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Unintegrated parton distributions
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We describe how to calculate the parton distributionsf a(x,kt
2 ,m2), unintegrated over the parton transverse

momentumkt , from auxiliary functionsha(x,kt
2), which satisfy single-scale evolution equations. The formal-

ism embodies both DGLAP and BFKL contributions, and accounts for the angular ordering which comes from
coherence effects in gluon emission. We check that the unintegrated distributions give the measured values of
the deep inelastic structure functionF2(x,Q2).
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I. INTRODUCTION

Conventionally deep inelastic lepton-proton scattering
described in terms of scale-dependent parton distributio
a(x,m2), wherea5xg or xq. These distributions correspon
to the density of partons in the proton with longitudinal m
mentum fractionx, integrated over transverse momentum
to kt5m. They satisfy Dokshitzer-Gribov-Lipatov-Altarelli
Parisi ~DGLAP! evolution in m2. The kinematic regionkt

,m gives the leading lnm2 approximation to deep inelasti
scattering.

For less inclusive processes it is, however, necessar
consider distributions unintegrated over the transverse
mentumkt of the parton. The unintegrated distributions ha
the advantage that they exactly correspond to the qua
which enters the Feynman diagrams and therefore allow
the true kinematics of the process even at leading order~LO!.
These distributionsf a(x,kt

2 ,m2) depend on two hard scales1

kt and the scalem of the probe. The scalem plays a dual
role. On the one hand it acts as the factorization scale, w
on the other hand it controls the angular ordering of
partons emitted in the evolution@1#.

Clearly it is desirable to also include ln(1/x) Balitskiı̆-
Fadin-Kuraev-Lipatov- ~BFKL-!type contributions in the
evolution. Recall that both DGLAP and BFKL evolution a
essentially equivalent to ordered evolution in the angles
the emitted partons.2 In the DGLAP collinear approximation
the angle increases due to the growth ofkt , while in BFKL
the angle (u.kt /kl) grows due to the decreasing longitud
nal momentum fraction as we proceed along the emiss
chain from the proton. The factorization scalem separates

1This property is hidden in the conventional distributions askt is
integrated up to the scalem.

2At LO we have strong ordering of the emission angles, . .u i

!u i 11 . . . ; on theother hand if, at one step of the evolutionu i

;u i 11, then this contribution is included inside the NLO splittin
function.
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the partons associated with emission from different parts
the process, that is from the beam and target protons~in pp
collisions! and from the hard subprocess. For example
separates emissions from the beam~with polar angle u
&90°) from those from the target~with u*90°), and from
the intermediate partons from the hard subprocess. T
separation was proved in Ref.@1# and originates from the
destructive interference of the different emission amplitud
in the angular boundary regions. If the longitudinal mome
tum fraction is fixed by the hard subprocess, then the lim
on the angles can be expressed in terms of a factoriza
scalem which corresponds to the upper limit3 on the allowed
values of the (s-channel! partonkt .

Since the parton distributions depend on two scales
potentially have to deal with complicated@Ciafaloni-Catani-
Fiorani-Marchesini~CCFM! @1## evolution equations for the
f a(x,kt

2 ,m2) functions. Of course it is possible to work wit
two-scale distributions, but this is much more complicat
@2# and up to now has only proved practical with Mon
Carlo generators@3#. However, the evolution process is e
sentially controlled by one quantity, the emission angle, a
on this basis we may expect to be able to obtain the dis
butions f a(x,kt

2 ,m2) from single-scale evolution equation
Therefore it should be possible to follow an analytic a
proach where the physical assumptions are much more
dent and where, in principle, NLO corrections can be
cluded. Moreover, in practice, it is much easier to use
same unintegrated distributions to describe different h
processes and to perform global parton analyses.

The outline of this paper is as follows. The key observ
tion is that them dependence of the unintegrated distrib
tions enters at the last step of the evolution, and so we m
use single-scale evolution equations. The procedure is

3The t-channel parton may havekt up to m/z, characteristic of
BFKL effects, whereas for LO DGLAP thes andt-channel partons
are both limited bykt,m. Of course, somekt.m contribution will
arise from the NLO splitting functions.
©2001 The American Physical Society27-1
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described in Sec. II in the case of pure DGLAP evolutio
and then extended to include ln(1/x) effects in Sec. III. In the
latter case we use the solution of a single-scale equa
which unifies DGLAP and BFKL evolution@4#, and perform
a final evolution step which brings in the dependence on
second scale. Reference@5# also generated the two-scale u
integrated gluon from the same unified evolution equati
but with a different procedure.4 The unintegrated gluons ob
tained using the procedures described in Secs. II, III and R
@5# are compared in Sec. IV. In Sec. V we describe how
structure functionF2 is calculated from the unintegrated pa
ton distributions, and in Sec. VI we discuss the relations
between the unintegrated and integrated distributions. Fin
in Sec. VII we give our conclusions.

