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First-order chiral phase transition in high-energy collisions: Can nucleation prevent
spinodal decomposition?
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We discuss homogeneous nucleation in a first-order chiral phase transition within an effective field theory
approach to low-energy QCD. Exact decay rates and bubble profiles are obtained numerically and compared to
analytic results obtained with the thin-wall approximation. The thin-wall approximation overestimates the
nucleation rate for any degree of supercooling. The time scale for critical thermal fluctuations is calculated and
compared to typical expansion times for high-energy hadronic or heavy-ion collisions. We find that significant
supercooling is possible, and the relevant mechanism for phase conversion might be that of spinodal decom-
position. Some potential experimental signatures of supercooling, such as an increase in the correlation length
of the scalar condensate, are also discussed.

DOI: 10.1103/PhysRevD.63.116003 PACS number~s!: 11.30.Rd, 11.30.Qc, 12.39.Fe
L

-

y
m
fte
d
en
ite
e

rd
s
re
l

ill
t
en
tu
b

itio
lin
ra
a
o

tu
-

t,
e

ist
this
and

en-
the
than

tion,
,

n of
n

r
to

ion

e
to

can
ed.
se
in-
at-
tive
we
hat
f-

he
-

les
etry

of
e

s.
he
xi-
I. INTRODUCTION

It is hoped that experiments in the near future at BN
Relativistic Heavy Ion Collider~RHIC! and CERN Large
Hadron Collider~LHC! will discover evidence for the so
called quark-gluon plasma~QGP! in high-energy collisions
of heavy-ions or protons@1#. The QGP is the high-densit
primordial state of strongly interacting matter that presu
ably existed in the early universe a few microseconds a
the big bang@2,3#. In the QGP, chiral symmetry is restore
due to finite-temperature contributions to the effective pot
tial @4#. ~This statement is only approximate since fin
current-quark masses break chiral symmetry explicitly. S
below.!

Given our lack of detailed quantitative knowledge rega
ing low energy QCD, it is difficult to identify unambiguou
observables that would, if found, demonstrate beyond
sonable doubt that the QGP had been produced. Centra
trarelativistic collisions of heavy ions at RHIC and LHC w
produce multiplicities on the order of 104 hadrons per even
@5# and raise the possibility of analyzing data event-by-ev
@6#. Event-by-event fluctuations might provide an oppor
nity to discover new physics that is usually washed out
standard event averaging. In particular, if the phase trans
is first-order with fast expansion so that strong supercoo
or spinodal decomposition is possible, fluctuations in the
pidity density or in the transverse momentum spectra of h
rons and isospin fluctuations produced by the formation
domains of a coherent chiral condensate@7–9# could become
interesting observables.

The nature of the QCD phase diagram in the tempera
T and baryon chemical potentialm plane has been inten
sively studied in recent years@10,11#. Random matrix and
effective model calculations suggest that, at lowm and non-
zeroT, a smooth crossover transition is expected and tha
low T and non-zerom, the chiral phase transition should b
0556-2821/2001/63~11!/116003~10!/$20.00 63 1160
-
r

-

e

-

a-
ul-

t
-
y
n
g
-

d-
f

re

at

of first order. Thus, a second-order critical point must ex
inbetween these two limits. The arguments suggesting
topology for the phase diagram are in no sense complete,
the phase transition could also be first-order form50.

In a first-order phase transition, the thermodynamic pot
tial exhibits a metastable minimum corresponding to
symmetry restored phase for temperatures slightly less
the critical temperatureTc . This minimum gradually disap-
pears as the system cools and ends at a point of inflec
i.e., a ‘‘spinodal instability.’’ In a slowly expanding system
the phase transition would proceed through the nucleatio
bubbles of the ‘‘true vacuum’’ state via thermal activatio
@3,12–16,18#. In ultrarelativistic collisions of heavy ions o
hadrons, it is clear that expansion is very fast compared
that of the early universe at the cosmological QCD transit
~by a factor of ;1018: H.1023 sec21 versus H
.105 sec21). Thus, it is necessary to investigate the tim
scale for thermal nucleation relative to that for expansion
see if the metastable chirally symmetric state of matter
reach the spinodal instability before nucleation is complet

In this paper we shall consider a first-order chiral pha
transition in a rapidly expanding background. We take a l
ears-model coupled to quarks as our effective theory. Tre
ing the quarks as a heat bath which generates an effec
potential for the soft modes of the chiral order parameter,
obtain an effective potential at the one-loop level. Somew
below the critical temperature, this slightly asymmetric e
fective potential has three local minima. Starting with t
order parameter ‘‘localized’’ in the metastable chirally sym
metric state of matter, we then study critical bubble profi
and calculate the nucleation rate to the broken symm
phase. This will provide the temporal and spatial scales
thermal field fluctuations into the broken symmetry state. W
will consider both analytical and numerical computation
Our numerical results represent ‘‘exact’’ calculations. In t
analytical treatment, we must turn to the thin-wall appro
©2001 The American Physical Society03-1
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mation in order to obtain closed results. The comparison
tween these two approaches will allow us to establish lim
on the reliability of the thin-wall approximation.

