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We describe how to calculate the parton distributibg(s,kf ,&%), unintegrated over the parton transverse
momentumk, , from auxiliary functionsha(x,kf), which satisfy single-scale evolution equations. The formal-
ism embodies both DGLAP and BFKL contributions, and accounts for the angular ordering which comes from
coherence effects in gluon emission. We check that the unintegrated distributions give the measured values of
the deep inelastic structure functién(x,Q?).
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[. INTRODUCTION the partons associated with emission from different parts of
the process, that is from the beam and target protonp p
Conventionally deep inelastic lepton-proton scattering iscollisiong and from the hard subprocess. For example it
described in terms of scale-dependent parton distributionseparates emissions from the bedwith polar angle 6
a(x,u?), wherea=xg or xq. These distributions correspond <90°) from those from the targéwith =90°), and from
to the density of partons in the proton with longitudinal mo-the intermediate partons from the hard subprocess. This
mentum fractiorx, integrated over transverse momentum upseparation was proved in Rdfl] and originates from the
to ky= . They satisfy Dokshitzer-Gribov-Lipatov-Altarelli- destructive interference of the different emission amplitudes

Parisi (DGLAP) evolution in u2. The kinematic regiork, in the angular boundary regions. If the longitudinal momen-
< u gives the leading Ip? approximation to deep inelastic tum fraction is fixed by the hard subprocess, then the limits
scattering. on the angles can be expressed in terms of a factorization

For less inclusive processes it is, however, necessary tecaleux which corresponds to the upper lirhiin the allowed
consider distributions unintegrated over the transverse moralues of the §-channel partonk; .
mentumk, of the parton. The unintegrated distributions have Since the parton distributions depend on two scales we
the advantage that they exactly correspond to the quantitgotentially have to deal with complicaté@iafaloni-Catani-
which enters the Feynman diagrams and therefore allow foFiorani-Marchesin(CCFM) [1]] evolution equations for the
the true kinematics of the process even at leading aitd®y.  f,(x,k?,x?) functions. Of course it is possible to work with
These distributionsﬁa(x,kf,uz) depend on two hard scalés: two-scale distributions, but this is much more complicated
k; and the scalew of the probe. The scalg plays a dual [2] and up to now has only proved practical with Monte
role. On the one hand it acts as the factorization scale, whil€arlo generator§3]. However, the evolution process is es-
on the other hand it controls the angular ordering of thesentially controlled by one quantity, the emission angle, and
partons emitted in the evolutidi]. on this basis we may expect to be able to obtain the distri-
Clearly it is desirable to also include Ing)/ Balitskii- butionsfa(x,kf,,uz) from single-scale evolution equations.
Fadin-Kuraev-Lipatov- (BFKL-)type contributions in the Therefore it should be possible to follow an analytic ap-
evolution. Recall that both DGLAP and BFKL evolution are proach where the physical assumptions are much more evi-
essentially equivalent to ordered evolution in the angles otient and where, in principle, NLO corrections can be in-
the emitted parton%In the DGLAP collinear approximation cluded. Moreover, in practice, it is much easier to use the
the angle increases due to the growtrkpf while in BFKL ~ same unintegrated distributions to describe different hard
the angle 0=k, /k;) grows due to the decreasing longitudi- processes and to perform global parton analyses.
nal momentum fraction as we proceed along the emission The outline of this paper is as follows. The key observa-
chain from the proton. The factorization scaleseparates tion is that thex dependence of the unintegrated distribu-
tions enters at the last step of the evolution, and so we may
use single-scale evolution equations. The procedure is first

This property is hidden in the conventional distributionskass
integrated up to the scaje.

At LO we have strong ordering of the emission angles, 6;. . 3The t-channel parton may have up to u/z, characteristic of
<6;,1...; on theother hand if, at one step of the evolutigh BFKL effects, whereas for LO DGLAP theandt-channel partons
~ 6; 1, then this contribution is included inside the NLO splitting are both limited byk,<w. Of course, somé&> u contribution will
function. arise from the NLO splitting functions.
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described in Sec. Il in the case of pure DGLAP evolution,touched in the evolution up to the factorization scale. The

and then extended to include InX}/effects in Sec. Ill. Inthe survival probability is given by

latter case we use the solution of a single-scale equation

which unifies DGLAP and BFKL evolutiofd], and perform u’-’as(k{z) dk{z
Ta(ki,u)=expg —

a final evolution step which brings in the dependence on the

second scale. Referenfg] also generated the two-scale un-

integrated gluon from the same unified evolution equation, -

but with a different proceduréThe unintegrated gluons ob- XE J P, a(z’)dz’) ,
a’ JO

