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Mixing of scalar glueballs and flavor-singlet scalar mesons
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We discuss in detail the extraction of hadronic mixing strengths from lattice studies. We apply this to the
mixing of a scalar glueball and a scalar meson in the quenched approximation. We also measure correlations
appropriate for flavor-singlet scalar mesons using dynamical quark configurations from UKQCD. This enables
us to compare the results from the quenched study of the mixing with the direct determination of the mixed
spectrum. Improved methods of evaluating the disconnected quark diagrams are also presented.
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[. INTRODUCTION In an ideal world of infinite statistics the matri; (t) of
correlations can be written in terms of the eigenstates of the
Lattice techniques are well developed to describe masgansfer matrix, assuming these eigenstates to be discrete and
spectra. What is much less well studied are hadronic transihon-degenerate, as
tions. Here we shall concentrate on purely hadronic transi- T o—mt
tions such as glueball mixing with scalar mesons, string C(y=A'e ™A @
breaking, flavor-singlet pseudoscalar mass generation, etc. In

full QCD studies on a lattice, much as in experiment oneVhere the intermediate state sums are over all “particles”
X ' llowed. HereA is a rectangular matrix.

will obtain the mass values of the resulting mixed states. By'i . . .
However in practice, because of noise there has to be a

varying quark masses and the number of quark flavors, ong : g . .

may be able to go beyond experiment and so help to substafuncation of the sum over intermediate states in the above

tiate or vitiate phenomenological models. equation. . .
Within a quenched or partially quenched lattice approach One_st_andard approach to circumvent these proble_mfs IS

one can in principle learn much more: obtaining estimates o}he variational method. This can be motivated by maximiz-

the mixing strengths themselves. This is the approach that'd

we analyze in detail. We then apply it to the mixing of a UG (Hu, ©)

glueball with a scalar meson. This is of considerable phe- PR

nomenological interest: the fate of the glueball is widely de'subject to constans;C;;(t— 1)u; which leads to the gener-

bated([1,2]. , _ . alized eigenvalue equation
As a counterpoint to our quenched study of this mixing,
we also determine the mixed spectrum directly for two fla- Cij(DHuf=\Cyj(t—1)uf 3

vors of degenerate sea quark. This provides a check on our
approach and, incidentally, indicates evidence for a surprispith «=0,... N—1 and where the ground state with=0
ingly light scalar state at the lattice spacing we employ.  has the largest eigenvalud. It is usual to relate these ei-
We include an Appendix giving details of the variance genvalues to masse®nergies in generalby A*=e Me.
reduction technique relevant to determining disconnectediven exact dataN eigenvalues of Eq(3) can be deter-
fermionic loops which are needed in our study of flavor-mined. Note that these eigenvalues will only correspond to
singlet mesons. the true eigenvalug®f Eqg. (1)] in the limit N—~. In prac-
tice, one finds that a good choice of operators to create or
destroy the hadron will yield a close approximation to the
IIl. LATTICE ANALYSIS masses even withl=2 or 3. Bounds can also be derived,
Here we discuss the formalism on a lattice to extract hagsuch that the variational estimate of the ground state mass is
ronic mixing. To set the scene, the variational approach i&n upper bound. .
first summarized and the simpler case of weak or electro- N Order to isolate a particular state, usually the ground
magnetic matrix elements is reviewed. Then we discuss hadate, one can use these variational eigenvectors to form a
ronic mixing matrix elements. new basis. This is

Cop()=ufCy(tHuf 4
A. Variational methods

Consider a hadronic correlat6¥; (t) wheret is the lattice  Then at timest andt—1, C,p will be qliagonalizr;]\qnd the
separation in the time direction aridj label the type of diagonal elements will decrease like* (i.e. ase™ ™) as
Operator used to create or destroy the hac{mg_, whether time increases fromi—1 tot. It is convenient to normalize
local, fuzzed, etc We assume there aletypes of operator. u® such thatC,4(t) = 5aﬂ()\a)t.
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A typical use of the variational method to extract the gre N,N’ types of operator, respectively. We includié
ground state signal is to form this variational basis using &tates with masse@nergies m, from time 0 tot, andM’
low value oft where statistical errors are relatively small and g4te5 with masseenergies m;; fromt, to t
then to explore thé dependence of(t) at largert values
to extract the asymptotic behavior. Note that the finite ( M-1M'-1 )
staté variational basis derived at finitewill not match ex- Xij(ty,t)= EO 20 cile”Matix,ge” M dE L (10)
actly to the true spectrum of excited states and heDgg a0 e
will have some small remaining contamination of excitedThe task is usually to determine the matrix elemegtcor-
states. Indeed it is possible to use the variational estimate @gsponding to the ground state hadrons. One can employ a fit
the mass gap to the first excited state; (- mo) to control g the above expression along with fitting the two point func-

this extrapolation to largeto determinem,. tions (C with couplingsc and massesn andC’ with cou-
In order to make contact with the alternative procedure ofjings d and massesn’). Care should be taken to include
fitting C directly to M states over some range iof sufficient statesM and M’. A sensible criterion is thai
M—1 should be chosen so that a good fit is obtained to the two
ey — ana —mot point correlator over time interva} for the appropriate had-
Clj(t)_ 2 Ci Cj e @ (5) . . . A
=0 ron with creation or destruction operators as used in the three

. _ point function for that hadron and’ should be chosen like-
we note thatu corresponds to the right eigenvectors of thewise so that a good fit was obtained for the appropriate two
nonsymmetric matrixC~*(t—1)C(t) and one can introduce point correlator over time intervalt;.

