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Mixing of scalar glueballs and flavor-singlet scalar mesons
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We discuss in detail the extraction of hadronic mixing strengths from lattice studies. We apply this to the
mixing of a scalar glueball and a scalar meson in the quenched approximation. We also measure correlations
appropriate for flavor-singlet scalar mesons using dynamical quark configurations from UKQCD. This enables
us to compare the results from the quenched study of the mixing with the direct determination of the mixed
spectrum. Improved methods of evaluating the disconnected quark diagrams are also presented.
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I. INTRODUCTION

Lattice techniques are well developed to describe m
spectra. What is much less well studied are hadronic tra
tions. Here we shall concentrate on purely hadronic tra
tions such as glueball mixing with scalar mesons, str
breaking, flavor-singlet pseudoscalar mass generation, et
full QCD studies on a lattice, much as in experiment, o
will obtain the mass values of the resulting mixed states.
varying quark masses and the number of quark flavors,
may be able to go beyond experiment and so help to subs
tiate or vitiate phenomenological models.

Within a quenched or partially quenched lattice approa
one can in principle learn much more: obtaining estimate
the mixing strengths themselves. This is the approach
we analyze in detail. We then apply it to the mixing of
glueball with a scalar meson. This is of considerable p
nomenological interest: the fate of the glueball is widely d
bated@1,2#.

As a counterpoint to our quenched study of this mixin
we also determine the mixed spectrum directly for two fl
vors of degenerate sea quark. This provides a check on
approach and, incidentally, indicates evidence for a surp
ingly light scalar state at the lattice spacing we employ.

We include an Appendix giving details of the varian
reduction technique relevant to determining disconnec
fermionic loops which are needed in our study of flavo
singlet mesons.

II. LATTICE ANALYSIS

Here we discuss the formalism on a lattice to extract h
ronic mixing. To set the scene, the variational approach
first summarized and the simpler case of weak or elec
magnetic matrix elements is reviewed. Then we discuss h
ronic mixing matrix elements.

A. Variational methods

Consider a hadronic correlatorCi j (t) wheret is the lattice
separation in the time direction andi , j label the type of
operator used to create or destroy the hadron~e.g., whether
local, fuzzed, etc!. We assume there areN types of operator.
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In an ideal world of infinite statistics the matrixCi j (t) of
correlations can be written in terms of the eigenstates of
transfer matrix, assuming these eigenstates to be discrete
non-degenerate, as

C~ t !5ATe2mtA ~1!

where the intermediate state sums are over all ‘‘particle
allowed. HereA is a rectangular matrix.

However in practice, because of noise there has to b
truncation of the sum over intermediate states in the ab
equation.

One standard approach to circumvent these problem
the variational method. This can be motivated by maxim
ing

uiCi j ~ t !uj ~2!

subject to constantuiCi j (t21)uj which leads to the gener
alized eigenvalue equation

Ci j ~ t !uj
a5laCi j ~ t21!uj

a ~3!

with a50, . . . ,N21 and where the ground state witha50
has the largest eigenvaluel0. It is usual to relate these ei
genvalues to masses~energies in general! by la5e2ma.
Given exact data,N eigenvalues of Eq.~3! can be deter-
mined. Note that these eigenvalues will only correspond
the true eigenvalues@of Eq. ~1!# in the limit N→`. In prac-
tice, one finds that a good choice of operators to create
destroy the hadron will yield a close approximation to t
masses even withN52 or 3. Bounds can also be derive
such that the variational estimate of the ground state mas
an upper bound.

In order to isolate a particular state, usually the grou
state, one can use these variational eigenvectors to for
new basis. This is

C̄ab~ t !5ui
aCi j ~ t !uj

b ~4!

Then at timest and t21, C̄ab will be diagonal and the
diagonal elements will decrease likela ~i.e. ase2ma) as
time increases fromt21 to t. It is convenient to normalize
ua such thatC̄ab(t)5dab(la) t.
©2001 The American Physical Society03-1
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A typical use of the variational method to extract t
ground state signal is to form this variational basis usin
low value oft where statistical errors are relatively small a
then to explore thet dependence ofC̄00(t) at largert values
to extract the asymptotic behavior. Note that the finiteN
state! variational basis derived at finitet will not match ex-
actly to the true spectrum of excited states and henceC̄00
will have some small remaining contamination of excit
states. Indeed it is possible to use the variational estimat
the mass gap to the first excited state (m12m0) to control
this extrapolation to larget to determinem0.

In order to make contact with the alternative procedure
fitting C directly to M states over some range oft:

Ci j ~ t !5 (
a50

M21

ci
acj

ae2mat ~5!

we note thatu corresponds to the right eigenvectors of t
nonsymmetric matrixC21(t21)C(t) and one can introduce
left eigenvectorsv, suitably normalized, which satisfy

v i
a5~la!(12t)Ci j ~ t21!uj

a ~6!

and are orthogonal to the right eigenvectors

v i
aui

b5dab . ~7!

In terms of these eigenvectors, we have

Ci j ~ t !5 (
a50

N21

v i
av j

a~la! t. ~8!

and

Ci j ~ t21!5 (
a50

N21

v i
av j

a~la!(t21). ~9!

Thus we see that the variational method corresponds to m
ing an exact fit to the data att andt21 with N states with the
eigenvalues giving the masses and the left eigenvectorsv are
the couplingsc.

B. Matrix elements: Operator insertions

Here we consider first the simpler case where a th
point function is evaluated with an explicit operator~current!
at an intermediate timet1. This is the case of weak an
electromagnetic current insertions and also for some h
ronic studies. One example is the study of semileptonic
cays@3#. In general the quantum numbers of the states pro
gating before and after the insertion may be different. W
shall assume that the spectrum of states is discrete. In a fi
spatial volume, the two particle spectrum will indeed be d
crete and it is possible to make use of this to explore relev
matrix elements@4# for two particle systems.