2 12
K27 K

()

tained using the procedures described in Secs. Il, 1ll and Ref.
[5] are compared in Sec. IV. In Sec. V we describe how the

structure functiorF, is calculated from the unlntegrateq Par" i the manner of the Sudakov form factor. Thus the probabil-

ton distributions, and in Sec. VI we discuss the relatlonshlqty to find partona with transverse momenturk, (which
between the unintegrated and integrated distributions. Fina”}ﬁitiates a hard subprocess with factorization sqajeis
in Sec. VII we give our conclusions. P 2

fa(x,kZ, 12 =Ta(k, 1)

as(kf) [1-a ,
2a fx Paa’(z)a

II. UNINTEGRATED DGLAP PARTONS

It is informative to review how unintegrated distributions %
fa(x,kt2 ,w?) may be calculated from the conventioraite-
grated parton densitiesa(x,«?), in the case of pure DG-
LAP evolution. The procedure was explained in R6f. We It is at thislast step of the evolutiothat the unintegrated
start from the DGLAP equation distribution becomes dependent on the two scat@sand

2
1-A
f Paa’(z)a,

X

;,kt2>dz . @

&a(x,,u,z) ags

X 2
dlnu? 2

zu We now have to take care to specify the value of the
Zl

infrared cutoff A, which is introduced to protect the 1/(1
—2z) singularity in the splitting functions arising from soft
gluon emission. In the original DGLAP equatidh), which

1) describes the evolution of the integrated distributions, this
singularity is cancelled between the real emission and virtual

where in the first term a sum over all possible parent partongontributions. However after the resummation of the virtual

a’ is implied. This first term on the right-hand side described®MS, the real soft gluon emission must be accounted for
the number of partonga emitted in the intervalu?< ktz explicitly since it changes thie of the parton. Thus we have

<u?+ 8u?. Such emission clearly changes the transvers& find the physically appropriate choice of the cutaffto

momentumk; of the evolving parton. If we were to neglect provide the angular ordering of the gluon emissibns.

the virtual contribution in Eq(1), then the unintegrated par- In Ref. [6] the cutoff was taken .to ba:kt/’“'. AS. a
ton density would be given simply by consequence the two-scale unintegrated distributions

f(x,kZ,1?) of [6] vanish fork,> u, in accordance with the

dz

1-A
—a(x,u?)> fo Paa(z')dZ
a!

ga(x, u?) DGLAP strong ordering irk;. However we can do better
fa(x,kf)= — and impose the more correct angular ordering in the last step
dlnp n2=k2 of the evolution. It was shown in Refil,5] that this leads to

a constraint on the scaje, namely

as(Kf) [1-4 ,
- 20 fx Paa’(z)a

X
Z,kf)dz. 2 O(0—0)=u>zk/(1-2). 5

The virtual contribution in Eq(1) does not change the parton Thus the maximum allowed value of the integration variable
k; and may be resummed to give the survival probability zis

that partona with transverse momenturk; remains un-

M
Zmax— P (6)

“4In this work we impose the angular ordering constraint in both

the BFKL and DGLAP terms, and as a result do not have an exachngd the corresponding cutaff=k, /(. +k,). Of course the

equality between the integral up & of the unintegrated distribu- sameA must be used both in the real emission integral in Eg.
tions and the value of the integrated distribution. Refereride

takes the opposite approach; that is, exact equality with the inte-
grated distribution is imposed and as a result angular ordering ofthe
BFKL contribution is not complete. The difference is a NLO effect.

SFor theg—gg splitting we have to insert a factar in front of ®Although the splitting function®y, and P4 are not singular at
Pg¢(z') in the last integral of Eq(1) to account for the identity of z=1 it is natural to use the same prescription for both the quark and
the produced gluons. the gluon distributions.
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(4) and in the survival probabilityl in Eq. (3).” In fact we f () 1 dependence
shall see that the imposition of angular ordering at the last ) o» from last step
step of the evolution leads to physically reasonable pddton bt )
distributions which extend smoothly into the domé&jp> .

single-scale

evolution
Ill. INCLUSION OF In (1/x) EFFECTS
We wish to generalize the above method to include | LLLLIZZ
the leading In(2¥) contributions. Clearly there can be ) ) ) ) ]
different forms of the “unified” evolution equation sum- FIG. 1. An illustration of our procedure, in which the evolution

ming up the leading DGLAP and BFKL logarithms, where of a single-scale unintegrated parton is followed by a final step of
g up g 9 the ladder which introduces dependence on the second hard scale,

