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First-order chiral phase transition in high-energy collisions: Can nucleation prevent
spinodal decomposition?
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We discuss homogeneous nucleation in a first-order chiral phase transition within an effective field theory
approach to low-energy QCD. Exact decay rates and bubble profiles are obtained numerically and compared to
analytic results obtained with the thin-wall approximation. The thin-wall approximation overestimates the
nucleation rate for any degree of supercooling. The time scale for critical thermal fluctuations is calculated and
compared to typical expansion times for high-energy hadronic or heavy-ion collisions. We find that significant
supercooling is possible, and the relevant mechanism for phase conversion might be that of spinodal decom-
position. Some potential experimental signatures of supercooling, such as an increase in the correlation length
of the scalar condensate, are also discussed.
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I. INTRODUCTION of first order. Thus, a second-order critical point must exist
inbetween these two limits. The arguments suggesting this
It is hoped that experiments in the near future at BNLtopology for the phase diagram are in no sense complete, and
Relativistic Heavy lon CollidefRHIC) and CERN Large the phase transition could also be first-order fior 0.
Hadron Collider(LHC) will discover evidence for the so- In a first-order phase transition, the thermodynamic poten-
called quark-gluon plasm@GP in high-energy collisions tial exhibits a metastable minimum corresponding to the
of heavy-ions or proton§l]. The QGP is the high-density symmetry restored phase for temperatures slightly less than
primordial state of strongly interacting matter that presum-he critical temperatur&.. This minimum gradually disap-
ably existed in the early universe a few microseconds aftepears as the system cools and ends at a point of inflection,
the big band 2,3]. In the QGP, chiral symmetry is restored i.e., a “spinodal instability.” In a slowly expanding system,
due to finite-temperature contributions to the effective potenthe phase transition would proceed through the nucleation of
tial [4]. (This statement is only approximate since finite bubbles of the “true vacuum” state via thermal activation
current-quark masses break chiral symmetry explicitly. Se¢3,12-16,18 In ultrarelativistic collisions of heavy ions or
below) hadrons, it is clear that expansion is very fast compared to
Given our lack of detailed quantitative knowledge regard-that of the early universe at the cosmological QCD transition
ing low energy QCD, it is difficult to identify unambiguous (by a factor of ~10% H=10?® sec! versus H
observables that would, if found, demonstrate beyond rea=10° sec!). Thus, it is necessary to investigate the time
sonable doubt that the QGP had been produced. Central uicale for thermal nucleation relative to that for expansion to
trarelativistic collisions of heavy ions at RHIC and LHC will see if the metastable chirally symmetric state of matter can
produce multiplicities on the order of 1®adrons per event reach the spinodal instability before nucleation is completed.
[5] and raise the possibility of analyzing data event-by-event In this paper we shall consider a first-order chiral phase
[6]. Event-by-event fluctuations might provide an opportu-transition in a rapidly expanding background. We take a lin-
nity to discover new physics that is usually washed out byearo-model coupled to quarks as our effective theory. Treat-
standard event averaging. In particular, if the phase transitioing the quarks as a heat bath which generates an effective
is first-order with fast expansion so that strong supercoolingotential for the soft modes of the chiral order parameter, we
or spinodal decomposition is possible, fluctuations in the raebtain an effective potential at the one-loop level. Somewhat
pidity density or in the transverse momentum spectra of hadbelow the critical temperature, this slightly asymmetric ef-
rons and isospin fluctuations produced by the formation ofective potential has three local minima. Starting with the
domains of a coherent chiral condendate9] could become  order parameter “localized” in the metastable chirally sym-
interesting observables. metric state of matter, we then study critical bubble profiles
The nature of the QCD phase diagram in the temperaturand calculate the nucleation rate to the broken symmetry
T and baryon chemical potential plane has been inten- phase. This will provide the temporal and spatial scales of
sively studied in recent yeafd0,11. Random matrix and thermal field fluctuations into the broken symmetry state. We
effective model calculations suggest that, at lavand non-  will consider both analytical and numerical computations.
zeroT, a smooth crossover transition is expected and that, aDur numerical results represent “exact” calculations. In the
low T and non-zerqu, the chiral phase transition should be analytical treatment, we must turn to the thin-wall approxi-
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mation in order to obtain closed results. The comparison bewhich the long-wavelength modes of the chiral field, i.e., the
tween these two approaches will allow us to establish limitorder parameter, evolve. Thus, we will take the effective
on the reliability of the thin-wall approximation. potential to be

