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An effective field theory for collinear and soft gluons: Heavy to light decays
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We construct the Lagrangian for an effective theory of highly energetic quarks with energyQ, interacting
with collinear and soft gluons. This theory has two low energy scales, the transverse momentum of the
collinear particles,p' , and the scalep'

2 /Q. The heavy to light currents are matched onto operators in the
effective theory at one loop and the renormalization group equations for the corresponding Wilson coefficients
are solved. This running is used to sum Sudakov logarithms in inclusiveB→Xsg andB→Xul n̄ decays. We
also show that the interactions with collinear gluons preserve the relations for the soft part of the form factors
for heavy-to-light decays found by Charleset al. @Phys. Rev. D60, 014001~1999!#, establishing these relations
in the large energy limit of QCD.
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I. INTRODUCTION

The phenomenology of hadrons containing a single he
quark is greatly simplified by the fact that nonperturbat
hadronic physics can be parametrized by an expansio
LQCD/m, wherem is the mass of the heavy quark. At lowe
order, interactions are insensitive to the heavy quark m
and spin, leading to new spin-flavor symmetries@1#. These
symmetries relate form factors for decays of one heavy h
ron to another heavy hadron. In Refs.@1#, @2# heavy quark
effective theory~HQET! was constructed as a general fram
work in which to explore heavy quark physics. The effecti
theory allows a systematic treatment of 1/m corrections and
makes the symmetries manifest. Inclusive decays of he
hadrons involving large momentum transfer to the de
products can also be treated in HQET with the help of
operator product expansion~OPE! @3#. At leading order, the
parton model results are recovered and nonperturbative
rections are parametrized by matrix elements of higher
mensional operators, suppressed by powers of 1/m.

Decays of heavy hadrons to light hadrons cannot
treated exclusively with HQET unless the four-momentum
the light degrees of freedom are small compared tom. How-
ever, in regions of phase space where the light hadronic
cay products have large energyE;m, a different expansion
in powers of 1/E can be performed. In Ref.@4# Dugan and
Grinstein used this approach to construct the large ene
effective theory~LEET!, which describes the interaction o
very energetic quarks with soft gluons. However, LEET
missing an important degree of freedom, namely, collin
gluons, and does not reproduce the IR physics of QCD@5#.
In Ref. @6# it was shown that an effective theory includin
both collinear and soft gluons correctly reproduces the in
red physics of QCD at one loop. This collinear-soft theory
needed between the scaleE and an intermediate scale, belo
which collinear modes can be integrated out. For inclus
decays it was shown that the collinear-soft theory can
matched at the intermediate scale onto a theory contai
only soft degrees of freedom.

The power counting in the collinear-soft theory is comp
0556-2821/2001/63~11!/114020~17!/$20.00 63 1140
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cated by the presence of two low energy scales, which m
be properly accounted for. These scales can be clearly
by considering the momentum of a collinear quark. If t
quark moves along the light-cone directionnm with momen-
tum Q;E;m then p5(p1,p2,p');Q(l2,1,l), wherel
is a small parameter. Thusp';Ql is the intermediate scale
With two low energy scales it is more appropriate to cou
powers ofl rather than powers of 1/Q @6#. This is analogous
to nonrelativistic QCD~NRQCD! for bound states of two
heavy quarks, where one counts powers of the velocity ra
than powers of 1/m @7#. Constructing such an effective fiel
theory bears some similarity to isolating momentum regim
using the method of regions@8# on full theory Feynman dia-
grams. There are, however, advantages to using an effe
field theory approach over the method of regions, namely
is straightforward to systematically include power corre
tions and it is possible to properly account for operator ru
ning, which sums Sudakov logarithms. In order to cons
tently go beyond leading order it is important to give
detailed construction of the effective field theory. This w
not done in Ref.@6#, and it is one of the main points of thi
paper.

The collinear-soft effective theory can be used to descr
both inclusive and exclusive heavy-to-light decays. For
clusive decays this theory is valid in the regime where
phase space of the decay is restricted such that the final
ronic state is forced to have low invariant mass and la
energy. This is the case for large electron energy or sm
hadronic invariant mass in semileptonicB→Xul n̄ decays,
and for large photon energy inB→Xsg decays. The Sudakov
logarithms that appear in the endpoint regions of these
cays can be summed into the coefficient function of ope
tors by running in the collinear-soft theory between the sc
Q and Ql, and then running a soft operator fromQl to
Ql2. In Ref. @6# Sudakov logarithms at the endpoint of th
photon energy spectrum in the decayB→Xsg were summed
in this manner. Here we sum Sudakov logarithms betweeQ
andQl for bothB→Xsg andB→Xul n̄. In the ratio of large
moments of these decay rates effects of physics below
intermediate scale cancel, and we reproduce previous ca
©2001 The American Physical Society20-1
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lations carried out using the factorization formalism@9,10#.
It is also possible to apply the collinear-soft effecti

theory to exclusive heavy-to-light decays. The form fact
for such transitions have contributions from the exchange
soft gluons with spectators~soft contributions!, as well as
from the exchange of hard gluons~so-called hard contribu
tions!. In this paper we will only consider the soft form fac
tors, even though the two types of contributions are belie
to be the same order in 1/mb @11–13#. In Ref. @12# relations
among the soft form factors were derived, and it was sho
that only three independent functions are needed to desc
heavy-to-light decays. However, these relations were
tained within the framework of LEET, which does not in
clude collinear gluons. In this paper we show that the inc
sion of collinear modes does not alter the soft form fac
relations to leading order inl. Since the collinear-soft effec
tive theory reproduces the infrared physics of QCD at la
energies, this establishes these soft form factor relation
the large energy limit of QCD.

In this paper we give a detailed construction of t
collinear-soft effective theory and apply it to general hea
to-light decays. In Sec. II the Lagrangian for collinear gluo
and collinear quarks is constructed and the Feynman r
are given. The power counting for collinear gluons is form
lated in a gauge invariant way. The collinear-soft effect
theory does not have the same spin symmetry as LEET,
is still invariant under a helicity transformation. In Sec.
we construct the heavy-to-light currents in the effect
theory at lowest order inl. At this order the effective theory
current couples to an arbitrary number of collinear gluo
with a universal Wilson coefficient. The one-loop matchi
for the Wilson coefficients are then derived. In Sec. IV t
renormalization group evolution of these coefficients
computed. Finally, in Sec. V we present two applications
this effective theory. First we sum Sudakov logarithms in
ratio of large moments ofB→Xsg andB→Xul n̄ decay rates.
Next we show that in the collinear-soft theory, only thr
independent soft form factors describe exclusive heavy
light decays, establishing these form factor relations in
large energy limit of QCD. The one-loop matching onto cu
rents in the effective theory allows us to calculate the per
bative corrections to these form factor relations in an infra
safe manner. For the ratio of full theory form factors the
hard corrections agree with Ref.@13#.

II. THE EFFECTIVE THEORY

Decays of heavy hadrons to highly energetic light hadr
are most conveniently studied in the rest frame of the he
hadron. In this reference frame the light particles move cl
to the light-cone directionnm and their dynamics is best de
scribed in terms of light-cone coordinatesp5(p1,p2,p'),
wherep15n•p, p25n̄•p. For motion in thez direction we
take nm5(1,0,0,21) and n̄m5(1,0,0,1), son̄•n52. For
large energies the different light cone components are wid
separated, withp2;Q being large, whilep' and p1 are
small. Taking the small parameter to bel;p' /p2 we have
11402
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pm5n̄•p
nm

2
1~p'!m1n•p

n̄m

2
5O~l0!1O~l1!1O~l2!,

~1!

where we have usedp1p2;p'
2 ;l2 for fluctuations near the

mass shell. The collinear quark can emit either a soft glu
or a gluon collinear to the large momentum direction a
still stay near its mass shell. Collinear and soft gluons h
light-cone momenta that scale likekc5Q(l2,1,l) and ks
5Q(l2,l2,l2), respectively. For scales above the typic
off-shellness of the collinear degrees of freedom,kc

2

;(Ql)2, both gluon modes are required to correctly rep
duce all the infrared physics of the full theory. This w
described in@6#, where it was shown that at a scalem;Q
QCD can be matched onto an effective theory that conta
heavy quarks and light collinear quarks, as well as soft a
collinear gluons.