This paper is organized as follows. Section II presents
effective theory. Section III describes homogeneous nu
ation and the methods used for both numerical and ana
computations of bubble profiles and nucleation rates. O
results are discussed in Sec. IV. Section V presents our
clusions and suggested directions for future investigat
We employ natural units,\5c5kB51, throughout.

II. EFFECTIVE THEORY

As an effective theory of the chiral symmetry breaki
dynamics, we assume the linears-model coupled to quarks
@9,19,20#:

L5q̄@ igm]m2g~s1 ig5tW•pW !#q

1
1

2
~]ms]ms1]mpW ]mpW !2U~s,pW !. ~2.1!

The potential, which exhibits both spontaneously and exp
itly broken chiral symmetry, is

U~s,pW !5
l2

4
~s21pW 22v2!22hqs. ~2.2!

Here q is the constituent-quark fieldq5(u,d). The scalar
field s and the pseudoscalar fieldpW 5(p1 ,p2 ,p3) together
form a chiral fieldF5(s,pW ). The parameters of the La
grangian are chosen such that chiralSUL(2)^ SUR(2) sym-
metry is spontaneously broken in the vacuum. The vacu
expectation values of the condensates are^s&5fp and ^pW &
50, where fp593 MeV is the pion decay constant. Th
explicit symmetry breaking term is due to the finite curre
quark masses and is determined by the PCAC~partial con-
servation of axial vector coupling! relation which giveshq

5 f pmp
2 , wheremp5138 MeV is the pion mass. This lead

to v25 f p
2 2mp

2 /l2. The value ofl2520 leads to as-mass,
ms

252l2f p
2 1mp

2 , equal to 600 MeV. In mean field theory
the purely bosonic part of this Lagrangian exhibits a seco
order phase transition@21# at Tc5A2v if the explicit sym-
metry breaking term,hq , is dropped. ForhqÞ0, the transi-
tion becomes a smooth crossover from the restored to bro
symmetry phases. Forg.0, the finite-temperature one-loo
effective potential also includes the following contributio
from the quarks:

Vq~F!52dqTE d3k

~2p!3
log~11e2E/T!. ~2.3!

Here, dq524 denotes the color-spin-isospin-baryon cha
degeneracy of the quarks. We note thatVq(F) depends on
the order parameterF through the effective mass of th
quarks,mq5gAF2, which enters into the expression for th
energy,E5Ak21g2F2. In our phenomenological approac
we will assume that the quarks constitute the heat bath
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which the long-wavelength modes of the chiral field, i.e., t
order parameter, evolve. Thus, we will take the effect
potential to be

Veff[U1Vq . ~2.4!

To arrive at this form for the effective potential we co
sider a system of quarks and antiquarks in thermodynam
equilibrium at temperatureT ~in @11# Veff is derived also at
finite baryon-chemical potential; here we shall consider o
the case of baryon-symmetric matter!. The partition function
reads

Z5E Dq̄DqDsDpW expF E
0

1/T

d~ i t !E
V
d3xWLG . ~2.5!

V is the volume of the system. In mean-field approximati
the chiral fields in the Lagrangian are replaced by their
pectation values, which we will denote bys and pW in the
following. Then, up to an overall normalization factor,

Z5NUE Dq̄Dq

3expH E
0

1/T

d~ i t !E
V
d3xW q̄@ igm]m2g~s1 ig5tW•pW !#qJ

5NUdetp$@pmgm2g~s1 ig5tW•pW !#/T%, ~2.6!

where

NU5expS 2
VU~s,pW !

T
D . ~2.7!

Taking the logarithm ofZ, the determinant of the Dirac op
erator can be evaluated in the standard fashion@22#, and we
finally obtain the grand canonical potential

V~T!52
T

V logZ5U1Ṽq~T!, ~2.8!

where

Ṽq~T!52dqE d3pW

~2p!3
$E1T log@11e2E/T#%. ~2.9!

For our purposes, the zero-temperature contribution toṼq
can be partly absorbed intoU via a standard renormalizatio
of the bare parametersl2 and v2. However, a logarithmic
correction from the renormalization scale remains and is
glected in the following~see @11# for more details!. The
finite-T part definesVq as given in Eq.~2.3!.