II. UNINTEGRATED DGLAP PARTONS

It is informative to review how unintegrated distribution
f a(x,kt

2 ,m2) may be calculated from the conventional~inte-
grated! parton densities,a(x,m2), in the case of pure DG
LAP evolution. The procedure was explained in Ref.@6#. We
start from the DGLAP equation5

]a~x,m2!

] ln m2
5

aS

2p F E
x

12D

Paa8~z!a8S x

z
,m2Ddz

2a~x,m2!(
a8

E
0

12D

Pa8a~z8!dz8G ~1!

where in the first term a sum over all possible parent part
a8 is implied. This first term on the right-hand side describ
the number of partonsda emitted in the intervalm2,kt

2

,m21dm2. Such emission clearly changes the transve
momentumkt of the evolving parton. If we were to neglec
the virtual contribution in Eq.~1!, then the unintegrated par
ton density would be given simply by

f a~x,kt
2!5

]a~x,m2!

] ln m2 U
m25k

t
2

5
aS~kt

2!

2p E
x

12D

Paa8~z!a8S x

z
,kt

2Ddz. ~2!

The virtual contribution in Eq.~1! does not change the parto
kt and may be resummed to give the survival probabilityTa
that partona with transverse momentumkt remains un-

4In this work we impose the angular ordering constraint in b
the BFKL and DGLAP terms, and as a result do not have an e
equality between the integral up tom2 of the unintegrated distribu
tions and the value of the integrated distribution. Reference@5#
takes the opposite approach; that is, exact equality with the i
grated distribution is imposed and as a result angular ordering o
BFKL contribution is not complete. The difference is a NLO effe

5For theg→gg splitting we have to insert a factorz8 in front of
Pgg(z8) in the last integral of Eq.~1! to account for the identity of
the produced gluons.
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touched in the evolution up to the factorization scale. T
survival probability is given by

Ta~kt ,m!5expS 2E
kt

2

m2aS~kt8
2!

2p

dkt8
2

kt8
2

3(
a8

E
0

12D

Pa8a~z8!dz8D , ~3!

in the manner of the Sudakov form factor. Thus the proba
ity to find partona with transverse momentumkt ~which
initiates a hard subprocess with factorization scalem) is

f a~x,kt
2 ,m2!5Ta~kt ,m!

3FaS~kt
2!

2p E
x

12D

Paa8~z!a8S x

z
,kt

2DdzG . ~4!

It is at this last step of the evolutionthat the unintegrated
distribution becomes dependent on the two scales,kt

2 and
m2.

We now have to take care to specify the value of t
infrared cutoff D, which is introduced to protect the 1/(
2z) singularity in the splitting functions arising from so
gluon emission. In the original DGLAP equation~1!, which
describes the evolution of the integrated distributions, t
singularity is cancelled between the real emission and vir
contributions. However after the resummation of the virtu
terms, the real soft gluon emission must be accounted
explicitly since it changes thekt of the parton. Thus we have
to find the physically appropriate choice of the cutoffD to
provide the angular ordering of the gluon emissions.6

In Ref. @6# the cutoff was taken to beD5kt /m. As a
consequence the two-scale unintegrated distributi
f a(x,kt

2 ,m2) of @6# vanish forkt.m, in accordance with the
DGLAP strong ordering inkt . However we can do bette
and impose the more correct angular ordering in the last
of the evolution. It was shown in Refs.@1,5# that this leads to
a constraint on the scalem, namely

Q~u2u8!⇒m.zkt /~12z!. ~5!

Thus the maximum allowed value of the integration varia
z is

zmax5
m

m1kt
~6!

and the corresponding cutoffD5kt /(m1kt). Of course the
sameD must be used both in the real emission integral in E

ct

e-
he

6Although the splitting functionsPgq andPqg are not singular at
z51 it is natural to use the same prescription for both the quark
the gluon distributions.
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~4! and in the survival probabilityT in Eq. ~3!.7 In fact we
shall see that the imposition of angular ordering at the
step of the evolution leads to physically reasonable partokt
distributions which extend smoothly into the domainkt.m.

III. INCLUSION OF ln „1Õx… EFFECTS

We wish to generalize the above method to inclu
the leading ln(1/x) contributions. Clearly there can b
different forms of the ‘‘unified’’ evolution equation sum
ming up the leading DGLAP and BFKL logarithms, whe
the ambiguity is at the subleading level. The aim is to fin
good prescription which is not too complicated, but whi
can account for all the physically relevant kinematic effe
just at LO level. In other words we seek an equation wh
sums up the major part of the subleading corrections in a
framework.