The Lagrangian describing the interaction of colline
quarks with soft and collinear gluons can be obtained at
level by expanding the full theory Lagrangian in powers
l. We start from the QCD Lagrangian for massless qua
and gluons

LQCD5c̄ iD” c2 1
4 GmnGmn, ~2!

where the covariant derivative isDm5]m2 igTaAm
a , and

Gmn is the gluon field strength. We begin by removing t
large momenta from the effective theory fields, similar to t
construction of HQET@2#. In HQET there are two relevan
momentum scales, the mass of the heavy quarkm andLQCD.
The scalem is separated fromLQCD by writing p5mv1k,
wherev251 and the residual momentumk!m. The vari-
able v becomes a label on the effective theory fields. O
case is slightly more complicated because there are t
scales to consider. We split the momentap by taking

p5 p̃1k, where p̃[
1

2
~ n̄•p!n1p' . ~3!

The ‘‘large’’ parts of the quark momentumn̄•p;1 andp'

;l, denoted byp̃, become a label on the effective theo
field, while the residual momentumkm;l2 is dynamical.
This is analogous to NRQCD where there are also three
evant scalesm, mb, and mb2 ~and b!1 is theqq̄ bound
state velocity!. In NRQCD the three scales can be separa
@7# by writing P5(m,0W )1p1k where p;mb and the re-
sidual momentumk;mb2. In this case both the momenta o
order m @i.e., (1,0W )# and the momentum of ordermb are
labels on the effective theory fields.

The large momentap̃ are removed by defining a new fiel
cn,p by

c~x!5(
p̃

e2 i p̃•xcn,p~x! . ~4!

A label p is given to thecn,p field, with the understanding
that only the componentsn̄•p andp' are true labels. Deriva-
tives]m on the fieldcn,p(x) give orderl2 contributions. For
a particle moving along thenm direction, the four componen
0-2
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TABLE I. Power counting for the effective theory fields.

Heavy quark Collinear quark Soft gluon Collinear gluons

Field hv jn,p As
m n̄•An,q n•An,q An,q

'

Scaling l3 l l2 l0 l2 l
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field cn,p has two large componentsjn,p and two small com-
ponentsj n̄,p . These components can be obtained from
field cn,p using projection operators

jn,p5
n” n̄”

4
cn,p , j n̄,p5

n̄”n”

4
cn,p , ~5!

and satisfy the relations

n” n̄”

4
jn,p5jn,p , n” jn,p50,

n̄”n”

4
j n̄,p5j n̄,p , n̄” j n̄,p50, ~6!

In terms of these fields the quark part of the Lagrangian
Eq. ~2! becomes

L5 (
p̃,p̃8

F j̄n,p8

n”̄

2
~ in•D !jn,p1 j̄ n̄,p8

n”

2
~ n̄•p1 i n̄•D !j n̄,p

1 j̄n,p8~p”'1 iD”'!j n̄,p1 j̄ n̄,p8~p”'1 iD”'!jn,pG . ~7!

Since the derivatives on the fermionic fields yield mome
of order k;l2, they are suppressed relative to the lab
n̄•p and p' . Without then̄•D and D' derivatives,j n̄,p is
not a dynamical field. Thus, we can eliminatej n̄,p at tree
level by using the equation of motion

~ n̄•p1n̄• iD !j n̄,p5~p”'1 iD”'!
n”̄

2
jn,p . ~8!

This is similar to the approach taken in QCD quantized
the light cone@14# and in QCD in the infinite momentum
frame @15#, where two components of the fermion field a
constrained auxiliary fields and are thus removed from
theory. Equations~7! and ~8! result in a Lagrangian involv-
ing only the two componentsjn,p ,1

L5 (
p̃,p̃8

e2 i ~ p̃2 p̃8!•xj̄n,p8Fn• iD 1~p”'1 iD”'!
1

n̄•p1n̄• iD

3~p”'1 iD”'!G n”̄

2
jn,p . ~9!

1Note that Eq.~9! still includes particle/antiparticle and the tw
spin degrees of freedom. However, on the light cone the spinor
a spin-up~down! particle is identical to that of the spin-up~down!
antiparticle. See, for example, Ref.@15#.
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Here the summation extends over all distinct copies of
fields labeled byp̃,p̃8. Note that the gluon field inDm in-
cludes collinear and soft parts,Am→Ac

m1As
m . The two types

of gluons are distinguished by the length scales over wh
they fluctuate. Fluctuations of the collinear gluon fieldsAc

m

are characterized by the scaleq2;l2, while fluctuations of
the soft gluon fieldAs

m are characterized byk2;l4. Since
the collinear gluon field has large momentum compone
q̃[(n̄•q,q'), derivatives acting on these fields can still giv
order l0,1 contributions. To make this explicit we label th
collinear gluon field by its large momentum componentsq̃,
and extract the phase factor containingq̃ by redefining the
field Ac(x)→e2 i q̃•xAn,q(x). Inserting this into Eq.~9! one
finds

L5 (
p̃,p̃8,q̃

ēi ~ p̃2 p̃8!•xj̄n,p8Fn• iD 1gēiq̃•xn•An,q1~p”'1 iD”'

1gēiq̃•xA” n,q
' !

1

n̄•p1n̄• iD 1ge2 i q̃•xn̄•An,q
~p”'1 iD”'

1ge2 i q̃•xA” n,q
' !G n”̄

2
jn,p . ~10!

Here the covariant derivative is defined to only involve s
gluons.

Finally, we expand Eq.~10! in powers ofl. To simplify
the power counting we follow the procedure@16# of moving
all the dependence onl into the interaction terms of the
action to make the kinetic terms of orderl0. This is done by
assigning al scaling to the effective theory fields as given
Table I. The power counting in Table I gives an order o
kinetic term for collinear gluons in an arbitrary gauge.
generalized covariant gauge

E d4x eik•x^0uTAc
m~x!Ac

n~0!u0&5
2 i

k2 S gmn2a
kmkn

k2 D
~11!

and the scaling of the components on the right- and left-h
side of this equation agree.2 With this power counting all
interactions scale asln with n>0. Expanding Eq.~10! to
orderl0 gives

or

2We have chosen a different counting for the collinear gluon fie
than Ref.@6# ~whereAc

m;l!. In Feynman gauge there is the fre
dom to choose any scaling withAc

1Ac
2;l2 ~including the choice as

in Ref. @6#!. The choice in Table I is preferred sinceAc
m scales the

same way as a collinear momentum and there are no interac
that scale as 1/l.
0-3
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FIG. 1. Orderl0 Feynman rules: collinear quark propagator with labelp̃ and residual momentumk, and collinear quark interactions with
one soft gluon, one collinear gluon, and two collinear gluons, respectively.
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Lcs5 j̄n,pS n• iD 1
p'

2

n̄•pD n”̄

2
jn,p1 j̄n,p1qFgn•An,q

1gA” n,q
'

p”'

n̄•p
1

p”'1q”'

n̄•~p1q!
gA” n,q

'

2
p”'1q”'

n̄•~p1q!
gn̄•An,q

p”'

n̄•pG n”̄

2
jn,p1¯1O~l!.

~12!

Summation over the labelsp̃,q̃ is understood implicitly. The
ellipsis denotes terms of the same order in the power co
ing with two or more collinear gluon fields, and arise b
cause we expanded Eq.~10! in powers ofgAc to obtain the
above expression. This expansion was necessary to mov
collinear gluon phase factor appearing in the denominato
Eq. ~10! into the numerator. This allowed us to remove t
large momentumq̃ from the Lagrangian so that all covaria
derivatives were truly ofO(l2). The method for including
terms of higher order inl should be obvious from our deri
vation. The first few Feynman rules that follow from thel0

terms inLcs are shown in Fig. 1.
The first term in Eq.~12! gives the propagator for th

collinear quarks, which does not change depending
whether it interacts with soft or collinear gluons. This
distinct from the situation in the method of regions@8#,
where one must determine the propagator on a case by
basis. The interaction with a soft gluon is obtained from
covariant derivative term in Eq.~12!. Also shown in Fig. 1
are the interactions with one and two collinear gluons. T
collinear gluon interactions are label changing unlike the
11402
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teraction involving soft gluons. Sincen̄•An,q;n̄•p, Eq. ~12!
includes interactions of a collinear quark with an arbitra
number of collinear gluons. In Fig. 1 only interaction
throughO(g2) are shown. Note that in the light-cone gau
n̄•An,q50 these Feynman rules are the complete set, s
interactions of a collinear quark with three or more colline
gluons vanish. In this gauge similar Feynman rules for c
linear gluons have been obtained in the framework of lig
cone QCD@17#. However, the Feynman rules in Fig. 1 ca
be used in any gauge.

The LEET Lagrangian corresponds to thej̄n,p(n̄” /2)n
• iD jn,p term in Eq. ~12! and is invariant under a SU~2!
symmetry @4,12# with generators S15(g0S1)/2, S2

5(g0S2)/2, andS35S3/2 whereS i are the standard rota
tion generators. The collinear soft LagrangianLcs has less
symmetry than LEET because terms withg'

1 g'
2 violate the

transformations generated byS1 andS2. However,Lcs is still
invariant under aU(1), namely, the helicity transformation
generated byS3. SinceS35g5(1/22n̄”n” /4) andn” jn,p50 the
helicity transformation also corresponds to the chiral tra
formation generated byg5/2.