We study the general behavior of the three point funct
with insertion att1 where t is the lattice separation in th
time direction andi , j label the type of operator used to cr
ate or destroy the hadronic state at times 0 andt where there
11450
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are N,N8 types of operator, respectively. We includeM
states with masses~energies! ma from time 0 tot1 and M 8
states with masses~energies! mb8 from t1 to t:

Xi j ~ t1 ,t !5 (
a50

M21

(
b50

M821

ci
ae2mat1xabe2mb8 (t2t1)dj

b . ~10!

The task is usually to determine the matrix elementx00 cor-
responding to the ground state hadrons. One can employ
to the above expression along with fitting the two point fun
tions (C with couplingsc and massesm and C8 with cou-
plings d and massesm8). Care should be taken to includ
sufficient statesM and M 8. A sensible criterion is thatM
should be chosen so that a good fit is obtained to the
point correlator over time intervalt1 for the appropriate had
ron with creation or destruction operators as used in the th
point function for that hadron andM 8 should be chosen like
wise so that a good fit was obtained for the appropriate
point correlator over time intervalt2t1.

Another way to approach this analysis is to use of
variational technique discussed above. Then with a va
tional basis for the appropriate two point functions~of size
N, N8 respectively! one can form

X̄ab~ t1 ,t !5ui
aXi j ~ t1 ,t !u8 j

b . ~11!

This expression will have non-zero off-diagonal elements
general since the operator insertion need not be diagona
the spectrum basis. In this variational approach, one can
tract x00 by taking a ratio to the variational ground state tw
point functions determined as above in Eq.~4!,

x005X̄00~ t1 ,t !/@C̄00~ t1!C̄008 ~ t2t1!# ~12!

where this ratio should be independent oft1 providedt1 and
t2t1 are not too small.

C. Matrix elements: Hadronic mixing

The problem of determining hadronic matrix elements
volved in mixing—for example in mixing of glueball an
scalar meson, in string breaking or in flavor-singlet mes
studies—is much less straightforward. In full QCD, ma
eigenstates can be determined directly and one is able, m
as in experiment, to determine the masses of the resu
mixed states. In quenched, or partially quenched, studies
possible to study mixing more directly by evaluating corre
tors between the different states involved. This is the area
explore here.

In lattice QCD with Euclidean time, the main factor
that the lightest state allowed will dominate the correlation
large time separationt. Thus in a study of glueball decay t
two pions, for example, the two pion state will be lighte
and dominate. In general this makes hadronic decays diffi
to study@5#. As we shall see, the way forward is to restri
study to transitions in which the energies are similar: o
shell transitions. In the case of glueball decay to two ps
doscalar mesons, this would imply varying the quark m
until the two pseudoscalar mesons had comparable energ
3-2
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the glueball, as was arranged in a pioneering study@6#.
Here we have in mind several situations where energ

are comparable:~i! scalar glueball mixing with scalar me

sons,~ii ! B B̄ mixing with a staticQQ̄ at separationR, ~iii !

mixing of ss̄ pseudoscalar mesons with singletqq̄ pseudo-
scalar mesons. In each case one system is fully treated~i.e.
the gluonic interactions in the scalar glueball and the st

QQ̄ or theqq̄ state with sea quarksq in the vacuum! while
the other has valence quarks which are treated in a quen
~or partially quenched! approach.

Our notation is that we considerM states with massesma

to be fully described~that is to say they are either fermion
with those quarks present in the vacuum or they are fu
described in a quenched theory as are glueballs or po
tials!. We also considerM 8 states with massessb which are
quenched or partially quenched~i.e. fermionic with valence
quarks which do not participate in the sea!. Here we assume
that the spectrum of states is discrete in each case. T
more specific, in one application one can think of them
states as glueballs and thes states as scalar mesons. Som
relevant correlations are illustrated in Fig. 1.

More generally, thes states do not contribute to correla
tors unless an explicit operator creates or destroys th
whereas them states can occur as intermediate states in
correlator with the correct quantum numbers. We shall tr
the s states as those given by the relevant connected fe
onic correlator. The disconnected contribution to any c
relator will be included explicitly. The model used for the
disconnected contributions may depend on the applicatio

Assuming that the disconnected fermionic loops in ths
state tos state correlator are joined by gauge links, as in
example of Fig. 1 where a glueball intermediate state is
propriate, one would expect transitions between theses states
andm states to be the relevant description and so would
allow direct transitions froms state tos state. In some appli-
cations, however, such as pseudoscalar mesons, the glu
links between the disconnected loops are expected to
short ranged~effectively a contact interaction! and so are
treated as local. In this case an explicit mixing coefficie
between disconnecteds states should be introduced.

We will assume that transitions between states of m
ma and sb are local and have strengthxab . The goal is
usually to determine the transition strength between gro

FIG. 1. We illustrate correlations among scalar glueballs~cre-
ated by a closed Wilson loop! and scalar mesons made from quar
antiquark. Clockwise from the top left: the disconnected fermio
correlation (Dss), the cross correlation of a fermion loop with
Wilson loop (Cms or H), the correlation of Wilson loops (Cmm) and
the connected fermionic correlation (C ss).
11450
s

ic

ed

y
n-

be

e

m
y

at
i-
-

.

e
p-

ot

nic
be

t

ss

d

states:x00. Because the transition is hadronic, there is
explicit matrix element insertion. One must deduce t
strength of the transition from a study of the two point co
relators alone.