Let us consider, for the moment, just the gluon distrib
tion. Recall that the unintegrated distributionf (x,kt

2 ,m2) de-
pends on two scales. As in the pure DGLAP case of Sec
we wish to work in terms of a single-scale evolution equ
tion, and then to restore the scalem, and the full kinematics,
at the last step of the evolution. This is illustrated schem
cally in Fig. 1. For an analysis which incorporates BFK
effects, the appropriate single-scale distribution is the au
iary function

h~x,kt
2!5

]„xg~x,kt
2!…

] ln kt
2

. ~7!
u
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Note thath(x,kt
2) is precisely the function which satisfies th

BFKL equation in the lowx limit.
Both BFKL and DGLAP evolution correspond to angul

ordering of the emission angles, and are single-scale e
tions. At LO, strong angular ordering automatically com
either from strong ordering inx (z!1) for BFKL or from
strong kt ordering (kt8

2!kt
2) for DGLAP. For the uninte-

grated gluon, we face a problem whenkt;m in the DGLAP
framework, and similarly we have a problem whenz;1 for
BFKL. Following the procedure of Ref.@6#, we first neglect
the subleadingkt;m andz;1 effects to obtain and solve
unified BFKL-DGLAP equation forh(x,kt

2). Then, in the
last step of the evolution, we take account of the prec
kinematics so that thekt;m and z;1 domains are treated
correctly.

The unified equation forhg , which closely follows that
presented in Ref.@4#, takes the form

FIG. 1. An illustration of our procedure, in which the evolutio
of a single-scale unintegrated parton is followed by a final step
the ladder which introduces dependence on the second hard s
m.
hg~x,m2!5hg
0~x,m2!1

aS~m2!

2p E
0

1

dzE
k0

2

m2dkt8
2

kt8
2 FQ~z2x!P̄~z!hgS x

z
,kt8

2D2zPgg~z!hg~x,kt8
2!

1Q~z2x!Pgq~z!( hqS x

z
,kt8

2D2Pgq~z!( hq~x,kt8
2!G1

aS~m2!

2p
2NCE

x

1dz

z E
k0

2

dq2

q2
Q~kt8

22k0
2!

3FQ~m22zq2!
m2

kt8
2

hgS x

z
,kt8

2D2Q~m22q2!hgS x

z
,m2D G , ~8!
wherekt85kt1(12z)q; see Fig. 2.
We have introduced single-scale unintegrated quark a

iliary functionshq(x,m2) on the same footing ashg ,

7In Eq. ~3!, D5kt8/(m1kt8) is the appropriate cutoff forz8.
x- hq~x,m2!5
]„xq~x,m2!…

] ln m2
, ~9!

and in Eq.~8! we sum over all 2nF active flavorsq of quarks
and antiquarks withmq,m. The hq distributions satisfy the
equation
7-3



n

g
t-
th

-

s
ne
l.

n

a

be
ion

ion
gain
m-

P
jor

at
its

G-

is-

t-
or-
eps
of

lu-

it

r-

en
L

s is

r

M. A. KIMBER, A. D. MARTIN, AND M. G. RYSKIN PHYSICAL REVIEW D 63 114027
hq~x,m2!5hq
0~x,m2!1

aS~m2!

2p E
0

1

dzE
k0

2

m2dkt8
2

kt8
2 H Q~z2x!

3FPqg~z!hgS x

z
,kt8

2D1Pqq~z!hqS x

z
,kt8

2D G
2Pqq~z!hq~x,kt8

2!J , ~10!

which is the usual DGLAP equation for quark evolutio
written in terms ofhq of Eq. ~9!. The last term of Eq.~8! is
the BFKL contribution which sums up all the leadin
(aSln 1/x)n terms, while the remaining terms on the righ
hand side describe the conventional DGLAP evolution of
gluon distribution with respect to scalem2. To avoid double
counting, we have excluded the singular part of thePgg split-
ting function in the real emission DGLAP term and used

P̄~z!5Pgg~z!2
2NC

z
. ~11!

The 2NC /z term is already included in the BFKL contribu
tion to Eq.~8!.

The driving terms,h0, which describe the lowkt
2,k0

2

domain are given by@4#

hg
0~x,m2!5

aS~m2!

2p E
0

1

dzH Q~z2x!FPgg~z!
x

z
gS x

z
,k0

2D
1Pgq~z!(

x

z
qS x

z
,k0

2D G2zPgg~z!xg~x,k0
2!

2Pgq~z!( xq~x,k0
2!J , ~12!

and similarly for hq
0 . The integrated input distribution

a(x,k0
2) are not known and, as usual, must be determi

from the data or from some non-perturbative QCD mode

FIG. 2. Part of the evolution chain. We commonly writekt for
ktn and then the parent’s transverse momentum askt8 . The radiated
transverse momentum isqt . Unified evolution is naturally per-
formed @5# in terms of the rescaled transverse momentumqn

5qtn /(12zn).
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We emphasize that in the unified BFKL-DGLAP equatio
we choose the scale ofhg to bekt8 for the DGLAP contribu-
tion, to be consistent with the BFKL term~which is indepen-
dent of m at LO!. Recall that angular ordering leads to
redefinition of the scale@1,5#

Q~u2u8!⇒m.zkt /~12z!.