To complete the construction of the effective theory w
have to include heavy quarks. This can be done by add
the usual HQET Lagrangian for the heavy quark fieldhv ,

LHQET5h̄viv•Dhv . ~13!

The covariant derivative in Eq.~13! contains only the soft
gluon field because the heavy quark field does not coupl
collinear gluons@6#. This is discussed in more detail in th
next section.
0-4



th
rk
en
in

l

n-

b
ve

in
t
C
r-

n

t

ts

ify

ar-
on
r

lly
e
of

c-

ry

ith

ig.

.

-
d

AN EFFECTIVE FIELD THEORY FOR COLLINEAR AND . . . PHYSICAL REVIEW D63 114020
As a simple application of the Feynman rules consider
order l0 diagrams for the self-energy of a collinear qua
shown in Fig. 2. The tadpole diagram vanishes in dim
sional regularization. In the Feynman gauge the remain
diagram gives

iSc~p!5g2CF

n”̄

2 E ddl

~2p!d H~n•n̄!
p'

2 1p”'li'
n̄•p~p1 l !2l 2

1~n•n̄!
p'

2 1 li'p”'

n̄•p~p1 l !2l 2 12~d24!
p'

2 1 l'•p'

n̄•p~p1 l !2l 2

2~d22!S ~p'1 l'!2

@ n̄•~p1 l !#2 1
p'

2

@ n̄•p#2D n̄•~p1 l !

~p1 l !2l 2 J.
~14!

Here sums over the labelsn̄• l and l' were combined with
the integrals over residual momenta to give the fullddl mea-
sure~cf., Ref.@7#!. The first two terms in Eq.~14! correspond
to the (m,n)5(1,2) and ~2,1! polarizations of the ex-
changed gluon, and the last line to the~','! contribution,
respectively. Computing the loop integrals one finds

iS12~p!1 iS21~p!

5
iasCF

4p

n̄”

2
G~e!

G2~12e!

G~222e!

2p'
2

n̄•p S 2p2

egEm2D 2e

, ~15!

iS''~p!52
iasCF

4p

n̄”

2
G~e!

G2~12e!

G~222e! H ~11e!
p'

2

n̄•p

2~12e!n•pJ S 2p2

egEm2D 2e

.

Here~and in the rest of the paper! we use modified minima
subtraction ~MS) and therefore redefined m2

→m2egE/(4p). The sum has precisely the form of the i
verse collinear quark propagator in Fig. 1,

Sc~p!5
asCF

4p

n̄”

2
~12e!G~e!

G2~12e!

G~222e!

p2

n̄•p S 2p2

egEm2D 2e

.

~16!

The ultraviolet divergence in this expression is removed
on-shell wave function renormalization of the effecti
theory fieldjn,p ,

Zj512
asCF

4p F1

e
2 lnS 2p2

m2 D11G . ~17!

Zj coincides with the renormalization of the quark field
QCD. This is expected@6# since without currents or sof
effects the collinear quark Lagrangian simply describes Q
in a particular frame. The utility of the two component fo

FIG. 2. Orderasl
0 self-energy diagrams for a collinear quark
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malism in Eq.~12! will become evident in the next sectio
where heavy-to-light currents are discussed.

III. MATCHING THE HEAVY-TO-LIGHT CURRENTS

At a scalem;Q the weak Hamiltonian has heavy-to-ligh
semileptonic or radiative operators of the form@18#

Heff5
GF

&
VCfull~m!Jhad J, ~18!

whereV is the Cabibbo-Kobayashi-Maskawa~CKM! factor,
J is a nonhadronic current, and the Wilson coefficien
Cfull(m) have been run from the scalem5mW down tomb .
In Eq. ~18!, the hadronic currents are of the formJhad
5q̄Gb and we will consider G5$1,g5 ,gm ,gmg5 ,
smn ,smng5%. We choose this overcomplete basis to simpl
the treatment ofb→sg. Below the scaleQ;n̄•p the had-
ronic current can be matched onto currents in the colline
soft effective theory. This introduces a new set of Wils
coefficientsCi(m). In this section the one-loop matching fo
these new coefficients will be performed atm5mb , while
the running will be considered in Sec. IV. We could equa
well match atm5n̄•p, but the difference is irrelevant sinc
we treatn̄•p;mb and do not attempt to sum logarithms
the form ln(n̄•p/mb).

Naively, one might expect that at lowest order the effe
tive theory hadronic current isJhad

eft 5C(m) j̄n,pGhv . How-
ever, since the labeln̄•p;l0, the effective theory Wilson
coefficient can also be a function ofn̄•p. Furthermore, an
arbitrary number of fieldsn̄•An,q;l0 can be included with-
out additional power suppression. At lowest order inl the
most general heavy-to-light current in the effective theo
therefore has the form

Jhad
eft 5c0~ n̄•p,m!j̄n,pGhv

1c1~ n̄•p,n̄•q1 ,m!j̄n,p~gn̄•An,q1
!Ghv

1c2~ n̄•p,n̄•q1 ,n̄•q2 ,m!j̄n,p~gn̄•An,q1
!

3~gn̄•An,q2
!Ghv1¯ , ~19!

where the ellipsis stands for terms of the same order w
more powers ofn̄•An,q . The coefficientsci may also depend
on the choice ofG. At the scalem5mb the ci can be deter-
mined by the tree level matching calculation depicted in F
3. On the left, the gluons with collinear momenta kick theb

FIG. 3. Matching for the orderl0 Feynman rule for the heavy
to-light current withn collinear gluons. All permutations of crosse
gluon lines are included on the left.
0-5
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FIG. 4. Order l0 Feynman
rule for the effective theory
heavy-to-light current withm col-
linear gluons. The sum is ove
permutations of$1, . . . ,m% and
the Wilson coefficient depend
only on the sum of momenta in
the jet,P5p1S i 51
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quark far off-shell, and integrating out these off-shellb
quarks gives the effective theory operator on the right.

To perform the matching, first consider the simpler ca
of an Abelian gauge group. In this case calculating the
theory graph withm gluons in Fig. 3, expanding in powers o
l, and putting the result over a common denominator giv

cm~m5mb!5
1

m! )i 51

m
1

n̄•qi
. ~20!

The factor of 1/m! is from the presence ofm identical Ac
fields at the same point.3 Thus, we have the tree level resu

Jhad
eft um5mb

5 j̄n,pexpS gn̄•An,q

n̄•q DGhv . ~21!

It is not immediately clear how this result is modified f
m,mb since the infinite series of operators in Eq.~19! could
each run differently. However, gauge invariance relates th
operators, and only the sum of terms in Eq.~21! is gauge
invariant. Under a collinear gauge transformationa(x), the
field hv is invariant since collinear gluons do not couple
heavy quarks. On the other hand, the collinear quark fi
transforms asjn,p→eia(x)jn,p . Thus, the operatorj̄n,pGhv is
not gauge invariant. However, it is straightforward to see t
the operator in Eq.~21! is invariant, and this is done in
Appendix A. It is found that

expS gn̄•An,q

n̄•q D→expS gn̄•An,q

n̄•q Dexp@ ia~x!#, ~22!

and the last exponential exactly cancels the transformatio
j̄n,p . By gauge invariance the current therefore has to be
the form in Eq.~21! for an arbitrary scalem. It is convenient
to define a field that transforms as a singlet under a collin
gauge transformation

xn,P5expS 2gn̄•An,q

n̄•q D jn,p . ~23!

We will refer to xn,P as the jet field since it involves
collinear quark field plus an arbitrary number of colline
gluons moving in then direction. The relevant label for th
jet field is simply the sum of labels of the particles in the j

3Note that in Ref.@6# the Feynman rule with a single collinea
gluon (m51) has an additionaln”A” c /mb term that did not contrib-
ute to the results there. With the power counting in the Table I
term is suppressed by a power ofl.
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P5p1Sqi . In terms of this field the leading order effectiv
theory current forQl,m,mb has the form

Jhad
eft 5Ci~m,n̄•P!x̄n,PGhv , ~24!

with a universal coefficientCi(m,n̄•P). The statement tha
the coefficient only depends on the total jet momentumP is
nontrivial and is discussed further in Appendix B.

For a non-Abelian gauge group a similar gauge invaria
argument applies, however the matching in Fig. 3 is m
complicated. Equation~24! remains valid, but with a more
complicated definition of the jet field. In momentum spa
we find

xn,P5(
k

(
perms

~2g!k

k!