left eigenvectors, suitably normalized, which satisfy Another way to approach this analysis is to use of the
N (11 N variational technique discussed above. Then with a varia-
vir=(\) Cij(t=1)y ®)  tional basis for the appropriate two point functiofud size

. . N, N’ respectively one can form
and are orthogonal to the right eigenvectors P y

X =Uu®X:: 1B
UiauiB: 5“,3' (7) Xaﬁ(tlvt) Uj le(tlat)u - (11)
This expression will have non-zero off-diagonal elements in
general since the operator insertion need not be diagonal in
N-1 the spectrum basis. In this variational approach, one can ex-
Cij(h)= E Uiavja()\a)t_ (8)  tractxpo by_taking a rat?o to the variatipnal ground state two
a=0 point functions determined as above in E4),

In terms of these eigenvectors, we have

and Xoo=Xodlts /[ Cod t)Chlt—t)] (12
N—1
Ci(t—=1)= v ¥A*)t-D 9) where this ratio should be independent pprovidedt,; and
! a=0 v '

t—t, are not too small.

Thus we see that the variational method corresponds to mak- C. Matrix elements: Hadronic mixing
ing an exact fit to the data atindt— 1 with N states with the
eigenvalues giving the masses and the left eigenvectars
the couplingsc.

The problem of determining hadronic matrix elements in-
volved in mixing—for example in mixing of glueball and
scalar meson, in string breaking or in flavor-singlet meson
studies—is much less straightforward. In full QCD, mass
eigenstates can be determined directly and one is able, much

Here we consider first the simpler case where a threas in experiment, to determine the masses of the resulting
point function is evaluated with an explicit operatourren} mixed states. In quenched, or partially quenched, studies it is
at an intermediate timé;. This is the case of weak and possible to study mixing more directly by evaluating correla-
electromagnetic current insertions and also for some haders between the different states involved. This is the area we
ronic studies. One example is the study of semileptonic deexplore here.
cays[3]. In general the quantum numbers of the states propa- In lattice QCD with Euclidean time, the main factor is
gating before and after the insertion may be different. Wethat the lightest state allowed will dominate the correlation at
shall assume that the spectrum of states is discrete. In a finitarge time separation Thus in a study of glueball decay to
spatial volume, the two particle spectrum will indeed be dis-two pions, for example, the two pion state will be lightest
crete and it is possible to make use of this to explore relevardnd dominate. In general this makes hadronic decays difficult
matrix elementg$4] for two particle systems. to study[5]. As we shall see, the way forward is to restrict

We study the general behavior of the three point functionstudy to transitions in which the energies are similar: on-
with insertion att; wheret is the lattice separation in the shell transitions. In the case of glueball decay to two pseu-
time direction and,j label the type of operator used to cre- doscalar mesons, this would imply varying the quark mass
ate or destroy the hadronic state at times O awtiere there  until the two pseudoscalar mesons had comparable energy to

B. Matrix elements: Operator insertions
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states:Xqg. Because the transition is hadronic, there is no
- <>———— explicit matrix element insertion. One must deduce the
strength of the transition from a study of the two point cor-

relators alone.
Consider now the two point correlators at separation
m <> ——————— <> between operators creating either of these types of state. For
each type of creation or annihilation operator, we consider
several different operators labeléd =1,N and k,I=1,N’
respectively(here we have in mind different smearing or

fuzzing prescriptions Then we have a description in terms
of transfer matrix eigenstates as

FIG. 1. We illustrate correlations among scalar glueb@te-
ated by a closed Wilson log@and scalar mesons made from quark-
antiquark. Clockwise from the top left: the disconnected fermionic
correlation D®9), the cross correlation of a fermion loop with a

Wilson loop (C™Sor H), the correlation of Wilson loopsd™™) and M-1
the connected fermionic correlatiod T). Cir;'m(t)= go cle” matc]?‘ (13
the glueball, as was arranged in a pioneering sfidy t M—1M'-1
Here we havg in mind several sn_uguon; where energies CIs(t) = E cf’e*matlxaﬁefsﬂ(t*tl)df.
are comparable(i) scalar glueball mixing with scalar me- ;=0 4=0 A=0
sons,(ii) B B mixing with a staticQQ at separatiorR, (iii) (14