If this modified scale were to be adopted then it would
impossible to obtain a simple one-scale unified evolut
equation throughout the wholex,kt

2 domain. On the other
hand, within the LO framework, we may omit thez depen-
dence in the scale, so that the DGLAP part of the evolut
becomes ordered in transverse momenta. We stress a
that it is sufficient to implement the precise constraints co
ing from angular ordering~relevant to thez;0 and 1 do-
mains for the BFKL and DGLAP terms respectively! at the
last step of the evolution.

An advantage of the single-scale unified BFKL-DGLA
equation is that it is straightforward to incorporate a ma
~kinematical! part of the subleading order ln(1/x) ~BFKL!
effects8 by imposing a consistency condition to ensure th
the virtuality of the exchanged gluon is dominated by
transverse momentum squared@7#. This is achieved by the
inclusion of the theta functionQ(m22zq2) in the real emis-
sion contribution shown in the last term of Eq.~8!. Note that
other subleading effects arising from using the complete D
LAP splitting function and runningaS are automatically in-
cluded in the unified equation.

We see that the evolution equations for the auxiliary d
tributions ha(x,kt

2) depend on the single scalekt
2 . The de-

pendence of the unintegrated distributionsf a(x,kt
2 ,m2) on

the second scalem will enter when we consider thelast step
of the evolution. It is sufficient to ensure that the final emi
ted parton explicitly satisfies the requirements of angular
dering. The angular ordering conditions of the previous st
of the evolution are automatically ensured at LO by virtue
either the strong ordering inkt ~in the DGLAP part! or the
strong ordering inz ~in the BFKL part!.

To ensure angular ordering in the last step of the evo
tion, we note thatz is limited by Eq. ~5!. This condition
impliesz,m/(m1kt), and so we take this as the upper lim
of the z integration in Eqs.~13! and ~14! below. Thus the
number of gluons produced at the last step~with transverse
momentumkt which initiate a hard subprocess with facto
ization scalem) is9

8The large NLO BFKL corrections, which have recently be
computed@8#, appeared to have put the application of the BFK
framework into question. However a major part of the correction
kinematic in origin and, when summed to all orders@7# using the
theta functionQ(m22zq2), brings the BFKL approach back unde
control, see also@9,10#.

9The lowkt,k0 domain of the integrals in Eqs.~13!, ~14! should
be treated as the driving termsh0 in Eq. ~12!.
7-4
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f g~x,kt
2 ,m2!5Tg~kt ,m!

aS~kt
2!

2p H E
x

m/(m1kt)

dzEkt
2dkt8

2

kt8
2 F P̄~z!hgS x

z
,kt8

2D1Pgq~z!( hqS x

z
,kt8

2D G
12NCE

x

m/(m1kt)dz

z E d2q

pq2 F kt
2

kt8
2

hgS x

z
,kt8

2D2Q~kt
22q2!hgS x

z
,kt

2D G J , ~13!
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and the number of a particular quark speciesq, produced at
the last step, is

f q~x,kt
2 ,m2!5Tq~kt ,m!

aS~kt
2!

2p

3E
x

m/(m1kt)

dzEkt
2dkt8

2

kt8
2 FPqg~z!hgS x

z
,kt8

2D
1Pqq~z!hqS x

z
,kt8

2D G . ~14!

This last step of the evolution is shown schematically in F
1. The unintegrated distributionsf a(x,kt

2 ,m2) represent the
number of partonsda emitted in thed ln kt

2 interval fromkt
2

to kt
21dkt

2 , and include the factorsTa(kt ,m) of Eq. ~3!,
which give the probabilities that partonsa5g,q with trans-
verse momentumkt remain untouched in the DGLAP evolu
tion up to the factorization~probe! scalem. These survival
probabilitiesTg andTq resum the virtual DGLAP contribu
tions occurring in Eqs.~8! and ~10! respectively.

It is important to note that the functionhg(x,kt
2) already

includes the leading ln(1/x) virtual corrections, which have
the effect of reggeizing the exchanged gluon; thuskt is the
total momentum transferred via the Regge gluon trajecto
Moreover, the distributionsf a(x,kt

2 ,m2), evolved in the final
step from the auxiliary functionsha(x,kt

2), also incorporate
the virtual DGLAP contributions, via the survival probabil
ties Ta(kt ,m). The final expressions, Eqs.~13! and~14!, are
thus more symmetric in that all the LO virtual corrections a
included. That is, from a Feynman diagram viewpoint, t
function f a(x,kt

2 ,m2) corresponds to the propagator of
t-channel parton of transverse momentumkt , initiating a
hard subprocess at scalem, in which all the LO virtual cor-
rections to the parton distribution have been taken into
count.

IV. THE UNINTEGRATED GLUON DISTRIBUTION

We have described how to obtain the~two-scale! uninte-
grated parton distributionsf (x,kt

2 ,m2) from the solution
h(x,kt

2) of a one-scale equation which unifies DGLAP a
BFKL evolution. The link is Eqs.~13!, ~14!, which represent
the last step of the evolution. Only at this stage does the s
m of the subprocess, initiated byf (x,kt

2 ,m2), enter.
It is informative to compare the unintegrated gluon dis

bution f g(x,kt
2 ,m2) with the behavior of the auxiliary func

tion hg(x,kt
2). Consider first the pure BFKL limit, in which
11402
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DGLAP evolution is neglected, that isaSln m2!1, but
aSln 1/x*1. Then, in Eq. ~13!, the survival probability
Tg(kt ,m)51 and there are no DGLAP contributions. Thu
we obtain

f g~x,kt
2 ,m2!5hg~x,kt

2!5
]„xg~x,kt

2!…

] ln kt
2

. ~15!