the ambiguity is at the subleading level. The aim is to find a
good prescription which is not too complicated, but which**
can account for all the physically relevant kinematic effects
just at LO level. In other words we seek an equation which\ote thath(x,k?) is precisely the function which satisfies the
sums up the major part of the subleading corrections in a LG8FKL equation in the lowx limit.
framework. _ o Both BFKL and DGLAP evolution correspond to angular
_ Let us consider, for the moment, just the gluon distribu-ordering of the emission angles, and are single-scale equa-
tion. Recall that the unintegrated distributibfx,ki’, u“) de-  tions. At LO, strong angular ordering automatically comes
pends on two scales. As in the pure DGLAP case of Sec. lgither from strong ordering im (z<1) for BFKL or from
we wish to work in terms of a single-scale evolution equa-strong k, ordering ; 2<k?) for DGLAP. For the uninte-
tion, and then to restore the scale and the full kinematics, grated gluon, we face a problem whiep- 4 in the DGLAP
at the last step of the evolution. This is illustrated schematif amework. and similarly we have a problem when1 for
cally in Fig. 1. For an analysis which incorporates BFKL grk| . Following the procedure of Ref6], we first neglect
effects, the appropriate single-scale distribution is the auxily,e subleading,~ » andz~1 effects to obtain and solve a
lary function unified BFKL-DGLAP equation foth(x,k?). Then, in the
last step of the evolution, we take account of the precise
kinematics so that th&~uw andz~1 domains are treated

a(xg(x,k?)) correctly.
h(x,k?)= — (7) The unified equation fohy, which closely follows that
aInkg presented in Ref4], takes the form

2) r1 2dk/? _ X
hg(x,u2)=h8(x,,u2)+ asp )fo dszz ! (z—x)P(z)hg(E,k{z) —ngg(z)hg(x,kt’z)
0

2 kt’z

2

X , as(p?) dz [ dg®
+0(2—X)Pyq(2) 2, hq(z,ktz)—qu(z)E ha(Ok( D) [+ — 2chx7fk2?®(kt2—k§)
0

2 n? (X 12 2_ .2 X 5
x| O —zcﬁmhg ~ k2| =0(u?=adhg| 2.u? |, ®)
|
wherek{ =k+(1—-2)q; see Fig. 2. a(Xq(X, 12))
We have introduced single-scale unintegrated quark aux- hq(X,,uz)= T 9)
o

iliary functionsh(x,1?) on the same footing as,,

and in Eq.(8) we sum over all B¢ active flavorgg of quarks
and antiquarks witm,<u. The h, distributions satisfy the
In Eq. (3), A=k{/(u+k/) is the appropriate cutoff far'. equation
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- We emphasize that in the unified BFKL-DGLAP equation
E we choose the scale bf; to bek; for the DGLAP contribu-
n E K tion, to be consistent with the BFKL tertwhich is indepen-
bﬂﬁﬂ\ dent of u at LO). Recall that angular ordering leads to a
é dn redefinition of the scalgl,5]
=
Xp1 = -xn/zn g kt,n-I

e O0—-60")=u>zkl/(1-2).
go-o-o-o-o-\ qt’n-] ( ) Mo kt ( )
=

X2 = Xne1 / 2l S kin2 If this modified scale were to be adopted then it would be
Lb impossible to obtain a simple one-scale unified evolution

equation throughout the Whobekf domain. On the other

FIG. 2. Part of the evolution chain. We commonly wrikgfor hand, within the LO framework, we may omit tizedepen-

ki, and then the parent’s transverse momenturk/asThe radiated dence in the scale, so that the DGLAP part of the evolution
transverse momentum ig,. Unified evolution is naturally per- '

. becomes ordered in transverse momenta. We stress again
formed [5] in terms of the rescaled transverse momentgm . _ . . .
= /(1-2,). that it is sufficient to implement the precise constraints com-
ing from angular orderingrelevant to thez~0 and 1 do-
mains for the BFKL and DGLAP terms respectivebt the
ag(p?) (1 2d k]2 :
s(u J dzJ” U o(z—x) last step of the evolution.
27 Jo 2 k2 An advantage of the single-scale unified BFKL-DGLAP
equation is that it is straightforward to incorporate a major

hq(X,ILLZ) = hg(x7l’l‘2) +

X s X 5 (kinematica) part of the subleading order In&)/ (BFKL)
x qu(z)hg(}’kt +Pqa(2)hg E’kt effect$ by imposing a consistency condition to ensure that
the virtuality of the exchanged gluon is dominated by its
_ 12 transverse momentum squargd. This is achieved by the
Paa(@Ng(X ke )]’ (10 inclusion of the theta functio® (u2—zcP) in the real emis-

sion contribution shown in the last term of E&). Note that
which is the usual DGLAP equation for quark evolution other subleading effects arising from using the complete DG-
written in terms ofh, of Eq. (9). The last term of Eq(8) is ~ LAP splitting function and runningrs are automatically in-
the BFKL contribution which sums up all the leading cluded in the unified equation.
(agn 1/X)" terms, while the remaining terms on the right- We see that the evolution equations for the auxiliary dis-
hand side describe the conventional DGLAP evolution of theributions ha(x,ktz) depend on the single scallé. The de-
gluon distribution with respect to scale’. To avoid double pendence of the unintegrated distributimx,kf,ﬂz) on
counting, we have excluded the singular part offyg split-  the second scale will enter when we consider tHast step
ting function in the real emission DGLAP term and used  of the evolutionlt is sufficient to ensure that the final emit-
ted parton explicitly satisfies the requirements of angular or-
dering. The angular ordering conditions of the previous steps
of the evolution are automatically ensured at LO by virtue of
either the strong ordering ik; (in the DGLAP par} or the
The 2N /z term is already included in the BFKL contribu- strong ordering irz (in the BFKL parj.