mixing of ss pseudoscalar mesons with singteq pseudo-  There will also be additional terms with-T—t for a lattice
scalar mesons. In each case one system is fully trda®d periodic in time with extenT—these we do not write ex-
the gluonic interactions in the scalar glueball and the statigicitly. Now for the quenched correlation one can separate
QQ or theqq state with sea quarkgin the vacuumwhile it into connected and disconnected fermion contributions
the other has valence quarks which are treated in a quenched . s s
(or partially quenchedapproach. Cii(1) =C (1) + Dy(t) (15
Our notation is that we considét states with masses,,
to be fully describedthat is to say they are either fermionic
with those quarks present in the vacuum or they are fully M/ -1
described in a quenched theory as are glueballs or poten- O E dfesetdf (16)
tials). We also consideM ' states with masses; which are B=0
quenched or partially quenchéde. fermionic with valence
guarks which do not participate in the $eklere we assume
that the spectrum of states is discrete in each case. To be t M—1M'-1 t M-1
more specific, in one application one can think of te SS/ 1y Ba—sgt
states as glueballs and tkestates as scalar mesons. Some Dir(t) t12=0 BE 22 2 de P e
relevant correlations are illustrated in Fig. 1. )
More generally, thes states do not contribute to correla- x e Maltz"li)y o075 (- 12d 17)
tors unless an explicit operator creates or destroys them
whereas then states can occur as intermediate states in an§Pne might also include contributions ®°* coming from a
correlator with the correct quantum numbers. We shall trea@lirect(i.e., not via amm state transition at; from states; to
the s states as those given by the relevant connected fermpg: With mixing strengthy g4, . As discussed above, this is
onic correlator. The disconnected contribution to any corappropriate for a discussion of pseudoscalar meson mixing,
relator will be included explicitly. The model used for these for example. In general, if propagation of the states of mass
disconnected contributions may depend on the application.m, over zero time steps is included, then the above formula
Assuming that the disconnected fermionic loops in she does include contributions giving the effect of such direct
state tos state correlator are joined by gauge links, as in theransitions.
example of Fig. 1 where a glueball intermediate state is ap- The main problem with extracting the mixing matrix ele-
propriate, one would expect transitions between tlsesates mentsXy, is in removing the excited state contributions. Here
andm states to be the relevant description and so would nowe assume that there is a finite mass gap between the excited
allow direct transitions frons state tos state. In some appli- State and ground state. Unlike in the case of the explicit
cations, however, such as pseudoscalar mesons, the gluorisertion att;, here we have no dependenceteriandt,) in
links between the disconnected loops are expected to bde observables. This implies thigtvalues from O tat will
short ranged(effectively a contact interactionrand so are be allowed so that there will be excited state contributions to
treated as local. In this case an explicit mixing coefficientthe correlator which are not suppresssihcee™ (M~ Mol
between disconnectesistates should be introduced. with t;=0 is large, for example
We will assume that transitions between states of mass The cleanest way to circumvent this is in the case when
m, and s; are local and have strength,;. The goal is the masses are equal, i.ep=s,. In this case, called the
usually to determine the transition strength between groundn-shell case, the mixing observal@g§t) will have a con-

with

and

=0 g'—q ty=t; a=0
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tribution from the sum ovet, of c2xteM'd? from the oMt
ground states whereas the dominant excited state contribuDﬁﬂf(t)zg XapXap’
tions behave asioxme*mO‘d& and will be suppressed by a “
relative factor of 1. This is a much smaller relative suppres-

(Sﬁ_ma)(sﬁ’_ma)

. A i . e*SBt e—sﬁ,[
sion than the factor o~ (M~ which applies to two point + + _
correlators, but it is sufficient to remove excited state contri- (Sg=Mgy)(Sg—Spr)  (Sgr—M,)(Spr—Sp)
butions. This implies thakyy can in principle be extracted (21)

unambiguously. LikewiseDyj(t) has a contribution of

dExootze*mO‘xood?/Z from the ground states which also  Note that this approach assumes that an accurate descrip-
dominates, by a factor df any excited state contributions. tion of the diagonal two-point correlators exists which is
This gives a further cross-check singg can be determined valid down tot=0. This is in practice hard to achieve. In

in these two independent ways. particular thet=0 correlator is often quite differerfsome-

The analysis whem,#s, is trickier. The onlyt depen- times even in signfrom thet>0 correlators. We now ad-
dences that can be observed will be of the fan™! and  dress the possibility of excited states that contribute only to
e S [and alsote™ 36 for D3Y(t)]. Then assuming that the t=0 since these are needed to cope with this data.

M,M’ state fits toC{"(t) andCj(t) yield the massem,, Let us expl_ore this situatior_1 withmg#sg in a s[mple ex-

sg and couplinge” anddf of both ground states and excited ample. We will assume precise data are available for the
states, thet dependence o€ and D’ are available to correlations at alt values and that, by n?n optlrr;gl choice of
determinex, ;. In principle there are enough such indepen-OPerators, the diagonal correlatio@™" and C** are de-
dent t dependences to determine the mixing parameterscribed exactly by one state fo=1 and so have an addi-
given sufficiently precise data. tional excited state contribution of the form

One way to see this is to use the variational formalism
with eigenvectorsi” obtained fromC{'"(t) andw? obtained
from Cﬁf(t) usjng timg values pt andt—1. Then we can C5%(t) = %~ %otd+ d15,odL. 23
project into this variational basis

C™M(t)=cl% MotcO+cls,oct (22)

Here we suppress the operator labélg,k, etc) since we
are considering the case that an optimum combination of
H o p(t) = U CRIOWE . (18 them has already been taken to isolate the ground Gtate
just takinga=0 and3=0 above. Then the cross correla-
tion has the form fot>0, including the excited state contri-
If the variational basis corresponds to the exact spectrurbutions fromt;=0 andt,=t,
then we would have, using continuum evaluation of the sum

overt; as would be appropriate for a very small lattice spac- H() =S O Motix e Solt- g0 cly e 5ot
4

ing,
+cP% ™ Molx,,dt. (24)
—myt_ g St
H"B(t)zxaﬁs——m (19 Now by completing the sum ovef as a discrete suntj(t)
B e can be expressed as
H=cld% ™'(A+B\") (29

from which x5 can be extracted. In general, however, the

variational basis does not correspond to the exact spectruruith A =e ™~ (So~mo)

