptotic states do not contradict the results of thignechanism is the same as in the case of scalar particles in six
paper, which concern Hamiltonian vertices for gluons ofdimensions[18], although the source of his different.
width \ in a boost-invariant approach, independently of anyNamely, in scalar theory it is the integration over additional
non-boost-invariant regularization cutoffs on individual baretransverse momentum dimensions, while in QCD it is the
gluon momenta, such as those studied in Thorn’s work. Not&ransverse momentum factors in gluon polarization vectors.
also thatl4, is unitary and the procedure involves no waveIn a perturbative description of processes characterized by a
function renormalization, in distinction from the standardphysical momentum scal@, usingH,(a,), there will ap-
renormalization group concept, and no Ward identity is usedPear powers ofj, and InQ/\. ForQ/A=1, InQ/\=0, so that -

\ effectively limits energy denominators from below, so thatthe theoretical predictions will have the form of a series in
issues of binding are clearly separated from logarithmic evoPoWwers of the asymptotically free running coupling constant

lution of effective Hamiltonians. No off-shell energy param- 9Q- ) . . . o
eter is introduced. In summary, no need arises to rely on the 1he dynamics of effective particles includes binding, de-

arbitrary ultraviolet regularization, no extra lower bound onsfCrIbeOI _through the S_Ch"“_‘_gef equation W'th'!k(ak)' Ini-
téal studies of some simplified bound-state eigenvalue prob-

momenta is needed, and no off-shell ener arameter ; : . .
g9y P |Iems for light-front QCD Hamiltonian matrices have recently

introduced. The notion of effective constituents is then abeen carried out for heavy quarkorja7] and gluonium
natural candidate for the phenomenology of hadronic wave y d 9

. . ... Stateq 28], reporting reasonable results. Although the effec-
functions24] to b.e put on the firm ground of Ham|lton|an_ tive particle a%proz?ch described here is differer?t, the bound-
qgantl_Jm mechanlcs, W't_h an open path to_ make c_onnectlo ate equations resulting from the second-order perturbation
with diagrammatic techniqug@3] for scattering amplitudes. a0 may be similar. So the initial studies suggest that the

Although the renormalized Hamiltonian vertices display agffecive particle approach should be tested in application to
tendency to decouple dynamics of effective gluons from the,ond states of constituent quarks and gluons.
smallx region, many-dependent terms completely drop out  Besjdes the bound-state dynamics of low-energy constitu-
from the third-order running of the coupling constant. Theseents in the hadronic rest frame, the boost-invariant effective
terms require careful investigation since vacuum effects maparticle approach provides a theoretical tool for studies of
enter through the smaX-region[14]. Once these terms are |ayers of hadronic structure in other frames of reference, in-
calculated in detail using the perturbative procedure, theyluding the infinite-momentum frame. The theory is sim-
can be subsequently studied in the Sclimger equations plest, and in lowest order of the same type as for quarks and
with effective Hamiltonians beyond perturbation theory. Ingluons, in the case of electron-hadron interactions through
particular, variational studies could aim at understandingone-photon exchange. In the case of massive vector bosons,
gluon condensation and spontaneous chiral symmetry breakiere exist three instead of only two polarization states and
ing, including the cases where the number of flavors apthe choice of gaugeA® =0 is not directly available. A
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scheme to attempt the more complicated theory was formuperturbative fourth-order test calculations in QED should
lated by Sopef29] in massive QED, but the required renor- verify if in the limit 5—0 the perturbative Hamiltonian ap-
malization procedure for Hamiltonians with massive gaugeproach is able to produce fully covariant results for observ-
bosons is completely undeveloped in comparison to the curbles through adjustment of finite parts of the ultraviolet
rent status of renormalization in Lagrangian calcul8@]. counterterms that contain otherwise undetermined functions
Physical processes that involve one-photon exchangef x.
have amplitudes proportional &. To obtain an amplitude
for a simplest scattering event with large momentum transfer
that involves strong interactions, it is sufficient to calculate
the strong subprocess only to ordgr and study cross sec-
tions to ordere*g?. The complete initial Hamiltonian con-
tains four terms,

