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Recoil and threshold corrections in short-distance cross sections

Eric Laenen
NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

George Sterman
C. N. Yang Institute for Theoretical Physics, SUNY Stony Brook, Stony Brook, New York 11794-3840

and Physics Department, Brookhaven National Laboratory, Upton, New York 11973

Werner Vogelsang
C. N. Yang Institute for Theoretical Physics, SUNY Stony Brook, Stony Brook, New York 11794-3840

and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York
~Received 10 October 2000; published 4 May 2001!

We identify and resum corrections associated with the kinematic recoil of the hard scattering against
soft-gluon emission in single-particle inclusive cross sections. The method avoids double counting and con-
serves the flow of partonic energy. It reproduces threshold resummation for high-pT single-particle cross
sections, when recoil is neglected, andQT resummation at lowQT , when higher-order threshold logarithms are
suppressed. We exhibit explicit resummed cross sections, accurate to next-to-leading logarithm, for elec-
troweak annihilation and prompt photon inclusive cross sections.
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I. INTRODUCTION

A large class of hard-scattering cross sections in QCD
factorized into convolutions of parton distributions and fra
mentation functions with hard-scattering functions@1#. Im-
portant and representative examples are Higgs produc
and Drell-Yan cross sections, at measured invariant masQ
and transverse momentumQT . We shall refer to these reac
tions collectively as electroweak annihilation. At fixed, lar
QT , electroweak annihilation cross sections are written
collinear-factorized form as

dsAB→V

dQ2dQT
2

5(
ab

E dxafa/A~xa ,m! E dxbfb/B~xb ,m!

3ŝab→V„Q
2/ ŝ,QT

2/Q2,Q2/m2,m,as~m!…,

~1!

in terms of evolved, nonperturbative distributions~densities!
fa/A(x,m) of partona in hadronA, and hard-scattering func
tions ŝab→V„Q

2/ ŝ,QT
2/Q2,Q2/m2,m,as(m)…, computed as

power series inas . Here ŝ[xaxbS is the partonic invariant
mass squared, whilem is a factorization scale, which for th
time being we equate with the renormalization scale. Gen
single-particle inclusive~1PI! cross sections for photons an
light hadrons at highpT take a similar form, including a
fragmentation function.

Many hard-scattering functions have been computed
next-to-leading order~NLO! in as(m). Analytic calculations
of still higher-order contributions@2# to ŝ are as yet too
complex to carry out, except for fully inclusive process
such as the Drell-Yan production of lepton pairs at measu
invariant mass@3#. Nevertheless, general arguments sh
that the functionsŝ are infrared safe to all orders@4#.
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Starting at NLO, the computation ofŝ involves cancella-
tions between soft gluon emission and virtual correctio
These cancellations produce plus distributions and d
functions, which require integration against smooth fun
tions, such as parton densities. The finite integrals, in tu
are potential sources of numerically large corrections at e
order in perturbation theory. Because of their connection
soft-gluon emission, however, such corrections can so
times be resummed to all orders in perturbation theory.

For example, in Eq.~1!, ŝab→V includes distributions tha
are singular at partonic threshold,ŝ5Q2, where partonsa
and b have just enough invariant mass to produce the
served final state. Definingz5Q2/ ŝ, we find at nth order
singularities as strong asas

n@(12z)21ln2n21(12z)#1 .
Threshold resummations, which organize these distributio
have been developed for a large class of cross sections@5–7#.
Although these singularities are manifest inŝab→V , they do
not generally result in large logarithms in the physical cro
section, because they are smoothed by the integrals ovexa
andxb in Eq. ~1!. Thus, threshold resummation is not a su
mation of kinematic logarithms in the physical cross secti
It is rather an attempt to quantify the effect on the physi
cross section of a well-defined set of corrections inŝ to all
orders.

Threshold singularities are not the only singular distrib
tions encountered in the computation ofŝ. In addition,
the perturbative cross section is singular up
as

n@(1/QT
2)ln2n21(QT

2/Q2)#1 in ŝ, Eq.~1!, when the transverse
momentum,QT , of the electroweak boson is small compar
to its mass,Q @8,9#. At each order,QT is balanced by soft
gluons, and singularities in the differential cross section
QT50 reflect collinear divergences inŝ not eliminated by
factorization. These divergences, resummed or not, canc
the QT-integrated cross section, even before the integ
©2001 The American Physical Society18-1
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over the partonic fractionsxa andxb , although the remainde
is still singular at partonic threshold.

Much of the recent interest in soft-gluon recoil effects h
centered on the normalization andpT-dependence of single
particle inclusive cross sections@10#, particularly direct-
photon production at fixed-target energies@11–17#. The for-
malism of QT resummation for Eq.~1! is not immediately
applicable to inclusive high-pT cross sections, because in th
case most of the transverse momentum of the observed
ticle is recoil against other high-pT particles, while only a
small portion is from soft radiation. A rough-and-ready a
proach to soft-gluon radiation is to introduce intrinsic tran
verse momentum for the partons in factorized express
like Eq. ~1!, typically in the form of an energy-depende
Gaussian smearing of standard parton densities, which
hances the cross section. This method, however, certa
involves double counting, and does not respect the conse
tion of partonic energy. Some time ago, Li and Lai explor
the possibility that nonperturbativekT smearing in high-pT

cross sections has the same origin as in the low-QT Drell-
Yan cross sections described by theQT-resummation formal-
ism @17#. More recently, Li@18# has shown how threshol
and transverse momentum resummation may be der
from the same parton distribution, defined in transverse m
mentum space, as in Ref.@9#.