Consider now the two point correlators at separatiot
between operators creating either of these types of state
each type of creation or annihilation operator, we consi
several different operators labeledi , j 51,N and k,l 51,N8
respectively~here we have in mind different smearing
fuzzing prescriptions!. Then we have a description in term
of transfer matrix eigenstates as

Ci j
mm~ t !5 (

a50

M21

ci
ae2matcj

a ~13!

Cik
ms~ t !5 (

t150

t

(
a50

M21

(
b50

M821

ci
ae2mat1xabe2sb(t2t1)dk

b .

~14!

There will also be additional terms witht→T2t for a lattice
periodic in time with extentT—these we do not write ex
plicitly. Now for the quencheds correlation one can separa
it into connected and disconnected fermion contributions

Ckl
ss~ t !5C kl

ss~ t !1Dkl
ss~ t ! ~15!

with

C kl
ss~ t !5 (

b50

M821

dk
be2sbtdl

b ~16!

and

Dkl
ss~ t !5 (

t150

t

(
b50

M821

(
b850

M821

(
t25t1

t

(
a50

M21

dk
be2sbt1xab

3e2ma(t22t1)xab8e
2sb8(t2t2)dl

b8. ~17!

One might also include contributions toDss coming from a
direct~i.e., not via anm state! transition att1 from statesb to
sb8 with mixing strengthybb8 . As discussed above, this i
appropriate for a discussion of pseudoscalar meson mix
for example. In general, if propagation of the states of m
ma over zero time steps is included, then the above form
does include contributions giving the effect of such dire
transitions.

The main problem with extracting the mixing matrix el
mentsx00 is in removing the excited state contributions. He
we assume that there is a finite mass gap between the ex
state and ground state. Unlike in the case of the exp
insertion att1, here we have no dependence ont1 ~andt2) in
the observables. This implies thatt1 values from 0 tot will
be allowed so that there will be excited state contributions
the correlator which are not suppressed~since e2(m12m0)t1

with t150 is large, for example!.
The cleanest way to circumvent this is in the case wh

the masses are equal, i.e.,m05s0. In this case, called the
on-shell case, the mixing observableCik

ms(t) will have a con-

c

3-3
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C. McNEILE AND C. MICHAEL PHYSICAL REVIEW D 63 114503
tribution from the sum overt1 of ci
0x00te

2m0tdk
0 from the

ground states whereas the dominant excited state cont
tions behave asci

0x01e
2m0tdk

1 and will be suppressed by
relative factor of 1/t. This is a much smaller relative suppre
sion than the factor ofe2(m12m0)t which applies to two point
correlators, but it is sufficient to remove excited state con
butions. This implies thatx00 can in principle be extracted
unambiguously. LikewiseDkl

ss(t) has a contribution of
dk

0x00t
2e2m0tx00dl

0/2 from the ground states which als
dominates, by a factor oft, any excited state contributions
This gives a further cross-check sincex00 can be determined
in these two independent ways.

The analysis whenm0Þs0 is trickier. The onlyt depen-
dences that can be observed will be of the forme2mat and
e2sbt @and alsote2sbt for Dss(t)]. Then assuming that the
M ,M 8 state fits toCi j

mm(t) andC kl
ss(t) yield the massesma ,

sb and couplingsci
a anddk

b of both ground states and excite
states, thet dependence ofCik

ms and Dkl
ss are available to

determinexab . In principle there are enough such indepe
dent t dependences to determine the mixing paramet
given sufficiently precise data.

One way to see this is to use the variational formali
with eigenvectorsui

a obtained fromCi j
mm(t) andwi

b obtained
from C kl

ss(t) using time values oft and t21. Then we can
project into this variational basis

Hab~ t !5ui
aCik

ms~ t !wk
b . ~18!

If the variational basis corresponds to the exact spect
then we would have, using continuum evaluation of the s
over t1 as would be appropriate for a very small lattice sp
ing,

Hab~ t !5xab

e2mat2e2sbt

sb2ma
~19!

from which xab can be extracted. In general, however, t
variational basis does not correspond to the exact spect
A fit to the t dependence then is needed. Provided eno
operatorsN andN8 are used~namelyN.M ,N8.M 8), there
is sufficient information to extract the parametersxab in
principle. A similar variational analysis ofDkl

ss(t) is also pos-
sible and this gives another way to determine constraints
the parametersxab . If b5b8 then, using continuum evalu
ation of the sums overt1 and t2,

Dbb8~ t !5(
a

xabxab8

e2mat2e2sbt@11~sb2ma!t#

~sb2ma!2

~20!

while if bÞb8, then
11450
u-

i-

-
s,

m

-

m.
h

n

Dbb8~ t !5(
a

xabxab8S e2mat

~sb2ma!~sb82ma!

1
e2sbt

~sb2ma!~sb2sb8!
1

e2sb8t

~sb82ma!~sb82sb!
D .

~21!

Note that this approach assumes that an accurate des
tion of the diagonal two-point correlators exists which
valid down to t50. This is in practice hard to achieve. I
particular thet50 correlator is often quite different~some-
times even in sign! from the t.0 correlators. We now ad
dress the possibility of excited states that contribute only
t50 since these are needed to cope with this data.

Let us explore this situation withm0Þs0 in a simple ex-
ample. We will assume precise data are available for
correlations at allt values and that, by an optimal choice
operators, the diagonal correlationsCmm and C ss are de-
scribed exactly by one state fort>1 and so have an addi
tional excited state contribution of the form

Cmm~ t !5c0e2m0tc01c1d t0c1 ~22!