A fit to the t dependence then is needed. Provided enough

operatordN andN’ are usednamelyN>M,N'>M"), there Xoo  d%gp

is sufficient information to extract the parameters, in A=1x T 0 (26)
principle. A similar variational analysis @j;(t) is also pos-

sible and this gives another way to determine constraints ognq

the parameterg,;. If B=p’ then, using continuum evalu-

ation of the sums over; andt,, MXgo  ClXgo

B=—13+ o (27)

e Ml —e W1+ (sg—my)t] Hered®, d*,c®ct and\ are known in principle but the mix-
(sﬁ—ma)2 ing parametersg, Xo1 and X, are to be determined. With
(20 perfectly precise data fd#, only the coefficient®\ andB can
be determined; hence the three mixing parameters cannot be
independently determined. Thugy cannot be determined,
while if 3# B’, then even in principle. The exception to this is whenr- 1, since

DBB/(t) = % XaBXaB’
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the contribution ofxyg is then greatly enhanced. In fact in . TABLE I. Properties of theN;=2 lattices from UKQCD[7]
this casexg, can be read off from the coefficient of the linear with 8=5.2 andCsy~1.76 and(last two row$ N;=0 lattices[8]

term int in H as discussed above. with B=5.7 andCsy~=1.57.
Now when data are available for the correlatibnthen
additional constraints exist. For our example this is Ls K ro/a m,a m,/m,
040 — it ‘ ; 12 0.1390 3.05 0.7aB) 0.78
D(t)=d’d"e T0/(X+ YN+ Zt\) 28 16 0.1390 3.03 0.7a6) 0.78
" 12 0.1395 3.44 0.558) 0.71
wit 16 0.1395 3.44 0.564) 0.72
) ) gt 12 0.1398 3.65 0.4766) 0.67
X X
X:( 0 | (dixg,/d%)2+ 00Xo1 (29 16 0.1398 3.65 0.468) 0.67
1-x (1—2\)d° 12 0.13843 2.94 0.738) 0.78
12 0.14077 2.94 0.529) 0.65
2
_ X0o 2XoXo1d 1\ 0, L2
Y__)‘(Z_M(l_)\) BNTENYE T 2X40¢3d1 /A7 X3 lll. LATTICES
(30 We choose to study sea quark effects using the configu-
nd rations withN;=2 at8=5.2 with Cgy~1.76 from UKQCD
a [7]. Two spatial lattice sizes are available ¢1ahd 16) so
that finite size effects can be explored. We use the three
Z= M (1—\) +x,. (3D) P

lightest sea quark masses available and we use valence quark

) o ) ] masses equal to the sea-quark mass. The lattice information
Herex,, is a new mixing: between the excited states in bothis symmarized in Table I. Local and non-local meson opera-

sectors. We now have three additional constraittsY and o5 were used with fuzzing radius 2 with 5 iterative levels
Z) given accurate data fdD(t), with only one additional \yith coefficient 2.5.

parameter. Thus in the case of this simple model, the mea- \we also use for comparison a quenched latticegat
surable quantities overdetermine the mixing parameters-s 7 of size 1324 with valence fermions ok=0.14077
Again as\h— 1, this expression simplifies and the coefficient (approximately strange massd «=0.13843 (approxi-

of t? in D(t) givesxg, directly. mately twice strange maswith Csy~=1.57, as studied pre-
One way to check that ground state contributions domiviously [8].
nate is to extracky, from H and D at several values ne- In order to improve the statistics we measure the discon-
glecting excited states and check for consistency. So the refected diagrams on configurations separated by less trajecto-
evant expressions will be ries than for the connected correlators as shown in Table .
Even though there may be some autocorrelation among these
H(t) A2 measurements separated by less trajectories, we find that this

= C™™M(t)Co(t) 1+N+-- -+ (32 approach does allow the statistical error to be reduced. In-
deed this is the approach that was used in glueball studies,
where the measurement time is very small so one might as
well measure almost every configuration—indeed we follow
this approach here when considering glueballs, as we will

_ /D) 2 discuss later.
xo(t)= C(t) Ji+2n+ -+ (t+\T 33

TABLE Il. Statistics of connected, disconnected and glueball
calculations. For the fermionic disconnected correlation, the vari-
ance reduction methods witNg samples were different fokg
=12 and 16 as described in the Appendix.

and

In our application belowx =0.64 for strange quarks, so the
enhancement of the ground state mixingg by factors of

1/(1—\) is not very big. However, we use information from
bothH andD which does provide a cross check in principle |__ P Ns Connected Disconnected Glueball
of our assumption that the excited state contributi@sh

configs configs configs
asXxg; andx,q in the above exampleare negligible.

In summary, when we have an on-shell hadronic transil2 0.1390 24 151 301 301
tion we can extract the mixing matrix element with a power16 0.1390 200 90 94 390
suppression in of excited states compared to the exponentiall2 0.1395 24 121 253 505
suppression which applies to extracting masses. When thes 0.1395 48 100 106 424
masses are not equal, excited states can still be removed i2 0.1398 24 98 169 170
principle if a precise study is made of both correlations of16 0.1398 48 69 75 298
type H and D. Note that in practice, if the difference in 12 0.13843 24 482 100 100
masses is significant, the extraction of the mixing strengtho  0.14077 24 482 100 100

will be very difficult.
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16 L I

L 0't B=5.7 12%24 N;=0 -
04— K=0.14077 GD x —
- m/p=0.65 Xgore=0.9 1 i DD +
1.0 — L i

) G: Wilgon loop g L E :ﬁ ]
| oa D: Quark loop | I B
HHH ™. HH: Connected quark 0.2 1= -
05— - — i i

)
Xgolt)