2N¢

P(2)=Pyy(2)— — (12)

tion to Eq.(8). To ensure angular ordering in the last step of the evolu-
The driving terms,h®, which describe the lovk?<kj  tion, we note thatz is limited by Eg.(5). This condition
domain are given by4] impliesz<w/(u+Kk;), and so we take this as the upper limit

of the z integration in Eqs(13) and (14) below. Thus the
number of gluons produced at the last stefith transverse
P Xl X w2 momentumk, which initiate a hard subprocess with factor-
gg(z) g 1N0 : : 9
z7\z ization scaleuw) is

2
hO(x, u2) = asz(g )foldz[(@(z—x)

X [(x )
+Pgo(2) 2 | 5 K3 ||~ 2Pgg(2)xg(x.k)
8The large NLO BFKL corrections, which have recently been
computed[8], appeared to have put the application of the BFKL
- qu(z)E xq(X, ké)} , (12 framework into question. However a major part of the corrections is
kinematic in origin and, when summed to all ordgr$ using the
o 0 ) ) o theta function® (u?—z?), brings the BFKL approach back under
and similarly for hy. The integrated input distributions control, see alsg9,10].
a(x,k§) are not known and, as usual, must be determined °The lowk,<k, domain of the integrals in Eqé13), (14) should

from the data or from some non-perturbative QCD model. be treated as the driving terrh§ in Eq. (12).
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12

wl (ptke) k[2dkt — X 5
JX dzJ 2 P(2)hg E’kt

t

(k?)
ux@mﬂ=ummnﬁllf +Pwn2h4;wﬂ}

2

wlptk)dz [ d?q
rong

ktz X 12 2 2 X 2
. 7 7rq2 Ehg<zykt >_®(kt_q )hg E!kt) ) (13)

and the number of a particular quark spedeproduced at DGLAP evolution is neglected, that isgn u?<1, but

the last step, is agn1/x=1. Then, in Eq.(13), the survival probability
2 Ty(ki,u)=1 and there are no DGLAP contributions. Thus
ag we obtain
Ok 1) =To(ke ) —
' I(xg(x,kf))
ulusi) | 2dkg® X fo(x,k? 12 =hg(x k)= —— 1> (15
XL dzf t K2 Pqg(2)hg E'ktz oK) =hg(xkD) (9Inkt2 (19
t
X 2 This is an expression which is frequently used at bow
* qu(z)hq( z k)] (14 Whenx is sufficiently large, the derivative

This last step of the evolution is shown schematically in Fig.
1. The unintegrated distributiorf@(x,ktz,uz) represent the
number of partonsa emitted in thesin k? interval fromk?

to k?+ 6k?, and include the factord,(k,u) of Eq. (3),

which give the probabilities that partoms=g,q with trans-  pecomes negative, even féf=<u. The reason is that the
verse momenturk, remain untouched in the DGLAP evolu- pegative virtual DGLAP term exceeds the real emission DG-
tion up to the factorizatioriprobe scalen. These survival | AP contribution, which is suppressed by the large lower
probabilitiesTg gnd Ty resum the virtual D_GLAP contribu-  |imit z>x in Egs.(8), (10), (13) and (14). After the virtual
tions occurring in Eqs(8) and(10) respectively. contributions are resummed into tig factors the uninte-

It is important to note that the functidmy(x,kf) already  grated parton distributions remain positive everywhere.
includes the leading In(&) virtual corrections, which have We already stated in Sec. Il that imposing angular order-
the effect of reggeizing the exchanged gluon; tkuss the  ing on the last step of “DGLAP” evolution caused the dis-
total momentum transferred via the Regge gluon trajectorytribution to extend smoothly into th&>x domain. The
Moreover, the distributions,(x,kZ, 12), evolved in the final  gluons also populate this domain due to BFKL diffusion in
step from the auxiliary functionba(x,kf), also incorporate In kf This raises the question of how much enhancement we
the virtual DGLAP contributions, via the survival probabili- find in this domain due to the inclusion of the BFKL contri-
ties T,(K¢,u). The final expressions, EgEl3) and(14), are  butions. To investigate this point, we compute the uninte-
thus more symmetric in that all the LO virtual corrections aregrated gluon distributiorﬁg(x,kf ,1?) in two different ways.
included. That is, from a Feynman diagram viewpoint, the (a) In the first approach, the functidny(x,k?) of Ref.[4]
function fa(x,kt2 ,w?) corresponds to the propagator of ais used as the auxiliary function to drive the last-step evolu-
t-channel parton of transverse momently initiating a  tion in Egs. (13) and (14). This incorporates essentially
hard subprocess at scale in which all the LO virtual cor- maximal BFKL effects-
rections to the parton distribution have been taken into ac- (b) In the second case, we use unintegrated “DGLAP”