C ss~ t !5d0e2s0td01d1d t0d1. ~23!

Here we suppress the operator labels (i , j ,k, etc.! since we
are considering the case that an optimum combination
them has already been taken to isolate the ground state~i.e.,
just takinga50 andb50 above!. Then the cross correla
tion has the form fort.0, including the excited state contr
butions fromt150 andt15t,

H~ t !5(
t1

c0e2m0t1x00e
2s0(t2t1)d01c1x10e

2s0td0

1c0e2m0tx01d
1. ~24!

Now by completing the sum overt1 as a discrete sum,H(t)
can be expressed as

H5c0d0e2m0t~A1Bl t! ~25!

with l5e2(s02m0),

A5
x00

12l
1

d1x01

d0
~26!

and

B52
lx00

12l
1

c1x10

c0
. ~27!

Hered0,d1,c0,c1 andl are known in principle but the mix-
ing parametersx00, x01 and x10 are to be determined. With
perfectly precise data forH, only the coefficientsA andB can
be determined; hence the three mixing parameters canno
independently determined. Thusx00 cannot be determined
even in principle. The exception to this is whenl→1, since
3-4
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the contribution ofx00 is then greatly enhanced. In fact i
this casex00 can be read off from the coefficient of the line
term in t in H as discussed above.

Now when data are available for the correlationD then
additional constraints exist. For our example this is

D~ t !5d0d0e2m0t~X1Yl t1Ztl t! ~28!

with

X5S x00

12l D 2

1~d1x01/d0!21
2x00x01d

1

~12l!d0
~29!

Y52l~22l!S x00

12l D 2

2
2x00x01d1l

~12l!d0
12x10x11d1 /d01x10

2

~30!

and

Z52lx00
2 /~12l!1x10

2 . ~31!

Herex11 is a new mixing: between the excited states in b
sectors. We now have three additional constraints (X, Y and
Z) given accurate data forD(t), with only one additional
parameter. Thus in the case of this simple model, the m
surable quantities overdetermine the mixing paramet
Again asl→1, this expression simplifies and the coefficie
of t2 in D(t) givesx00

2 directly.
One way to check that ground state contributions do

nate is to extractx00 from H and D at severalt values ne-
glecting excited states and check for consistency. So the
evant expressions will be

xH~ t !5
H~ t !

ACmm~ t !C ss~ t !

l t/2

11l1•••1l t
~32!

and

xD~ t !5A D~ t !

C ss(t)

l t/2

A112l1•••1~ t11!l t
. ~33!

In our application belowl50.64 for strange quarks, so th
enhancement of the ground state mixing (x00) by factors of
1/(12l) is not very big. However, we use information fro
both H andD which does provide a cross check in princip
of our assumption that the excited state contributions~such
asx01 andx10 in the above example! are negligible.

In summary, when we have an on-shell hadronic tran
tion we can extract the mixing matrix element with a pow
suppression int of excited states compared to the exponen
suppression which applies to extracting masses. When
masses are not equal, excited states can still be remove
principle if a precise study is made of both correlations
type H and D. Note that in practice, if the difference i
masses is significant, the extraction of the mixing stren
will be very difficult.
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III. LATTICES

We choose to study sea quark effects using the confi
rations withNf52 atb55.2 withCSW51.76 from UKQCD
@7#. Two spatial lattice sizes are available (123 and 163) so
that finite size effects can be explored. We use the th
lightest sea quark masses available and we use valence q
masses equal to the sea-quark mass. The lattice informa
is summarized in Table I. Local and non-local meson ope
tors were used with fuzzing radius 2 with 5 iterative leve
with coefficient 2.5.

We also use for comparison a quenched lattice atb
55.7 of size 12324 with valence fermions ofk50.14077
~approximately strange mass!and k50.13843 ~approxi-
mately twice strange mass! with CSW51.57, as studied pre
viously @8#.

In order to improve the statistics we measure the disc
nected diagrams on configurations separated by less traje
ries than for the connected correlators as shown in Table
Even though there may be some autocorrelation among t
measurements separated by less trajectories, we find tha
approach does allow the statistical error to be reduced.
deed this is the approach that was used in glueball stud
where the measurement time is very small so one migh
well measure almost every configuration—indeed we foll
this approach here when considering glueballs, as we
discuss later.

TABLE I. Properties of theNf52 lattices from UKQCD@7#
with b55.2 andCSW51.76 and~last two rows! Nf50 lattices@8#
with b55.7 andCSW51.57.

Ls k r 0 /a mpa mp /mr

12 0.1390 3.05 0.707~5! 0.78
16 0.1390 3.03 0.701~6! 0.78
12 0.1395 3.44 0.558~8! 0.71
16 0.1395 3.44 0.564~4! 0.72
12 0.1398 3.65 0.476~16! 0.67
16 0.1398 3.65 0.468~5! 0.67
12 0.13843 2.94 0.736~2! 0.78
12 0.14077 2.94 0.529~2! 0.65

TABLE II. Statistics of connected, disconnected and glueb
calculations. For the fermionic disconnected correlation, the v
ance reduction methods withNS samples were different forLs

512 and 16 as described in the Appendix.

Ls k NS Connected Disconnected Gluebal
configs configs configs

12 0.1390 24 151 301 301
16 0.1390 200 90 94 390
12 0.1395 24 121 253 505
16 0.1395 48 100 106 424
12 0.1398 24 98 169 170
16 0.1398 48 69 75 298
12 0.13843 24 482 100 100
12 0.14077 24 482 100 100
3-5
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IV. SCALAR MESONS

Within the quenched approximation, there will be tw
distinct types of scalar meson:qq̄ mesons and scalar glue
balls. The flavor singletqq̄ scalar meson will have a pole an
a double pole contribution, as in the well known flavor s
glet pseudoscalar case, with the pole mass being the sam
the flavor non-singlet scalar meson mass.