This paper is organized as follows. Section Il presents our
effective theory. Section Il describes homogeneous nucle- Ver=U+V,. (2.9
ation and the methods used for both numerical and analytic

computations of bubble profiles and nucleation rates. Our, To arrive at this form for the e'ffect|ve .potentlal we con-
results are discussed in Sec. IV. Section V presents our corfld€r @ system of quarks and antiquarks in thermodynamical

clusions and suggested directions for future investigationauilibrium at temperatur& (in [11] Vg is derived also at
We employ natural unitsh =c=kg=1, throughout finite baryon-chemical potential; here we shall consider only
BT ' the case of baryon-symmetric majteFhe partition function

reads
Il. EFFECTIVE THEORY

. . . _ uT
As an effective theory of the chiral symmetry breaking Z:J Dq’DchrD;r ex f d(it)J’ d3xc
dynamics, we assume the linearmodel coupled to quarks 0 v

[9,19,20:

. (29

V is the volume of the system. In mean-field approximation
£=E[i 7“(9#—9(0+i75;' 7?,)]q the chiral fields in the Lagrangian are replaced Qby their ex-
pectation values, which we will denote lay and 7 in the

+ (&MO'&“O'-I—&M%&“;)— U(a,m). (2.1) following. Then, up to an overall normalization factor,

N| -

The potential, which exhibits both spontaneously and explic- Z:Nuf DgDq
itly broken chiral symmetry, is

2 i ><exp|’ f md(it) f d®xqli y#d,—g(o+iysT: %ﬂq]
U(0',77)=Z(0'2+772—v2)2—hq0'. (2.2 0 v
= Nudet{[p, v —g(o+iysr m) 1T}, (2.6

Here g is the constituent-quark field=(u,d). The scalar
field o and the pseudoscalar fietd= (1, ,,,m3) together ~Where

form a chiral field<D=(cr,77r). The parameters of the La- Ulo m
grangian are chosen such that chial, (2)® SUg(2) sym- Nu=exp( ) (‘T’”))_ 2.7
metry is spontaneously broken in the vacuum. The vacuum T

expectation values of the condensates (arg=f, and ()
=0, wheref,=93 MeV is the pion decay constant. The
explicit symmetry breaking term is due to the finite current-
guark masses and is determined by the PGa&rtial con-
servation of axial vector couplingelation which givesh, T ~
=f_m?2, wherem,=138 MeV is the pion mass. This leads Q(T)= - 55logZ=U+V,(T), (2.9
to v?=f2—m?2/\2. The value ofA?=20 leads to ar-mass,

m2=2)\?f2+m?, equal to 600 MeV. In mean field theory, \where

the purely bosonic part of this Lagrangian exhibits a second-

order phase transitiof21] at T.= \2v if the explicit sym- _ 3

metry breaking termh,, is dropped. Foh,#0, the transi- Vo(T)= _dqf ——{E+Tlogl1+e ®T]}. (2.9
tion becomes a smooth crossover from the restored to broken (2m)

symmetry phases. F@>0, the finite-temperature one-loop
effective potential also includes the following contribution
from the quarks:

Taking the logarithm ofZ, the determinant of the Dirac op-
erator can be evaluated in the standard fash#j, and we
finally obtain the grand canonical potential

For our purposes, the zero-temperature contributioﬁ'/(;o
can be partly absorbed intd via a standard renormalization
of the bare parameters® and v?. However, a logarithmic
d3k correction from the renormalization scale remains and is ne-
Vq(q)):—quf —3|og(1+e*E/T)_ (2.3 glected in the following(see[11] for more details The
(2m) finite-T part definesv, as given in Eq(2.3).
o ) We now turn to a discussion of the shape of the effective
Here, d;=24 denotes the color-spin-isospin-baryon chargeyotential at various temperatures. For sufficiently smalhe
degeneracy of the quarks. We note thg(®) depends on  still finds the above-mentioned smooth transition between
the order parameted through the effective mass of the the two phases. At larger coupling to the quarks, however,
quarks,my=g/®?, which enters into the expression for the the effective potential exhibits a first-order phase transition.
energy,E=\k%?+g?®Z. In our phenomenological approach, For temperatures near the critical temperat\ig,displays a
we will assume that the quarks constitute the heat bath itocal minimum® =®(T)=0 which is separated by a bar-
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FIG. 1. The one-loop finitd- effegtive potential forTg,<T FIG. 2. The one-loop finitd- effective potential forTg,<T
<T, and coupling constantg=5.5, A°=20. The curves are la- <T_and coupling constans=10, \?=20. The curves are labeled
beled by the temperature in MeV. by the temperature in MeV.

rier from another local minimum ab=®(T)>0. (There is  fecs (the higher barrier and the lower temperatiirast to

another local minimum for negativé which is of higher  reqyce the decay rate of the metastable minimum as com-

energy and need not concern Jughese two minima are hareq to our “standard” choice of couplings corresponding

degenerate al=T.. For exampleg=5.5 leads to a critical {5 the potential shown in Fig. 1.

temperature oﬂ'c=123.7_ MeV. Unless stated differently, There is also the possibility that the-meson is much

throughout the_ manuscrlpt we ghall adopt the valg|e§_.5 lighter atT, than atT=0 [23] (i.e. A2 is smal) if QCD is

for the quark-field coupling ankl”=20 for the self-coupling  pear a chiral critical point. Choosing for examplé=2.2

of the chiral fields. , with the pion decay constafit, and vacuum mass,, fixed,
Chiral symmetry isapproximately restored forT>Tc.  gych thaty2=0, leads to the potential shown in Fig. 3.