L@k

16
' aInk? 19

count. partons to drive the two-scale unintegratedvia Eq. (4).
This approach is essentially pure DGLAP, but with the cru-
IV. THE UNINTEGRATED GLUON DISTRIBUTION cial modification that the cutoff in EQ$3) and (4) is moti-

vated byangular ordering Here we use the 1999 Martin-

We have described how to obtain tfteo-scal¢ uninte-  Roberts-Stirling-ThorngMRST99 [11] set of partons as
grated parton distributionsﬁ(x,kf,ﬂz) from the solution input.
h(x,k?) of a one-scale equation which unifies DGLAP and Ideally, we should refit to the deep inelastic and related
BFKL evolution. The link is Eqs(13), (14), which represent scattering data and perform globainintegrated parton
the last step of the evolution. Only at this stage does the scale
o of the subprocess, initiated tfjx,ktz,,uz), enter.

It is informative to compare the unintegrated gluon distri- 10, comparison with Eq(10), the evolution ofhg in Ref. [4]
bution fg(katz ,#?) with the behavior of the auxiliary func- contains some resummation of the BFKL-like leadingsl 1/x)"
tion hg(x,kf). Consider first the pure BFKL limit, in which terms.
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x=0.1 p=10 GeV | x=0.01 p=10 GeV

FIG. 3. Plots of thek; depen-
dence of the unintegrated gluon
fo(x,kf,u?) for various values of
X, at =10 GeV. The solid
curves are our versiofa) of f
from Eq. (13); for comparison we
show with dashed lines the unin-
tegrated gluon fronf5] (as in[5],
the dashed lines have been
smoothed in the transition region
ki~wu). Also we plot our “DG-
LAP” unintegrated gluon (b)
from Eq.(4) in dotted lines, which
with the correct angular ordering
cutoff is very close to the nedy, ,
especially at highx.

0 PR R Lo el MR R G: MR | AR |

2

1 10 10° 10° 1 10 10 10°

k? (GeV?

analyses in terms of fa(X,ktz,,uz), since now we have tribution (b) generated from Eq4) using the pure DGLAP
added an extra last step to the evolution. However, such gldMRST99 [11] partons turns out to be very similar to the
bal analyses are beyond the scope of the present paper. result(a) obtained using the auxiliary functidm,. This co-
The unintegrated gluon distributioffiy(x,k?, ), ob-  incidence can be explained by the faGisthat both the DG-
tained by the two alternative procedutesand(b), is shown LAP partons and the analysis of Re#] (which yieldedh)
in Fig. 3 for x=10 GeV. We can compare the continuous fit the deep inelastic data well, arid) that both these input
curves of approachia) directly with the previous uninte- are used with the same angular-ordered constraint(&g.
grated gluon distributioridashed curvgscalculated in Ref. We draw the conclusion that the role of angular ordering in
[5], which also used the same auxiliary functhykf) of  thelast step of evolution is particularly important, even more
[4] as input. Fork,< x the new results tend to lie above the SO than BFKL effects in the DES¥p collider HERA do-
previous determinatiofs], while for k,> u they are increas- Main.
ingly smaller ask; increases. In the present work, the de-

crease at largg; arises from the restriction<z,5,= u/(u V- F2 CALCULATED FROM THE UNINTEGRATED

+k;), whereas the earlier calculation, based on &8§) of PARTONS

Ref.[5], omitted the limitz<zy,, on the BFKL contribution, To check the reliability of our unintegrated parton distri-
which caused to increase in the largk, domain at small  butions, and to demonstrate how to use these distributions in
values ofx. calculations of observables, we compute the deep inelastic

Finally we compare the DGLAP-like unintegrated gluon, structure functiorfF,. We wish to treat the unintegrated glu-
obtained in approackb), with that of approach@ which  ons and unintegrated quarks on an equal footing as input to
embodied BFKL evolution. That is we compare the dottedithe subprocess cross sections, so we explicitly separate gluon
with the continuous curves of Fig. 3. It is interesting to noteand (direct quark contributions td- .
that, with the more precise angular-ordef@CFM[1]) cut- The gluon contributes td=, via the quark box and
off from Eq. (5), A=k;/(x+ky), the unintegrated gluon dis- crossed-box diagrams of Fig. 4. These generate, viagthe