In full QCD, these two types of state will mix, resulting i
the observed experimental spectrum of scalar mesons. A
aid to disentangling this experimental situation, we here
plore the lattice predictions for scalar mesons. As a first s
we evaluate the mixing matrix elements in the quenched
proximation. This has been explored@9# previously and here
we discuss the problems associated with determining s
hadronic mixing on the lattice.

A. Quenched lattice results

We explored this mixing in the quenched approximati
~see Tables I and II! using SW-clover valence quarks of tw
different masses@8#. The zero-momentum glueball operato
were measured at every time slice in the usual way@10# and
the disconnected quark loops are measured as describ
the appendix, namely with sufficient stochastic samples
no significant error arises from the stochastic algorithm. T
connected quark correlators were taken from previous m
surements@8#. Since the scalar meson or glueball h
vacuum quantum numbers, we subtract the vacuum contr
tion in the other types of correlation we measure. Our res
for all of these types of correlation are illustrated in Fig. 2 f
the case of one choice of glueball operator and one~local!
mesonic operator at our lighter quark mass.

The connected quark propagator is the same for dege
ate quark masses for the flavor singlet and non-singlet

FIG. 2. Quenched scalar correlations with quark masses
proximately strange. Here HH is the connected mesonic correla
(C ss), GG is the glueball correlation (Cmm), DD is the disconnected
mesonic correlation (D) and GD is the cross correlation betwee
glueball and meson operators (H). Lattice results are illustrated fo
one glueball operator and one~local! meson operator. The curve
are a simple mixing model, as described in the text.
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son. From the connected quark correlatorC ss, at hopping
parametersk50.14077 and 0.13843, we find scalarqq̄
masses of 1.39~5!, 1.36~2! respectively in lattice units, fitting
local and two types of smeared operator to one state in tt
range 2 to 8. Note that the mass ordering is not as expe
~namely meson with lighter quarks being lighter! but the
errors are large enough to cover near equality. This me
mass value is somewhat larger than that reported@9# at the
sameb value but using Wilson quarks of mass correspon
ing to strange~i.e., our k50.14077), namely 1.29~2!. This
discrepancy is not surprising since the SW-clover formali
we use has improved control of ordera effects compared to
the Wilson discretization.

For the glueball mass, which is of course independen
fermion formalism in quenched studies, we use the hig
statistics result@9# of 0.95~2! in lattice units obtained fort
>2. Our result for the glueball correlator@Cmm(t)# is con-
sistent with a single exponential with this mass fort>1.
Since our glueball correlator has large errors fort.1, in
evaluating the expressions shown in Figs. 3 and 4 we use
measured glueball correlations att51 but for t.1 we as-
sume the glueball correlation has the mass dependence g
by ma50.95 as found in higher statistics studies. As sho
in Fig. 5, this glueball mass lies below the continuum e
trapolation because of ordera2 lattice artifacts. To convert to
physical units, we user 0 /a52.94 and then conventionally
r 0'0.5 fm, soa21'1.1 GeV.

Then given these mass values, one can attempt to des
the disconnected and cross correlations (D andH) in terms
of the one free parameter, the mixing strengthx00. The er-
rors on our determinations of these correlations are q
large: 25% forD and 50% forH at t53. We use local
fermionic operators in these comparisons since the smear
used in the determination of the connected and disconne
fermionic correlator were different for historical reasons.

The curves shown in Fig. 2 are from the lattice mod
described above with ground state contribution only and w

p-
n

FIG. 3. The mixing coefficientx00 is determined in lattice units
with a21'1 GeV, at eacht value, from quenched scalar correla
tions with quark masses approximately strange: DD is the disc
nected mesonic correlation (D) and GD is the cross correlatio
between glueball and meson operators (H).
3-6
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x00a50.3. This is seen to give a reasonable overall desc
tion for 1>t>3. Alternatively, in Figs. 3, 4 we give the
value of the mixing parameterx00 for eacht-value obtained
from taking the data onH andD respectively and assumin
the lattice mixing expressions of the previous section@Eqs.
~32!, ~33!# with no excited state contributions. We find fo
each quark mass thatx00a'0.3.

Since our results for the diagonal correlations of glueb
and meson operators (Cmm andC ss) are only reasonably ap
proximated by the ground state fortg>1 andtq>1, as dis-
cussed above, the mixing should be studied from correlat
with t@2. As shown in Fig. 3, we find that the signal b
comes very noisy byt53 already. With 100 times the sta
tistics we would be able to determine thet54 mixing cor-
relations (D and H) to 10%. This implies that much large
data sets~number of gauge configurations about 10000! are

FIG. 4. As Fig. 3 but with quenched scalar correlations w
quark masses approximately twice strange.

FIG. 5. The scalar mass versusa2. The quenched result
@12,10,13,14# are for the scalar glueball and are shown by box
The results fromNf52 flavors of sea quark are from glueballs@15#
~crosses from SESAM! and the lightest flavor singlet scalar we fin
here~circles!.
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needed to give a more definitive answer to the mixing in t
case. Even then since there is only a power suppressio
excited states, one would need precise data to larget to have
small systematic errors from excited state contributions.

