PHYSICAL REVIEW D, VOLUME 63, 114025

Exclusive decays oB—K®)|*|~ in perturbative QCD
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We study the exclusive decays Bf—K ™) |~ within the framework of perturbative QCD. We obtain the
form factors for theB— K ) transitions in all allowed values @, which agree with the lattice results. We
find that our distributions of the decay rates and leptonic asymmetries are consistent with that given in the other
QCD models in the literature.
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[. INTRODUCTION tive correction to the meson wave function, whérés the
dominant light-cone component of a meson momentum. Re-

The recent CLEO measurement of the radiative sy = suming these double logarithms leads to a Sudakov form
decay[1] has motivated theorists to study exclusive rBre factor of expp—s(P,b)] which suppresses the long-distance
meson decays such @&—K®)| I~ [2]. In the standard contributions in the large region such that the applicability
model, these rare decays occur at the loop level and providef the PQCD around the energy scale of the bottom quark
us with information on the parameters of the Cabibbo-mass could be guaranteed.
Kobayashi-Maskaw&CKM) matrix element§3] as well as The typical three-scale factorization formula is generally
various hadronic form factors. In this paper, we examine thevritten as the following convolution product:
decays oB— (K,K*)I "I~ within the framework of the per-

turbative QCD(PQCD.. C(H®H()®¢(x,b)

The calculations of matrix elements for exclusive hadron —
decays can be performed in the PQCD approach developed % ®ex;{ —s(P,b)—Zf :'“7[ M) 1)
by Brodsky and LepagéBL) [4]. The application tdB me- )

son decays was first carried out in Rgfs] and[6]. In the
BL formalism, the nonperturbative part is expressed as th#hereC(t), H(t), and ¢(x,b) denote the WC, hard decay
hardon wave functions which could be determined via vari2mplitude and nonperturbative wave function, respectively,
ous QCD models such as the QCD sum rule method or la@and the quark anomalous dimensigs — as/ 7 is evaluated
tice gauge theory and the transition amplitude is factorizedrom t to 1b. Except ¢(x,b) dictated by nonperturbative
into the convolution of hadron wave functions and the haradynamics, all the convolution factors in E(L) are calcu-
amplitude of the constituent quarks. However, with the BLlable. Note that differing from the conventional factorization
approach, the nonperturbative effects apd@z8] if one of ~ assumptior{FA), the WC is also one of the convolution parts
the constituent quarks carries nearly all the momentum ofn Eq. (1). Thus, theu dependent problem occurring in the
hadron. To solve the problem, Li and Sternj&h proposed FA could be solved naturally in the three-scale factorization
by including the transverse momentum of constituent quariormula.
kr and the Sudakov form factor to the wave functions to The paper is organized as follows. In Sec. II, we study the
suppress the soft contributions from higher order correctiongorm factors in the framework of the PQCD for the decays of
In terms of the parametdr with b being the conjugate vari- B—K®) transitions. In Sec. Ill, we derive the forms of the
able ofky, they also showed that the effects can be alsdlifferential decay rates and lepton asymmetries &r
expressed as that in the BL factorization formalism. —K®) 71~ based on the PQCD. In Sec. IV, we give the
The modified PQCD factorization theorem for exclusive numerical analysis. We will also compare our results in the
heavy meson decays has been developed some tinfd@go PQCD approach with that in the other QCD models. In Sec.
12] and applied to nonleptoniB— D ®*)x(p) [10], penguin  V, we present our conclusions.
induced radiatiorB—K* y [13], and B—KK [14] decays.

These decays involve three scales: lthg scale as the initial Il. FORM FACTORS IN THE FRAMEWORK
condition of renormalization-groufRG) equation, the typi- OF THE PQCD

cal scalet which reflects the specific dynamics of the heavy o .
meson decays, and the factorization scale. Bbove the In the decay of8—HI"1", the momentum oB(H) in

factorization scale, there are two large logarithmavigqt) — the . light-cone  coordinate is _chosen asP,
and In¢b), generated from radiative corrections. The former=(P1(2).P1(2).0r), where PIZ:'\ABZ/\/E2 and P; =(Ey
gives the evolution fromMy, down tot described by the *Pp)/\2  with  Eu=(Mi+M7i—q?)/2Mg, Py
Wilson coefficientWC), while the latter frontto 1b. There = \/EzH— PZH, andq? is the squared momentum transfer. We
also exist double logarithms3(Pb) arising from the radia- define the momentum of the light valence quark in &e
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meson ak, and usex;=k;/P; with k; andk, being the with Cr=4/3 being a color factorf=4 the active flavor
plus and transverse componentskgf respectively. The two number, andyg the Euler constant. For the running coupling
light valence quarks in thél meson carry the longitudinal constant, we use
momentax,P, and (1-x,)P,, and transverse momerkar
and —k,, respectively. ()= _ AT
The Sudakov resummations of large logarithmic correc- Boln(,u,zlAéCD)
tions lead to the exponential forms of ex;) and
exp(—S,) for B andH wave functions, respectively, where