—qqg splitting, a sea quark contributidy, to F, of the form
[12,4]
n Sec. V, we describe the theoretical calculatiofrgfthe most _
important observable for constraining parton sets, from the two- g—qq 2y 2 2
scale unintegrateél; andf, . 2 Q% Eq: equ(x,Q ) a7
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Q,

X, K,

S
X =) = = =3
twE B E B

FIG. 4. The quark box, and crossed-box, diagrams which medigc5le of the functiom

ate the contribution of the unintegrated gluon distribution
fo(x/z,k? ,u?) to Fy.

with

Q? dk 1
2 —_= | > 2 2
Sq(va ) 4772f k:‘ fO dﬁJ d KtaS(lu’ )

xfq g.kf,;ﬁ)@ 1—; [B%+(1-B)%]
2
x| -5 e
1 1)\2
X D_l_D_Z ] (18)
The denominator factors are
Dy =&{+B(1—B)Q%+m; (19

Do=(r—k)?+B(1-B)Q%+m;.

We may exploit the symmetry of the integrand in E{8)
unders;— 1, —k; and B—1— B to rewrite{ ...} as

|

K> K=Kk

2 2 1—B)2 b S S
|[,8+< ﬁ)](Di 5.0,
1

Dz DiD, 0

+[ma+4Q2B%(1- B)?]

PHYSICAL REVIEW D63 114027

wl= kt2+ Kt2+ mg . (22
Care is needed in separating this calculation into perturbative
and non-perturbative regions. We impose a cukeffk, for

a legitimate perturbative calculation of E@.8). The small-

est cutoff we can choose is the minimuitihat is, initia)
o(x,k?) from which our two-scale dis-
tributions derive. Thuk, is of order 1 GeV. For the contri-
bution from the region ok;<k, we approximate

2

[
o k2

t

2

) remainde
fq(X ke, %) ——=—

" }zxg(x,kéﬁg(ko,m

t

X[ ]kt:aa (23)

wherea can be taken to be any value representative of the

interval (Okg). The dependence on the choicead§ numeri-

cally unimportant.

Now we have to add the direct quark contributiond=tg

which come from the unintegrated quark distributions

fq(x,kf ,m?). If a quark, initially with x/z and perturbative

transverse momentuk{ >k, splits to a radiated gluon and
a “final

" 12 quark with Bjorkenx and transverse momentum

k¢, then this final quark can couple to the photon and con-

tribute toF, as

2 2
Q? dx; ag(ky)
F3Pex,Q%) =X eﬁfz =3
q ko Kt m
2 dikZ rQ+ky X
X *—f dz fol = k2, 2)
fkg kt2 X q z t Q

+f{§,kf,Q2”qu(z), (24)

where here we have written the antiquark contribution ex-

The summation in Eq(17) is over massless,d,s quarks
and ac quark of massn,=1.4 GeV; there is no need to sum

u, d, s, c in addition, because as E{.9) is written,S,, say,

is the contribution of a gluon via a quark box of any mo-
mentum. The variabl@ is the light-cone fraction of the pho-
ton momentum carried by the internal quark. The variable
is the ratio of Bjorkenx and the fraction of the proton mo-
mentum carried by the gluon. It is specified by the relation

plicitly. As in Eq. (14), the upper limit of thez integration
reflects the angular-ordered constraint of Es). during the
quark evolution.

Again we need to account for the non-perturbative do-

main k;<ky. The initial (integratedd quark distribution
xq(x,kg) drives our final contribution. Physically the only
remaining diagrams that we have not included are those in
which a quark(or antiquarlk from this initial distribution

does not experience real splitting in the perturbative domain,

. (Kt—(l—ﬁ)kt)2+m§+ kf

1
z

BL1-PHQ?  Q
1 Kt2+m§2 kt2+Kt2—2K2t-kt+m§, (2
(1-p)Q BQ

which is obtained by requiring the outgoing quarks to be
on-shell. Following Ref[4], we choose the scale which
controls the unintegrated gluon distribution and the QCD
coupling ag to be

but interacts unchanged with the photon at sc@leHence
we write a Sudakov-like factoll 4(kq,Q) to represent the
probability of evolution fromk, to Q without radiation

Fgm"”‘p‘*”{x,QZ):; ea(xa(x,k§) +xq(x,k§)) Tq(ko, Q).
(25)

1By “final” we mean the struck quark just after i, splitting.
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2 redistributes the distributions Iy space. We see from Fig. 5
Q’=27 Gev * ; that indeed this is the case.