3H n̄•An̄q1
¯n̄•An̄qk

@ n̄•q1#@ n̄•~q11q2!#¯F n̄•(
i 51

k

qi G J jn,p ,

~25!

where the permutation sum is over the indices (1,2, . . . ,k).
The Feynman rules that follow from Eqs.~24! and ~25! are
shown in Fig. 4. In position space the jet field takes the fo
of a path-ordered exponential

xn~0!5P expF2 igE
2`

0

ds n̄•Ac~sn̄m!Gjn~0!, ~26!

whereP denotes path ordering along the lightlike line colli
ear ton̄.4

In the effective theory both heavy and light quarks a
described by two component spinors, so there are only f
heavy-to-light currents at leading order inl. We choose the
linearly independent set@ x̄n,Phv#, @ x̄n,Pg5hv#, and
@ x̄n,Pg'

mhv#, where g'
m5gm2nmn̄” /22n̄mn̄” /2 has only two

nonzero terms. The matching of the heavy to light curre
q̄Gb onto operators in the effective theory is

q̄b→C1~m!@x̄n,Phv#,

q̄g5b→C2~m!@x̄n,Pg5hv#,

s 4Path-ordered exponentials are also introduced to sum up the
plings of soft gluons to a collinear jet, see Ref.@19#.
0-6
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q̄gmb→C3~m!@x̄n,Pgm
'hv#

1$C4~m!nm1C5~m!vm%@x̄n,Phv#,

q̄gmg5b→C6~m!i emn
' @ x̄n,Pg'

n hv#

2$C7~m!nm1C8~m!vm%@x̄n,Pg5hv#, ~27!

q̄ismnb→C9~m!~nmgnl2nngml!@x̄n,Pg'
l hv#

1C10~m!

3 i emn
' @ x̄n,Pg5hv#1C11~m!~vmnn2vnnm!

3@ x̄n,Phv#1C12~m!~vmgnl2vngml!

3@ x̄n,Pg'
l hv#,

q̄ismng5b→2@C9~m!1C12~m!#~ inmenl
' 2 inneml

' !

3@ x̄n,Pg'
l hv#1C11~m!i emn

' @ x̄n,Phv#

1C10~m!~vmnn2vnnm!@x̄n,Pg5hv#

1C12~m!~ ivmenl
' 2 ivneml

' !@ x̄n,Pg'
l hv#,

where emn
' 5emnrsvrns with e0123521. From here on the

dependence of the Wilson coefficients onn̄•P will be sup-
pressed. The relations in Eq.~27! are valid5 to all orders in
as and leading order inl. At tree level the matching gives

C1,2,3,4,6,7,9,10,11~mb!51, C5,8,12~mb!50. ~28!

To match these coefficients at one loop, we calculate p
turbative matrix elements in the full and effective theorie
All the long distance physics is reproduced in the effect
theory, and the difference between the two calculations
termines the short distance Wilson coefficients. Since
Wilson coefficients are universal the matching can be p
formed for the simpler currentj̄n,pGhv rather than the cur-
11402
r-
.
e
e-
e
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rent x̄n,PGhv . The calculation is most easily performed
pure dimensional regularization. The full theory matrix e
ments of the currentsq̄Gb between free quark states a
obtained by evaluating the diagram in Fig. 5 and multiplyi
by the wave function and current renormalization factors.
d5422e dimensions the on-shell wave function renorm
ization constants for massive and massless quarks are

Zb511
asCF

4p S 2
3

e
13 ln

mb
2

m224D , Zq51, ~29!

and the renormalization constants for the scalar, pseu
scalar, vector, axial vector, tensor, and axial tensor curre
are given by

ZS5ZP512
3asCF

4pe
, ZV5ZA51,

ZT5ZT5
511

asCF

4pe
. ~30!

The ultraviolet divergences in theZ’s cancel the ultraviolet
divergences in the diagram in Fig. 5, hence all remaininge
divergences are of infrared nature. Theb quark and light
quark are taken to have momentapb andp, respectively, and
we defineq5pb2p. Letting g5 anticommute ind dimen-
sions@the naive dimensional regularization~NDR! scheme#,
the final result for the matrix elements in the full theory is

FIG. 5. Full theory one-loop diagram for matching the heav
to-light current ~denoted by^!. The incoming line is a massive
quark and the outgoing line is massless.
^quq̄$1,g5%bub&5H 12
asCF

4p
F 1

e2 1
5

2e
1

lnS m2

mb
2D

e
2

2 ln~12q̂2!

e
1

1

2
ln2S m2

mb
2D 2

1

2
lnS m2

mb
2D 22 ln~12q̂2!lnS m2

mb
2D

12 ln2~12q̂2!2
2 ln~12q̂2!

q̂2 12 Li2~ q̂2!1
p2

12
G J ū$1,g5%u,

^quq̄$1,g5%g
mbub&5H 12

asCF

4p
F 1

e2 1
5

2e
1

lnS m2

mb
2D

e
2

2 ln~12q̂2!

e
1

1

2
ln2S m2

mb
2D 1

5

2
lnS m2

mb
2D 22 ln~12q̂2!lnS m2

mb
2D

12 ln2~12q̂2!1 ln~12q̂2!S 1

q̂223D12 Li2~ q̂2!1
p2

12
16G J ū$1,g5%g

mu

1
asCF

4p F 4

q̂2 ln~12q̂2!2
2

q̂22
2

q̂4 ln~12q̂2!G p̂mū$1,g5%u

5An exception is the relation between the coefficients forq̄ismnb and q̄ismng5b that can change depending on howg5 is treated ind
dimensions.
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1
asCF

4p F 2

q̂22
2

q̂2 ln~12q̂2!1
2

q̂4 ln~12q̂2!G p̂b
mū$1,g5%u,

^quq̄$1,g5% is
mnbub&5H 12

asCF

4p
F 1

e2 1
5

2e
1

lnS m2

mb
2D

e
2

2 ln~12q̂2!

e
1

1

2
ln2S m2

mb
2D 1

7

2
lnS m2

mb
2D 22 ln~12q̂2!lnS m2

mb
2D

12 ln2~12q̂2!12 ln~12q̂2!S 1

q̂222D12 Li2~ q̂2!1
p2

12
16G J ū$1,g5% is

mnu

1
asCF

4p F 4

q̂2 ln~12q̂2!G ū$1,g5%~ p̂mgn2 p̂ngm!u, ~31!
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where the hat denotes momenta normalized with respec
mb , so q̂5q/mb . This full theory result can be expanded
l by noting that

q̂2512n̄• p̂1O~l2!, ~32!

and that at lowest order we can expand the full the
spinors using Eqs.~27! and ~28!.

For the effective theory in pure dimensional regulariz
tion the final collinear quark is taken on-shell. For mome
tum labels (n̄•p,p') this corresponds to choosing th
quarks residual momentumk such thatn̄•pn•k1p'

2 50. In
this case all graphs in the effective theory are proportiona
1/eUV21/e IR50. The ultraviolet divergences are canceled
effective theory counterterms, and all infrared divergen
cancel in the difference between the full and effective th
ries. Thus, from Eq.~31! the Wilson coefficients at the sca
m5mb are

C1,2~mb!512
as~mb!CF

4p H 2 ln2~ n̄• P̂!12 Li2~12n̄• P̂!

2
2 ln ~ n̄• P̂!

12n̄• P̂
1

p2

12J ,

C3,6~mb!512
as~mb!CF

4p H 2 ln2~ n̄• P̂!12 Li2~12n̄• P̂!

1 ln~ n̄• P̂!S 3n̄• P̂22

12n̄• P̂
D 1

p2

12
16J ,

C4,7~mb!512
as~mb!CF

4p H2 ln2~ n̄• P̂!12 Li2~12n̄• P̂!

2 ln~ n̄• P̂!F224n̄• P̂1~ n̄• P̂!2

~12n̄• P̂!2 G1
n̄• P̂

12n̄• P̂
1

p2

12
16J ,

C5,8~mb!5
as~mb!CF

4p H 2

~12n̄• P̂!
1

2n̄• P̂ ln~ n̄• P̂!

~12n̄• P̂!2 J ,

~33!
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C9~mb!512
as~mb!CF

4p H 2 ln2~ n̄• P̂!12 Li2~12n̄• P̂!

22 ln~ n̄• P̂!1
p2

12
16J ,

C10,11~mb!512
as~mb!CF

4p
F 2 ln2~ n̄• P̂!12 Li2~12n̄• P̂!

1 ln~ n̄• P̂!S 4n̄• P̂22

12n̄• P̂
D 1

p2

12
16G ,

C12~mb!50.