®

with B,=(33—2f)/3.
To get the transition elements Bf~H (H=K,K*) with
t d; . various types of vertices, we parametrize them in terms of
Sg(t)=s(x,P; ,b1)+2f —ylagu)], the relevant form factors as follows:

oy p 2 2
(K(P)|V,IB(P1))=F1(q®)P,+F (),
- (K(P)|T,,0"B(P1))=Fr(a®)(a’P,—q-Pa,),
+2f1tm <)) ) (K*(P2,8)|V,[B(P1))=i1V(a®) € yape™ P 0",
K (K*(P2,6)A,B(P)) = Ag(@?)e ™ +&* - g Ay (G)P,

Sh(t)=s(XaP5 ,by) +S[(1—X,)P; ,by]

In Eq. (2), b, and b, represent the transverse momentum AL

extents ofB andH and are conjugate to the parton transverse 2(9%)4,.].

momentak;t andk,t, respectively. The form fosis written (K*(P3,&)[T,,9"|B(Py)) = iT(qz)ep,vaﬁS* vpagP,
as[15,16,9

(K*(P3,0)|T3,0"[B(P1)) = —To(a)e) —e* -a[ To(a?)P,,

Qdu| (Q
S(Q'b)_fub7 In(; Alag(u)]+Dlas(w)]], (3 +T2(02)d,], (6)
where the anomalous dimensioAsand D calculated to the with
two and one-loop levels, respectively, are given by To(q®) +[T1(g?)P-q+Tx(g%)g%]=0, (7
2 Y 2 = = = 5
aec, |8 10 20 e_E) is) | where V,=sy,b, A,=sy,ysb, T,,=Sio,,b, and T},
= |9 3 27 3 2 =sio,,ysb. The correspondences of our notation to that

2ye-1 usually used in the literature are shown in the Appendix.
D= ——Sln(e c ) (4) Using the PQCD factorization formula, the components of
' form factors defined in Eq6) are found to be

1 )
Fl(qz): _SWCFMZBJ'O [dx] J'o by dby by dby g(Xq, b1 (2ak+2B2k—1) dr(Xz,b7)

— (14 Bok+ (1421 — ) i) dr(X2,b2) TEC ()M (X1 X5, by, by) +[— 21 [ (1= @y — B1k) P (X2,b)
+(r(1—ayk+ Bik) — SBik) Pk (X2 1b2)]EK(tg2))hK(X2 X1,02,b1)}, (8)

1 o0
Fz(qz): _877'C|:|V|2|3f0 [dx] fo by dby by dby (X1, by ){[ = ri(1+ 2k —2B2k) P (X2,b2)

+ (14 Bok+ (L+2rk— ) azy) b (X2, b2) IE (LMK (X1 Xo, by ,02) +[ 25 k(1= ag + Bak) di(X2,b2)
+(re(1= agc— Bik) — (2—9) Bk) Pk (X2,b2) IEC(tP)hX (X5, X1 , b5, by)}, 9

1 =9}
Fr(g%)=—8mCgM Bfo [dx] fo by dby by dby (X1, b){[ — @kl kP (X2,02) + (1= 2B85k) Pr(X2,b,)]
X Ex(t) (X1, X0, b1,00) +[2r (1= 1) dic(X2,02) = Brk b (X2,02) IEK (1) MK (X5, 1,05, b1)},  (10)
1 @ *
V(0?) ~87CeMg | Tax] by by b, db s 01) e (o DT~ 2Bce — i s B (I (31

+ [ Vrer (1= @) JEkx ((2)RK (x9,%1 b5, 1)}, (11)
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1 )
Ao(0?) =87CeM3 | Tax] by by by dby 1) e o DT+ e =5)(1- 2B + Ve azec)

— A8 g g + 2T x (14 Box ) 1Ex (1R (x4 1%, b1, b))