The minimum atb =® becomes the absolute minimum as cjearly, decreasing? in this theory reduced, very much,

the temperature is reduced beldy. As the temperature is {4 |ess than 100 MeV. Reducirgghas practically no effect,

lowered, the local minimum ab~0 approaches the inter- eycept that the first-order phase transition disappears at

vening maximum. These two extrema meet and form an in<4 - gych lowT, appear to be excluded by present lattice

flection point at the spinodal temperatulig,. Only the bro- D results[17], and will therefore not be considered fur-

ken symmetry minimum remains fol <Tg,. For our iper.

standard choice of parametefg,=108 MeV. The potential |y order to obtain approximate analytic formulas, it is

in the o-direction is shown in Fig. 1 for the range of interest, conyenient to expres¥, over the range & P<T in the

Te=T=T,; see also Ref9]." Note the rather small barrier amiliar Landau-Ginzburg forntsee alsd12))
between the two local minima &f . at T.. The first-order

transition forg=5.5 is weak compared to those conventional 4

in bag model calculationgl6]. This weakness is due to the Ve~ D, a,d". (2.10

fact that gluons, absent in the present lineamodel, are n=0

treated as free fielddor T=T,) in the bag model. It is not

our goal here to argue which approximation is more reason!'his form is adopted purely for reasons of convenience and

able. Rather, we view our approach as complementary t§0 deeper meaning should be attached to it. It is, for ex-

previous studies which employed the bag md@&lL2,1.  ample, obviously incapable of reproducing all three minima

The existence of a local minimum Mg raises the possibil-

ity of super-cooling effects since the true broken symmetry -2.0]

minimum can only be reached by tunneling. The weakness I

of our first-order transition is likely to overestimate tunneling

rates and underestimate the effects of supercooling. .
In fact, increasing the coupling to the quarks leads to a ~

larger barrier between the two local minima of the effective >

potential, as seen in Fig. 2. In other words, the first-order

transition becomes stronger, with larger latent heat. Further-

more, the spinodal temperatufg, decreases considerably, 350

to about=78 MeV. As will become clear below, both ef-

—2.5f

~3.0}

0.0 0204060810 1214

$/T
The right diagram in Fig. 1 of Ref9] is incorrectly indicated as FIG. 3. The one-loop finitd- effective potential forTg<T
corresponding to T=100 MeV. It actually representsT <T, and coupling constantg=5.5, A>=2.2. The curves are la-
=108 MeV. beled by the temperature in MeV.
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of V. We shall use this expansion both for a limited rangewhere
of temperaturesT,,<T<T,) and for a limited range of field

strengths (& ®=<T) which includes the two local minima NVen(P,T) (@22 D—h
of interest. With these restrictions, this polynomial form is 6P q
found to provide a quantitative description \6f;. The co- 5 5
efficientsa,, are determined for eachby performing a least n g q’dqf d P~ 1 3.4
squares fit to the true effective potential. w2 PE expE/T)+1"
1. HOMOGENEOUS NUCLEATION [It has been assumed in E@®.2) that the effective potential

is shifted so thaV/ (P ,T) =0.] The desired solution of Eq.

We wish to consider the physical situatignrealizable for (3.3 is found by imposing the boundary conditiah(r

Tsp<T<T,) in which a scalar field, corresponding to the —0) =D,

a—dlrectlon, _|s_|n|t|allyf localized in tt_he dmeg?stabllvla retstotr_e? For numerical purposes it is more convenient to impose
s\)l/vmme rly m'?}'mﬁ.mho an asymlme Irlc. oubie-we p(;) eln 1a "boundary conditions at=0 by setting®’'(0)=0 and®(0)

.( € neglect the higher-energy local minimum wit<0,) It ._equal to an “escape value®,. It is straightforward to in-