P ] |

o ———— 0.0 ———
2 3 0 ! ¢ °

FIG. 2. Quenched scalar correlations with quark masses ap- FIG. 3. The mixing coefficienky, is determined in lattice units
proximately strange. Here HH is the connected mesonic correlatiolith a *~1 GeV, at eactt value, from quenched scalar correla-
(CS9), GG is the glueball correlatior@™™), DD is the disconnected tions with quark masses approximately strange: DD is the discon-
mesonic correlation[) and GD is the cross correlation between Nected mesonic correlatiorD) and GD is the cross correlation
glueball and meson operatordY. Lattice results are illustrated for Petween glueball and meson operatadfs (
one glueball operator and orflocal) meson operator. The curves

are a simple mixing model, as described in the text. son. From the connected quark correlafd¥, at hopping
parametersk=0.14077 and 0.13843, we find scalgq
IV. SCALAR MESONS masses of 1.398), 1.362) respectively in lattice units, fitting

" . ) local and two types of smeared operator to one state i the

Within the quenched approximation, there will be two range 2 to 8. Note that the mass ordering is not as expected
distinct types of scalar mesogq mesons and scalar glue- (namely meson with lighter quarks being lightdsut the
balls. The flavor singleqq scalar meson will have a pole and errors are large enough to cover near equality. This meson
a double pole contribution, as in the well known flavor sin-mass value is somewhat larger than that repof@gaat the
glet pseudoscalar case, with the pole mass being the same s@me value but using Wilson quarks of mass correspond-
the flavor non-singlet scalar meson mass. ing to strange(i.e., our k=0.14077), namely 1.29). This

In full QCD, these two types of state will mix, resulting in discrepancy is not surprising since the SW-clover formalism
the observed experimental spectrum of scalar mesons. As ave use has improved control of ordereffects compared to
aid to disentangling this experimental situation, we here exthe Wilson discretization.
plore the lattice predictions for scalar mesons. As a first step For the glueball mass, which is of course independent of
we evaluate the mixing matrix elements in the quenched agiermion formalism in quenched studies, we use the higher
proximation. This has been explorg@] previously and here statistics resulf9] of 0.952) in lattice units obtained fot
we discuss the problems associated with determining suck 2. Our result for the glueball correlatp€™™(t)] is con-
hadronic mixing on the lattice. sistent with a single exponential with this mass ferl.
Since our glueball correlator has large errors forl, in
evaluating the expressions shown in Figs. 3 and 4 we use our
measured glueball correlations tat 1 but fort>1 we as-

We explored this mixing in the quenched approximationsume the glueball correlation has the mass dependence given
(see Tables | and )lusing SW-clover valence quarks of two by ma=0.95 as found in higher statistics studies. As shown
different masseg8]. The zero-momentum glueball operators in Fig. 5, this glueball mass lies below the continuum ex-
were measured at every time slice in the usual W@} and  trapolation because of ordef lattice artifacts. To convert to
the disconnected quark loops are measured as described physical units, we usey/a=2.94 and then conventionally
the appendix, namely with sufficient stochastic samples that,~0.5 fm, soa ~1.1 GeV.
no significant error arises from the stochastic algorithm. The Then given these mass values, one can attempt to describe
connected quark correlators were taken from previous medhe disconnected and cross correlatioBsgndH) in terms
surements[8]. Since the scalar meson or glueball hasof the one free parameter, the mixing strenggh. The er-
vacuum quantum numbers, we subtract the vacuum contribuers on our determinations of these correlations are quite
tion in the other types of correlation we measure. Our resulttarge: 25% forD and 50% forH at t=3. We use local
for all of these types of correlation are illustrated in Fig. 2 for fermionic operators in these comparisons since the smearings
the case of one choice of glueball operator and @oeal) used in the determination of the connected and disconnected
mesonic operator at our lighter quark mass. fermionic correlator were different for historical reasons.

The connected quark propagator is the same for degener- The curves shown in Fig. 2 are from the lattice model
ate quark masses for the flavor singlet and non-singlet medescribed above with ground state contribution only and with

A. Quenched lattice results
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AL IR B needed to give a more definitive answer to the mixing in this
L _ case. Even then since there is only a power suppression of
04— K=0.13843 aD x excited states, one would need precise data to larg&ave
I small systematic errors from excited state contributions.
i i The consistency of the determinationsxgf, from differ-
L t I i entt values and different quantities does, however, act as a
cross check that our results are consistent with the assump-
oz ¥ _ tion that a single ground state dominates. Because of the lack
of control of excited state contributions, we can only quote
the statistical error on the mixing,,. Assuming no excited
state contamination and taking=2, we obtain Xya
=0.26(4) for strange quarks, corresponding gqfg
ool v ] =0.76(12). This is the quenched result for one flavor and we
0 1 2 3 see no sign of any significant differencexig, as we vary the
t quark mass since we haxgya=0.32(4) for heavier quarks.

A previous work[9] has studied glueball mixing with a
scalar meson in the quenched approximation. They used sev-
eral 8 values, Wilson fermions and concentrated on the cross
correlationH to determinexy,. At 8=5.7 and for quark
Xo0a=0.3. This is seen to give a reasonable overall descripmass near strange, we can make a direct comparison, bearing
tion for 1=t=3. Alternatively, in Figs. 3, 4 we give the in mind that the ordea corrections are significant at such a
value of the mixing parametety, for eacht-value obtained coarse lattice spacing and will be different for Wilson and
from taking the data of andD respectively and assuming Sw-clover fermion formalisms, indeed the SW-clover for-
the lattice mixing expressions of the previous secfiBgs.  malism we use is focused on removing these oedeffects.