+VrK*[(1+rK*_S)(1_alK*)_ZBlK*]EK*(t(ez))hK*(XZ-lebZabl)}v (12
1 o0
Al(qz)ISWCFMBfO [dX]J'O b, dby by dby, g(Xq,b1) drx (Xo,0){[ — 142 Bk+

+ s aZK*]EK*(t((el))hK*(Xl 1X2,02,b1)

[V ge (= 1+ aqge + 2Bk ) [Egx (12" (x5,%41,b1 b))}, (13
A2(q2)=87TC,:MBf01[dx] f:bldbl b, db, dg(Xq,01) dicx (Xo,02){[ 1= 2Boicx — VF kx o [Exx (1) MK (x4,%5,b1,by)

FLVT e (L= g+ 2B100) 1B (1) (%, %1, b2 by}, (14
T(q2)=8wcFM§fol[dx] f;bldbl b, db, de(X1,01) s (X2, ) {[ — (14 Vrx) +2Saskx + (24/rx — 1)

X (@aix + Barr ) IEkx (LN (X1, %2, b1,00) + Vs L agies + Buiex (X0) = LEgx (1)K (3, %1, b ,by)},  (15)
To(q2)=—swcFMgfol[dx]f;bldbl b, dby dhe(X1,b1) e (X2, b){[ (1= x — ) (1+ Box ) + \Fgx (1= T +5)

— 2 [(1= T o) (@i + Borcx )+ S( Bogr — agr )] — 2F x tpr + (14T x — S) (1= ) apr ]
XEK*(tgl))hK*(Xl’XZrb11b2)+ Ve [(1= agi = Brix ) (L= Tex) = S(1+ Bryx — rgcr) ]

X Exex (1)< (x5, %1 ,b2,b1)}, (16)
1 o
Tl(qz): _SWCFMSL dxldxzfo b, db; b, db;, ¢g(Xq,b7) drx(X2,02)

X{[sazk+—(1+ Vree) = (1= 24rs) (apis +IBZK*)]EK*(t(el))hK*(Xl1X2=bl7b2)
— rie[ 1= agix — Baxr JExx (1K (X2, %1 ,b7,b1)}, (17

1 ©
T2(9?) = _87TCFMéfo Xmdxsz by dby by dby dg(Xq,b1) drx (X, 0){[ (2 kx —S) aopx + (14 ok + Bokx)

—Vrgx(1+2akx — ZIBZK*)]EK*(t(el))hK*(Xl X2,01,00) + Vs [ 1— g + BlK*]EK*(tg))hK*(Xz X1,02,09)},

(18)
|
wheregg, dx (¢r), and g+ are the wave functions d3, My 1 1+ry—s
pseudovectofpseudoscalarof K, andK* mesons, respec- Bon=— ——=Xs, am=7 1+ ——| Xy,
tively, the evolution factor are given by VPH Veu
En(t)=as(t)exd — Sg(t) —Su(1)], (19 , ,
M m
and the related kinematic variables are parametrized as er—H, ry= LS q_, (20)
M3 Mg M3
B B
1 5 1(1+ 1+rH—s)
A= — T —X1, H™ 5 7 | X1
VeH 2 VPH with
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ou=(1-r14)%=2s(1+ry)+s2, whereCg(u), Co, andC-(u) are the WCs and their expres-
sions can be found in Ref20] for the SM. Since the opera-
Mﬁ tor associated witlCq is not renormalized under the QCD, it
Mok = - (2)  is the only one with thew scale free. Besides the short-
s’ distanceSD) contributions, the main effect on the branching
The hard functionsh, are written as ratio comes from cecesonant states such¥s V', etc., i.e
the long-distancélLD) contributions. In the literaturg21—
h™(x1,%2,b1,0,) = Ko(Dyvx1Xoby) 25], it has been suggested by combining FA and vector me-
son dominancéVMD) approximation to estimate LD effects
X[a(bl_bZ)KO(DH\/X_Zbl) for the B decays. Hence, including the resonant effE)
XlO(DH\/X—2b2)+ 0(b,—b,) Wg g?ézrglsng it to the related WC, we obtain the effective

X Ko(DpyXaba)lo(DpyXaba)1,
22

. 3 C(j—1717)M;
with <[ hxg+S 3 K mULIM
¥j—ww Q°—M{+iM;IL

q2

Ce"=Cg( 1) +[3C1 (1) +Caolp)]