For the operatorj̄n,pGhv there is only one particle in the jet
so in that caseP5p. In NDR the relations amongst Wilso
coefficients, C15C2 , C35C6 , C45C7 , C55C8 , C10
5C11, and C1250 hold true to all orders in perturbatio
theory for a massless light quark. This is because the tra
formation,q→g5q is a symmetry of massless QCD and t
U~1! helicity symmetry of Eq.~12! allows xn,p→g5xn,p ,
and these transformations relate currents with and with
g5 .

IV. RENORMALIZATION GROUP EVOLUTION

In this section we calculate the running of the Wilso
coefficients in the effective theory. The coefficients mix in
themselves and satisfy a renormalization group equation
the form

m
d

dm
C~m!5g~m!C~m!. ~34!

The fact that Eq.~34! is homogeneous reproduces the exp
nentiation of Sudakov logarithms. In this case it is natura
solve the renormalization group equations for the quan
ln C(m). The leading and subleading series of logarithms
determined by the coefficients summarized in Table II. Fr
the table one can see that for coefficients with tree le
0-8
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matching, the one-loop matching in Sec. III is not need
until the next-to-next-to-leading logarithmic~NNLL ! order.

In Sec. III it was shown that the coefficient of the effe
tive theory currentx̄n,PGhv is the same as the curren

j̄n,pGhv , so only the renormalization of the simplerj̄n,pGhv
current needs to be considered. At one loop the effec
theory diagrams are shown in Fig. 6. To distinguish UV a
IR divergences we choose the collinear quark momentump
5 p̃1k with label p̃5(n̄•p,0,p') and zero residual momen
tum k50. In this casep25p'

2 Þ0 and this off-shellness
regulates IR divergences in the diagrams. We will use
Feynman gauge. The soft diagrams in Fig. 6 give

Fig. 6~a!5 i j̄n,pGhv

CFas~m!C~m!

4p F2
1

e2

2
2

e
lnS mn̄•p

2p'
2 2 i e D

22 ln2S mn̄•p

2p'
2 2 i e D 2

3p2

4 G ,

Fig. 6~b!5 iv•k
as~m!CF

4p F2
2

e
24

24 lnS m

22v•k2 i e D G , ~35!

wherek is a residual momentum in the heavy quark wa
function diagram. The orderl0 soft wave function renormal
ization of the collinear quark is not shown since in Feynm
gauge it is proportional ton250. Evaluating the diagram
with a collinear gluon in Fig. 6 gives

FIG. 6. Orderl0 effective theory diagrams for the heavy-to
light current at one loop.

TABLE II. Coefficients in the effective theory loop graphs th
we anticipate are needed to predict the series of Sudakov logari
in ln C(m).

Series in lnC(m) One loop Two loops Three loops

LL as
n lnn11 1/e2 — —

NLL as
n lnn 1/e 1/e2 —

NNLL as
n lnn21 matching 1/e 1/e2
11402
d

e
d

e

n

Fig. 6~c!5i j̄n,pGhv

CFas~m!C~m!

4p F 2

e2 1
2

e

1
2

e
lnS m2

2p'
2 2 i e D 1 ln2S m2

2p'
2 2 i e D 12 lnS m2

2p'
2 2 i e D 14

2
p2

6 G ,
Fig. 6~d!5

i n̄”

2

p'
2

n̄•p

as~m!CF

4p F1

e
111 lnS m2

2p'
2 2 i e D G ,

Figs. 6~e!, 6~f!50. ~36!

The graph in Fig. 6~d! was calculated explicitly in Sec. II.
From Eq.~35! we see that the logarithms in diagrams wi

collinear gluons are small at a scalem;Ap'
2 ;Ql. For the

graphs with soft gluons the logarithms are small at a diff
ent scalem;p'

2 /(n̄•p);Ql2. Running the collinear-soft
theory fromm5Q to m5Ql therefore sums all logarithm
originating from collinear effects and part of the logarithm
from soft exchange. Atm5Ql collinear gluons may be in-
tegrated out and one matches onto a theory containing
soft degrees of freedom. The running in this soft theory
cludes the remaining logarithms from soft exchange, wh
would need to be taken into account to sum all Sudak
logarithms.

To run betweenQ andQl we add up the ultraviolet di-
vergences in the soft and collinear diagrams in Eqs.~35! and
~36!. This gives the counterterm in the effective theory

Zi511
as~m!CF

4p F 1

e2 1
2

e
lnS m

n̄•PD1
5

2eG . ~37!

For b→sg, n̄•P5mb and Eq. ~37! agrees with Ref.@6#.
Sincem.Ql the counterterm can depend on the labeln̄•P
;Q, but does not depend onP';Ql. Zi could also have
been calculated directly from the matching result in Eq.~31!.
Since the effective theory reproduces all the infrared div
gences in the full theory, the effective theory UV dive
gences are simply the negative of the full theory IR div
gences when pure dimensional regularization is used. T
alternative approach also gives Eq.~37!.

In the effective theory the currentj̄n,pGhv factors out of
the diagrams in Fig. 6 so it is obvious thatZi is independent
of the spin structure of the current. Thus, all the coefficie
satisfy the same renormalization group equation~RGE!

m
d

dm
Ci~m!5g~m!Ci~m!. ~38!

The LO anomalous dimension is determined by the ln~m!/e
term in Eq.~37! ~whose coefficient is determined by the 1/e2

term!. The next-to-leading order~NLO! anomalous dimen-
sion has a contribution from the 1/e terms in Eq.~37!, as well
as a contribution from the ln(m)/e term in the two loopZi ,
counterterm,

ms
0-9
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gLO52
as~m!CF

p
lnS m

n̄•PD ,

gNLO52
5as~m!CF

4p

22CFB
as

2~m!

~2p!2 lnS m

n̄•PD . ~39!

We have introduced the notationB for the two loop coeffi-
cient that has not yet been computed with the effect
theory. From the results in Ref.@9# we are led to expect tha
B5CA(67/182p2/6)25nf /9.

Since we wish to run down fromm5mb andn̄•P;mb it
is convenient to introduce the scalemb into the anomalous
dimensions. Writing ln(m/n̄•p)5ln(m/mb)2ln(n̄•P̂) and not-
ing that the second logarithm is not large, Eq.~39! can be
written as

gLO52
as~m!CF

p
lnS m

mb
D ,

gNLO52
as~m!CF

2p F5

2
22 ln~ n̄• P̂!G

22CFB
as

2~m!

~2p!2 lnS m

mb
D . ~40!

Using the one-loop running foras(m) the LO solution of the
RGE is

lnF Ci~m!

Ci~mb!G5
f 0~z!

as~mb!
52

4pCF

b0
2as~mb!

F1

z
211 ln zG ,

~41!

whereb0511/3CA22/3nf and

z5
as~m!

as~mb!
5

2p

2p1b0as~mb!ln~m/mb!
. ~42!

Equation ~41! sums the LL series of Sudakov logarithm
betweenQ andQl. At NLL order we include thegNLO term
in the anomalous dimension and the two-loop running
as(m) in gLO and find the following correction to Eq.~41!:

lnF Ci~m!

Ci~mb!GU
NLO

5 f 1~z,n̄• P̂!

52
CFb1

b0
3 F12z1z ln z2

1

2
ln2 zG

1
CF

b0
F5

2
22 ln~ n̄• P̂!G ln z

2
2CFB

b0
2 @z212 ln z#. ~43!

Here b1534CA
2/3210CAnf /322CFnf , and z is still given

by Eq. ~42!. It is easy to see that the result in Eq.~43! is
11402
e

f

suppressed by an extraas(m) relative to the result in Eq.
~41!. Also it is clear that to systematically sum the next-t
leading log series the two loop coefficientB is required.

Combining Eqs.~41! and ~43! the final result at a scale
m;Ql is

Ci~m!5Ci~mb!expF f 0~z!

as~mb!
1 f 1~z!G . ~44!

For i 5$1,2,3,4,6,7,9,10,11% the matching starts at tree leve
and from Table II we see that for the LL and NLL solution
the valueCi(mb)51 should be used in Eq.~44!. The coef-
ficientsC5,8,12(mb) are zero at tree level, and inserting the
one-loop matching values from Eq.~33! into Eq. ~44! gives
their LL and NLL series of logarithms.