This is an expression which is frequently used at lowx.
Whenx is sufficiently large, the derivative

ha5
]„a~x,kt

2!…

] ln kt
2

~16!

becomes negative, even forkt&m. The reason is that the
negative virtual DGLAP term exceeds the real emission D
LAP contribution, which is suppressed by the large low
limit z.x in Eqs. ~8!, ~10!, ~13! and ~14!. After the virtual
contributions are resummed into theTa factors the uninte-
grated parton distributions remain positive everywhere.

We already stated in Sec. II that imposing angular ord
ing on the last step of ‘‘DGLAP’’ evolution caused the di
tribution to extend smoothly into thekt.m domain. The
gluons also populate this domain due to BFKL diffusion
ln kt

2 . This raises the question of how much enhancement
find in this domain due to the inclusion of the BFKL contr
butions. To investigate this point, we compute the unin
grated gluon distributionf g(x,kt

2 ,m2) in two different ways.
~a! In the first approach, the functionhg(x,k2) of Ref. @4#

is used as the auxiliary function to drive the last-step evo
tion in Eqs. ~13! and ~14!. This incorporates essentiall
maximal BFKL effects.10

~b! In the second case, we use unintegrated ‘‘DGLAP
partons to drive the two-scale unintegratedf a via Eq. ~4!.
This approach is essentially pure DGLAP, but with the c
cial modification that the cutoff in Eqs.~3! and ~4! is moti-
vated byangular ordering. Here we use the 1999 Martin
Roberts-Stirling-Thorne~MRST99! @11# set of partons as
input.

Ideally, we should refit to the deep inelastic and rela
scattering data and perform globalunintegrated parton

10In comparison with Eq.~10!, the evolution ofhq in Ref. @4#
contains some resummation of the BFKL-like leading (aSln 1/x)n

terms.
7-5
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FIG. 3. Plots of thekt depen-
dence of the unintegrated gluo
f g(x,kt

2 ,m2) for various values of
x, at m510 GeV. The solid
curves are our version~a! of f g

from Eq. ~13!; for comparison we
show with dashed lines the unin
tegrated gluon from@5# ~as in@5#,
the dashed lines have bee
smoothed in the transition regio
kt;m). Also we plot our ‘‘DG-
LAP’’ unintegrated gluon ~b!
from Eq.~4! in dotted lines, which
with the correct angular ordering
cutoff is very close to the newf g ,
especially at highx.
gl
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analyses11 in terms of f a(x,kt
2 ,m2), since now we have

added an extra last step to the evolution. However, such
bal analyses are beyond the scope of the present paper

The unintegrated gluon distributionf g(x,kt
2 ,m2), ob-

tained by the two alternative procedures~a! and~b!, is shown
in Fig. 3 for m510 GeV. We can compare the continuo
curves of approach~a! directly with the previous uninte
grated gluon distribution~dashed curves! calculated in Ref.
@5#, which also used the same auxiliary functionhg(x,kt

2) of
@4# as input. Forkt,m the new results tend to lie above th
previous determination@5#, while for kt.m they are increas-
ingly smaller askt increases. In the present work, the d
crease at largekt arises from the restrictionz,zmax5m/(m
1kt), whereas the earlier calculation, based on Eq.~23! of
Ref. @5#, omitted the limitz,zmax on the BFKL contribution,
which causesf g to increase in the largekt domain at small
values ofx.

Finally we compare the DGLAP-like unintegrated gluo
obtained in approach~b!, with that of approach~a! which
embodied BFKL evolution. That is we compare the dott
with the continuous curves of Fig. 3. It is interesting to no
that, with the more precise angular-ordered~CCFM @1#! cut-
off from Eq. ~5!, D5kt /(m1kt), the unintegrated gluon dis

11In Sec. V, we describe the theoretical calculation ofF2, the most
important observable for constraining parton sets, from the t
scale unintegratedf g and f q .
11402
o-

-

,

d

tribution ~b! generated from Eq.~4! using the pure DGLAP
MRST99 @11# partons turns out to be very similar to th
result ~a! obtained using the auxiliary functionhg . This co-
incidence can be explained by the facts~i! that both the DG-
LAP partons and the analysis of Ref.@4# ~which yieldedhg)
fit the deep inelastic data well, and~ii ! that both these inpu
are used with the same angular-ordered constraint, Eq.~5!.
We draw the conclusion that the role of angular ordering
the last step of evolution is particularly important, even mo
so than BFKL effects in the DESYep collider HERA do-
main.