B

o _ _ where we have neglected the small Wilson coefficients,
The derivation ofh, from the Fourier transformation of the n(x, s) describes the one-loop matrix elements of operators
lowest-order hard decay amplitude, is similar to that Bor 0,= aV"P bBC y,P.c, and Oz_syﬂp mePLC [20],

1,2
—KK decayg14]. The hard scales?) are chosen by M; (T;) are the massesvidths) of intermediate states, and
(1)_ the factorskj are phenomenological parameters for compen-
t®=max(\x;Dy,1/1,1b;) sating the approximations of FA and VMD and reproducing

the correct branching ratios BB J/¢X—1*1~X)=Br(B
(2) = N
t max VX1Dy,1by,1/;). (23 —JI X)X Br(J/p—1717). In this paper, for simplicity, we
The wave functionspy, and ¢y are defined by14,17 takek;=—1[3Cq(n)+Ca(n) |-

Using Egs.(6) and (25), the transition amplitudes d8
—(K,K*)I*I~ are as follows

dy"™  -+1 —
¢H(x)=f%e*'xp3y 5(0lu(y ™)y yss(0)[H),

Gra _
N ay* ) 24 M= o M)~ 2myF (g, T
%@Q(x):JEe“xpsV+§(O|u(y+)y55(0)|K), _

3 +[FI(?)P,+F3(a?)a, ]l y*ysl} 27
with the normalization conditions of
and
dx ¢ (x)—f dX ¢py(x)= fdxd> (x)= Grak,
f ® " « W Mys = i vege - 2 T7*( 2)

2\2m q’
We note that unlike the kaon case, we do not distinguish the )
pseudovector and pseudoscalar components oBtheave wvpanB_ | aBra2y_ Sz, on| &
functions since the factdvl g /(m,+my) is close to one. We X €uvape™ "PUQ”—| Ao(q7) 7 To(Q%) | &7,

also note that from Eq915) and (17) we obtainT(0)=
Py

2my
*-q| Al(a®) - ?Tiuﬁ)
Ill. DIFFERENTIAL DECAY RATES
AND LEPTON ASYMMETRIES +[IV3(9?) €, 0pe* PGP

The effective Hamiltonian ob—sl*1~ is given by[20]

—A3(q))e% —e* gAY (G?)P,]1 vl (28)

GFa)\t
H= Cal()sLy,b 1 y#1+Cgs, y,bL | ¥ sl
\/—77 o Lo LT ° In Egs.(27) and(28), we have included the WCs by inserting
2ol ) them into Eq.(19) as
m
- S i0,,a bRl 1 |, (25)

q EL(1)=Cj(m)as(thexd —Sg(t) =Sy()] (29
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and the superscripts of form factors denote the associated WCS“ofcg, andC,, with the new definition oE{'4 in Egs.

(8)—(18), respectively.
As usual, after integrating the angle dependent phase space, the differential decay rBtesHbfl~(H=K,K*) are

found to be

dlu(g?)  GEa?n|*M3 4m; 2m2 F
= 1- — +12— 30
s PP Ven 7 g | P12 0 (30)
where
Bi= ekl F3(a?) — 2mpF(a?) >+ ok [F1(a?)[?, (31)
S922 929*25922
ok=| 1+rc— 5| IFi(a)[*+ (1-rReF(a*)F; (a°)+ 5[Fa(a9)%, (32)
~ ~ PK* ~ ~ ~
,BK*:|3[2¢K*V(q2)+3F0(q2)]+4rK [Fo(q2)+@K*Fl(q2)+2(1_rK*_5)F01(q2)]}, (33
K*
P 3 |AY(@d)|?
Skx= 5| —2VA(@AIMg[2~ —| =1 |AY(G?) M2
(PK* B rK*
2(1+rgx)—s
+ —KIA (g®)Mg|?+ REA(G2)AT* (92) +AJ(9DA* (9]
4rK* Mk
— Ik
= ReAY(q2)MAT* (4D |, (34)
K*
with
2 8/ 2 2m,Mg 702 ’ 9/ 2 2
V(g9 =|Vi(q)IMg— ——T'(a%)| +[V(q°)Mgl*,
E (g |A@) _2m, To)|* ‘A8<q2>2
0 Mg q> Ms | Mg |’
= 9 8/ 2 mMg_, ’ 9, 2 2
F1(9%)=|A1(a*)Mg— ———T1(q)| +|A(a*)Mg|?,
- A8(g®) 2m, Ti(q? 2m,M A(g?
Foa?)=Rd | 209 = ola’) AP (D) Mg— ——— T (q?) Re(ﬂAgv Mg (35
Mg ¢ Mg q Mg