We now turn to a discussion of the shape of the effect
potential at various temperatures. For sufficiently smallg one
still finds the above-mentioned smooth transition betwe
the two phases. At larger coupling to the quarks, howev
the effective potential exhibits a first-order phase transiti
For temperatures near the critical temperature,Veff displays a
local minimumF5F f(T).0 which is separated by a ba
3-2



,

as

-
in

st,
r

a
e

o

tr
es
ng

o
ive
de
he
y,
f-

om-
ng

.

at
ce
r-

is

and
ex-

a

- d

-

FIRST-ORDER CHIRAL PHASE TRANSITION IN . . . PHYSICAL REVIEW D63 116003
rier from another local minimum atF5F t(T).0. ~There is
another local minimum for negativeF which is of higher
energy and need not concern us.! These two minima are
degenerate atT5Tc . For example,g55.5 leads to a critical
temperature ofTc5123.7 MeV. Unless stated differently
throughout the manuscript we shall adopt the valuesg55.5
for the quark-field coupling andl2520 for the self-coupling
of the chiral fields.

Chiral symmetry is~approximately! restored forT.Tc .
The minimum atF5F t becomes the absolute minimum
the temperature is reduced belowTc . As the temperature is
lowered, the local minimum atF'0 approaches the inter
vening maximum. These two extrema meet and form an
flection point at the spinodal temperature,Tsp. Only the bro-
ken symmetry minimum remains forT,Tsp. For our
standard choice of parameters,Tsp5108 MeV. The potential
in thes-direction is shown in Fig. 1 for the range of intere
Tsp<T<Tc ; see also Ref.@9#.1 Note the rather small barrie
between the two local minima ofVeff at Tc . The first-order
transition forg55.5 is weak compared to those convention
in bag model calculations@16#. This weakness is due to th
fact that gluons, absent in the present linears-model, are
treated as free fields~for T>Tc) in the bag model. It is not
our goal here to argue which approximation is more reas
able. Rather, we view our approach as complementary
previous studies which employed the bag model@3,12,16#.
The existence of a local minimum inVeff raises the possibil-
ity of super-cooling effects since the true broken symme
minimum can only be reached by tunneling. The weakn
of our first-order transition is likely to overestimate tunneli
rates and underestimate the effects of supercooling.

In fact, increasing the coupling to the quarks leads t
larger barrier between the two local minima of the effect
potential, as seen in Fig. 2. In other words, the first-or
transition becomes stronger, with larger latent heat. Furt
more, the spinodal temperatureTsp decreases considerabl
to about.78 MeV. As will become clear below, both e

1The right diagram in Fig. 1 of Ref.@9# is incorrectly indicated as
corresponding to T5100 MeV. It actually representsT
5108 MeV.

FIG. 1. The one-loop finite-T effective potential forTsp<T
<Tc and coupling constantsg55.5, l2520. The curves are la
beled by the temperature in MeV.
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fects ~the higher barrier and the lower temperatures! act to
reduce the decay rate of the metastable minimum as c
pared to our ‘‘standard’’ choice of couplings correspondi
to the potential shown in Fig. 1.

There is also the possibility that thes-meson is much
lighter at Tc than atT50 @23# ~i.e. l2 is small! if QCD is
near a chiral critical point. Choosing for examplel2.2.2
with the pion decay constantf p and vacuum massmp fixed,
such thatv250, leads to the potential shown in Fig. 3
Clearly, decreasingl2 in this theory reducesTc very much,
to less than 100 MeV. Reducingg has practically no effect,
except that the first-order phase transition disappearsg
&4. Such lowTc appear to be excluded by present latti
QCD results@17#, and will therefore not be considered fu
ther.

In order to obtain approximate analytic formulas, it
convenient to expressVeff over the range 0<F<T in the
familiar Landau-Ginzburg form~see also@12#!

Veff' (
n50

4

anFn. ~2.10!

This form is adopted purely for reasons of convenience
no deeper meaning should be attached to it. It is, for
ample, obviously incapable of reproducing all three minim

FIG. 2. The one-loop finite-T effective potential forTsp<T
<Tc and coupling constantsg510, l2520. The curves are labele
by the temperature in MeV.

FIG. 3. The one-loop finite-T effective potential forTsp<T
<Tc and coupling constantsg55.5, l252.2. The curves are la
beled by the temperature in MeV.
3-3
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of Veff . We shall use this expansion both for a limited ran
of temperatures (Tsp<T<Tc) and for a limited range of field
strengths (0<F<T) which includes the two local minima
of interest. With these restrictions, this polynomial form
found to provide a quantitative description ofVeff . The co-
efficientsan are determined for eachT by performing a least
squares fit to the true effective potential.