The consistency of the determinations ofx00 from differ-
ent t values and different quantities does, however, act a
cross check that our results are consistent with the assu
tion that a single ground state dominates. Because of the
of control of excited state contributions, we can only quo
the statistical error on the mixingx00. Assuming no excited
state contamination and takingt>2, we obtain x00a
50.26(4) for strange quarks, corresponding tox00r 0
50.76(12). This is the quenched result for one flavor and
see no sign of any significant difference inx00 as we vary the
quark mass since we havex00a50.32(4) for heavier quarks

A previous work@9# has studied glueball mixing with a
scalar meson in the quenched approximation. They used
eralb values, Wilson fermions and concentrated on the cr
correlation H to determinex00. At b55.7 and for quark
mass near strange, we can make a direct comparison, be
in mind that the ordera corrections are significant at such
coarse lattice spacing and will be different for Wilson a
SW-clover fermion formalisms, indeed the SW-clover fo
malism we use is focused on removing these ordera effects.

At b55.7 they havetq52 andtg52 and they determine
their mixing coefficient from data forH with t>2 by assum-
ing no excited state contributions toH. They do not consider
data onD. Note that, as discussed above, from measurem
of H alone, it is impossible in principle to confirm that ex
cited state contributions are absent. Their quoted result
strange quarks isx00a50.211(16). This is broadly compat
ible with our estimate ofx00a50.26(4) bearing in mind tha
different fermion discretizations were used.

At largerb ~up to 6.2! their results for the mixing are that
at the strange quark mass, the mixing tends to a very sm
value in the continuum limit. The situation concerning e
cited state contamination is even worse at largerb since they
find tq56 and tg54 at b56.2, whereas they still fitH for
t>2. Thus their mixing estimates at largerb are even more
susceptible to excited state contamination. Moreover, they
not make use of the disconnected correlatorD to constrain
their assumptions further.

We find a significant mixing at coarse lattice spacin
using a fermion formalism that has been shown to have
duced ordera corrections. This implies that we would expe
a substantial mixing in the continuum if ordera2 corrections
were also to be small. This is in contrast to the conclusion@9#
that thea dependence of the mixing~in physical units! is
such that the continuum mixing is very small. We conclu
that we find evidence for a mixing strengthx00r 0
50.76(12) with one flavor of quarks of strange mass at
lattice spacing.

B. Full QCD scalar mesons

To compare with our results using dynamical sea qua
with Nf52, we estimate the effects of our quenched det
mination of the mixing if applied to that case. For this es
mate we takex00a50.3 for one quark flavor. Then for quark

.
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C. McNEILE AND C. MICHAEL PHYSICAL REVIEW D 63 114503
of strange mass our unmixed states withm0a50.95 and
s0a51.39 will be mixed by off diagonal elementx00a
50.3ANf50.42 giving a mass mixing matrix:

S am0 A2ax00

A2ax00 as0
D 5S 0.95 0.42

0.42 1.39D
which gives mass eigenstates pushed apart toma50.69 and
1.65 ~and for the heavier quarks with the same mixi
strength then 0.95 and 1.36 will be mixed to 0.68 and 1.6!.
Thus for strange quarks, the lightest scalar meson would
reduced in mass by approximately 0.24 in lattice units. If o
quenched mixing strength were be to applied to the sc
mass matrix, it results in a downward shift forNf52 of the
lattice glueball mass by 25%.

We now consider the sea-quark case explicitly, where
mixing will be observed directly from the resulting ma
values. What we can measure in that case is the non-sin
mass and the ground and excited states in the flavor sin
sector. Based on the results from the quenched study
would expect in the flavor singlet sector that the ground s
mass lies considerable below the flavor non-singlet mass
the first excited state mass is slightly above the flavor n
singlet mass.

We use 4 scalar meson operators~i! closed Wilson loops
~glueball operators! of two different sizes~Teper-smeared
@10#! and~ii ! qq̄ operators which are local and separated
fuzzed links. For the fermionic correlations, we include t
connected and disconnected contributions as given by
Wick formalism. We evaluate the 434 matrix of correla-
tions. Since different numbers of gauge configurations
analyzed for different operators, where necessary, we a
age results from nearby gauge configurations to have a
sistent bootstrap sample for error analysis.

We should also consider two particle states~two pseudo-
scalar mesons with momentum62pn/Ls , for example!
which can mix with scalar mesons and glueballs. On a lat
the lightest such state with overall momentum zero will ha
energy 2a(mp

2 14p2n2/Ls
2)1/2 which is at 1.12 for the light-

est case ofn50 and withk50.1395—this will apply to the
flavor singlet case. For the flavor non-singlet scalar me
then theph mode will be the lightest and this will be eve
heavier. These two particle energies are sufficiently he
that we shall ignore these states in our present work. T
will, however, become important as the quark mass is
duced.

The glueball and fermionic singlet correlations have
vacuum contribution. For the glueball fits we deal with th
by using 2 state fits with one state constrained to h
mass50 ~namely the vacuum!. In such fits it is important to
use correlated fits to have a meaningful expression forx2.
Since we are fitting to many~up to 60! different types of data
~different operators at source-sink and differentt values!, we
use the technique of retaining exactly theNe largest eigen-
values of the correlation among the data set and setting
remaining eigenvalues equal@11#. This avoids spurious cor
relations being induced because of our limited sample s
We useNe510,8 forLs512,16 respectively. For our fits t
11450
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the full 434 matrix of singlet correlations, since the numb
of gauge samples is different for different observables wh
makes the vacuum contribution depend on the observab
is preferable to subtract the vacuum contribution and fit
resulting connected correlation. The errors quoted on the
are statistical from bootstrap analysis and do not include s
tematic errors from varying the fit range or fit function: the
are at least comparable in size.