V. APPLICATIONS

A. Inclusive decays

It is well known that the OPE for heavy-to-light decay
converges only for sufficiently inclusive variables. If th
available phase space is restricted such that only a few r
nances contribute to the decay the assumption of local d
ity no longer holds and the OPE fails. If, however, pha
space is restricted such that highly energetic jets with sm
invariant mass dominate the decay, only a subset of term
the OPE are enhanced. It is possible to resum this subs
terms into a universal structure function@20#. In the same
region of phase space, large Sudakov logarithms spoil
perturbative expansion and thus have to be summed as
This summation was carried out for the endpoint of the le
tonic energy spectrum in inclusiveB→Xul n̄ decays and the
endpoint of the photonic energy spectrum in inclusiveB
→Xsg decays@9,21# using perturbative factorization@19#. In
a subsequent work@10# endpoint logarithms in the hadroni
mass spectrum ofB→Xul n̄ decays were summed within th
same approach. In@6# it was shown that the result forB
→Xsg can be reproduced using the effective field theory

In this section we considerB→Xsg andB→Xul n̄ decays
at the endpoint of the photonic energy and hadronic invar
mass spectrum, respectively. We define kinematic variab

s05
pu

2

mb
2 , h5

2v•pu

mb
, ~45!

for B→Xul n̄ decays wherepu is the momentum of theu
quark. ForB→Xsg decays we define

x5
2v•q

mb
. ~46!

where q is the photon momentum. The endpoint regio
mentioned above correspond to 12x;s0 /h;LQCD/mb .
Thus, the invariant mass of the light jet is of the ord
AmbLQCD, and the power counting parameter satisfiesl2

;LQCD/mb . At tree level, integrating out collinear mode
by performing an OPE in the collinear-soft theory a
matching onto soft operators gives
0-10
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dĜs

dx
[

1

Gs
~0!

dGs

dx
5^BuO~x!uB&

d2Ĝu

dz dh
[

1

Gu
~0!

d2Gu

dz dh
52h2~322h!^BuO~z!uB&,

~47!

where z512s0 /h. Here we defined the tree level deca
rates in the parton model

Gu
~0!5

GF
2

192p3 uVubu2mb
5,

Gs
~0!5

GF
2

32p4 uVts* Vtbu2aem@C7
full#2mb

5, ~48!

where C7
full is the Wilson coefficient of the weak operat

mediating theb→s radiative transition@18# and we neglect
contributions from operators other thanO7

full . The operator
appearing in Eq.~47! is defined as@20#

O~y!5h̄vd~ iD̂ 1112y!hv , ~49!

where the covariant derivativeD̂15D1 /mb includes only
soft gluons. The matrix element of this operator betwe
B-meson states is the light-cone structure function of thB
meson. At higher orders in perturbation theory the differe
tial decay rates can be expressed as convolutions of s
distance coefficients with the operatorO(y). Defining mo-
ments of the decay rates

dĜu~N!

dh
5

1

Gu
~0! E

0

1

dz zN21
d2Gu

dz dh
,

Ĝs~N!5
1

Gs
~0! E

0

1

dx xN21
dGs

dx
, ~50!

undoes the convolution and makes comparison to exis
results in the literature straightforward. Letm0;Ql be the
scale where collinear modes are integrated out. At this s
the moments of the decay rates are

dĜu~N!

dh
52h2~322h!C~m0 ,hmb!2^O~N;m0!&,

Ĝs~N!5C~m0 ,mb!2^O~N;m0!&, ~51!

where the operatorO(N;m0) is defined as

O~N;m0!5E
0

1

dy yN21O~y;m0!. ~52!

Various coefficientsCi(m,n̄•p) can contribute to the deca
rates in Eq.~51!. However, at NLL order we only need th
tree level matching atm5mb in Eq. ~28!. Furthermore, at the
scalem05mb /AN large logarithms are not introduced whe
matching onto the operatorO(N,m0) @6#. At this scale to
11402
n

-
ort

g

le

NLL order we therefore only need tree level matching on
the operatorO(N,mb /AN). Since betweenm5mb and m
5mb /AN all coefficientsCi(m,n̄•p) have a universal run-
ning, the result can be written in terms of a single coefficie
C(m,n̄•p), whereC(mb ,n̄•p)51 and runs according to Eq
~44!.

The running ofC(m,n̄•p) does not reproduce the full se
of Sudakov logarithms because atm5mb /AN there are ad-
ditional large logarithms in the matrix element ofO(N,m). It
has been shown that these additional logarithms arise f
purely soft gluons and can be summed by running fromm
5mb /AN to m5mb /N @6#. However, taking the ratio of the
decay rates in Eq.~50! these matrix elements cancel,

1

Ĝs~N!

dĜu~N!

dh
52h2~322h!FC~m0 ,mbh!

C~m0 ,mb!
G 2

. ~53!

Thus, all the Sudakov logarithms in the ratio of rates a
calculable from the running of the Wilson coefficients in t
collinear-soft theory. Using Eq.~44! this leads to

1

Ĝs~N!

dĜu~N!

dh
52h2~322h!expF2

4CF

b0

ln~h!ln~z!G ,

~54!

where z(m)5as(m)/as(mb) is evaluated atm5mb /AN.
This result agrees with Ref.@10#.

B. Exclusive decays

As another application of the results obtained in Secs
and III, we investigate exclusive heavy-to-light decays. T
nonperturbative physics of such decays is given in terms
form factors. ForB decays to pseudoscalar and vector m
sons, they are conventionally defined as

^P~p!uq̄gmbuB̄~pb!&

5 f 1~q2!Fpb
m1pm2

mB
22mP

2

q2 qmG1 f 0~q2!
mB

22mP
2

q2 qm,

^P~p!uq̄ismnqnbuB̄~pb!&

52
f T~q2!

mB1mP
@q2~pb

m1pm!2~mB
22mP

2 !qm#,

^V~p,e* !uq̄gmbuB̄~pb!&

5
2V~q2!

mB1mV
i emnrsen* ~pb!rps ,
0-11
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^V~p,e* !uq̄gmg5buB̄~pb!&

52mVA0~q2!
e* •q

q2 qm1~mB1mV!A1~q2!

3Fe* m2
e* •q

q2 qmG2A2~q2!
e* •q

mB1mV

3Fpb
m1pm2

mB
22mV

2

q2 qmG ,
^V~p,e* !uq̄ismnqnbuB̄~pb!&

522T1~q2!i emnrsen* ~pb!rps ,

^V~p,e* !uq̄ismng5qnbuB̄~pb!&

5T2~q2!@~mB
22mV

2 !e* m2~e* •q!~pb
m1pm!#

1T3~q2!~e* •q!Fqm2
q2

mB
22mV

2 ~pb
m1pm!G , ~55!

whereq5pb2p. For decays in which the final light meso
has large energy, we can use the effective theory to g
additional information on these form factors. Using Eq.~27!
the matrix elements in the full theory are given by mat
elements in the effective theory,

^M uq̄GbuB&→(
i

Ci~m!^Mn,Pux̄n,PG ihvuHv&um1DFG .

~56!

HereM5P,V corresponds to the light pseudoscalar and v
tor meson states in the full theory, andMn,P andHv are the
states of the light and the heavy mesons in the effec
theory, respectively. The first term in Eq.~56! is the soft
contribution, while the second term indicates the so-ca
hard contributions@22,13#. For the soft form factor the off-
shellness of the light quarkpq

252Ek1 where k1;LQCD,
thus l2;LQCD/mb , just as for the inclusive decays. Th
DFG term in Eq.~56! involves interactions where a collinea
gluon is exchanged with the spectator in theB meson. In Ref.
@13# it was argued that these spectator effects are the s
order in l and 1/mb as the soft contributions, but can b
regarded as being suppressed by a power ofas(AmbLQCD).
They are therefore just as or more important than the o
loop corrections to the matching coefficientsCi(m) given in
Eq. ~33!. Here we will apply the effective theory to the so
contributions and leave the hard spectator contributions
future investigation.

In Ref. @12#, Charleset al. showed that in heavy-to-ligh
decays, in which both the heavy and light quark inter
solely via soft gluons, there are only three independent
trix elements. Charleset al. derived their result by combin
ing HQET with LEET and using the fact that the HQE
spinors describing heavy quarkshv and the LEET spinors
describing highly energetic quarks interacting with soft g
ons,jn , have only two independent components. Using
relationsv”hv5hv and n” jn50 they showed that at leadin
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order in 1/E ~where E is the energy of the light meson!
matrix elements of all hadronic currents in LEET are det
mined by only three independent functions. Unfortunate
LEET is not sufficient to describe heavy-to-light decays b
cause it omits interactions with collinear gluons.