III. HOMOGENEOUS NUCLEATION

We wish to consider the physical situation~realizable for
Tsp<T<Tc) in which a scalar field, corresponding to th
s-direction, is initially localized in the metastable restor
symmetry minimum of an asymmetric double-well potenti
~We neglect the higher-energy local minimum withF,0.! It
is well known that such a system can decay by the nuclea
of thermally activated bubbles of the true vacuum inside
false one@3,12–16,18#. The nucleation rate per unit volum
per unit time is expressed as

G5Pe2Fb /T, ~3.1!

whereFb is the free energy of a critical bubble and where t
prefactorP provides a measure of the saddle point of t
Euclidean action in functional space. It is conventional
write P as a product of the bubble’s growth rate and a fac
proportional to the ratio of the determinant of the fluctuati
operator around the bubble configuration to that around
homogeneous metastable state. The following analysis
concentrate on the exponential barrier penetration factor,
we will approximateP by T4. This approximation is known
to give an overestimate ofG, see e.g.@15,16#. The reason for
this focus is thatFb is necessarily infinite atTc and zero at
Tsp. The exponential factor is thus expected to make
dominant contribution to the structure ofG.

In order to determine the role of bubble nucleation in t
evolving system and to be able to compute the decay ratG,
it is necessary to study the critical bubble and some of
features. The critical bubble is a radially symmetric, sta
solution of the Euler-Lagrange field equations that satis
the boundary conditionF(r→`)→F f whereF f is the false
vacuum of the effective potential. Energetically, this boun
ary condition corresponds to an exact balance between
ume and surface contributions which defines the critical
dius, R5Rc . The critical bubble is unstable with respect
small changes of its radius. ForR,Rc , the surface energy
dominates, and the bubble shrinks into the false vacuum.
R.Rc , the volume energy dominates, and the bubble gro
driving the decay process.

The critical bubble can be found by minimizing the fre
energy

Fb~F,T!54pE r 2drF1

2 S dF

dr D 2

1Veff~F,T!G , ~3.2!

with respect to the fieldF. This leads to

d2F

dr2
1

2

r

dF

dr
2

dVeff~F,T!

dF
50, ~3.3!
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dVeff~F,T!

dF
5l~F22v2!F2hq

1
g2Fdq

p2 E dp
p2

E

1

exp~E/T!11
. ~3.4!

@It has been assumed in Eq.~3.2! that the effective potentia
is shifted so thatVeff(F f ,T)50.# The desired solution of Eq
~3.3! is found by imposing the boundary conditionF(r
→`)→F f .

For numerical purposes it is more convenient to impo
boundary conditions atr 50 by settingF8(0)50 andF(0)
equal to an ‘‘escape value’’Fe . It is straightforward to in-
tegrate Eq.~3.3! to obtain the bubble profileF(r ) for a given
temperature. The escape value is then adjusted until the
sired boundary conditions atr→` are realized. This proces
can be facilitated by smoothly joining the numerical valu
of F(r ) to the analytic solution to Eq.~3.3! that is regular as
r→`. Close to the critical temperature,F(r ) has a simple
qualitative behavior. It stays close the escape valueFe for
r ,Rc and then makes a rapid transition to the false vacuu
F f . For obvious reasons,Rc is identified as the radius of th
critical bubble. Once the profile of the critical bubble h
been found, the free energyFb is obtained by computing the
integral in Eq.~3.2! numerically. Finally, the decay rate ca
be calculated using the approximate prefactorP5T4.

A simple physical analogue of this procedure can be
tained by turning the potentials in Fig. 1 upside down a
considering the mechanical motion of a point particle mo
ing in the inverted potential. The problem of determining t
critical bubble profile is then seen to be equivalent to find
that point on the true vacuum hill such that a ball starting
rest and obeying the equation of motion, Eq.~3.3!, would
descend and land at rest on the top of the false vacuum h
the point F f . The starting point is evidently the escap
point. It does not correspond to the true vacuum point
rather to some smaller value. This mechanical analogy a
makes it clear that2Veff(Fe) must be greater than
2Veff(F f) due to the presence of the second, ‘‘frictiona
term in Eq. ~3.3!. As we shall see, the critical radiusRc
diverges asT→Tc . The frictional term then becomes sma
in some sense. The various approximate methods for dea
with this frictional term approximately are all described
‘‘the thin-wall approximation.’’

Although the thin-wall approximation is not expected
be valid near the spinodal, it should provide a reliable d
scription of nucleation nearTc . Given the frequency of its
adoption and its simplicity, we find it useful to apply th
thin-wall approximation to the present problem. A quar
potential such as Eq.~2.10! can always be rewritten in the
form

W~w!5a~w22a2!21 j w. ~3.5!

Specifically, we have

a5a4 , ~3.6!
3-4



th

re

m
l
,
re
ur

ll

to

be
rit

s

n
e

ed

ed

e-
is

cape

14,
ally

20
hed
.

FIRST-ORDER CHIRAL PHASE TRANSITION IN . . . PHYSICAL REVIEW D63 116003
a25
1

2 F2
a2

a4
1

3

8 S a3

a4
D 2G , ~3.7!

j 5a4Fa1

a4
2

1

2

a2

a4

a3

a4
1

1

8 S a3

a4
D 3G , ~3.8!

w5F1
1

4

a3

a4
. ~3.9!