ﬂegrate Eq(3.3) to obtain the bubble profil®(r) for a given
F‘Iemperature. The escape value is then adjusted until the de-
sired boundary conditions at- are realized. This process
can be facilitated by smoothly joining the numerical values
I'=Pe Fo/T, (3.1) of ®(r) to the analytic solution to Ed3.3) that is regular as
r—oo, Close to the critical temperaturd(r) has a simple

whereF, is the free energy of a critical bubble and where thequalitative behavior. It stays close the escape vabyefor
prefactorP provides a measure of the saddle point of thef <R¢ and then makes a rapid transition to the false vacuum,
Euclidean action in functional space. It is conventional to®. For obvious reasong_ is identified as the radius of the
write P as a product of the bubble’s growth rate and a factoﬁritical bubble. Once the prOﬁle of the critical bubble has
proportional to the ratio of the determinant of the fluctuationPeen found, the free energy, is obtained by computing the
operator around the bubble configuration to that around thétegral in Eq.(3.2) numerically. Finally, the decay rate can
homogeneous metastable state. The following analysis wilpe calculated using the approximate prefad®er T*.
concentrate on the exponential barrier penetration factor, and A simple physical analogue of this procedure can be ob-
we will approximateP by T*. This approximation is known tained by turning the potentials in Fig. 1 upside down and
to give an overestimate df, see e.g[15,16]. The reason for ~considering the mechanical motion of a point particle mov-
this focus is thaf, is necessarily infinite af, and zero at g in the inverted potential. The problem of determining the
TSp' The exponential factor is thus expected to make thé:rmcal bubble profile is then seen to be eqUiValent to f|nd|ng
dominant contribution to the structure Bt that point on the true vacuum hill such that a ball starting at
In order to determine the role of bubble nucleation in the'€st and obeying the equation of motion, E8.3), would
evolving system and to be able to compute the decayliate descen_d and land at reston the_ top of th_e false vacuum hill at
it is necessary to study the critical bubble and some of it§he point ®;. The starting point is evidently the escape
features. The critical bubble is a radially symmetric, staticPoint. It does not correspond to the true vacuum point but
solution of the Euler-Lagrange field equations that satisfie§ather to some smaller value. This mechanical analogy also
the boundary conditiod (r — o) — & whered; is the false Makes it clear that—Vey(®e) must be greater than
vacuum of the effective potential. Energetically, this bound-— Ver(®1) due to the presence of the second, “frictional”
ary condition corresponds to an exact balance between volerm in Eq.(3.3). As we shall see, the critical radiug,
ume and surface contributions which defines the critical radiverges asr—T.. The frictional term then becomes small
dius, R=R;. The critical bubble is unstable with respect to in some sense. The various approximate methods for dealing
small changes of its radius. FR<R., the surface energy with this frictional term approximately are all described as
dominates, and the bubble shrinks into the false vacuum. Foithe thin-wall approximation.”
R>R., the volume energy dominates, and the bubble grows Although the thin-wall approximation is not expected to

of thermally activated bubbles of the true vacuum inside th
false on€g[3,12—-16,18 The nucleation rate per unit volume
per unit time is expressed as

driving the decay process. be valid near the spinodal, it should provide a reliable de-
The critical bubble can be found by minimizing the free Scription of nucleation nedf.. Given the frequency of its
energy adoption and its simplicity, we find it useful to apply the

thin-wall approximation to the present problem. A quartic

potential such as Eq2.10 can always be rewritten in the

2
+Veﬁ(<I>,T)}, B2  form

F@T—4f2dld¢
o(®.T)=4m | ridri 3| 4

with respect to the field. This leads to W(e)=a(¢?—a%)*+|e. (3.9
20 2dDd  SV(D,T) Specifically, we have
— o o, (3.3
drz rdr oo a=a,, (3.6
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2 L[ 22, 325 010 _

a’=3 5 : 3.7 ]

ds ©la 0.08F 1

a; layag 1(ag)® %Q%i i

I =, 2a,a, 8la, | 3.8 & :

3 0.04[ ]

® 1as S . ]
The new potentialV(¢) reproduces the original 4(®) up 0.00L ' ‘
to a shift in the zero of energy. We are interested in the 0 5 10 15

effective potential only betweefi, and Tg,. At T, we will r [fm]

have two distinct minima of equal depth. This clearly corre-

sponds to the choicg=0 in Eq. (3.5 so thatw has minima 116, 118, 120, and 122 MeV. Bubble size increases monotonically

=+ i — Py
at p=*a and a maximum alp=0. The minimum ate with  temperature. Recall thatT,=123.7 MeV and T,
=—a and the maximum move closer together as the tem-

perature is lowered and merge &,. Thus, the spinodal —108 Mev.
requiresj/aa®=—8/33 in Eq. (3.5). In the present case,
the parametew is essentially independent of temperature,
anda rises roughly linearly by some 3% as the temperaturer,, energy of a critical bubble is finally given by
falls from T; to Tg,. The parametej/ aa® falls roughly lin-
early from O(at T;) to —8/3/3 (at Ty). aws

The explicit form of the critical bubble in the thin-wall ECZTRE- (3.19
limit is then given by[18]