F,(x,Q?%

%\ zEUS (stat. only)
’ VI. RELATION OF f TO INTEGRATED PARTONS

It is important to scrutinize the relationship between the
new unintegrated parton‘g(x,kt2 ,;?) and the conventional
integrated parton distributiors(x, «2), as obtained in global
analyses such d41]. First we emphasize that we may use
either the integrated distributions or the unintegrated distri-
butions to describe both inclusivdéike F,) and exclusive
processes. The framework based on the unintegrated distri-
butions is a bit more complicated. However it accounts for
H1 (stat. the precise kinematics of the process and an important part of
+syst) the virtual loop corrections, via the survival factbreven at
LO. On the other hand, if we work with integrated partons
we have to include NLJand sometimes NNLDcontribu-
tions to account for these effects. These differences appear to
cause a discrepancy between the integrated and unintegrated
1 approaches. As we explain below, this is to be expected since

it arises from simplifications of the LO formalism due to the

FIG. 5. This is not a fit but the results of using our “DGLAP” neglect of terms which are moved into the NLO contribution.
unintegrated parton) to calculateF,; the gluon-originated con- An important equation, sometimes cited as the defining
tributions are shown as dashed lines and the quark-originated parfgoperty of unintegrated partof§], is
are shown as dotted lines. Recent data are plp#t& and compare
well with the sum of the gluon and quark contributiofsolid 2dK?
curves, especially at highQ?. a(x,u?)= f” k—ztfa(x,k[2 2, (26)

t

Q°=250Gev 2 |

0 PMEPERETI BRI
10

To avoid double counting, it is important to put a lower limit
on k. in both Eqs.(18) and(24), by enforcing@(xf—kg) in  wherea representsg or xg. This is in fact the first equation
the integrations. Without this lower limit on the final trans- of Ref.[5]. In the BFKL limit, the » dependence of van-
verse momentunx,, Egs.(18) and(24) would partially in-  ishes and we hav%(x,kf,ﬁ)ahg(x,kf) as in Eq.(15). In
clude low transverse momentumr; quark contributions this case, Eq(26) is clearly satisfied. However, in general
which are best incorporated in E(5), whether they origi- the situation is complicated by the two separate momentum
nate from partons wittk, >k, or not. scales; and . The unintegrated partorig of Ref.[5] were
The structure functiorF,(x,Q?) is given by the sum of explicitly constructed to have the propef®6), in the sense
the gluon-initiated contributio17), and the quark terms, that the integral offy over the transverse momentum up to
Egs.(24) and(25). In Fig. 5 sample results shown by the the scalex would be the same as the integral of the input
continuous curves, are compared with deep-inelastic strucuxiliary functionhg(x,kf) up to the same scale. In contrast,
ture function data. The gluon and quark components ar@umerical integration ovek; of the new unintegrated partons
shown by the dashed and dotted curves respectively. As e>f—g andf, presented in this papgiboth versionga) and(b) of
pected the dominant contribution at smaitomes from the  Sec. 1\] shows that Eq(26) is only approximately trué?
unintegrated gluon via the quark box and crossed-box congye typically find a discrepancy of order 25% between the

tributions, whereas at largethe quark terms dominate. right-hand side of Eq(26) and the single-scale distribution
We emphasize that, in the present work, the curve§for  that has been used to generége

are not the result of a fit to the structure function data. Rather |y order to eliminate the discrepancy we may adjust the
they have been obtained by using single-scale functiong;pper limit w2 of the integral in Eq(26) to c2u2. The intro-
originally fitted more directly td~, data, as plausible input dyction ofc is equivalent to a NLO correction for the inte-
to our “last-step” evolution procedure, which generates two-grated partons. Typically in the “DGLAP” caskapproach
scale unintegrated distributiorfs(x,k?,4?). Then we use (b) of Sec. IV], we requirec=0.6—0.8 to reproduct the
the unintegrated distributions to compuieg via Egs.(17),  original MRST integrated gluon in the domaip=5

(24) and (25). For the inclusive observable,, we would

expect that the insertion of this extra evolution step would———

not appreciably disturb the description, since it essentially UNote that we cannot compute E@6) as it is written, because