(32), (33)] with no excited state contributions. We find for At g=5.7 they have,=2 andt,=2 and they determine
each quark mass thapa~0.3. their mixing coefficient from data fad with t=2 by assum-

Since our results for the diagonal correlations of glueballing no excited state contributions kb They do not consider
and meson operator€("™ andC*) are only reasonably ap- data onD. Note that, as discussed above, from measurement
proximated by the ground state fogy=1 andt =1, as dis- of H alone, it is impossible in principle to confirm that ex-
cussed above, the mixing should be studied from correlationsited state contributions are absent. Their quoted result for
with t>2. As shown in Fig. 3, we find that the signal be- strange quarks i%gpa=0.211(16). This is broadly compat-
comes very noisy by=3 already. With 100 times the sta- ible with our estimate okya=0.26(4) bearing in mind that
tistics we would be able to determine thee 4 mixing cor-  different fermion discretizations were used.
relations O andH) to 10%. This implies that much larger At larger 8 (up to 6.2 their results for the mixing are that,
data setgnumber of gauge configurations about 1008  at the strange quark mass, the mixing tends to a very small
value in the continuum limit. The situation concerning ex-
cited state contamination is even worse at laggsince they
find t,=6 andt;=4 at 8=6.2, whereas they still fil for
t=2. Thus their mixing estimates at larg@rare even more
susceptible to excited state contamination. Moreover, they do
not make use of the disconnected correlddoto constrain
their assumptions further.

We find a significant mixing at coarse lattice spacings
using a fermion formalism that has been shown to have re-
i duced order corrections. This implies that we would expect
] a substantial mixing in the continuum if ordaf corrections

] were also to be small. This is in contrast to the conclufédn
T that thea dependence of the mixingn physical unit$ is

Xgolt)

FIG. 4. As Fig. 3 but with quenched scalar correlations with
quark masses approximately twice strange.

o+

such that the continuum mixing is very small. We conclude
that we find evidence for a mixing strengthyyrg
ol v vy =0.76(12) with one flavor of quarks of strange mass at our
0.00 0.05 0.10 lattice spacing.

(a/ro)*

FIG. 5. The scalar mass vers@®. The quenched results
[12,10,13,1% are for the scalar glueball and are shown by boxes. 10 compare with our results using dynamical sea quarks
The results fromN¢=2 flavors of sea quark are from gluebdlis] ~ With N¢=2, we estimate the effects of our quenched deter-
(crosses from SESAMand the lightest flavor singlet scalar we find mination of the mixing if applied to that case. For this esti-
here(circles. mate we takexgga= 0.3 for one quark flavor. Then for quarks

B. Full QCD scalar mesons
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of strange mass our unmixed states witha=0.95 and TABLE lll. Ground state scalar masses from fits to the glueball
spa=1.39 will be mixed by off diagonal elementya sector(GB), the whole flavor singlet sectdFS: glueball and fer-
=0.3N;=0.42 giving a mass mixing matrix: mionic operatorsand to the fermionic non-singlet secid¥S). The
errors quoted are statistical only.
am, \2axy| (0.95 0.4
= L Mgpa Mesa m
axe, as | 1042 13 : « e Fs i
12 0.1390 0.4(B) 0.5473) 1.234)
16 0.1390 0.5@) 0.473) 1.195)

which gives mass eigenstates pushed apamae- 0.69 and

1.65 (and for the heavier quarks with the same mixinglé g'ggg 8:8:; 8';152 1?;3
strength then 0.95 and 1.36 will be mixed to 0.68 and 11.63 5 0'1398 0'4 0 0'4 3 1.0 5
Thus for strange quarks, the lightest scalar meson would b : 46L0) 413) -005)

0.1398 0.5@) 0.664) 0.996)

reduced in mass by approximately 0.24 in lattice units. If ou
guenched mixing strength were be to applied to the scalar
mass matrix, it results in a downward shift fidg=2 of the
lattice glueball mass by 25%. the full 4x 4 matrix of singlet correlations, since the number
We now consider the sea-quark case explicitly, where thef gauge samples is different for different observables which
mixing will be observed directly from the resulting mass makes the vacuum contribution depend on the observable, it
values. What we can measure in that case is the non-singlet preferable to subtract the vacuum contribution and fit the
mass and the ground and excited states in the flavor singleesulting connected correlation. The errors quoted on the fits
sector. Based on the results from the quenched study, ware statistical from bootstrap analysis and do not include sys-
would expect in the flavor singlet sector that the ground statéematic errors from varying the fit range or fit function: these
mass lies considerable below the flavor non-singlet mass arare at least comparable in size.
the first excited state mass is slightly above the flavor non- We can now measure directly the scalar spectruniNfor
singlet mass. =2 to explore this. Results are shown in Table Ill. We ob-
We use 4 scalar meson operatépsclosed Wilson loops tain the flavor non-singlet massnfg) from a two state fit
(glueball operatopsof two different sizes(Teper-smeared from t=2 to 7 to the 22 matrix of connected fermionic