The forward-backward asymmett#FBA) can be defined meson in the rest frame of the lepton pair. Bors K* [ 71~
decay, the FBA is found to be

P fld d2r(s) )
FBdI'(s)/ds| Jo €00 s dcoss 3sV i+ 1__RVA(Ul)

s Afg=— (37)
f dcos 0deCOSH (36) <l+q— ﬁK*'i‘le O+
B

by

where 6 is the angle of charget" with respect to theB  with
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2m,M AZ* (g?)
RVA<q2>=R&{ VA M= =T () |
A(G?) 2m, T§(9?)
+R - Ve (g*)Mg .
e{ Mg ¢ Ms (9°)Mg
(38)

As expected, the FBA in Eq37) is sensitive to the chiral
structure of interactions since it is related to the produdt of

andA currents. It is clear that the FBA f&—KI ™I~ van-

ishes since there is no form factor from the axial current.
Another interesting lepton asymmetry is the longitudinal

polarization of the lepton, defined by

dl'(n=-1) B dI'(n=1)

b (g7 = ds ds
W)= GFn=—1) drin=1)’
ds * ds

wheren is the projection of the leptoh” momentum to the
spin direction in its rest frame. Fd— (K,K*)I*I~, the
polarization asymmetries can be expressed as

4m;
2 1—?%
P(g?)= — 5
(1+—2' Byt 12— 8¢
q B

X Re([F1(a%) —2myF1(a®)IFT* (0} (39)

and
am?
2 1——2
* q
P (g% = 5 — (s[ZW*RV(qZ)
| |
1+ — * + 12— S
q2 )BK Mé K
2 Pr* 2 2
+3Ra (09 ]+ 7~ [Ra (A7) + ok« R, (9%)
+<1—rK*—s)RAOl<q2>]] (40)
with
2myM
RW(q%)=Re | VE(q?)Mg— ———T7(q?) | V* (g2 Mg,
I q
R 2)_Re' AYG®)  2my, Ty(a*) | AS* (a?)
A ld7) = Mg ¢ Mpg Mg |
2myM
Ra,(02)=Rel | A%(g*)Mg— :2 TI(0?) | AT (9P M),

PHYSICAL REVIEW D63 114025

AS9®)  2m, TH(9?)
RAM(QZ):R% Mg ¢ Ma AT*(9*)Mg
2m,M AZ* (g2
+| A @M~ =2 T(q?) | — (o)

Mg

o
(41)

respectively.

IV. NUMERICAL ANALYSIS
A. Form factors

In Eq. (1), ¢(x,b) is the universal wave function and
cannot be calculated perturbatively. However, due to the uni-
versality, we can determine it by matching with Belecay
experimental data. With the ratio of

Br(Bl—K*m")
R= d

= 5 4 .= 0.95+ 0.3,
Br(B*—K°%r™)

(42

given by the CLEO measuremen26], where Br@
—K* ™) represents th€P average of the branching ratios
Br(B3—K*7~) and BrB%—K =*), one can get the
proper wave functiongg, ¢y, and¢y [17] while ¢y« can
be done by the branching ratio 8f—K* y [13]. For theB
meson wave function, we take

2 2b2
¢B<X'b>=Nsxz<1—x>2exn[‘%(XMB) e
(43

wp
with the shape parametesg=0.4 GeV[27]. The normal-
ization constanNg=91.7835 GeV is related to the decay
constantfg=190 MeV. The kaon wave functions are cho-
sen as

fex(1—x){1+0.51(1—2x)

3
ok (X)= \/?Nc

+0.35(1-2x)2—1]},

fx(1—x),

3
dr(X)= \/?Nc

frxX(1—x){1+0.51(1—2x)

3
b (X)= \/?Nc

+[5(1—2x)2—1]}, (44)
where ¢ is derived from QCD sum rulef28], and the
second term in the expression @k corresponds t&U(3)
symmetry breaking effect. The decay constaitsand f«
are set to be 160 and 190 Me\h the convention off .
=130 MeV), respectively. Note that the intrindicdepen-
dences of wave functions in E¢44) are neglected. How-
ever, this is a good approximation only for the fast recoiling
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Form Factor
Form Factor

q
FIG. 1. Form factors of, (solid curve$, F, (dashed curvgs FIG. 2. Form factors oF {, F,, andF for theB—K transition
andF (dotted curvesfor the B—K transition as a function? in as a functiorg? with the g2 dependent wave function in EG6) in
the PQCD(bold lineg and QM (unbold lines, respectively. the PQCD (solid curve$, QM (dot-dashed curves and LCSR