1 - I‘(r_RC
al TN TE

- ,Rc —
@C(rug ) (Pf+ f\/z_

FIG. 4. Exact bubble profiles for temperatures 110, 112, 114,

AW=V(d;)—V(D,)~2alj|. (3.19

From knowledge of,=E_., one can evaluate the nucleation

} (3.10 rateI". In calculating thin-wall properties, we shall use the
approximate forms foep;, ¢, 2, andAW for all values of
the potential parameters.

where ¢ is the new false vacuunR; is the radius of the

critical bubble, and=2/m with m*=W"(¢;) is a measure IV. RESULTS
of the wall thickness. The thin-wall limit corresponds to
é/R,<1 [18], which can be rewritten as [#/8aa®)<1. We begin by showing the critical bubble profiles obtained

This small parameter has the value of/3/at the spinodal, from the exact numerical solution of E.3) in Fig. 4. For
which suggests that the thin-wall approximation might beSmall supercooling the bubble profiles exhibit a pronounced
qualitatively reliable for our purposes. Nevertheless, it merits core” with &=, separated by a relatively thin wall from

defined above, we find come “coreless” for stronger supercooling; their thickness is
of the same order as the radius, and the field at the escape
i point, ®(r =0), does not reackb,. For comparison, Fig. 5
pri~*ta— 5 (3.11 shows bubble profiles for temperatufes 110 and 120 MeV
8aa as obtained from the numerical solution of E§.3 and
1 vz (3.12 0.10
=l——— A
a(3¢f—a’)
in the thin-wall limit. Determination of the critical radius 3
requires the surface tensiod, defined as 2
* d(,Db 2 2 *B*E
3= f dr(—) ~ . 3.1
0 dr 3a§3 (313
The critical radius then becomes
23,
Re="—, (3.19 iy _
AW FIG. 5. Critical bubble profiles for temperatures 110 and 120
MeV. The solid line indicates exact numerical results. The dashed
where line shows the results obtained with the thin-wall approximation.

116003-5



O. SCAVENIUSet al. PHYSICAL REVIEW D 63 116003

100.00F
10.00
€ -
Ra & 1.00
© L
ey
0.10
‘ . . ‘ 0.01 ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
(TC_T)/(TC_TSp> (TC_T>/(TC_TSp>
FIG. 6. Critical radii computed numericallgolid line) and with FIG. 7. The free energy of the critical bubbles as a function of
the thin-wall approximatioridashed lingas functions of the degree the degree of supercooling. The solid line shows the etasneri-
of supercooling. cal) result, the dashed line shows the thin-wall approximation, and

the dotted line shows exact results for the modified effective poten-

from the thin-wall approximation. In this case, we have usedial discussed in the text.
the same polynomial approximation ¥ in both exact and
thin-wall calculations so that discrepancies can be associategiate. Such comparison requires a more reliable description
cleanly with the thin-wall approximation(The critical  of P than that adopted here. The exact results shown in the
bubble profile is quite sensitive to the precise form\@f;.  figure suggest that the system is likely to supercool for some
This is particularly true wheif~T and the bubble radius is two-thirds of the way fronT, to Tg,. By contrast, the thin-
large) As expected, the thin-wall approximation provides awall results yield the significantly smaller value x#0.4.
qualitatively reasonable description of the critical bubble Given the weakness of the first-order phase transition pre-
profile. dicted by our model withg=5.5, it is remarkable that the

In Fig. 6, we compare the critical radi, obtained from  system can come so close to the spinodal temperature before
the two calculations as a function of temperature. For thehe stability of the metastable state is seriously challenged. It
exact numerical calculatioR, has been extracted from the is to be expected that effective potentials which maintain the
bubble profile shown in Fig. 4 as the point at which thesameT, and T, but which have a higher barrier between the
curvature of the profile changes si§iThis figure makes it phases al . would permit the metastable state to come even
clear that the thin-wall approximation becomes quantitacloser to the spinodal temperature.
tively correct asT—T. and R.—> as expected. The fact This point can be illustrated by considering an artificially
that the thin-wall approximation systematically underesti-modified effective potential with a higher barrier. We con-
matesR, will be reflected in a systematic overestimate of thestruct this potential from our quartic approximations by ar-
decay rate of the metastable state. bitrarily multiplying the parametgrat each temperature by a

This expectation is also supported by Fig. 7 which showsactor of (T,—T)/(T,—Tsy. Evidently, this modification
F,/T as a function of the degree of supercoolirgdefined  has no effect oW at the critical temperatur@vherej is 0)
asx=(T,—T)/(T.—Tsy. This figure also allows us to cali- or at the spinodalwhere the additional factor is 1). The
brate the temperature range of primary interest in the presemtaximum difference in effective potentials lies halfway be-
work. We have chosen to concentrate on the relatively viotween these extremes and is illustrated in Fig. 8. While the
lent behavior of the exponential factor in E@.1) and to difference between these potentials is not dramatically large,
treat the prefactorP, crudely. Given, the dramatic changes
in F,/T as a function of supercooling shown in this figure, A0 F
this focus seems appropriate. For temperatures such that :
Fup/T>1, T will be strongly suppressed by the exponential
factor, and the system is likely to remain in the metastable
state for times comparable to the expansion time of the sys-
tem. For lower temperatures, the exponential factor is unim-
portant, andl’ is determined primarily by the prefactdp.
At such temperatures, it becomes necessary to make a more
detailed comparison of the decay rate with the expansion rate
of the system in order to decide the fate of the metastable