ACKNOWLEDGMENT

This work was supported by KBN Grant No. 2 PO3B 016

APPENDIX A: DETAILS OF THE INITIAL

H=Hoep+ Heq,+Hocot X, (6.1) HAMILTONIAN

where the second term includes couplings of quarks to pho- The initial QCD Hamiltonian for gluons in Eq(2.11)
tons and instantaneous electromagnetic coupling of quarké&entains the following terms:
and electrons. The transformatid, of Eg. (3.1 can be 12
calculate_d from the trajectory &1, ocp alone, _toge_ther with HAZ_E (K]~ o akocakgc,
the required counterterms ) Then the Hamiltoniansi
can be rewritten in terms of quarks and gluons of winth
This step produces a dependence on regularization, which 3_2 f[123]5(I0T—p)7A5(3,1)[9Y123aIaZas
should be removed by additional countertermsXinHere 123
QED degrees of freedom are not changed. The resulting ef-
fective Hamiltonian dynamics can be then tested for covari-
ance using perturbative expansion for the amplitede ™
—hadrons including terms of ordes?, e’g, and e’g?,
V\ghigh contribute to the cross section through ordetsind
e*g-.

Such tests are of interest since the renormalization group
for particles produces light-front Hamiltonians without refer- . L 1
ence to the vacuum structure and scattering amplitudes, and A IR
wave function renormalization and Ward identities do not
enter the Hamiltonian. In a much simplified model without with e=&" and K= K73,
gauge symmetry, an adjustment of finite parts of counter-
terms led to covariant scattering with proper threshold be-
havior [31]. It should be verified in the Hamiltonian ap-
proach based on Eg6.1) if QCD binding effects known in
orderg? interfere with obtaining covariant results. Genuinely

(A1)

+gYhalasa;l, (A2)

where

1

Y1pg=ifc12%
X213

£165 €3K—€1E3 €5 K——

, (A2a)

~ 9° _
Hae= J [12345(p"—p) 5[ Easrzsriatala,
1734 4

ot = +
+ Xpt12321878384F B pa10324832281],  (A3)

—
ot

21 = T~ ~ ¥ o *
Av123a = 5[ Tre2aTas (5163 - €364 — €16y - £563) focica facscay

%

T143,174,2 (€163 - €364 — €]eq - £5e]) fore foeacat

Y
/ £

Tayro3Ta1 (£1€% - €heq — €hey - het) focser foara],

1 3

Xatr03a = Treo1734a3 (€183 - €564 — €€y - £383) for1? faccat 2>_<4
~ ~ ~ ~ * % * * aci1c3 £acscy 3 ! 8
[F3.1724 + T137a2] (€765 - €384 — £feq - €3e3) fO103 facecay , ., \

[f372f1’4 + f2’374’1] (61‘8; . 6364

_ 5’{53 . 8;54) fa6164fa6263 .
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H[aAA]2:%4J [12345(p"— p) 9% (Esanriza@iatatas + H.C) + Xpsaap12aA12583a4], (A4)

- . _1r= ~ * % * (1—x2)(T3+x4)
Zioaa2 1234 = — 5[ T142,1T43 €163 - €364 B CTFT focier facaca 4

 €eq (z1—-z3)(z2424) facrea pacaes 4

~ ~ * %
T1+3,174,2 €1€3 (z1+x3)2

W N = WO = W
'S

5;5 (z3—z2)(z14x4) facgcgfaqq]

" - * ok
T3+2.374,1 €389 (@3 +22)2

1 (z1—z2)(x3—%4) racicy facac
Xppaai2sa = [ T142,17344,3 €165 - E38q T T for2 fooses—

(x14+z3)(T2+24) c ! 31
~ o~ ~ o~ * o acics facaca __
[F3,1724 + F137a) €163 - €364 H e for o foe = / -

(z2+x3)(x1+x4) fac1C4faczcg] ]