[10]) and(ii) qq operators which are local and separated bycorrelators. For the singlet, we now use both glueball gad
fuzzed links. For the fermionic correlations, we include theoperatorgvacuum subractgdand find an acceptable fit with
connected and disconnected contributions as given by thg state to the 44 matrix of correlations fot from 2 to 7:
Wick formalism. We evaluate the>44 matrix of correla- the results are shown as:ga in Table IlIl. We find that the
tions. Since different numbers of gauge configurations arenass obtained from fitting only thex22 matrix of glueball
analyzed for different operators, where necessary, we avetorrelations (gg) is consistent with the full fit, as it should
age results from nearby gauge configurations to have a come. Moreover, we see a surprisingly low scalar mass—as

sistent bootstrap sample for error analysis. emphasized in Fig. 5 which compares with quenched results
We should also consider two particle stateso pseudo- and the SESAMN;=2 values[15].
scalar mesons with momentum2mn/Lg, for example It would be interesting, as discussed above, to obtain the

which can mix with scalar mesons and glueballs. On a lattic&xcited state mass in the flavor singlet sector. We expect this
the lightest such state with overall momentum zero will haveabove myg at aroundam’=1.4. We have used the varia-
energy 2(m>+4m2n?/L2)Y2 which is at 1.12 for the light- tional method fort=1,2 to extract the two lightest mass
est case oh=0 and withx=0.1395—this will apply to the eigenstates from our>4 matrix of vacuum-subracted cor-
flavor singlet case. For the flavor non-singlet scalar mesorelators. This variational ground state maés441) for «
then them» mode will be the lightest and this will be even =0.1395) agrees quite well with the fitted value shown in
heavier. These two particle energies are sufficiently heavifable Ill, as expected. The next state is poorly determined
that we shall ignore these states in our present work. Theglthough for the case with best statistids;€12 and «
will, however, become important as the quark mass is re=0.1395) we findam’=1.27 which is close tamys. It
duced. will be interesting to explore this further with higher statis-
The glueball and fermionic singlet correlations have atics. Note that it is difficult to determine this mass since the
vacuum contribution. For the glueball fits we deal with thissignal is swamped by that of two lighter statéise vacuum
by using 2 state fits with one state constrained to havet m=0 and the ground state aim~0.5).
mass=0 (namely the vacuum In such fits it is important to We do expect a relatively light flavor-singlet scalar mass
use correlated fits to have a meaningful expressionyfor because of mixing effects as described above which would
Since we are fitting to manfup to 60 different types of data reduce the mass by 25%. This could explain in part our low
(different operators at source-sink and differemalueg, we  scalar mass but other explanations are also worth exploring.
use the technique of retaining exactly tNg largest eigen-  For example the ordea? corrections might be anomalously
values of the correlation among the data set and setting therge for our lattice implementatiofe.g. twice as large as in
remaining eigenvalues equdll]. This avoids spurious cor- the quenched Wilson case
relations being induced because of our limited sample size. Another possible explanation of the light flavor-singlet
We useN,=10,8 forLs=12,16 respectively. For our fits to scalar mass we find would be a partial restoration of chiral
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symmetry in a finite volume, however, this would be ex-we describe in more detail the variance reduction techniques

pected only for very light quark masses. We do find that ourdescribed previously16]. For a similar method see Ref.

flavor-singlet scalar meson masses lagkter than the pseu- [22].

doscalar non-singleipion) mass forL ;=12 for the range of To study flavor-singlet mesons, we need to consider quark

sea quark masses considered here. The spatial sizeLwith loops which are disconnectédften called hairpins namely

=12 is 1.7 fm and no evidence of finite size effects was seeevaluate TF M™* where the suntrace is over all spacéfor

here in a study of flavor non-singlet correlat¢. Indeed zero momentumat a given time value and all colors and

we see no significant sign of any spatial size dependence ispins. HereM is the lattice fermion matrix]" is a combina-

the non-singlet scalar masses reported in Table IlI. tion of the appropriatey-matrix and a product of spatial
To explore this further, we have made a study of flavorgauge links if a non-localfuzzed operator is used for the

singlet correlators on £6spatial lattices to check directly for meson.

finite size effects and the results are presented in Table Ill. Using a random volume sourégwhere(&* ¢)=1 for the

The signal to noise from zero momentum correlations issame color, spin and space-time component and zero other-

worse for the larger volume for glueball and disconnectedwvise) then solvingM ¢= &, one can evaluate unbiased esti-

correlations. Also we find that the excited state contributionsnates of the propagatd ' from (& ¢,) where the aver-

are relatively stronger for our operators. Thus the systematigge is over theNg samples of the stochastic source. The

fit errors forL¢=16 are also considerably larger than thosecomputational overhead of this method lies entirely in the

for the smaller volume. Even though the signal from theinversion of M to obtain ¢ from & for each of theNg

larger spatial volume is relatively poorly determined, we dosamples.

see some evidendat the 2 level if the sytematic errors are The drawback of this approach is that the variance on

taken as comparable to the statistical gredsa higher scalar  these estimates can be very large, so that typically hundreds

mass(for mgg andmegs) on the larger spatial lattice. In order of samples are needed. Here we present a method which

to explore largerLs values, the signal to noise can be im- succeeds in reducing this variance substantially at rather

proved by considering non-zero momentum correlators, as ismall computational expense.

the case for glueball studi¢40]. The variance reduction is based on expressing the fermion
One conclusion is that it would be valuable to use a fineimatrix M as

lattice spacing or an improved gauge discretization so that

any suppression of the glueball mass by ordéreffects M=C-D=C(1-C D)=(1-DC HC (A1)

would be reduced. This would increase the glueball mass and

hence reduce the magnitude of the signal we see, but {ihereC is easy to invert, for example the SW-clover term

would move the parameters into a region closer to experiwhich is local in space or in the Wilson case where one can

ment. choseC=1. Then we have the exact identity

V. CONCLUSION
M~ t=c l+c'DC +...+(CD)"C !

Hadronic mixing as exemplified by the glueball mixing
with a scalar meson can be explored using lattice methods. In +(CT'D)MMY(DC )" (A2)
the quenched approximation, one can determine the mixing
strengths although the systematic errors in this determinatiowith n;+n,=n=m+1.
are large as we have discussed. In studies with sea quarks, Our strategy will be to evaluate the last term in this ex-
the mixed spectrum itself is obtained which gives comple-pression stochastically and to evaluate the preceding terms as
mentary information. exactly as possible. We will refer to these terms in our fol-