30F

Ver(®) [MeV/fm”]

0O 20 40 60 80 100 120
® [MeV]

2This definition of R, is somewhat arbitrary. This figure is in-
tended only for the comparison of exact and thin-wall results. Our FIG. 8. The effective potential &i=116 MeV. The solid line
numerical calculations do not empldy,. in any of the quantities shows the originaVg from Fig. 1. The dotted line shows the
discussed below. modified V¢ as discussed in the text.
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FIG. 9. I'Y divided by an assumed expansion rate Hf FIG. 10. Correlation length of the chiral order parameter in the
=1 fm™! as a function of temperature. The solid line shows themetastable statd{) and in the global minimum corresponding to
exact (numerica) result, the dashed line shows the thin-wall ap- an equilibrium transition I¢). Solid lines correspond to the exact
proximation, and the dotted line shows exact results for the modiresults, while dashed lines were obtained within the thin-wall ap-
fied potential. proximation.

it is sufficient to raiseF,/T from the value of 2(for the ~ ambiguous prediction for the fate of the metastable state,
original V) to 10. Following exponentiation, this leads to a they do make it appear likely that the rapidly expanding
reduction of " by a factor of almost 3000. The values of System has an appreciable probability of remaining in the
F,/T for this modified potential, shown in Fig. 7, suggest restored symmetry phase even close to the spinodal instabil-
stability of the metastable phase for &k 0.83. ity. Thus, at least some fraction of all heavy ion events
It is now a simple matter to obtaif, the nucleation prob- Should show traces of this non-equilibrium transition. This
ability per unit time and volume, and to determine the spacelinderscores the importance of the event-by-event analysis of
time scales for homogeneous nucleation. This decay ratdata[6]. ) )
must be compared with the expansion rate of the central We now consider some potential consequences of a non-
region of a high-energy collision. Certain obvious conditions€quilibrium transition associated with strong supercooling
apply. For example, the critical radi® cannot exceed the relative to an adiabatic transition. First, the character of the
horizon. Otherwise, the center of the bubble cannot be caugthase transition will certainly influence global observables
ally connected to its surface, and the hydrostatic balance gind the expansion of the hot system. For example, a non-
surface and volume energy is thus impossible. In addition€quilibrium transition is always associated with entropy pro-
there is a time scale associated with a spontaneous coherdhiction which can be as large as 3q%5]. This would be
thermal fluctuation of energi, with a length-scale oR. If ~ reflected in the multiplicity of hadrons in the final state.
that time-scale is larger than the inverse expansion ratd/loreover, phase coexistence in equilibrium leads to a dis-
bubble nucleation can be regarded as a slow process, a#fict hydrodynamic expansion pattern which would be absent
deep supercooling is to be expectédhis is the condition in @ rapid non-equilibrium transition with strong supercool-
that F,/T>1 discussed aboveTo our knowledge, these INg. Since t_hls issue has already_recelved cons_lderable atten-
questions have not previously been addressed in studies BPn in the literaturg 26], we refrain from a detailed discus-
homogeneous nucleation in the QCD phase transition agion here. _ . _ .
found in hadronic collisions. Further, as discussed {9], if the chiral condensate is
To simplify our considerations, we assume that the centraitrapped” in the false minimum and supercooling persists
rapidity region exhibits one-dimensionaflongitudina) plose to the spmodal |nstaplllty, the subsequent realignment
Hubble flow[24] with an expansion raté.e. Hubble con- N the chiral field in the direction of the trye vacuum can
stan} H=1/, wheret denotes proper time. Even in large generate strong coherent pseudoscalar fietdsyhich will
nuclei, transverse expansion can increase the local expansienentually decay into a “beam” of coherent pions. The ex-
rate considerably when the system has cooled down tperimental situation will then be similar to that following an
T~T. [25]. Reasonable expansion rates ake~0.1 “instantaneous quench” of the restored symmetry ph&ge
-1 fm 1[9,25. Consider the behavior of the correlation length of the
We have chosefiV/H as a measure for the comparison ®-field. It is obvious from Fig. 1 that the curvatures of the
of nucleation and expansi¢f3]. The results shown in Fig. 9 effective potential at the minimé and ®, are rather dif-
assume an expansion bf=1 fm~'. When the nucleation ferent for T<T.. Thus, the effective massm
rate is much larger than the expansion rate, it is reasonable to d?V4/d®?, and the correlation length=1/m., of the
adopt standard thermodynamic techniques and to descrilfeeld will also be different. In particular, if the rapidly ex-
the phase transition by an idealized Maxwell constructionpanding system supercools appreciably and if the order pa-
[16]. Our results suggest that the Maxwell construction is norameter is trapped in the metastable state, one can expect a
likely to provide a reliable description of the phase transitionclear increase of.
dynamics. While the results of Fig. 9 do not provide an un- In Fig. 10 we show at®; and at®, as a function of the
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degree of supercooling. The correlation lengthdat in-  the order parameterwith two competing minima forT
creases as the metastable minimum disappears. By contrastT., corresponding to a first-order phase transition. The
there is a smooth decrease in the correlation length at the trugoproximation of this effective potential by a familiar
minimum &, (which would be the expectation value ®fif | andau-Ginzburg form allowed us to obtain analytical re-
the transition proceeded in equilibrionin the present model sults for critical bubble profiles and decay rates using the
I+ can exceed; by as much as a factor of 2—3, depending onthin-wall approximation. Comparisons with exact numerical
the degree of supercooling. The precise value$;@ndl;  solutions, which do not employ the thin-wall approximation,
depend on the specific effective model adopted, but thguggest that the thin-wall approximation is not adequate for
qualitative observation thdt increases dramatically as the the description of high-energy hadronic collisions. Its use
system approaches the spinodal instability is general. results in a significant underestimation of the size of critical
At the critical temperature, the thin-wall approximation bubbles. The effects of this error are then amplified in the
leads to only one correlation lengtly, = £/2, whereé is the  calculation of the decay rate. Furthermore, the thin-wall ap-
thickness of the critical bubble as given by E8.12). Thisis  proximation cannot be used to obtain the correlation length
because the thin-wall approximation assumes both a sméilh the metastable state close to the spinodal.
degree of supercooling and a small latent heat, i.e. a weak Our results show a rapid decrease with temperature in the
transition. Thus, the curvatures & and at®, coincide to  free energy of critical bubbles from infinity at the critical
leading order iné/R.. To leading order iné/R. and for  temperature to zero at the spinodal. Given the exponential