We can now measure directly the scalar spectrum forNf
52 to explore this. Results are shown in Table III. We o
tain the flavor non-singlet mass (mNS) from a two state fit
from t52 to 7 to the 232 matrix of connected fermionic
correlators. For the singlet, we now use both glueball andqq̄
operators~vacuum subracted! and find an acceptable fit with
1 state to the 434 matrix of correlations fort from 2 to 7:
the results are shown asmFSa in Table III. We find that the
mass obtained from fitting only the 232 matrix of glueball
correlations (mGB) is consistent with the full fit, as it should
be. Moreover, we see a surprisingly low scalar mass—
emphasized in Fig. 5 which compares with quenched res
and the SESAMNf52 values@15#.

It would be interesting, as discussed above, to obtain
excited state mass in the flavor singlet sector. We expect
abovemNS at aroundam851.4. We have used the varia
tional method fort51,2 to extract the two lightest mas
eigenstates from our 434 matrix of vacuum-subracted cor
relators. This variational ground state mass~0.44~1! for k
50.1395) agrees quite well with the fitted value shown
Table III, as expected. The next state is poorly determin
although for the case with best statistics (Ls512 and k
50.1395) we findam851.27 which is close toamNS. It
will be interesting to explore this further with higher stati
tics. Note that it is difficult to determine this mass since t
signal is swamped by that of two lighter states~the vacuum
at m50 and the ground state atam'0.5).

We do expect a relatively light flavor-singlet scalar ma
because of mixing effects as described above which wo
reduce the mass by 25%. This could explain in part our l
scalar mass but other explanations are also worth explor
For example the ordera2 corrections might be anomalousl
large for our lattice implementation~e.g. twice as large as in
the quenched Wilson case!.

Another possible explanation of the light flavor-singl
scalar mass we find would be a partial restoration of ch

TABLE III. Ground state scalar masses from fits to the glueb
sector~GB!, the whole flavor singlet sector~FS: glueball and fer-
mionic operators! and to the fermionic non-singlet sector~NS!. The
errors quoted are statistical only.

Ls k mGBa mFSa mNSa

12 0.1390 0.40~6! 0.54~3! 1.23~4!

16 0.1390 0.53~7! 0.47~3! 1.19~5!

12 0.1395 0.49~4! 0.46~2! 1.23~4!

16 0.1395 0.70~9! 0.75~4! 1.18~8!

12 0.1398 0.48~10! 0.47~3! 1.00~5!

16 0.1398 0.58~8! 0.66~4! 0.99~6!
3-8



x-
ou

th
ee

e

o
r
I
i

te
n
a
se
he
do
e

r
-

s

ne
th

a
t

er

g
s.
in
tio
ar
le

a
rg
h

na
be

ng
h

en
a

ee

ues
f.

ark

d

l

ther-
ti-

he
he

on
reds
hich
ther

ion

m
can

x-
s as

ol-
ese
ible
the

be
s

ve
er-

eter
was
with

s—
ch
d
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symmetry in a finite volume, however, this would be e
pected only for very light quark masses. We do find that
flavor-singlet scalar meson masses arelighter than the pseu-
doscalar non-singlet~pion! mass forLs512 for the range of
sea quark masses considered here. The spatial size wiLs
512 is 1.7 fm and no evidence of finite size effects was s
here in a study of flavor non-singlet correlators@7#. Indeed
we see no significant sign of any spatial size dependenc
the non-singlet scalar masses reported in Table III.

To explore this further, we have made a study of flav
singlet correlators on 163 spatial lattices to check directly fo
finite size effects and the results are presented in Table
The signal to noise from zero momentum correlations
worse for the larger volume for glueball and disconnec
correlations. Also we find that the excited state contributio
are relatively stronger for our operators. Thus the system
fit errors for Ls516 are also considerably larger than tho
for the smaller volume. Even though the signal from t
larger spatial volume is relatively poorly determined, we
see some evidence~at the 2s level if the sytematic errors ar
taken as comparable to the statistical ones! of a higher scalar
mass~for mGB andmFS) on the larger spatial lattice. In orde
to explore largerLs values, the signal to noise can be im
proved by considering non-zero momentum correlators, a
the case for glueball studies@10#.

One conclusion is that it would be valuable to use a fi
lattice spacing or an improved gauge discretization so
any suppression of the glueball mass by ordera2 effects
would be reduced. This would increase the glueball mass
hence reduce the magnitude of the signal we see, bu
would move the parameters into a region closer to exp
ment.

V. CONCLUSION

Hadronic mixing as exemplified by the glueball mixin
with a scalar meson can be explored using lattice method
the quenched approximation, one can determine the mix
strengths although the systematic errors in this determina
are large as we have discussed. In studies with sea qu
the mixed spectrum itself is obtained which gives comp
mentary information.

In a preliminary study of this glueball mixing, we find
large mixing in a quenched study and, consistently, a la
suppression of the mass of the lightest scalar meson w
sea quarks are included. These studies are computatio
difficult and we have used a coarse lattice spacing, al
with an improved~SW-clover! fermion formalism. It will be
necessary to extend these studies to smaller lattice spaci
order to have more confidence in their relevance to the p
nomenological situation.

APPENDIX: DISCONNECTED FERMION LOOP
EVALUATION

To evaluate disconnected quark loops with zero mom
tum, we need to sum over propagators from sources at e
spatial location at a given time slice. This problem has b
approached using stochastic source methods@18–21#. Here
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we describe in more detail the variance reduction techniq
described previously@16#. For a similar method see Re
@22#.

To study flavor-singlet mesons, we need to consider qu
loops which are disconnected~often called hairpins!, namely
evaluate TrG M-1 where the sum~trace! is over all space~for
zero momentum! at a given time value and all colors an
spins. HereM is the lattice fermion matrix,G is a combina-
tion of the appropriateg-matrix and a product of spatia
gauge links if a non-local~fuzzed! operator is used for the
meson.