The new potentialW(w) reproduces the originalVeff(F) up
to a shift in the zero of energy. We are interested in
effective potential only betweenTc andTsp. At Tc , we will
have two distinct minima of equal depth. This clearly cor
sponds to the choicej 50 in Eq. ~3.5! so thatW has minima
at w56a and a maximum atw50. The minimum atw
52a and the maximum move closer together as the te
perature is lowered and merge atTsp. Thus, the spinoda
requires j /aa3528/3A3 in Eq. ~3.5!. In the present case
the parametera is essentially independent of temperatu
anda rises roughly linearly by some 3% as the temperat
falls from Tc to Tsp. The parameterj /aa3 falls roughly lin-
early from 0 ~at Tc) to 28/3A3 ~at Tsp).

The explicit form of the critical bubble in the thin-wa
limit is then given by@18#

wc~r ;j,Rc!5w f1
1

jA2a
F12tanhS r 2Rc

j D G , ~3.10!

wherew f is the new false vacuum,Rc is the radius of the
critical bubble, andj52/m with m2[W9(w f) is a measure
of the wall thickness. The thin-wall limit corresponds
j/Rc!1 @18#, which can be rewritten as (3u j u/8aa3)!1.
This small parameter has the value of 1/A3 at the spinodal,
which suggests that the thin-wall approximation might
qualitatively reliable for our purposes. Nevertheless, it me
a quantitative check. In terms of the parametersa, a, and j
defined above, we find

w t, f'6a2
j

8aa2
~3.11!

j5F 1

a~3w f
22a2!

G 1/2

~3.12!

in the thin-wall limit. Determination of the critical radiu
requires the surface tension,S, defined as

S[E
0

`

drS dwb

dr D 2

'
2

3aj3
. ~3.13!

The critical radius then becomes

Rc5
2S

DW
, ~3.14!

where
11600
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DW[V~F f !2V~F t!'2au j u. ~3.15!

The energy of a critical bubble is finally given by

Ec5
4pS

3
Rc

2 . ~3.16!

From knowledge ofFb5Ec , one can evaluate the nucleatio
rate G. In calculating thin-wall properties, we shall use th
approximate forms forf t , f f , S, andDW for all values of
the potential parameters.

IV. RESULTS

We begin by showing the critical bubble profiles obtain
from the exact numerical solution of Eq.~3.3! in Fig. 4. For
small supercooling the bubble profiles exhibit a pronounc
‘‘core’’ with F.F t separated by a relatively thin wall from
the regionF5F f . On the other hand, critical bubbles b
come ‘‘coreless’’ for stronger supercooling; their thickness
of the same order as the radius, and the field at the es
point, F(r 50), does not reachF t . For comparison, Fig. 5
shows bubble profiles for temperaturesT5110 and 120 MeV
as obtained from the numerical solution of Eq.~3.3! and

FIG. 4. Exact bubble profiles for temperatures 110, 112, 1
116, 118, 120, and 122 MeV. Bubble size increases monotonic
with temperature. Recall thatTc5123.7 MeV and Tsp

5108 MeV.

FIG. 5. Critical bubble profiles for temperatures 110 and 1
MeV. The solid line indicates exact numerical results. The das
line shows the results obtained with the thin-wall approximation
3-5
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from the thin-wall approximation. In this case, we have us
the same polynomial approximation toVeff in both exact and
thin-wall calculations so that discrepancies can be associ
cleanly with the thin-wall approximation.~The critical
bubble profile is quite sensitive to the precise form ofVeff .
This is particularly true whenT'Tc and the bubble radius i
large.! As expected, the thin-wall approximation provides
qualitatively reasonable description of the critical bubb
profile.

In Fig. 6, we compare the critical radiiRc obtained from
the two calculations as a function of temperature. For
exact numerical calculation,Rc has been extracted from th
bubble profile shown in Fig. 4 as the point at which t
curvature of the profile changes sign.2 This figure makes it
clear that the thin-wall approximation becomes quant
tively correct asT→Tc and Rc→` as expected. The fac
that the thin-wall approximation systematically underes
matesRc will be reflected in a systematic overestimate of t
decay rate of the metastable state.

This expectation is also supported by Fig. 7 which sho
Fb /T as a function of the degree of supercooling,x, defined
asx5(Tc2T)/(Tc2Tsp). This figure also allows us to cali
brate the temperature range of primary interest in the pre
work. We have chosen to concentrate on the relatively v
lent behavior of the exponential factor in Eq.~3.1! and to
treat the prefactor,P, crudely. Given, the dramatic change
in Fb /T as a function of supercooling shown in this figur
this focus seems appropriate. For temperatures such
Fb /T.1, G will be strongly suppressed by the exponent
factor, and the system is likely to remain in the metasta
state for times comparable to the expansion time of the
tem. For lower temperatures, the exponential factor is un
portant, andG is determined primarily by the prefactor,P.
At such temperatures, it becomes necessary to make a
detailed comparison of the decay rate with the expansion
of the system in order to decide the fate of the metasta

2This definition of Rc is somewhat arbitrary. This figure is in
tended only for the comparison of exact and thin-wall results. O
numerical calculations do not employRc in any of the quantities
discussed below.