When the conservation of energy is taken into accou
however, it is no longer obvious whether the inclusion
recoil effects will lead to an enhancement or a suppress
because the extra radiation involves a number of compe
effects. On the one hand, a substantialkT from initial-state
radiation allows a softer 2→2 subprocess at the hard sca
tering, which clearly acts toward enhancement. On the o
hand, the extra energy of the initial-state radiation drives
physical parton distributions to largerx, which may more
than make up for enhancements in the hard scattering if
distributions are decreasing withx. At the same time, largerx
is associated with larger threshold enhancements in gen
The only way to estimate the influence of recoil effects
cross sections is to develop a self-consistent resumma
formalism.

In this paper, we shall take up, and we hope clarify, t
general viewpoint. Our reasoning is based on a genera
tion of threshold resummation which, as we have seen, c
trols singular distributions atz51. For electroweak annihi
lation and single-particle inclusive cross sections, su
contributions are always associated with an underlying
→2 hard scattering@5#. We use the 2→2 subprocess to de
fine the relevant transverse momentumQT , whose singulari-
ties we resum. The recoil we discuss below is always
recoil of a 2→2 subprocess. Thus, just as for threshold
summation, we reorganize a well-defined set of higher or
corrections in hard scattering functions, always working
leading power in the hard scale,Q, within collinear factor-
ization. We do not exclude the possibility of nonperturbat
effects, however. Indeed, we will observe that nonpertur
tive corrections arise quite naturally from our resummed
pressions. A summary of our results, applied to prompt p
ton cross sections, was described in Ref.@19#.
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Let us offer a few additional comments on nonperturb
tive effects in these cross sections. Nonperturbative effe
play a crucial role in the phenomenological description
electroweak annihilation cross sections at lowQT , even for a
large final state mass scaleQ. This is the case, even after th
resummation of logarithms ofQT /Q that can give a well-
defined perturbative prediction for smallQT . Incorporating
nonperturbative effects, of course, requires the introduc
of new parameters@8,20,21#. In each of these cases, the for
of nonperturbative corrections is suggested by perturba
theory @22–24#. In contrast, nonperturbative effects~beyond
fragmentation functions! have not been incorporated i
prompt photon and other single-particle inclusive cross s
tions, where there is no need for them at fixed order in p
turbation theory. For threshold-resummed cross sections
situation is somewhat more subtle, but ‘‘minimal’’ formula
tions of threshold resummation allow for a class of pure
perturbative predictions@25,26#, with no new parameters. O
course, the existence of such a formalism does not by it
preclude the importance of nonperturbative effects. In t
paper, we develop a perturbative formalism that links b
sorts of cross sections, and which is consistent with kno
results that have suggested nonperturbative correction
measuredQT in electroweak annihilation. Part of our goal
to open the door, not only to further perturbative analys
but also to the study of similarities and differences in t
roles of nonperturbative corrections in these cases.

We choose to work in the formalism of collinear facto
ization because we do not wish to introduce a new se
phenomenological parton distributions, depending on tra
verse as well as longitudinal degrees of freedom, exc
where absolutely necessary.1 The resulting combination o
threshold and transverse momentum resummations is at
as technically challenging as NLO factorization, let alo
QT-resummation, and the new formalism will require som
time to understand and develop as a practical tool. We th
fore do not attempt to draw immediate phenomenologi
conclusions in this paper. Instead, we shall concentrate
the formal development, and~especially in Appendix A! the
theoretical underpinning of these ideas. We have attemp
to be as explicit as possible in our arguments and in sp
fying the functions whose momentum-dependence cont
the set of higher-order corrections that we study. This
resulted in a paper of substantial, although we hope not
cessive, length.

We begin in Sec. II with a treatment of electroweak a
nihilation processes, such as Drell-Yan and Higgs prod
tion, whose singular behavior at vanishing transverse m
mentum has been studied intensively over the years@8,9#,
and which is in many ways the archetype for resummati
We show how to introduce threshold resummation con
tently at measuredQT for these processes. Our approach
resummation is through a ‘‘refactorization’’ of partonic cro
sections near threshold@7,27#. In this discussion, we shal

1This may well be the case for vector boson production at lowQT

@20#. Nevertheless, we feel that it is important to explore fully t
simpler formalism.
8-2
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RECOIL AND THRESHOLD CORRECTIONS IN SHORT- . . . PHYSICAL REVIEW D 63 114018
review the refactorizations at the basis ofQT and threshold
resummations, and define a set of new functions which c
trol singular behavior in 12z and QT jointly. These will
serve as building blocks both for electroweak annihilat
cross sections, in Sec. III, and for single-particle inclus
processes, in Sec. IV.