= - ol ol * *
[F3.0714 + To3Ta1] €164 - €364 (71 —2)?

p andp are the total momenta of created and annihilatedo the annihilated one. The intermediate momenta are as-
particles, respectively. For the vertex with parent momentunsigned the numbers 6, 7, and 8. For example using the no-
p and daughter momenthandp—d, the regulating function tatlon from Appendix A, we haV‘kl X1rK7 +K16: Where

in Eq. (A2) is rA,s(p d)=ras(p.d)ras(p.p—d), where ri=xi7, Xi7=X1/X. Als0, rgg=r"—(1=X)K1lXz, Kig
ras(p,d)= rA(Kd,p)r(g(xd,p) e(xd,p) with  Xgp=d"/p*  =—X;k"/x+k1,, andkzg= «*. All coefficients of creation
=Xq/X, and Kd/p d" —Xgpp". Equations(2.6) to (2.9  operators ought to be symmetrized with respect to quantum
complete the definitions of Ty5(p,d). Also, T,4 numbers of gluons 1 and 2, and only one way of contracting
=T, s(p,d). The momentum integration measures contairthe intermediate gluon annihilation and creation operators is

the same factors as in E(R.4) for each indicated particle. included, so that the displayed numerical weights represent
the result of all possible contractions. Thus, in Figh)2only

APPENDIX B: EXPRESSION FOR 7y one ordering of vertices fronB..,, is included and the factor
of 2 is put in front. The black dots in Fig. 2 indicate coun-
Equation(3.19 gives terterms,B..14 in casegf) and(i), andy.,,, in case(j). Thick
Ya21= Farn8[ @12001001]01F+ F2) 2[ Boepot21]21 1 1 K16
+Fan2[ a1B31lort Far Al arpas]iiasils 6/ \7 W-C%i oo wrs
8 1T
+ Fal @1oBezilont Forn2( Be11aa1lo 2 3 22/ 7 N
1 (a) (b) ()

+Fan2lazl arpalilat f2x5[5w22a2ﬂ21 1 x1

E K

x 12
T

lz 73

To =

(€) (f)

o

(R) (@)

+ Forl @21B11l217F Vo2t - (B1) 5

The terms are grouped and ordered in one-to-one correspon-
dence to Fig. 2, so that using the labels from Fig. 2,([B4)
reads

v21=F38(a)+ F,2(b)+ F,2(c) + Fz4(d) + Fyo(e)

+ F2(f )+ F32(g )+~7:2 (h)+ Fo(i)+(j).

(B2)

o — —_
s s &
w

In all terms, the external gluon quantum numbers are labeled
in the same way: 1 and 2 refer to the created gluons and 3 FIG. 2. Graphical illustration of E¢B1).
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lines with transversal bars denote the combined contributionsiomentum, both terms andh in Eq. (B2), represented by

of the termsHas and Hyjaaj2 from Egs. (A3) and (A4), diagrams(e) and (h) in Fig. 2, are equal zero.

Boooz=Xpat+ Xsanjze @nd Bozi=Epat+ Epsanp2. Since these The nonzero terms are listed in the order of their appear-
terms are independent of the transverse momenta and tlace in Eq.(B2), using the conventiony, =, ¥,1n),» With
three-gluon verticesy,, and a,, are odd in the transverse n ranging fromato j, and

3
~ g° 1 ot
'}’21(n):§3 J [123]5(k1+k2_k3)mE')’(n)alaZa?n (B3)
Ne . 1 dxrg(x) 5 Fanv@ i 0 ik
’)/(a)=87lfclc2€3f)(lm d KLI‘M(KL)WKIGBKIJ_GK 8|(L1)+(1<—>2), (B4)
where
Fat(X) =15 (X5 (L1=X)r 5 (X0 /X1 5 [(X=X)IX]r 5 [(X=X)IX]r 5 [(1=X)/X2], (B4a)
rad(kh)=exd — 2(kgd + kié+ k2)1A%], (B4b)
fsx(a):_XM&*'Mz (Mgt M) fegfbaf 16f —1 ~ fesfoa—1 _Mi6+M4 fegf 16f —1
ky 2 Mt M? bd ™ P26 A& A Mp+ MEE ME Mg+ M, My | Mgt Mi+ M?