(dashed curvegsrespectively.
meson, that is, the transverse extent of the wave function is
less important in the energetic outgoing situation. Withthe outgoing meson wave functions. However, the effect of
above wave functions and takinylz=5.28 GeV, M such dependence is less significant for the smalvalues
=0.49 GeV, m=100 MeV, and Myx=0.89 GeV, the than that of large ones. Instead of using an exponebtial
form factors ofB—K defined in Eqs(6) as a function ofj?  dependent form as the one for the B meson wave function in
are shown in Fig. 1. The values of the form factorsgat  Eq. (43), for simplicity, we use the trial wave functions as
=0 are given in Table I. We now compare our results with
that in the light cone-QCD sum rul@CSR) [2]. Using the q° q°
identities in the Appendix, we find that except(0) is P (x,9%) = 1_W 1+w¢(H’)(X)- (46)
slightly smaller than that of the minimal value, while the B B
remaining form factors are within the allowed values, in the
LCSR. Recently, it has been mentioned that by combinin
large energy effective theor(LEET) [19], originally pro-
posed by Ref[18], with the measurement &— K* y, the
form factors V(0) and Ay(0) could be fitted model-
independently to bg32]

On the other hand, since the available region of the PQCD
glessentially cannot include all allowed valuesggf to have

the form factors in the whole accessible valuesqdf we
would adopt the parametrization of effective form factors as
follows:

_ 2 3
V(0)=0.069+ 0,011, F(s)=F(0)exp(o1S+ 0,58+ 03S°) (47)
with s=qg% M3 to fit the values up t@?~15 Ge\? calcu-
Ao(0)=1.650+0.114. (49 Jated by the PQCD. By extrapolating to near the end point of
g°, we found that the values of form factors are consistent
Hence, from Table |, we clearly see that the value¥/(3) ity |attice resultg29,30. To illustrate how good the trial
and Ao(0) are within 1o and 3.2 of values in Eq.(45),  fynctions in Eq.(46) are, we show the form factors f@
respectively. It is worth mentioning that the LEET predicts _ ¢ i, Fig. 2. From the figure, we find that our results are

T2(0)/A,(0)~4.89[32], while that in our approach is 5.62. pqjcaly the same as that from the GBIL] and LCSR[2].
For the comparison of the form factors between different

models atq?=0, one can refer to Ref32] for a more de-
tailed analysis.

For the exclusiv8—K®*)| "I~ decays, if we usé inde- With the confidence of calculating the form factors by
pendent wave functions, as the mesons reach the slow recoilsing Egs.(46) and (47), we now study the decay rates of
the suppression in the largeregion is weaker such that form B—K®)I ™I~ Unlike the conventional FA, the WCs in Egs.
factors will blow up at points away from?=0 as seen from (27) and(28) are the members of integrations in the PQCD.
Fig. 1. Itis inevitable to include the intrinsicdependence to Thus, adopting the approach similar to form factors, we cal-

B. Decay rates

TABLE |. Form factors a?=0 in the PQCD.

F1(0)  F3(0) Fr(0)  V(0)  Ao(0)  Ai(0)  A(0)  T(0)  Ti(0)  T(0)
033  —-0267 —0.054 0063 202 -005 0059 —0.350 0350 —0.281

114025-7
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TABLE II. Decay branching ratios in the various QCD models
without including LD effects.

Mode PQCD QM LCSR
10’ Br(B—KI*17) 5.33 5.56 5.20
10’ Br(B—K7*77) 1.29 1.28 1.25
10°Br(B—K*ete) 2.26 1.88 2.23
10°Br(B—K*u" ™) 1.27 1.49 1.78
10’ Br(B—K* 7t 77) 1.24 1.43 1.77