Tsp<T<T,, we find dependence df on F, /T, this fact provides some justifica-
tion for our crude treatment of the prefactorlin Further-
W' (hs) —W'(p)=—6|j|/a. (4.7 more, it suggests that the metastable phase is likely to sur-

vive at temperatures such thia>T is independent of the

Correlation lengths in the thin-wall approximation are showndetails of either the decay process or the expansion. Even the
in Fig. 10 by the dashed lines. The splitting lefand |, is  weak first-order transition considered here suggests the vi-
described reasonably wélt least qualitativelyexcept close ability of the restored symmetry phase foll . T)/(T,
to the spinodal, where this approximation is most unreliable—Tg) <2/3. As we have suggested, stronger transitions will

We note that the horizon, H/ in expanding systems pro- allow the metastable state to survive even closer to the spin-
vides an upper bound on the correlation lendthrannot odal instability. The fate of the metastable state wign
increase beyond the horizon. Thus, observable consequenced is a more delicate issue and requires the comparison of
can be expected only if the expansion rate diminishes neahe spatial/temporal scal&* for critical thermal fluctua-
the spinodal. On the other hand, correlation lengths cannaions to the typical expansion raté], expected in high-
become large if expansion rates are too small, élg. energy collisions. The small values B*4/H found in our
<0.1 fm 1, since the dynamics will no longer support calculations suggest that the phase transition is likely to pro-
strong supercooling. ceed through spinodal decomposition rather than bubble

As we have argued above, nucleation is not effective fonucleation for some fraction of all eventsr some fraction
small supercooling becausg, /T is large. The decay rate is of all rapidity bing. Our results certainly indicate thBt/* is
then likely to be much smaller than the expansion time, anchot materially larger tham. This suggests the familiar ide-
the system is likely to remain in the false vacuum. On thealized Maxwell construction of equilibrium thermodynamics
other hand, the approximations of homogeneous nucleatiois not appropriate for the description of phase transitions in
theory are likely to break down near the spinodal where théigh-energy heavy ion collisions. In fact, the relevance of
decay rate of the false vacuum becomes large. There, thaucleation theory for a possibly first-order chiral phase tran-
conditionR.>1;, inherent to nucleation theory, is no longer sition in high-energy collisions appears questionable. The
valid. If R.=1¢, it makes little sense to think of a bubble as conditionsF,<T andl;<R; leave at best only a small win-
a coherent superposition of random thermal fluctuations oflow of temperatures where nucleation might occur.
wavelengthl in hydrostatic equilibrium with the surround- Although current knowledge is insufficient to identify the
ing symmetric phase. It may rather be more appropriate t@rder of the QCD phase transition in hadronic collisions with
treat fluctuations on the scale as random thermal noise to certainty, it is still important to search for experimental indi-
be introduced into the classical equations of motion for thecations of supercooling. In addition to more familiar indica-
order parameter through, for example, a Langevin equatiotors, we have shown that the correlation length in the super-
[27]. In short, our results suggest that homogeneous nucleooled metastable state can be substantially larger than that
ation theory may never provide a suitable modeling of theexpected in an equilibrium transition if the degree of super-
chiral phase transition in particle collisions. cooling is large. Whether this can lead to observable conse-
quences depends sensitively on the expansion rate of the sys-
tem,H. SmallH will not support deep supercooling, and the
relevant correlation length will remain close ltg which is