f fcaf 16f 68~ 1

feafogf1af — 1 XM2e+ Xy M2
68! bd! 16 ” 16 2 68((2./\/12—./\/1%2){

- Mgt Myt Migt M| T Mgt Mag MO+ (M= ME) P+ Mist Mg
B ffea—1 B Migt Mg Fisfes—1 B ffcaf16fes—1 (B40)
M (MP= M2 MP= My | M+ Mgt Mg M+ (M= Mip)?+ Mig+ Meg| |
L B4
T x(1-x)’ (B4d)
2 12
X2Kgsg
M= , B4e
(= x1) (1-%) (Bao
it
M= ’ B4f
16 X1 (X—Xq) (B4f)
with f,=exd —u?/\*], bd= MZ,= MZJx,+ M2, ca= M?*— M2, f=f., cd=M? and
bd 6 12 12:
. o X 1 2x X XX XX 1 1
ik — xjxi Kiq__ + =4 + 2 + 2 4 xk_%i_j -
ga =81 83 &3 1 X—xX1  Xp Xp  (1=)%;  (L=x)Xg  (x—=xp)xq| L %2 83%xx 1-x
o — Xy . . X, =X XXo
+ *K_*xj_i 4 ¥l *K_j FeXigx] k
T2 (1) (x—xp) | 7T 72 T @0 (x=xp) ] 72 3% T (=) (x—xy)
. 1 —x XX X X N XX X
*j *k i 2 2 * x| oik_j 2 jk i 2 ij.3 2 "2
tei1eres (1=%)X;  (1—X)(X—Xq)Xy teres| o 83(1—x)7+5 83(1—x)x+5 Kl (x=x)2 1—-x
L X 1 . XX . : XX
* jko*i I N Y 2 _ oik *] 2
Feieq 82((1—x><x—x1) x) R T L A e ey
N —X X o XX X
* ijxk 2 ik xi 2 ok 2 2
Fezes Ol 2 T e g 0 € ((1—x>2x1 (x—x1>x1) | (B4g
N LdX rs(x) N
=2 __—jfCices| — 7 2,1 1y M)
Y(b) 2 2 if J;(l X(l—X) d°k rAt(K ) k; S(b)+(1<_)2)1 (BS)
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where

TZ)\(b) B ZMZ_MiZ
kg® — (MP= M)+ M

(facf_l)v (BSa)

1 1 1 s 1 S
S(b)EséKi:8;£;83K(1_S(b)_;—m +elezed k ;4—% +8§83SIK(1_X+% , (B5b)
and sy = (X1 +X) (X2 + 1 =X)/(X—X4)?,
—N¢ 1dxrg(x) N
=2 ——ifC1C —fdz Lr Ly — +(1-2), B6
Y(c) 2 | xl(X—Xl)(l—X) K At(K) k:-;— €(c) ( e ) ( )
where
fzx(c)_szés+M§d fof —1) (B62)
ks Mgt Mpq (Teofoa= 1),
S(C)ZSéKész8’{8583"68(—)(_)(1 1_X)+81€838’2€K68(_1_S(C)+_1—X+X—X1 +s’2‘sss’1‘;<68<—1_x+x_xl ,
(B6b)
andsg) = (Xg—X+x1) (1—x+1)/x%
1dxrgs,(X) 1 1 Fanid)y  Fan(h) Fon(r)
+y1)=4NY ———JL—ideLr SLauF R +AY g 5+ (1-2),
Y™ Yit) c 123f0 X(1—x) KT au(KT)K X2 (1—x)2 nggz sz;Mz 12 sz; st (1e2)
(B7)
where
‘7:3)\(d) .7:2)\(” _ 1 MiZ_XZMZ [ 2 i+x +M2} fszdf12_1 B ffbd_l
xoka? " Xpka M2 X2 MI+ M2 X, 2 L2l 2MA+ (MPixg+ M2) 2+ ME, MA+ (MPxp+ M2,)?
M4+M‘I2 f2f12_1 fszdflz_l + Miz f12f2_1 B7
MPXp+ My 2MA+ MG, 2MA+(MPIxg+ M2)2+ M3,| | XoMZ ME,+2M* 873