culate the transition amplitudes with the wave functions in

PHYSICAL REVIEW D63 114025

(=
S

dB(B—K WW )dsx10
S
S

[\
S

Eq. (46) and the exponential forms in E@47) to fit the 0 0 ]
values calculated by the PQCD for the whole rangeyaf s
After integrating g> dependence in Eq(30), the decay o 15
branching ratios without including LD contributions f& =t
—(K,K*)I*I~ are listed in Table Il and their distributions é
for the differential decay rates are shown in Fig. 3. Compar- ’:‘
ing with the curves in the QM and LCSR, we find that the o 0
differential rates ofB—KI*1~ are consistent with each %10 L
Q
% 20 S
+3--15 I
M I
9@ 10 04 0s.8
FIG. 4. The differential decay branching ratios as functiors of
5 for (8 B—K*u*u~ and(b) B—K* r*r~. The legend is the same
as in Fig. 3.
0 other. However, there exists a slight difference B
1 —K*I1~. There are two main reasons for the difference:
5 (a) n scale dependence for the WC afil the effects from
N 8 A1(g?) andA,(g?) in the PQCD. For the results in QM and
2 I ® LCSR, we have used the WC at~mj as done in the lit-
N erature, whereas that in the PQCP, scale is the typical
o6+ scalet determined by Eq(23). As seen from Eq(35) the
T effect of A;(q?) is large since there is a factor Mg asso-
DE ciated with it, while that ofA,(g?) only affects in the mode
§§ 4 of B=K* 7" 7~ due to the lepton mass dependence. Thus,
measuring the exclusive modesBfK*1*1~ would distin-
guish various QCD models due to the difference shown in
2 I Fig. 3. From Table I, we see that our PQCD results of the
. decay branching ratios f@—K*u*u~ andB—K*e*e”
are quite different. This can be understood by noting that in
i Eq. (33) there is pole ofy? associated with the photon pen-
0 ] guin induced couplings. These pole terms make the rates
’ s sensitive to the kinematical region gqf=4m?.

FIG. 3. The differential decay branching ratios as functiors of
for () B—=Ku"u~ and(b) B—K7" 7. The curves with and with-
out resonant shapes represent including and no LD contributions,

C. Forward-backward asymmetry

From EQq.(37), we present the forward-backward dilepton

respectively. The legend is the same as in Fig. 2. asymmetries oB—K*I"1~ (I=pu,7) in Fig. 4. We note

114025-8
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= ~ 1
+=’~ (a) 3 |
=y 5 r (a)
e 2 L
T 05 r T L
<) @_0.5 =
<E |
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-0.5
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s
© >
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0
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FIG. 5. Forward-backward asymmetries f@ B—K*u*u™ o o )
and(b) B—K* 7*7~. The legend is the same as in Fig. 3. FIG. 6. Longitudinal polarization asymmetries fda) B
—Ku*tu™ and(b) B—K7*7". The legend is the same as in Fig.

that the FBA ofB—K*eTe™ is similar to that of the muon 3.

mode in Fig. 4. For the light lepton pair decays suchBas

—K*utu~, we see that the FBA is positive at layf, gets  (I=e,u), from Egs.(31) and(39), we easily realize tha®,
zero atq2/M§~0.16, and then becomes negative. Due to thds near —1 in the most region ofg?. However, for B
large terms related té\;(q?), the rate at lowerg? in the —K*I"I~, sincegy« cannot be factored out in the numera-
PQCD has a larger value than that in the QM and LCSR. Asor, there is no vanishing point af|.; and the transition
mentioned in Refl2] with the FA, the location of zero point matrix elements of the séT’} are always associated with a
is only sensitive to the WC and insensitive to the form fac-pole of gq2. Hence, at the low momentum transfer region,
tors. However, since with the three-scale factorization fOT'penguin induced electromagnetic effects are dominant. Also
mula the WC cannot be factored out of the transition amp"'comparing Eq(40) with Eq. (33), the related terms dofT”}
tude and it is uncertain to choose the universal wave functioR e o powers for the differential decay rate but only one

of K*, the determination of zero point is harder as the test Of)ower for the numerator d?, so that the magnitude of the
the SM in the approach of the PQCD, unless we carKfix distribution at lowg? has a smaller value. From Figs(ch

wave function more precisely. On the other hand, it is worth o % + -
mentioning that when the sgBgC,)=+, opposite to the and §d), the polarization asymmetry & —K*u "~ in the

SM, the zero point disappears. Thus the FBA is quite sensi'—z)QCD2 hg: selgggltlly flhlf;?rtehrg 3'2”.';%:'};) O}ES‘ r+m (zd(_esl‘s at
tive to the sign of the WC and can be used as a good cand oW q7, especially . viatl orerT |
arge. However, according to Figs. 6—8, we find that our
date to test the SM. . ; .
results are comparable with that given by the light-front for-
malism (LF) [33,34. As mentioned before, the influence of
both larger values from th&;(g%) andA,(g?) terms in our
The lepton polarization asymmetries Bf-(K,K*)I "1~ approach is visible for the mode. Therefore, by measuring
are displayed in Fig. 5. Fd8—KI*|1~, P _is equal zero at the longitudinalr polarization inB—K* " 7~, we can ei-
q?=0 and g?|ma=(Mg—My)? because it is related to ther determine a more prop&™ wave function or test the

1—4mflg®ex . Without LD effects for the light leptons feasibility of our PQCD approach for semileptonic decays.