FIG. 6. Critical radii computed numerically~solid line! and with
the thin-wall approximation~dashed line! as functions of the degre
of supercooling.
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state. Such comparison requires a more reliable descrip
of P than that adopted here. The exact results shown in
figure suggest that the system is likely to supercool for so
two-thirds of the way fromTc to Tsp. By contrast, the thin-
wall results yield the significantly smaller value ofx'0.4.

Given the weakness of the first-order phase transition p
dicted by our model withg55.5, it is remarkable that the
system can come so close to the spinodal temperature be
the stability of the metastable state is seriously challenge
is to be expected that effective potentials which maintain
sameTc andTsp but which have a higher barrier between t
phases atTc would permit the metastable state to come ev
closer to the spinodal temperature.

This point can be illustrated by considering an artificia
modified effective potential with a higher barrier. We co
struct this potential from our quartic approximations by a
bitrarily multiplying the parameterj at each temperature by
factor of (Tc2T)/(Tc2Tsp). Evidently, this modification
has no effect onVeff at the critical temperature~wherej is 0)
or at the spinodal~where the additional factor is 1). Th
maximum difference in effective potentials lies halfway b
tween these extremes and is illustrated in Fig. 8. While
difference between these potentials is not dramatically la

r

FIG. 7. The free energy of the critical bubbles as a function
the degree of supercooling. The solid line shows the exact~numeri-
cal! result, the dashed line shows the thin-wall approximation, a
the dotted line shows exact results for the modified effective po
tial discussed in the text.

FIG. 8. The effective potential atT5116 MeV. The solid line
shows the originalVeff from Fig. 1. The dotted line shows th
modifiedVeff as discussed in the text.
3-6
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it is sufficient to raiseFb /T from the value of 2~for the
original Veff) to 10. Following exponentiation, this leads to
reduction ofG by a factor of almost 3000. The values
Fb /T for this modified potential, shown in Fig. 7, sugge
stability of the metastable phase for allx,0.83.

It is now a simple matter to obtainG, the nucleation prob-
ability per unit time and volume, and to determine the spa
time scales for homogeneous nucleation. This decay
must be compared with the expansion rate of the cen
region of a high-energy collision. Certain obvious conditio
apply. For example, the critical radiusRc cannot exceed the
horizon. Otherwise, the center of the bubble cannot be c
ally connected to its surface, and the hydrostatic balanc
surface and volume energy is thus impossible. In addit
there is a time scale associated with a spontaneous coh
thermal fluctuation of energyEc with a length-scale ofRc . If
that time-scale is larger than the inverse expansion r
bubble nucleation can be regarded as a slow process,
deep supercooling is to be expected.~This is the condition
that Fb /T@1 discussed above.! To our knowledge, these
questions have not previously been addressed in studie
homogeneous nucleation in the QCD phase transition
found in hadronic collisions.

To simplify our considerations, we assume that the cen
rapidity region exhibits one-dimensional~longitudinal!
Hubble flow @24# with an expansion rate~i.e. Hubble con-
stant! H51/t, where t denotes proper time. Even in larg
nuclei, transverse expansion can increase the local expan
rate considerably when the system has cooled down
T'Tc @25#. Reasonable expansion rates areH'0.1
21 fm21 @9,25#.

We have chosenG1/4/H as a measure for the compariso
of nucleation and expansion@13#. The results shown in Fig. 9
assume an expansion ofH51 fm21. When the nucleation
rate is much larger than the expansion rate, it is reasonab
adopt standard thermodynamic techniques and to desc
the phase transition by an idealized Maxwell construct
@16#. Our results suggest that the Maxwell construction is
likely to provide a reliable description of the phase transit
dynamics. While the results of Fig. 9 do not provide an u

FIG. 9. G1/4 divided by an assumed expansion rate ofH
51 fm21 as a function of temperature. The solid line shows
exact ~numerical! result, the dashed line shows the thin-wall a
proximation, and the dotted line shows exact results for the m
fied potential.
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ambiguous prediction for the fate of the metastable st
they do make it appear likely that the rapidly expandi
system has an appreciable probability of remaining in
restored symmetry phase even close to the spinodal inst
ity. Thus, at least some fraction of all heavy ion even
should show traces of this non-equilibrium transition. Th
underscores the importance of the event-by-event analys
data@6#.

We now consider some potential consequences of a n
equilibrium transition associated with strong supercool
relative to an adiabatic transition. First, the character of
phase transition will certainly influence global observab
and the expansion of the hot system. For example, a n
equilibrium transition is always associated with entropy p
duction which can be as large as 30%@16#. This would be
reflected in the multiplicity of hadrons in the final stat
Moreover, phase coexistence in equilibrium leads to a d
tinct hydrodynamic expansion pattern which would be abs
in a rapid non-equilibrium transition with strong supercoo
ing. Since this issue has already received considerable a
tion in the literature@26#, we refrain from a detailed discus
sion here.