ME 4= M2Ix,+ M3, since M= M? in termsd andf (heref is a subscript, not a form factorf ;,="f .4, ad= M7,

Fonigy fio—1
=7 (B7b)
sz;,r Xo M7,

r5,(X) is given in Eq.(4.7), 1y, (k") =ri(x"?), and 22a5=167°u35.

1
(1-x)?

Ldxrgs,(x)

—_ _orV Foxnciy
— 2 2 ~ 2
7(9)+7(i)_2NcY123f0 X(1—x) Ak 1y (k)K"

+ 2Y123T mot(12),
(B8)

Fang | T
ky? kg M?

_
+ 5+
XZ

where
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Fang fzx(i):—/\/@z ff2—1 _M2+Miz
ke? kg MP T ME MMt MM,

f2faf— 1 B ffoa—1
MO+ (MP= ME)?+ My M+ (MP= MTy)?

[<2M2—M%2>{

. MA+ M f2,-1 f2f o f— 1 ” (883
M= MZ[2M*+ M, 2M* 4 (MP = MEp)*+ My,
with ca= M?— M2, and
f2 i f12_ 1
kgr(l) == M22 ) (BSb)
1
Y(j)= YT (1+2), wherey., denotes the counterterm coefficient in
~ g°

Yor= 2 J [123](ky +kp—ks) 75— 7-21a32s, (B9)

whose dependence on the quantum numbers 1, 2, and Bbth terms contain an integral of the same structure,
needs to be found.

1
|i=fo|2 L exd — Lkt —vh)?IA2],  (C20
APPENDIX C: ULTRAVIOLET DIVERGENT TERMS IN K

Y21 . 1 i . . _ .
and limy_,.,I-=mv~, which is a finite ultraviolet regular-

The three-gluon vertex is given by Eq@4)—(B9). The jzation effect with no divergence. Thanks to the regulariza-
ultraviolet diverging parts of terms andc vanish. This can  tjon factorsr 5, these terms can be integrated oxemd the
be seen by changing the variables so that the sum of squargssulting function of, depends on the choice of the coeffi-
of relative transverse momenta in three subsequent vertice$ents 7. If they were chosen to depend @nan arbitrarily
in Eq. (B4b) is written as complex, ultraviolet-regularization-dependent finite function
of x; can be obtained, bufygiy=¥¢aiv=0. Next,
Neskes + Mek1e T nK2={pt P+ xKi3, (CyY
= ! LD
where = nggt mg</x2+n, pt=xt—éxly, E=[nes(l  Yg+idv= — NcYi2d s(X1) . dxre(X) | —=2—¢
= X)X+ mex /X1, and  x=[ meamie(X—X1)?/ (XXp)? g
+ negn(l—x)2/x§+ menl/{. The coefficientsy are intro-
duced for identification of the finite parts of the counterterms XX(1=x)
that may contain functions of;. All #'s are equal to 2 in
Eq. (B4b). Using the variabley*, the potentially diverging 2 is an arbitrary parameter inserted here to simplify the
relative transverse momentum integrals in tebrendc can  notation for the well-defined integral over® at small «
be written as when the terms with form factors are written explicitly and

the small denominator effect is absent. One also obtains

1+1+
x2

N, 1
; =—2—if°1°2°3f dxrs(x
Yoyt 2 X1 ) Y(d+f)div=2Y(g+i)div - (C4
The logarithmically diverging terniC3) appears then with a
factor of —3 in the counterterm coefficient, in Eq. (B9).
Its finite contribution to the counterterm is a finite number
(C29 timesY,3.
The remaining termy,, of Eq. (B4) contains the tensor
Ne. ! wik= il i) K contracted withe!X and the latter does not
Yodiv=2 = 1T71°2% [ dxrg(X) 6816 (@) .
2 X1 depend on the transverse momenta. The ultraviolet regular-
ization dependence comes only from

L
_ . 1242 K
Xf d?pteéra _KL28é_b)+(1‘_’2)a

1
K
2 1 —¢pta? 768 |
xf d°p-e Kégxzs(c)+(1<—>2). X,

MMy

-7:3)\(a)
ks ?