However, as pointed out in Sec. II the spinors in the
fective theory, describing highly energetic quarks interact
with both soft and collinear gluons, still have two compo
nents. In Eq.~27! we see that there are only four independe
heavy-to-light currents in the collinear soft effective theo
For decays to pseudoscalar mesons likep andK, the matrix
elements of these currents are

^Pnux̄n,PhvuHv&52Ez~E!,

^Pnux̄n,Pg5hvuHv&50,

^Pnux̄n,Pg'
mhvuHv&50, ~57!

while for decays to vector mesons such asr andK* they are

^Vnux̄n,PhvuHv&50,

^Vnux̄n,Pg5hvuHv&522mVz i~E!v•e* ,

^Vnux̄n,Pg'
mhvuHv&52Ez'~E!i e'

mnen* , ~58!

wheree'
mn5emnstvsnt and we are using relativistic norma

ization for all effective theory states. Thus, there are s
only three linearly independent soft form factors in the co
plete effective theory. Together with Eq.~27! these matrix
elements determine that at tree level the heavy-to-light fo
factors are

f 1~q2!5z~E!, f 0~q2!52Êz~E!, f T~q2!5z~E!,

A1~q2!52Êz'~E!, A2~q2!5z'~E!, V~q2!5z'~E!,
~59!

T1~q2!5z'~E!, T2~q2!52Êz'~E!, T3~q2!5z'~E!,

A0~q2!5z i~E!.

In deriving these relations we have dropped terms s
pressed bymP,V /E since these corrections are just as large
l-suppressed power corrections that are not included. T
z i(E) only appears in the purely longitudinal form facto
A0(q2). Taking this into account our results are in agreem
with Ref. @12#.

From the results in Sec. III we can obtain some mo
information on the heavy-to-light form factors. The results
Eqs.~27! and ~33! determine the perturbative corrections
Eq. ~59!. Hard corrections do not break the symmetry re
tions between effective theory matrix elements, but
change the relation between form factors in the full and
fective theories. We find

f 1~q2!5z~E!@C41ÊC5#,

f 0~q2!5z~E!2Ê@C41C5~12Ê!#,
0-12
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f T~q2!5z~E!C11,

A1~q2!5z'~E!2ÊC3 ,

A2~q2!5z'~E!C3 ,
~60!

V~q2!5z'~E!C3 ,

T1~q2!5z'~E!C9 ,

T2~q2!5z'~E!2ÊC9 ,

T3~q2!5z'~E!C9 ,

A0~q2!5z i~E!@C41C5~12Ê!#,

where Ci5Ci(Ê) and we have used the helicity relation
given below Eq.~33!. In Ref. @23# it was pointed out that the
ratios V/A1 and T1 /T2 do not receive perturbative correc
tions due to the fact that interactions that flip the helicity
the energetic quark are suppressed by 1/E. From Eq.~60! we
see that, in fact, at leading order inl the soft contributions to
the form factors$A1 ,A2 ,V% and $T1 ,T2 ,T3% are related to
all orders inas . Furthermore, since the RGE’s for all cu
rents are identical, any ratio of soft form factors are indep
dent of Sudakov logarithms.

At one loop the hard corrections to ratios of the for
factors in Eq.~55! were previously calculated in Ref.@13#.
Since the authors used LEET as their effective theory th
matching calculation was not infrared safe and the ove
normalization of the low energy matrix elements was u
known. However, it was noted that this problem cancels
of the ratios of form factors because the infrared divergen
in the full theory are universal. Our results in Eq.~60! do not
suffer from this problem because the collinear-soft effect
theory has the same infrared divergences as QCD. Ta
ratios of the form factors in Eq.~60!, substituting the results
in Eq. ~33!, and expanding inas(mb), our results for the
hard corrections to the soft form factors agree with those
Ref. @13#.

As an application, consider the zero in the forwar
backward asymmetry of the rare decayB→K* l 1l 2, which
gives a relation between the Wilson coefficientsC9

full and
C7

full @24,25#

ReFC9
full~s0!

C7
full G52

mb

s0
FT2~s0!

A1~s0!
~mB2mK* !

1
T1~s0!

V~s0!
~mB1mK* !G , ~61!

wheres0;3 GeV is the value ofq2 where the asymmetry
vanishes. It was noted in Ref.@25# that in the ratio of soft
form factors the effective theory form factors cancel. Ign
ing again the hard spectator contributions and the higher
der effect of the mass of theK* we find
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ReFC9
full~s0!

C7
full G52mB

mb

s0
F2C9~mb!

C3~mb!
G

522mB

mb

s0
F 11

as~mb!CF

4p

3 ln~2Ê!
2Ê

122Ê
G , ~62!

where the perturbative correction from the soft form factor
in agreement with Ref.@13#. There are additional orderas
corrections to Eq.~62! from collinear gluon exchange with
the spectator inB, which can be found in Ref.@13#. Although
Sudakov logarithms do not affect the ratio of purely s
form factors, they may suppress the soft contribution relat
to that from collinear gluon exchange.

VI. CONCLUSIONS

In this paper we investigated in detail the collinear-s
effective theory, which describes highly energetic partic
with low invariant mass. The degrees of freedom in th
theory consist of collinear quarks and gluons with mome
scaling askc5Q(l2,1,l), and soft gluons with momenta
scaling asks5Q(l2,l2,l2). We gave a detailed derivatio
of the collinear-soft Lagrangian with the intent of making
straightforward to go to subleading orders inl. In addition
we derived the effective theory heavy-to-light current at
der l0. For decays of heavy particles there are regions
phase space where this theory applies, namely, when
hadronic decay products are light and are produced w
large energy. The currents mediating these decays are g
by four linearly independent operators in the effecti
theory. We performed the matching onto these operator
the one-loop level and calculated their renormalization gro
evolution from the hard scaleQ;mb to the intermediate
scaleQl.

We considered two applications of the collinear-s
theory: inclusive and exclusive decays. In the inclusive c
we focused our attention on the radiative decayB→Xsg and
the semileptonic decayB→Xul n̄ in the endpoint region of
large photon energy and of low hadronic invariant mass,
spectively. At leading order the OPE in the effective theo
gives a bilocal operator whose matrix element is the univ
sal nonperturbative light-cone structure function of theB me-
son. As is well known, in the ratio of large moments of the
two decays, this structure function cancels. As a conseque
the Sudakov logarithms in this ratio are entirely determin
by the running in the collinear-soft theory as discussed
Sec. V A. Our result is in agreement with previous literatu
@9,10#.

For exclusive decays we investigated the relations
amongst form factors in the large energy limit of QCD.
Ref. @12# it was shown using LEET that there are only thr
independent soft form factors at leading order in an exp
sion in inverse powers of the energy of the light quark. Ho
ever, since LEET does not include collinear gluons it do
0-13
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BAUER, FLEMING, PIRJOL, AND STEWART PHYSICAL REVIEW D63 114020
not correctly reproduce the IR logarithms of QCD, and t
relevance of this result is not immediately obvious. W
showed that the presence of collinear gluons does not s
the relations among the soft form factors, therefore establ
ing these results in the large energy limit of QCD. Finally w
used the one-loop matching of the currents in the effec
theory to relate the full theory form factors to the three
dependent matrix elements in the effective theory. O
analysis confirms the corresponding results in Ref.@13#, but
with an infrared safe definition of the matching coefficien
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APPENDIX A: COLLINEAR GAUGE
TRANSFORMATIONS

In this appendix we discuss the collinear gauge invaria
in the soft-collinear effective theory. For simplicity we wi
restrict ourselves to the Abelian case. From the general s
gauge transformationsU(x)5eia(x), where

c~x!→U~x!c~x!, Am~x!→Am~x!2
i

g
U†~x!]mU~x!,

~A1!

the collinear transformations belong to a subset wh
]ma(x) scales like a collinear momentum. To make this sc
ing explicit we decompose an arbitrary collinear gauge tra
formation as

U~x![E d4Q eiQ•xb~Q!5(
Q̃

eiQ̃•xbQ~x2!, ~A2!

where (n̄•Q,Q' ,n•Q);(l0,l,l2) and the sum is overQ̃
5(n̄•Q,Q'). For notational convenience we will suppre
the dependence ofbQ on x2 henceforth.

In Sec. II the full quark field was decomposed into co
ponentsjn,p(x) that no longer depend on the large phas
e2 i p̃•x. Under the collinear gauge transformation in Eq.~A2!
we have
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(
p̃

e2 i p̃•xjn,p~x!→(
p̃

(
Q̃

e2 i ~ p̃2Q̃!•xbQjn,p~x!

5(
p̃

e2 i p̃•x(
Q̃

bQjn,p1Q~x!. ~A3!

Up to terms suppressed by powers ofl the x dependence of
jn,p can be ignored and the Fourier components must ag
so

jn,p~x!→(
Q̃

bQ2Pjn,Q~x!. ~A4!

Thus, the collinear gauge invariance simply corresponds
‘‘reparametrization’’ invariance of the theory under chang
to the effective theory labels. Similarly, for the colline
gluon field with labelq̃ we find

(
q̃

e2 i q̃•xAn,q
m ~x!→(

q̃
e2 i q̃•xAn,q

m ~x!