V. F 2 CALCULATED FROM THE UNINTEGRATED
PARTONS

To check the reliability of our unintegrated parton dist
butions, and to demonstrate how to use these distribution
calculations of observables, we compute the deep inela
structure functionF2. We wish to treat the unintegrated glu
ons and unintegrated quarks on an equal footing as inpu
the subprocess cross sections, so we explicitly separate g
and ~direct! quark contributions toF2.

The gluon contributes toF2 via the quark box and
crossed-box diagrams of Fig. 4. These generate, via thg

→qq̄ splitting, a sea quark contributionSq to F2 of the form
@12,4#

F2
g→qq̄~x,Q2!5(

q
eq

2Sq~x,Q2!, ~17!-
7-6
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with

Sq~x,Q2!5
Q2

4p2E dkt
2

kt
4 E0

1

dbE d2k taS~m2!

3 f gS x

z
,kt

2 ,m2DQS 12
x

zD H @b21~12b!2#

3S kt

D1
2

kt2kt

D2
D 2

1@mq
214Q2b2~12b!2#

3S 1

D1
2

1

D2
D 2J . ~18!

The denominator factors are

D15k t
21b~12b!Q21mq

2 ~19!

D25~kt2kt!
21b~12b!Q21mq

2 .

We may exploit the symmetry of the integrand in Eq.~18!
underkt→kt2kt andb→12b to rewrite$ . . . % as

2H @b21~12b!2#S k t
2

D1
2

2
k t

22kt•kt

D1D2
D

1@mq
214Q2b2~12b!2#S 1

D1
2

2
1

D1D2
D J . ~20!

The summation in Eq.~17! is over masslessu,d,s quarks
and ac quark of massmc51.4 GeV; there is no need to sum
ū, d̄, s̄, c̄ in addition, because as Eq.~18! is written,Su , say,
is the contribution of a gluon via au quark box of any mo-
mentum. The variableb is the light-cone fraction of the pho
ton momentum carried by the internal quark. The variablz
is the ratio of Bjorkenx and the fraction of the proton mo
mentum carried by the gluon. It is specified by the relatio

1

z
511

„kt2~12b!kt…
21mq

2

b~12b!Q2
1

kt
2

Q2

511
k t

21mq
2

~12b!Q2
1

kt
21k t

222kt•kt1mq
2

bQ2
, ~21!

which is obtained by requiring the outgoing quarks to
on-shell. Following Ref.@4#, we choose the scalem which
controls the unintegrated gluon distribution and the QC
couplingaS to be

FIG. 4. The quark box, and crossed-box, diagrams which m
ate the contribution of the unintegrated gluon distributi
f g(x/z,kt

2 ,m2) to F2.
11402
m25kt
21k t

21mq
2 . ~22!

Care is needed in separating this calculation into perturba
and non-perturbative regions. We impose a cutoffkt.k0 for
a legitimate perturbative calculation of Eq.~18!. The small-
est cutoff we can choose is the minimum~that is, initial!
scale of the functionhg(x,kt

2) from which our two-scale dis-
tributions derive. Thusk0 is of order 1 GeV. For the contri-
bution from the region ofkt,k0 we approximate

E
0

k0
2dkt

2

kt
2

f g~x,kt
2 ,m2!F remainder

kt
2 G.xg~x,k0

2!Tg~k0 ,m!

3@ #kt5a , ~23!

wherea can be taken to be any value representative of
interval (0,k0). The dependence on the choice ofa is numeri-
cally unimportant.

Now we have to add the direct quark contributions toF2,
which come from the unintegrated quark distributio
f q(x,kt

2 ,m2). If a quark, initially with x/z and perturbative
transverse momentumkt8.k0, splits to a radiated gluon an
a ‘‘final’’ 12 quark with Bjorkenx and transverse momentum
k t , then this final quark can couple to the photon and c
tribute toF2 as

F2
q(pert)~x,Q2!5(

q
eq

2E
k0

2

Q2 dk t
2

k t
2

aS~k t
2!

2p

3E
k0

2

k t
2 dkt

2

kt
2 E

x

Q/(Q1kt)

dzF f qS x

z
,kt

2 ,Q2D
1 f q̄S x

z
,kt

2 ,Q2D GPqq~z!, ~24!

where here we have written the antiquark contribution
plicitly. As in Eq. ~14!, the upper limit of thez integration
reflects the angular-ordered constraint of Eq.~5! during the
quark evolution.

Again we need to account for the non-perturbative d
main kt,k0. The initial ~integrated! quark distribution
xq(x,k0

2) drives our final contribution. Physically the onl
remaining diagrams that we have not included are thos
which a quark~or antiquark! from this initial distribution
does not experience real splitting in the perturbative dom
but interacts unchanged with the photon at scaleQ. Hence
we write a Sudakov-like factorTq(k0 ,Q) to represent the
probability of evolution fromk0 to Q without radiation

F2
q(non-pert)~x,Q2!5(

q
eq

2
„xq~x,k0

2!1xq̄~x,k0
2!…Tq~k0 ,Q!.