(CH

(C2b A
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and using Eq(C1) one obtains

N C1CoC 1- Ijk I]k
'Y(a)dlv 8?” 1%2%3 dX r&(X)X_I +(1<—>2)
X1 2
(C6)

where

i 0k
ijk — 2 1 - gpt2a2 Kesiie
|”—fdpe“’ 7,17 (C7

The ultraviolet-regularization-dependent partl8f can be

PHYSICAL REVIEW D 63 116006
0= Yaydivt Yd+)dvT Yigrirdivt Yeedivt (1—2)

A 1
:ZNCWInﬁlzf dX r(gt(x)[cle12+ C13Y13+ 023Y23]
X1

1 1
=3[ YioH Yyt Yaall 5(X1) jo dX s, (X)X(1=x)[ 1+ 2

evaluated using Feynman’s trick to combine denominators

and making similar steps as in E@2):

. w 11 X . . .

['”k]AZEY X K0 = K50

X=X +XXy . A
+———— kL6 In—. c8
a1 92 Mg (©9

A number of finite terms are obtained that depend on the
choice of coefficientsy in Eq. (C1). The terms include also a
new tensor structure),x} «%,/ k2,. Inserting[ 1%], in place

of 1'X in Eq. (C6), one obtains

Ne. €1CoC ! 1-x ijk ijk
Yaayiv=8 5 1177253 [ dxry(x) — —[1""]se(m+(1-2),
X1 2

(C9
where
1£CqCoC 1-x ijk ijk
if C1c2ta—— [111K] g )X = wln| 12|[012Y12+013Y13
+ 023Y23] , (Cga
and
_2 11 a-w? con
Clm1—y X—X; X X5 X' (C9b
_2 11 At co
C137 7 X—X; X X ’ (€99
_ 2 + ! +1 (1_X)2 Lo
Czs—l—x X—Xq X X% X2 '
(C9d
with
Y12: if01C2C381‘ 8"’2‘ - €3K12, (Cloa
Y 3= —ifC1%3e g5 5 k , (C10b
13 1€3°€2 12@
Y23: _ ifchZCSS; £3- 83\: KlZX_ . (ClOQ
13

The counterterm should cancel the divergence, so that

1
+ m + ’ywdiv+(1<—>2) (Cll)
and
Nem A
Y(i)div= _Y12T|n;[1l+ h(x1)], (C12
where
h —6f1d — ! !
(X1) = I Fat(X)| T x—x; X
—9r5(x1)J dx raﬂ(x) +(1<—>2)
(C13

The ultraviolet counterterny..,; has the form(B9), where

Nem
=Y — 3 In [11+ h(X) 1+ Yfinte-  (C14)

Different choices of the coefficientg in Eq. (C1) lead to
different finite termsysnie, Which demonstrates a finite de-
pendence on the ultraviolet regularization. To restore the co-
variance of observables, the finite terms must be then al-
lowed to contain unknown functions &f that multiply three
structuresY,, Y13, andY,3 from Eq. (C10) and the fourth
structure

(C19

Inclusion ofn; flavors of quarks produces if;)q, addi-
tional diverging terms of the form

— 1§CqCoC * * 2
Y, =572 ] k1o &5 K1p 83K 12/ K1p.