Using a random volume sourcej ~where^j* j&51 for the
same color, spin and space-time component and zero o
wise! then solvingMf5j, one can evaluate unbiased es
mates of the propagatorMxy

21 from ^jy* fx& where the aver-
age is over theNS samples of the stochastic source. T
computational overhead of this method lies entirely in t
inversion of M to obtain f from j for each of theNS
samples.

The drawback of this approach is that the variance
these estimates can be very large, so that typically hund
of samples are needed. Here we present a method w
succeeds in reducing this variance substantially at ra
small computational expense.

The variance reduction is based on expressing the ferm
matrix M as

M5C2D5C~12C21D !5~12DC21!C ~A1!

whereC is easy to invert, for example the SW-clover ter
which is local in space or in the Wilson case where one
choseC51. Then we have the exact identity

M 215C211C21DC211•••1~C21D !mC21

1~C21D !n1M 21~DC21!n2 ~A2!

with n11n25n5m11.
Our strategy will be to evaluate the last term in this e

pression stochastically and to evaluate the preceding term
exactly as possible. We will refer to these terms in our f
lowing discussion as the stochastic and exact terms. If th
exact terms can be evaluated precisely, then it is plaus
that the stochastic term will contribute less variance to
overall estimate ofM 21 than in them50 case where there
would be no such exact terms. These exact terms can
evaluated either directly~for example terms with odd power
of D vanish in the evaluation of a local trace! or as a subsid-
iary stochastic calculation with more samples to achie
good precision and at relatively small computational ov
head since no inversion is required.

Since this approach is a variant of the hopping param
expansion, it might be suspected that the convergence
poor since at each higher order 8 extra terms are present
coefficients which are of orderk'1/8. In our application,
however, these 8 terms contribute with random strength
like a random walk. So they have an effective weight whi
is more likeA8 which is smaller. So we do find a reduce
3-9
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C. McNEILE AND C. MICHAEL PHYSICAL REVIEW D 63 114503
variance including more terms, but at the cost of some e
computation in evaluating the additional exact terms on
right hand side of Eq.~A2!.

A special case of this (n15n252) with Wilson fermions
~for which C51 and the terms with up to 3 powers ofD
vanish for TrM21) employing Gaussian noise was used
the bermion group@17# previously.

Using the stochastic volume source, the variance redu
expression can be rewritten~assumingC is Hermitian! as

(
x

GxyM yx
215•••1^@~C21D†!n2j#x* Gxy@~C21D !n1f#y&

~A3!

so the stochastic term may be evaluated as an average
stochastic samplesj after inversion to obtainf5M 21j. In
the application of this paper we takeG to have the Dirac
structureI whereas in other applications@16,23# we consider
g5 andg5g4 also.

Only the even exact terms in the series whenG is local
are non-zero and we calculate them50 and 2 cases explic
itly. For hadron operators with fuzzed paths of lengthnF the
series starts atm5nF ~this we calculate explicitly! and then
has alternate terms zero. The explicit calculations referre
are rather cumbersome for clover fermions, so in some c
we actually evaluate the simpler Wilson expression and t
evaluate the difference stochastically. The generic non-z
terms (A) in the series were calculated stochastically us
4NS Z2 noise samplesj using

(
x

GxyAyx5Gxy^jx* Ayzjz&. ~A4!

Taking n1'n2 gives an averaging over a smaller volum
than taking an asymmetric choice. We find that an asymm
ric choice gives a smaller variance, presumably becaus
does involve averaging over a larger volume. For differ
disconnected observables, the optimum strategy is not
essarily the same. In this work, we find an overall go
. B
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choice to ben150, n2516 with Gaussian noise. This resul
in a reduction by a factor of 0.2 to 0.3 of the standard dev
tion of the samples.

Using larger values ofn1 andn2 implies that the estimate
of M 21 is very non-local, involvingj values up ton1 andn2
away. To evaluate correlators between traces att1 and t2,
one must require that the samples of stochastic volu
source used in the two cases are different so that there i
bias. We useNS524 stochastic samples and this condition
readily implemented with essentially no loss of statisti
This number of samples was chosen to make the stoch
sampling error smaller than the intrinsic variance from o
time slice~for example atLs512 with k50.1395, the ratio
of the stochastic sampling error to the standard devia
over time slices was 0.5, 1.0, 0.2 forG5g5 , g5g4, I respec-
tively for local operators and the ratio was about 50% big
for fuzzed hadronic operators!. The computational effort in
terms of the number of inversions is equivalent to that
obtaining two conventional propagators~from two sources of
all color spins!. We also make use of the fact@20# that one
can truncate the inversion at a larger residual without m
surable bias, using 1029 in an MR inverter as residual o
source.

In conclusion, usingNS524 samples for each gauge co
figuration corresponds to 2 conventional propagator deter
nations~from all 12 color-spin combinations! and so is not a
particularly big computational challenge and yet the result
measurement of the disconnected fermion loop has a
chastic error which is unbiased and less than its intrin
error.

For spatial size 16, we made use of existing solver co
and chose not to use the variance reduction method desc
above, using insteadn15n250. To achieve some varianc
reduction, we used the method@24# of using pairs of sources
with the same random Z2 numbers but with the second of
pair multiplied by g ig5 where i is chosen randomly from
1 . . . 3.This has the effect of reducing the standard error
a factor of two forG5g5 for only a doubling of CPU effort.
In this case we used eitherNS548 or 200, the larger value
being motivated by the need to get a more precise estim
for G5g5g4.
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