D. Polarization asymmetry

114025-9
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FIG. 7. Longitudinal polarization asymmetriega)

—K*u*u” and(b) B—K* 7" 7. Legend is the same as in Fig. 3.

By the three-scale factorization theorem, we have gotte
the form factors irg?<15 Ge\?; and with the parametriza-
tion in terms of the exponential forms to extrapolate tffe

V. CONCLUSIONS

P~
T

P (B—KT'T)
S
(9
T
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dependent form factors tg?,,, we have obtained the con-
sistent results with that from the lattid29,30. With the
PQCD, we have pointed out that the largest uncertainty in
our results is from the nonperturbative wave functions.
Though the universal wave function could be determined by
some nonleptonic decays, the intrinsiddependence which
suppresses the soft dynamics contribution is still unknown.
With the kaon wave functions fixed by the decaysBof
— K and assumed? dependences, we have shown that the
distributions of the decay rates and leptonic asymmetries for
B—KI"I™ in the PQCD agree well with that in the other
QCD models such as the QM and LCSR. However, there are
some differences for that iB—K*|1*1~ among the various
QCD models. Finally, we remark that althoud-K* y
could also give us some information of thk&" wave func-
tion, one still cannot fix it satisfactorily due to various un-
certainties in the decay. Moreover, the assumption of the
sameq? dependent factors iB—K is not necessary foB
—K* and thus, to have a reliable calculation, we need more
precision measurements involving the vector kaon meson in
order to settle down th&* wave function.
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APPENDIX

In order to connect our form factors in E) to those
usually used in the literatuf®,31—-33, in this Appendix we
show explicitly the relationships among the form factors. In
terms of the notation in Ref$2,32], the form factors foB
—(K,K*) decays with respect to various weak currents are

I;?arametrized as

2 P-q
P.
" q—ffo(q%qw (A1)

(K(Py)|T,.a"B(P1))=—(P,a*~q,P-aq)fr(q?),
(A2

(K*(P,,e)|V |B(P1))=—qu)e g*'PeqP
[ T Mg+ Mgx “° ‘
-0.5 - (A3)
i . _ &%
-1 L. L L | <K (P2i8)|AM|B(P1)>:IZMK*AO(q )?qu
04 0.5 0.6 0.7
§ +i(Mg+Myx)AL(0%)
FIG. 8. The longitudinal polarization asymmetry fdB *
—K*7* 7~ in the PQCD(solid curve$ and LF (dashed curves x| g*m— € qq
respectively. q® “
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AT 8*'q
—iAY Q%) ———
Mg+ My
P-q
X Pu=—5 0 (A4)
q
(K*(P3,8)[T,,0"[B(P1))=T1(G?) €,,qp8* "PQ*,
(A5)
(K*(P2,2)|T5,0"[B(Py))
=iTy(d?)[e}P-q+e*-qP,]
2
—iT4(g?)e* - q q'“_P_-qP'u . (A6)

iy iy —a 5
where V,=sy,b, A,=sy,ysb, T,,=sio,b, T,

=sig,,ysb, P=Pi+P;, q=P;~P, and P-q=Mg

—Mi ). Redefining the wave functions and comparing to

Eq. (6), we obtain
Fi=f,

V!
V= ———,
Mg+ M

Ap=(Mpg+Mx)A7,

PHYSICAL REVIEW D 63 114025

A

Aj=— ———,
Mg+ Mx

1
A2:¥[2M K*A(’)_(MB—’_MK*)AJ’_
+(Mg—Mgx)Az],
T=-T},

To=—(M3—MZ)T3,

q2
Ti=T+ Mz—zTé1

B~ Wkx
T2: - Té .
Here we have neglected to show thye dependence for the

form factors. From the above identities, we find some inter-
esting relations aj?=0 and they are given by

fo(0)=£.(0),

T1(0)=T3(0).
From Egs.(15) and (17), we getT(0)=—T4(0). Hence,
based on the modified PQCD factorization theorem, we ob-

tain the relationT;(0)=T,(0) that is the same as that in Eq.
(3.6) of Ref.[2].
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