We have considered homogeneous bubble nucleation ingmall. On the other hand, lardg€will set causality limits on
first-order chiral phase transition within an effective field the size of the correlation length at the false minimum, which
theory approach to low-energy QCD, i.e. a lineamodel  cannot exceed the horizonH/ It remains to be seen if there
coupled to quarks. Integrating out the quarks leads to ais a “window” of energy or projectile-target combination for
effective potential for the soft modes of the chiral fields.  which the predicted increase in the correlation length can be

V. SUMMARY AND OUTLOOK
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observed. This speculation requires more detailed numericént role in completing the transition. If the system evolves
studies of hydrodynamic expansion coupled to dynamicaby strong supercooling followed by a rapid phase transition
bubble nucleation(with realistic initial conditions before  (due either to spinodal decomposition or nucleation of many
definite predictions can be made. small nonspherical bubbles which percojatée constituent
The experimental observation of supercooling effects andluarks will experience strong reheating due to the fact that
spinodal decomposition would also be important as a mattefhey become essentially nonrelativistic. It would be interest-
of principle. Ideally, signatures of phase transitions shouldnd o seek experimental signatures for such “reheating,”
be order parameter related and should reveal properties #fhich must be present if the quarks acquire mass instanta-

the equilibrium phase diagram. This is not the case for manVecl’”SW' . listic and iative di on of
of the signatures proposed for heavy ion collisions such ag 'N Ul View, a realistic and quantitative discussion o
J/I'¥ suppression and strangeness production. The interpret?lqse points requires numerlpal studies of the dynamical evo-
tion of these signatures necessarily relies on theoretical es jution 9f qL_larks(wh_lch_ constitute t_he _heat batkoupled to
mates of reaction rates, and their connection to the therm he chiral field. While initial investigations along these lines

dynamics of QCD is often far from clear. While the spinodal ave b;aebn g)tt)alrformeld, €.g. rl}?e[@,zo], the Effects of dg d
instability is not part of the equilibrium phase diagram, it is namical bubble nucleation have not yet been considered.

very close. Familiar experiments in condensed matter phyg\_/loreov'er., the use of oversimplified geome_tries did. not allow
ics on a wealth of hysteresis phenoméina., the analogue of for reff‘“St'C velocity af‘d temperature-densny gradlgnts, non-
superheating and supercooljngnake it clear that spinodal spherical bubbl_e con_ﬂg_uranons, or bubble_ percalation. Work
instabilities can be studied on “macroscopic” time scales.O" these questions is in progress and will be reported else-

The spinodal instability, if found, would probably representWhere
the most direct information which relativistic heavy ion col-
lisions can provide regarding the QCD phase transition.

Not surprisingly, our results indicate that the time scales We thank A. Kusenko, D. Kharzeev, L. McLerran, I.
for nucleation and expansion are not as well separated iMishustin, R. Pisarski, and R. Venugopalan for many fruitful
high-energy hadronic—heavy-ion collisions as they are, focomments and discussions. A.D. acknowledges support from
example, in the cosmological QCD phase transition. The ashe DOE Research Grant, Contract No. DE-FG-02-93ER-
sumption of a “well-mixed” phase, commonly employed in 40764. E.S.F. is partially supported by the U. S. Department
hydrodynamic calculationg6] and the opposite scenario of of Energy under Contract No. DE-AC02-98CH10886 and by
perfect capture of the order parameter in the metastable minENPq (Brazil). J.T.L. thanks BNL's Nuclear Theory group
mum [9] with subsequent spinodal decomposition, must befor their generous support and hospitality during the comple-
regarded as rough qualitative pictures. Furthermore, the posion of this work. J.T.L. also acknowledges the support of the
sibility of significant supercooling indicated by our results Director, Office of Energy Research, Division of Nuclear
suggests the necessity of including the effects of nonPhysics of the Office of High Energy and Nuclear Physics of
spherical bubble configurations as well. Bubble growth andhe U.S. Department of Energy under Contract No. DE-
bubble percolation in particular are likely to play an impor- AC02-98CH10886.
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