~25!

12By ‘‘final’’ we mean the struck quark just after thePqq splitting.

i-
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To avoid double counting, it is important to put a lower lim
on k t in both Eqs.~18! and~24!, by enforcingQ(k t

22k0
2) in

the integrations. Without this lower limit on the final tran
verse momentumk t , Eqs.~18! and ~24! would partially in-
clude low transverse momentumk t quark contributions
which are best incorporated in Eq.~25!, whether they origi-
nate from partons withkt.k0 or not.

The structure functionF2(x,Q2) is given by the sum of
the gluon-initiated contribution~17!, and the quark terms
Eqs.~24! and ~25!. In Fig. 5 sample results,13 shown by the
continuous curves, are compared with deep-inelastic st
ture function data. The gluon and quark components
shown by the dashed and dotted curves respectively. As
pected the dominant contribution at smallx comes from the
unintegrated gluon via the quark box and crossed-box c
tributions, whereas at largex the quark terms dominate.

We emphasize that, in the present work, the curves forF2
are not the result of a fit to the structure function data. Rat
they have been obtained by using single-scale functio
originally fitted more directly toF2 data, as plausible inpu
to our ‘‘last-step’’ evolution procedure, which generates tw
scale unintegrated distributionsf a(x,kt

2 ,m2). Then we use
the unintegrated distributions to computeF2 via Eqs.~17!,
~24! and ~25!. For the inclusive observableF2, we would
expect that the insertion of this extra evolution step wo
not appreciably disturb the description, since it essenti

13We show in Fig. 5 results obtained using the unintegrated
tributions evaluated from Eq.~4! with the MRST99 partons@11#,
that is, version~b! of f g and f q as discussed in Sec. IV.

FIG. 5. This is not a fit but the results of using our ‘‘DGLAP
unintegrated partons~b! to calculateF2; the gluon-originated con-
tributions are shown as dashed lines and the quark-originated
are shown as dotted lines. Recent data are plotted@13#, and compare
well with the sum of the gluon and quark contributions~solid
curves!, especially at highQ2.
11402
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redistributes the distributions inkt space. We see from Fig.
that indeed this is the case.

VI. RELATION OF f TO INTEGRATED PARTONS

It is important to scrutinize the relationship between t
new unintegrated partonsf a(x,kt

2 ,m2) and the conventiona
integrated parton distributionsa(x,m2), as obtained in globa
analyses such as@11#. First we emphasize that we may us
either the integrated distributions or the unintegrated dis
butions to describe both inclusive~like F2) and exclusive
processes. The framework based on the unintegrated d
butions is a bit more complicated. However it accounts
the precise kinematics of the process and an important pa
the virtual loop corrections, via the survival factorT, even at
LO. On the other hand, if we work with integrated parto
we have to include NLO~and sometimes NNLO! contribu-
tions to account for these effects. These differences appe
cause a discrepancy between the integrated and uninteg
approaches. As we explain below, this is to be expected s
it arises from simplifications of the LO formalism due to th
neglect of terms which are moved into the NLO contributio

An important equation, sometimes cited as the defin
property of unintegrated partons@5#, is

a~x,m2!5Em2dkt
2

kt
2

f a~x,kt
2 ,m2!, ~26!

wherea representsxg or xq. This is in fact the first equation
of Ref. @5#. In the BFKL limit, them dependence off van-
ishes and we havef g(x,kt

2 ,m2)→hg(x,kt
2) as in Eq.~15!. In

this case, Eq.~26! is clearly satisfied. However, in gener
the situation is complicated by the two separate momen
scaleskt andm. The unintegrated partonsf g of Ref. @5# were
explicitly constructed to have the property~26!, in the sense
that the integral off g over the transverse momentum up
the scalem would be the same as the integral of the inp
auxiliary functionhg(x,kt

2) up to the same scale. In contras
numerical integration overkt of the new unintegrated parton
f g and f q presented in this paper@both versions~a! and~b! of
Sec. IV# shows that Eq.~26! is only approximately true.14

We typically find a discrepancy of order 25% between t
right-hand side of Eq.~26! and the single-scale distributio
that has been used to generatef a .

In order to eliminate the discrepancy we may adjust
upper limitm2 of the integral in Eq.~26! to c2m2. The intro-
duction ofc is equivalent to a NLO correction for the inte
grated partons. Typically in the ‘‘DGLAP’’ case@approach
~b! of Sec. IV#, we requirec50.620.8 to reproduce15 the
original MRST integrated gluon in the domainm55

-

14Note that we cannot compute Eq.~26! as it is written, because
we can only define the unintegrated function in the regime of p
turbativekt.k0. The comparison that is made is between the in
gral from k0

2 to m2 and the quantitya(x,m2)2a(x,k0
2).