A
—2mn;In M [Cf12Y 12+ CF13Y 131 Cra3Y o3+ CrmYa2al,

(C1o
where
1 1—4x+2x2+xy
Ci1o= — XdXT-F(lHZ), (C17a
1
B fld 1—4x+2x2+x1+ 1o
Cf13= . X2—><2 (12,
(C17b
1 —244X—2X3(1+X,) + XX
szsz—f dx (2 2 12+(1<—>2),
X1 2X2
(C179
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1 -3 »dz 1 b
cfm=f dx—2[1—2x(1—X)]+ (1 2). J —[e 2N e b= Jin—, (D3)
0 8 0o Z 2 a
C17
(Clra which shows that drops out. The expansion iA in Eg.
After simplifications, integration, and symmetrization, the (D2) produces the same tensor structure as in &),
fermion contribution turns out to be not sensitive to smxall- which leads then to Ed5.2).

regularization and changes H&14) to
APPENDIX E: REGULARIZATION MIXING

omr A FOR x AND &t
ndiv=— Y1255 IN—{N¢[ 11+ h(xq)]—2n¢}.
Vv 233 M{ ol (X)) d Regularization with invariant masses implies that the co-
(C18  efficients  in Eq. (C1) become equal top=1/x+1/(1
—X), Meg=Xo/(X—Xq)+Xo/(1—X), and 5ig=X/Xq+X/(X
APPENDIX D: W, (x) IN Eq. (5.2 —X4). These coefficients diverge whe@—x; or x—1. In
s o Lo mass counterterms, the coefficiepts the same. When inte-
WaiaX1,K13), Wass(Xe,x12), andWizs(xy,x22) I BA. grating over transverse momenta in mass counterterms with
(4.14) all become equal t9)(x1) whenk,=0. The calcu- r,(25x?), one obtains in Eq(4.9) only a logarithmically
lation of W), (x,) is based on the extraction of the coefficients divergent integral ovex and a regularization factor of the
of terms linear inky,, which formYj; for ij=12, 13, 23.  formr 5(x)=x? is sufficient to regulate it. In other words, in
The procedure employs the following facts. The self-place of the second scale in r; from Eq. (5.9), one can
interaction termsl andg, and mass counterterrhandi from  consider regularizations of transverse divergences that pro-
Fig. 2, contribute through vide additional damping of the smallregion. The question
¢ (o[ 1 Smallxin o Most representative s EGB4). Alhough
= —  x(1— + - A21- :
167T3 NCJ'O dxf KLZ X(l X) 1 X2 (1_X)2
X[5f2+4ffpq— 4F2F4—2 13— 360(u?—k?)].

all three#'s can grow tox, y is limited and does not exceed
1/(x4X5), reaching this value at the ends of the integration
range, whileé=1 whenx=x; and drops down to 0 at
(D1)  =1. Therefore xx77/A? in the exponent is always a small
o o ] ) number and vanishes whek— e without contributing to
w is introduced only for simplification and is canceled in the e regularization dependence. On the other hand, the coef-
full formula for the dependence &, (x;) on\. In the term  ficient £ grows to infinity at the ends of the integration region
Y(a)» the renormalization group factor of E@A4c) contrib- i x This way the ultraviolet regularization factor depending
utes to the dependence 8, (x;) on X only through a small  on jnvariant masses changes the smadingularities. The
A expansion of same phenomenon occurs in a simpler form in the instanta-
neous terms involving &/ 2. The instantaneous terms them-

Fana) X2 . . . ver .
| == . ff16f g, (D2) selves do not contain an integration owver, bu; the integra- _
ks |, [Mggo 2%AIM? tion occurs when these terms are included in the dynamics.

The logarithmically divergent integrals over' produce
whereA= k" k1,/(x—X;) and the added subscript 0 indicates |ogarithms of as A-independent remnants of the ultraviolet
that «7, is set equal 0. Other parts do not contribute becauseegularization and one cannot exclude arbitrary functions of
when the form factor§are expanded, no dependencexas  x in finite parts of the ultraviolet counterterms, including
generated due to dimensional reasons and the remaining faietegrals that strengthen smallogarithmic divergences. In-
tors cannot contribute since they are multiplied by the differ-variant mass regularizations, including a small gluon mass
ences of the form factors and there is an identity [6], provide additional damping for~ u?/A2.
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