Further, as discussed in@9#, if the chiral condensate is
‘‘trapped’’ in the false minimum and supercooling persis
close to the spinodal instability, the subsequent realignm
in the chiral field in the direction of the true vacuum ca
generate strong coherent pseudoscalar fields,pW , which will
eventually decay into a ‘‘beam’’ of coherent pions. The e
perimental situation will then be similar to that following a
‘‘instantaneous quench’’ of the restored symmetry phase@8#.

Consider the behavior of the correlation length of t
F-field. It is obvious from Fig. 1 that the curvatures of th
effective potential at the minimaF f and F t are rather dif-
ferent for T,Tc . Thus, the effective mass,meff

2

5d2Veff /dF2, and the correlation length,l 51/meff , of the
field will also be different. In particular, if the rapidly ex
panding system supercools appreciably and if the order
rameter is trapped in the metastable state, one can exp
clear increase ofl.

In Fig. 10 we showl at F f and atF t as a function of the

i-

FIG. 10. Correlation length of the chiral order parameter in
metastable state (l f) and in the global minimum corresponding t
an equilibrium transition (l t). Solid lines correspond to the exac
results, while dashed lines were obtained within the thin-wall
proximation.
3-7
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degree of supercooling. The correlation length atF f in-
creases as the metastable minimum disappears. By con
there is a smooth decrease in the correlation length at the
minimum F t ~which would be the expectation value ofF if
the transition proceeded in equilibrium!. In the present mode
l f can exceedl t by as much as a factor of 2–3, depending
the degree of supercooling. The precise values ofl f and l t
depend on the specific effective model adopted, but
qualitative observation thatl f increases dramatically as th
system approaches the spinodal instability is general.

At the critical temperature, the thin-wall approximatio
leads to only one correlation length,l tw5j/2, wherej is the
thickness of the critical bubble as given by Eq.~3.12!. This is
because the thin-wall approximation assumes both a s
degree of supercooling and a small latent heat, i.e. a w
transition. Thus, the curvatures atF f and atF t coincide to
leading order inj/Rc . To leading order inj/Rc and for
Tsp,T,Tc , we find

W9~f f !2W9~f t!526u j u/a. ~4.1!

Correlation lengths in the thin-wall approximation are sho
in Fig. 10 by the dashed lines. The splitting ofl f and l t is
described reasonably well~at least qualitatively! except close
to the spinodal, where this approximation is most unreliab

We note that the horizon, 1/H, in expanding systems pro
vides an upper bound on the correlation length;l f cannot
increase beyond the horizon. Thus, observable conseque
can be expected only if the expansion rate diminishes n
the spinodal. On the other hand, correlation lengths can
become large if expansion rates are too small, e.g.H
,0.1 fm21, since the dynamics will no longer suppo
strong supercooling.

As we have argued above, nucleation is not effective
small supercooling becauseFb /T is large. The decay rate i
then likely to be much smaller than the expansion time, a
the system is likely to remain in the false vacuum. On
other hand, the approximations of homogeneous nuclea
theory are likely to break down near the spinodal where
decay rate of the false vacuum becomes large. There,
conditionRc@ l f , inherent to nucleation theory, is no long
valid. If Rc' l f , it makes little sense to think of a bubble a
a coherent superposition of random thermal fluctuations
wavelengthl f in hydrostatic equilibrium with the surround
ing symmetric phase. It may rather be more appropriate
treat fluctuations on the scalel f as random thermal noise t
be introduced into the classical equations of motion for
order parameter through, for example, a Langevin equa
@27#. In short, our results suggest that homogeneous nu
ation theory may never provide a suitable modeling of
chiral phase transition in particle collisions.

V. SUMMARY AND OUTLOOK

We have considered homogeneous bubble nucleation
first-order chiral phase transition within an effective fie
theory approach to low-energy QCD, i.e. a linears-model
coupled to quarks. Integrating out the quarks leads to
effective potential for the soft modes of the chiral fields~i.e.
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the order parameter! with two competing minima forT
5Tc , corresponding to a first-order phase transition. T
approximation of this effective potential by a familia
Landau-Ginzburg form allowed us to obtain analytical r
sults for critical bubble profiles and decay rates using
thin-wall approximation. Comparisons with exact numeric
solutions, which do not employ the thin-wall approximatio
suggest that the thin-wall approximation is not adequate
the description of high-energy hadronic collisions. Its u
results in a significant underestimation of the size of criti
bubbles. The effects of this error are then amplified in
calculation of the decay rate. Furthermore, the thin-wall
proximation cannot be used to obtain the correlation len
in the metastable state close to the spinodal.