1
1

g (
R̃

e2 iR̃•x(
Q̃

bR1Q*

3@bQQm2 i ]mbQ#, ~A5!

so the components transform as

Aq
m→Aq

m1
1

g (
Q̃

bQ1q* @QmbQ2 i ]mbQ#. ~A6!

Using the transformation properties~A4! and~A6! for the
collinear quark and gluon field, respectively, it is possible
see that the soft-collinear effective Lagrangian in Eq.~10! is
gauge invariant. To see this, it is sufficient to note that
following combination of collinear fields transforms in th
same manner as the collinear quark field in Eq.~A3!,

(
p̃

e2 i p̃•xS p̃m1
n̄m

2
in•]1g(

q̃
e2 i q̃•xAn,q

m D jn,p .

~A7!

The derivation is somewhat tedious, so we will not displ
the details. However, we note that to derive this result it
necessary to make use of the unitarity of the gauge trans
mation,U†(x)U(x)51 that implies

(
P̃,Q̃

bQbP* ei ~Q2P!•x51. ~A8!

Finally, we show that the jet fieldxn,P from Sec. III,

xn,P5(
p̃

e2 i p̃•x expS (
q̃

e2 i q̃•x
gn̄•An,q

n̄•q D jn,p , ~A9!

is invariant under the collinear gauge transformation in E
~A2!. We have
0-14
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xn,P→(
p̃

e2 ip•x expF(
q̃

e2 i q̃•x
gn̄•An,q

n̄•q

1(
q̃

e2 i q̃•x

n̄•q (
Q̃

n̄•QbQbQ1q* G(R bR2pjn,R .

~A10!

Comparing Eqs.~A1! and ~A5! and usingn̄•]bQ50 gives

2 i n̄•]a~x!5(
R̃,Q̃

e2 iR̃•xbR1Q* bQ~2 i n̄•Q!. ~A11!

Integrating this result with respect ton•x/2 and taking the
exponential gives the relation

expF(
R̃,Q̃

e2 iR̃•xbR1Q* bQ

n̄•Q

n̄•R G5e2 ia~x!5(
Q̃

e2 iQ̃•xbQ* .

~A12!

Substituting Eq.~A12! into Eq. ~A10! and shifting p̃→R̃
2 p̃ leaves

(
R̃

e2 iR̃•x expF(
q̃

e2 iq•x
gn̄•An,q

n̄•q G(
p̃

ei p̃•xbp(
Q̃

3e2 iQ̃•xbQ* jn,R5xn,P , ~A13!

where in the last step we have used the unitarity relation
Eq. ~A8! and the definition in Eq.~A9!. Thus, the jet field is
invariant under a collinear gauge transformation as expec

APPENDIX B: RENORMALIZATION OF THE CURRENT
IN THE COLLINEAR-SOFT THEORY

In Sec. III we quoted the renormalization constant of t
current operatorx̄n,PGh, in the collinear-soft theory

Z511
asCF

4p S 1

e2 1
2

e
log

m

n̄•P
1

5

2e D . ~B1!

This was obtained by computing the renormalization of
term j̄n,pGhv , which is the first term obtained using th
expansion ofx̄n,P in Eq. ~25!. However, the renormalization
constant~B1! depends only on the large component of the

FIG. 7. One-gluon diagrams contributing to the soft renorm
ization of the current operatorx̄nGh in an Abelian gauge theory
The crossed dot denotes one insertion of the operatorx̄nGhv .
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momentumn̄•P, which enters as a label on the jet fie
xn,P . This is a nontrivial consequence of collinear gau
invariance and is essential for a consistent renormalizatio
the collinear-soft effective theory. For example, in the c
linear diagram in Fig. 6~c! the Wilson coefficient depends o
only the sum of the collinear gluon and quark momentum
the loop. Thus, it depends only onp and not on the loop
momentum.

In this appendix we illustrate this property of the curre
by explicit calculation of the corresponding renormalizati
of the one collinear gluon term in the expansion ofx̄n,PGhv .
For simplicity we will work with an Abelian gauge theor
~QED!, for which this expansion has been given explicitly
Eq. ~21! ~with P5p1S iqi for each term!,

x̄n,PGhv5 j̄n,PGhv2
g

n̄•q
j̄n,Pn̄•An,qGhv

1
g2

n̄•q1n̄•q2
j̄n,pn̄•An,q1

n̄•An,q2
Ghv1¯ .

~B2!

The diagrams contributing to the renormalization of t
second term in this expansion are shown in Figs. 7 and 8.
will work throughout in the Feynman gauge. The diagra
in Figs. 7~a! and 8~a! have been computed already; the e
ternal gluon momentumq does not enter the loop integral, s
they can be simply extracted from the corresponding res
for j̄n,PGhv @Eqs.~35!, ~36!#,

Figs. 7~a!18~a!5K 2
g

n̄•q
j̄n,pn̄•An,qGhvL as

4p S 1

e2 1
2

e

1
2

e
log

m

n̄•p
1constD . ~B3!

Furthermore, upon examining the Feynman rule for the t
collinear gluon coupling in Fig. 1, one can see that the gra
in Fig. 8~c! vanishes in the Feynman gauge. We will show
the following that the net effect of the two remaining grap
Figs. 7~b! and 8~b! is to changen̄•p in the argument of the
logarithm in Eq. ~B3! to n̄•(p1q), corresponding to the
total momentumP5p1q carried by the jet.

For simplicity we will take the external momentap,q to
be off-shell and to have vanishing transverse compone
p5(p1 ,p2,0') and q5(q1 ,q2,0'). With this choice the
soft diagram Fig. 7~b! reduces to one term,

- FIG. 8. Collinear gluon renormalization of the current opera
x̄nGh with one external collinear gluon. The crossed dot deno
one insertion of the operatorx̄nGhv .
0-15
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Fig. 7~b!52 ig3E ddl

~2p!d

^j̄n,pn•An,qGhv&m
2e

@n• l 2p2/n̄•p#@n• l 2~p1q!2/n̄•~p1q!#@v• l #@ l 2#
. ~B4!
or

of
r

is

o

.

o-

nd
e-

of
.
all

the
n-
The integration is performed most easily in light-cone co
dinatesl 5( l 1,l 2,l'), where thel 1 integral can be done by
the method of residues. We obtain

Fig. 7~b!5^j̄n,pn•An,qGhv&
g3

8p2

1

n•q H 1

e
lnFn•~p1q!

n•p G
1constJ . ~B5!

Since this graph does not give a contribution to^j̄n,p
n̄•An,qGhv&, it does not contribute to the renormalization
the current. However, the resulting divergence seems to
quire a new truly nonlocal operator. We will show that th
contribution cancels in the sum of diagrams.

The collinear graph in Fig. 8~b! can be written as

Fig. 8~b!5^j̄n,pn•An,qGhv&I 11^j̄n,pn̄•An,qGhv&I 2 ,
~B6!

where

I 152ig3m2eE ddl

~2p!

n̄•~p1 l !n̄•~p1q1 l !

n̄• l ~ l 1p!2~ l 1p1q!2l 2 , ~B7!

I 2522ig3m2eE ddl

~2p!d

l'
2

n̄• l ~ l 1p!2~ l 1p1q!2l 2 .

~B8!

Once again the integration is simplified by using the meth
of residues on thel 1 integral. Explicitly, we find
tt

A
.

D

11402
-

e-

d

I 152
g3

8p2

1

n•q H 1

e
lnFn•~p1q!

n•p G1constJ , ~B9!

I 252
g

n̄•q

as

4p H 2

e
lnF n̄•p

n̄•~p1q!G1constJ . ~B10!

Thus, the first term inI 1 cancels the UV divergence in Eq
~B5!, as required. The divergent term inI 2 converts the label
in Eq. ~B3! from n̄•p to n̄•(p1q). As mentioned, the re-
maining UV divergence depends only on the total jet m
mentumP5p1q,

Figs. 7~a!17~b!18~a!18~b!18~c!5

K 2
g

n̄•q
j̄n,pn̄•An,qGhvL as

4p S 1

e2 1
2

e
1

2

e
log

m

n̄•P

1constD .

~B11!

After adding the contributions from the heavy quark a
collinear quark field wave function renormalization, we r
produce the renormalization constantZ in Eq. ~B1! ~after
taking the color factorCF→1!. With similar techniques we
have also checked that this holds for the renormalization
the term in Eq.~B2! that contains two collinear gluon fields
As argued in Sec. III, collinear gauge invariance forces
the terms in the sum in Eq.~B2! to be renormalized in the
same way, with a Wilson coefficient that depends only on
total jet momentum. The explicit calculations in this appe
dix agree with this result.
J.
.
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