15This identification is only approximate since the last step of
evolution is not included in the comparison.

rts
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210 GeV andx&0.01 @andc'0.4 for approach~a!, which
embodies BFKL effects#. A valuec,1 compensates for th
over-large virtual loop correction included in the integrat
DGLAP partons on account of the absence of the cutoffD in
the integral overz8. At smaller values ofx the corrections
due to the cutoff are mainly cancelled between the virt
and real DGLAP contributions. Asx increases, the virtua
contribution@the second term on the right-hand side of E
~1!# increasingly dominates and we have to choose sma
values ofc. Eventually in the domainx.0.1, m;10 GeV
the main contribution comes from the input and to comp
sate the absence of thez cutoff in the conventional form of
the DGLAP equation we must change the input itself.

To summarize, the discrepancy between the integral~26!
of the unintegrated parton function and the original in
grated distribution is not a cause for concern. Conceptua
there are two different roles for single-scale distributions
the description of data for inclusive observables~where par-
tonic transverse momentum is integrated out!. The first role
is the traditional one, in the framework of collinear facto
ization, whereby integrated parton distribution functions
fitted directly to the data. The second role is demonstrate
this paper~following @6# and@5#!, where we use single-scal
functions asinput to the last-step procedure; see for exam
Eq. ~4!. We have been forced to introduce a new formali
for calculatingF2(x,Q2), in which unintegrated parton func
tions are understood to be the fundamental objects; we h
emphasized the need to perform a new global fit to data
terms of the new functionsf a . After this, we do not expec
the input single-scale functiona on the left-hand side of Eq
~26! to equal the integral off a up to m2, sincea itself is not
fitted directly to the data, but rather is used as input for
last step of the evolution, which embodies a crucial angu
ordering constraint unique to this last step. Thus our sing
scale or ‘‘auxiliary’’ function is not a traditional parton dis
tribution function, but simply an intermediate function.

VII. CONCLUSIONS

Parton distributions,f a(x,kt
2 ,m2) unintegrated over the

parton kt are the basic quantities for describing proces
initiated by hadrons. An essential ingredient in this desc
tion is the existence of thekt factorization theorem@14#. The
unintegrated distributions depend on two hard scales—
transverse momentumkt and the factorization scalem. The
scale m drives the angular ordering during the evolutio
which arises from the coherence of the gluon emissions.

Here we develop a new formalism to determine the un
tegrated parton distributions,f a(x,kt

2 ,m2), which embodies
both the leading lnQ2 ~DGLAP! and ln 1/x ~BFKL! effects,
as well as including a major part of the sub-leading ln 1x
contributions. An important observation is that, at lead
order, thetwo-scalefunctions f a(x,kt

2 ,m2) may be calcu-
lated from auxiliary functionsha(x,kt

2) which satisfysingle-
scaleevolution equations, since the angular ordering rest
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tions, controlled bym, become important only at the last ste
of the evolution. The equation for the auxiliary functio
hg(x,kt

2) was formulated, and the distributions fitted to th
data, in Ref.@4#. These single-scale equations were also
vised to include all the leadingaSln Q2 andaSln 1/x contri-
butions, and a major part of the sub-leading ln 1/x effects.

In other words, the ‘‘unified’’ evolution equations forh
must be supplemented by a final evolution step in which
m dependence of the unintegrated parton distributions en
via the angular-ordering constraint. The situation is summ
rized diagrammatically in Fig. 1. The procedure offers a co
siderable simplification in the determination of physica
realistic unintegrated parton distributionsf a(x,kt

2 ,m2) over
the full x,m2 perturbative domain, including the true kine
matics even at leading order. As expected, the gluon and
quark distributions extend into thekt.m region more and
more asx decreases. We have compared the new unin
grated distributions with those given by previous prescr
tions @6,5#. As compared to Ref.@5#, the new formalism
gives a consistent treatment of angular ordering, which le
to the imposition of thez integration limitz,m/(m1kt). As
a consequence the distributionsf a(x,kt

2 ,m2) decrease faste
than those of@5# for large kt , particularly at smallx. An
interesting result is that the unintegrated distributions
tained viaha(x,kt

2) of @4# are not very different from those
obtained via Eq.~4! using conventional DGLAP partons—
compare the continuous and dotted curves in Fig. 3. It t
appears that the imposition of the angular-ordering constr
is more important than the BFKL effects. This observati
has the practical consequence that reasonably accurate
dictions for observables can be made using the much s
pler, though less complete, prescription of Eq.~4!.

Finally, we used the new unintegrated distributions to c
culate the deep-inelastic structure functionF2. We also
showed the gluon-initiated and quark contributions se
rately, which, as expected, dominate at smallx and largex
respectively. Recall, from@4#, that the rise of the gluon a
small x is driven by perturbative QCD, which was assum
to have a non-perturbative input which is ‘‘flat’’ inx. We
emphasize that we have not fitted to the deep inelastic d
Nevertheless, Fig. 5 shows that the existing distributio
give an adequate description, and therefore they may be
to evaluate other hard processes, such asbb̄ and largeqt

prompt photon production in high energypp̄ ~or pp) colli-
sions. It is important to use unintegrated distributions
such exclusive reactions.
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