Our results show a rapid decrease with temperature in
free energy of critical bubbles from infinity at the critica
temperature to zero at the spinodal. Given the exponen
dependence ofG on Fb /T, this fact provides some justifica
tion for our crude treatment of the prefactor inG. Further-
more, it suggests that the metastable phase is likely to
vive at temperatures such thatFb@T is independent of the
details of either the decay process or the expansion. Even
weak first-order transition considered here suggests the
ability of the restored symmetry phase for (Tc2T)/(Tc
2Tsp),2/3. As we have suggested, stronger transitions w
allow the metastable state to survive even closer to the s
odal instability. The fate of the metastable state whenFb
,T is a more delicate issue and requires the compariso
the spatial/temporal scale,G1/4, for critical thermal fluctua-
tions to the typical expansion rate,H, expected in high-
energy collisions. The small values ofG1/4/H found in our
calculations suggest that the phase transition is likely to p
ceed through spinodal decomposition rather than bub
nucleation for some fraction of all events~or some fraction
of all rapidity bins!. Our results certainly indicate thatG1/4 is
not materially larger thanH. This suggests the familiar ide
alized Maxwell construction of equilibrium thermodynami
is not appropriate for the description of phase transitions
high-energy heavy ion collisions. In fact, the relevance
nucleation theory for a possibly first-order chiral phase tr
sition in high-energy collisions appears questionable. T
conditionsFb,T and l f,Rc leave at best only a small win
dow of temperatures where nucleation might occur.

Although current knowledge is insufficient to identify th
order of the QCD phase transition in hadronic collisions w
certainty, it is still important to search for experimental ind
cations of supercooling. In addition to more familiar indic
tors, we have shown that the correlation length in the sup
cooled metastable state can be substantially larger than
expected in an equilibrium transition if the degree of sup
cooling is large. Whether this can lead to observable con
quences depends sensitively on the expansion rate of the
tem,H. SmallH will not support deep supercooling, and th
relevant correlation length will remain close tol t , which is
small. On the other hand, largeH will set causality limits on
the size of the correlation length at the false minimum, wh
cannot exceed the horizon 1/H. It remains to be seen if ther
is a ‘‘window’’ of energy or projectile-target combination fo
which the predicted increase in the correlation length can
3-8
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observed. This speculation requires more detailed nume
studies of hydrodynamic expansion coupled to dynam
bubble nucleation~with realistic initial conditions! before
definite predictions can be made.

The experimental observation of supercooling effects
spinodal decomposition would also be important as a ma
of principle. Ideally, signatures of phase transitions sho
be order parameter related and should reveal propertie
the equilibrium phase diagram. This is not the case for m
of the signatures proposed for heavy ion collisions such
J/C suppression and strangeness production. The interp
tion of these signatures necessarily relies on theoretical
mates of reaction rates, and their connection to the ther
dynamics of QCD is often far from clear. While the spinod
instability is not part of the equilibrium phase diagram, it
very close. Familiar experiments in condensed matter ph
ics on a wealth of hysteresis phenomena~i.e., the analogue o
superheating and supercooling! make it clear that spinoda
instabilities can be studied on ‘‘macroscopic’’ time scale
The spinodal instability, if found, would probably represe
the most direct information which relativistic heavy ion co
lisions can provide regarding the QCD phase transition.

Not surprisingly, our results indicate that the time sca
for nucleation and expansion are not as well separate
high-energy hadronic–heavy-ion collisions as they are,
example, in the cosmological QCD phase transition. The
sumption of a ‘‘well-mixed’’ phase, commonly employed
hydrodynamic calculations@26# and the opposite scenario o
perfect capture of the order parameter in the metastable m
mum @9# with subsequent spinodal decomposition, must
regarded as rough qualitative pictures. Furthermore, the
sibility of significant supercooling indicated by our resu
suggests the necessity of including the effects of n
spherical bubble configurations as well. Bubble growth a
bubble percolation in particular are likely to play an impo
s.
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tant role in completing the transition. If the system evolv
by strong supercooling followed by a rapid phase transit
~due either to spinodal decomposition or nucleation of ma
small nonspherical bubbles which percolate!, the constituent
quarks will experience strong reheating due to the fact t
they become essentially nonrelativistic. It would be intere
ing to seek experimental signatures for such ‘‘reheating
which must be present if the quarks acquire mass insta
neously.

In our view, a realistic and quantitative discussion
those points requires numerical studies of the dynamical e
lution of quarks~which constitute the heat bath! coupled to
the chiral field. While initial investigations along these lin
have been performed, e.g. Refs.@9,20#, the effects of dy-
namical bubble nucleation have not yet been conside
Moreover, the use of oversimplified geometries did not all
for realistic velocity and temperature-density gradients, n
spherical bubble configurations, or bubble percolation. W
on these questions is in progress and will be reported e
where.
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