we can only define the unintegrated function in the regime of per-
turbativek,>k,. The comparison that is made is between the inte-
13We show in Fig. 5 results obtained using the unintegrated disgral fromk3 to x2 and the quantitya(x, x?) —a(x,k3).
tributions evaluated from Edq4) with the MRST99 parton$11], B5This identification is only approximate since the last step of the
that is, version(b) of f, andf, as discussed in Sec. IV. evolution is not included in the comparison.
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—10 GeV andx=<0.01[andc~0.4 for approacha), which  tions, controlled by, become important only at the last step
embodies BFKL effeciis A valuec<1 compensates for the of the evolution. The equation for the auxiliary function
over-large virtual loop correction included in the integratedhy(x,kf) was formulated, and the distributions fitted to the
DGLAP partons on account of the absence of the culoif data, in Ref[4]. These single-scale equations were also de-
the integral overz’. At smaller values ok the corrections vised to include all the leadinggln Q* and agln 1/x contri-
due to the cutoff are mainly cancelled between the virtuabutions, and a major part of the sub-leading I &ffects.
and real DGLAP contributions. A% increases, the virtual In other words, the “unified” evolution equations fdr
contribution[the second term on the right-hand side of Eq.must be supplemented by a final evolution step in which the
(1)] increasingly dominates and we have to choose smallerx dependence of the unintegrated parton distributions enters
values ofc. Eventually in the domaix>0.1, u~10 GeV via the angular-ordering constraint. The situation is summa-
the main contribution comes from the input and to compen+ized diagrammatically in Fig. 1. The procedure offers a con-
sate the absence of tlzecutoff in the conventional form of siderable simplification in the determination of physically
the DGLAP equation we must change the input itself. realistic unintegrated parton distributiohg(x,k?, %) over
To summarize, the discrepancy between the inte@@!  the full x,u? perturbative domain, including the true kine-
of the unintegrated parton function and the original inte-matics even at leading order. As expected, the gluon and sea
grated distribution is not a cause for concern. Conceptuallyguark distributions extend into thlg> ux region more and
there are two different roles for single-scale distributions inmore asx decreases. We have compared the new uninte-
the description of data for inclusive observabledere par- grated distributions with those given by previous prescrip-
tonic transverse momentum is integrated)otihe first role  tions [6,5]. As compared to Ref[5], the new formalism
is the traditional one, in the framework of collinear factor- gives a consistent treatment of angular ordering, which leads
ization, whereby integrated parton distribution functions areto the imposition of the integration limitz<u/(u+k,). As
fitted directly to the data. The second role is demonstrated ia consequence the distributioﬁgx,kf ,u?) decrease faster
this paper(following [6] and[5]), where we use single-scale than those of5] for large k,, particularly at smallx. An
functions asnputto the last-step procedure; see for exampleinteresting result is that the unintegrated distributions ob-
Eq. (4). We have been forced to introduce a new formalismained viah,(x,k?) of [4] are not very different from those
for calculatingF,(x,Q?), in which unintegrated parton func- gptained via Eq(4) using conventional DGLAP partons—
tions are understood to be the fundamental objects; we havgmpare the continuous and dotted curves in Fig. 3. It thus
emphasized the need to perform a new global fit to data igppears that the imposition of the angular-ordering constraint
terms of the new functions, . After this, we do not expect s more important than the BFKL effects. This observation
the input single-scale functiomon the left-hand side of Eq. has the practical consequence that reasonably accurate pre-
(26) to equal the integral of, up to u?, sinceaitself is not  gictions for observables can be made using the much sim-
fitted direCtly to the data, but rather is used as input for thq—ﬂer’ though less Comp'ete, prescription of E@)
last step of the evolution, which embodies a crucial angular-  Finally, we used the new unintegrated distributions to cal-
ordering constraint unique to this last step. Thus our singlegyjate the deep-inelastic structure functién. We also
scale or “auxiliary” function is not a traditional parton dis- showed the gluon-initiated and quark contributions sepa-
respectively. Recall, fronj4], that the rise of the gluon at
small x is driven by perturbative QCD, which was assumed
VII. CONCLUSIONS to have a non-perturbative input which is “flat” in. We
Parton distributions,fa(x,kt2 ,#?) unintegrated over the emphasize that we have not fitted to the qle_ep i”?'astic _data.
partonk; are the basic quantities for describing processeé\l.evertheless' Fig. 5 S.hO.WS that the existing distributions
initiated by hadrons. An essential ingredient in this descrip-g've an adequate description, and therefoE they may be used
tion is the existence of thie, factorization theorerfil4]. The 0 evaluate other hard processes, suctblsand largeq;
unintegrated distributions depend on two hard scales—thprompt photon production in high energyp (or pp) colli-
transverse momentuiky and the factorization scalge. The  sions. It is important to use unintegrated distributions for
scale u drives the angular ordering during the evolution such exclusive reactions.
which arises from the coherence of the gluon emissions.
Here we develop a new formalism to determine the unin-

tegrated parton distributions,(x,k ,u?), which embodies We thank Jan Kwiecinski and Anna Stasto for many valu-
both the leading IQ” (DGLAP) and In 1k (BFKL) effects,  aple discussions during the course of this research. The work
as well as including a major part of the sub-leading In1/ was supported by the UK Particle Physics and Astronomy
contributions. An important observation is that, at leadingresearch CouncilPPARQ, and also the Russian Fund for
order, thetwo-scalefunctions f,(x,k?,u?) may be calcu- Fundamental Researdb1-02-17095 This work was also
lated from auxiliary functionsha(x,ktz) which satisfysingle-  supported by the EU Framework TMR program, contract
scaleevolution equations, since the angular ordering restricFMRX-CT98- 0194(DG 12-MIHT).
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