In a preliminary study of this glueball mixing, we find a lowing discussion as the stochastic and exact terms. If these
large mixing in a quenched study and, consistently, a largexact terms can be evaluated precisely, then it is plausible
suppression of the mass of the lightest scalar meson whehat the stochastic term will contribute less variance to the
sea quarks are included. These studies are computationalyerall estimate oM ~* than in them=0 case where there
difficult and we have used a coarse lattice spacing, albeivould be no such exact terms. These exact terms can be
with an improvedSW-clove) fermion formalism. It will be  evaluated either directlffor example terms with odd powers
necessary to extend these studies to smaller lattice spacing @f D vanish in the evaluation of a local trgaer as a subsid-
order to have more confidence in their relevance to the phdary stochastic calculation with more samples to achieve
nomenological situation. good precision and at relatively small computational over-
head since no inversion is required.

Since this approach is a variant of the hopping parameter
expansion, it might be suspected that the convergence was
poor since at each higher order 8 extra terms are present with

To evaluate disconnected quark loops with zero momencoefficients which are of ordex~1/8. In our application,
tum, we need to sum over propagators from sources at eadtowever, these 8 terms contribute with random strengths—
spatial location at a given time slice. This problem has beetike a random walk. So they have an effective weight which
approached using stochastic source metjd@s-21. Here is more like \/8 which is smaller. So we do find a reduced

APPENDIX: DISCONNECTED FERMION LOOP
EVALUATION
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variance including more terms, but at the cost of some extrahoice to ben; =0, n,= 16 with Gaussian noise. This results
computation in evaluating the additional exact terms on thén a reduction by a factor of 0.2 to 0.3 of the standard devia-
right hand side of Eq(A2). tion of the samples.

A special case of thisn=n,=2) with Wilson fermions Using larger values afi; andn, implies that the estimate
(for which C=1 and the terms with up to 3 powers Bf  of M~ s very non-local, involving values up ta; andn,
vanish for TrM™*) employing Gaussian noise was used byaway. To evaluate correlators between traces, @nd t,,

the bermion grouf17] previously. _ one must require that the samples of stochastic volume
Using the stochastic volume source, the variance reducesburce used in the two cases are different so that there is no
expression can be rewrittéassumingC is Hermitiar) as bias. We usé\g= 24 stochastic samples and this condition is

readily implemented with essentially no loss of statistics.
This number of samples was chosen to make the stochastic

1 et e - s_ampling error smaller than the ir_1trinsic variance from_ one
2 TyMyt=- +([(CTIDNE T, [(C'D) "], time slice (for example at_ =12 with k=0.1395, the ratio

* (A3) of the stochastic sampling error to the standard deviation
over time slices was 0.5, 1.0, 0.2 fb= y5, y57ya4, | respec-

so the stochastic term may be evaluated as an average owively for local operators and the ratio was about 50% bigger
stochastic samples after inversion to obtainp=M ~1£. In for fuzzed hadronic operatgrsThe computational effort in

the application of this paper we tade to have the Dirac terms of the number of inversions is equivalent to that in

structurel whereas in other applicatiofi$6,23 we consider  obtaining two conventional propagatdfeom two sources of
vs and ysy, also. all color sping. We also make use of the faj@0] that one

Only the even exact terms in the series wheris local ~ can truncate the inversion at a larger residual without mea-
are non-zero and we calculate tine=0 and 2 cases explic- surable bias, using 10 in an MR inverter as residual or
itly. For hadron operators with fuzzed paths of lengghthe ~ Source.
series starts ah=ng (this we calculate explicitlyand then In conclusion, usingNs= 24 samples for each gauge con-
has alternate terms zero. The explicit calculations referred tguration corresponds to 2 conventional propagator determi-
are rather cumbersome for clover fermions, so in some casé®tions(from all 12 color-spin combinationgnd so is not a
we actually evaluate the simpler Wilson expression and theparticularly big computational challenge and yet the resulting
evaluate the difference stochastically. The generic non-zergieasurement of the disconnected fermion loop has a sto-
terms (A) in the series were calculated stochastically usingchastic error which is unbiased and less than its intrinsic

4Ng Z2 noise sample§ using error. o o
For spatial size 16, we made use of existing solver codes

and chose not to use the variance reduction method described
2 T A= £5 AL (Ad) above! using instead;=n,=0. To ach_ieve some variance
= T XyRyxT R Xy ox Plyzez/ reduction, we used the meth@24] of using pairs of sources
with the same random Z2 numbers but with the second of the
Taking n;~n, gives an averaging over a smaller volume pair multiplied by y;ys wherei is chosen randomly from
than taking an asymmetric choice. We find that an asymmett . . . 3.This has the effect of reducing the standard error by
ric choice gives a smaller variance, presumably because & factor of two forl” = yg for only a doubling of CPU effort.
does involve averaging over a larger volume. For differentn this case we used eith&s=48 or 200, the larger value
disconnected observables, the optimum strategy is not nebeing motivated by the need to get a more precise estimate
essarily the same. In this work, we find an overall goodfor I'=yg7y,.
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