Resummation at threshold and in transverse momentu
most often formulated in Mellin~N! moment space for the
former, and impact parameter~b! space for the latter. Re
summed logarithms of these parameters exponentiate in
relevant limits, so that the resummed cross sections are
verse transforms. In Sec. III we resum logarithms ofb andN
in the electroweak annihilation cross sections. We begin
deriving a relation for the hadronicds/dQ2dQT

2 in terms of
parton distributions, eikonal cross sections for partons,
universal anomalous dimensions. We observe that
jointly-resummed cross section determines the pattern
power corrections inQ andb that are implied by the behav
ior of the strong coupling in perturbation theory. In partic
lar, we find that in QCD such power corrections appear o
at even powers of the invariant massQ and impact paramete
b.

Section IV deals first with prompt photon production, a
then with general high-pT single-hadron or photon inclusiv
cross sections. For the former, we derive the joint resum
tion applied in Ref.@19#, and for the latter we discuss th
additional resummation associated with fragmentation.

Explicit NLL expressions for jointly resummed exponen
in electroweak annihilation and prompt photon product
are given in Sec. V, along with a few comments on t
source of enhancement at NLL. Following our conclusio
we include two appendixes. The first gives the necess
arguments for factorization and refactorization, and the s
ond gives explicit one-loop results for some of the functio
that play an important role in the refactorizations of ha
scattering cross sections.

II. REFACTORIZATION FOR ELECTROWEAK
ANNIHILATION

As above,Q denotes the mass of an electroweak fin
state, such as a vector boson, a Drell-Yan pair or a Hi
boson. The cross sectionds/dQ2dQT

2 , at measuredQ2 and
QT , given in factorized form in Eq.~1!, is singular atQT
50, order-by-order in perturbation theory. There are a nu
ber of phenomenological applications ofQT-resummation
for these singularities@20,21#. We know of no simultaneous
application of threshold resummation, however, although
cross sections are singular as well at partonic thresholŝ
5Q2.

As pointed out above, distributions that are singular
threshold are smoothed in the physical cross section by i
gration with the parton densities. Nevertheless, there
good deal to be learned by resumming singular beha
from the limit ŝ→Q2, even at fixed, measuredQT @28#. To
derive a cross section resummed both in threshold andQT
variables, we study partonic cross sectionsa1b→V1X
near threshold, wherea andb are partons, and whereV de-
11401
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notes the heavy electroweak final stateV5W,Z,H, etc. We
begin by formulating the problem in a standard form
through collinear factorization.

In this section, which is rather technical in parts, we l
the groundwork for our derivation of jointly resummed cro
sections. We have chosen to present our new formalism
the context of a review of existing resummations, for t
purpose of motivation, and also to bring together a set
results and methods that are somewhat scattered in the li
ture. It may be helpful, therefore, to outline the contents a
aims of the subsections that follow.

We begin~Sec. II A! by relating the hard-scattering func
tions that we will resum to partonic cross sections. In S
II B, we review existing refactorizations for partonic cro
sections, which have been used to derive resummations
electroweak annihilation at low transverse momentum@9#
and at partonic threshold@5,6#. We then go on to present
novel refactorization that combines the two@Eq. ~9!#, and
observe how refactorization provides a natural formulat
of the effects of recoil. The all-orders justifications for all
these refactorizations are presented in Appendix A. Equa
~9! involves new perturbative functions, denotedRi / j . The
field-theoretic content of these functions is the subject
Sec. II C, which begins with a review of the analogous de
nitions for light cone parton distributions@29#, as well as the
fixed-energy distributions introduced in Ref.@5#. Each of the
refactorization theorems in Sec. II B also includes a funct
that describes coherent radiation, which summarizes the
terference between emission by incoming and outgoing h
partons. An analysis of coherent radiation is especially
portant for processes in which colored particles emerge fr
the hard scattering@7#, the simplest of which is prompt pho
ton production. This interference may be treated in eiko
approximation. The analysis of the eikonal approximation
soft gluon radiation is the subject of Sec. II D, in whic
various eikonal analogs of the densities in Sec. II C are
troduced. Finally~Sec. II E!, we review the use of Mellin and
Fourier transforms to isolate hard-scattering functions. T
new results derived in this section are applied in Sec. III
electroweak annihilation, and in Sec. IV to single-partic
inclusive cross sections.

A. The hard-scattering function

Although the hard-scattering functionŝab→V in Eq. ~1! is
singular atQT50, these singularities may be determined
the same time as threshold singularities atQ2/ ŝ51. To be
specific, we shall derive an expression forŝab→V in terms of
its moments with respect toz[Q2/ ŝ:

ŝab→V„N,QT
2/Q2,Q2/m2,m,as~m!…

5E
0

1

dzzN21ŝab→V„z,QT
2/Q2,Q2/m2,m,as~m!…, ~2!

where for economy of notation, we denote the transform
ŝab→V with respect toz (QT) by its argumentN (b). The hat
8-3
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refers to its role as a hard-scattering function, from wh
collinear divergences are subtracted. The inverse of the M
lin moment~2! is, as usual,

ŝab→V„z,QT
2/Q2,Q2/m2,m,as~m!…

5E
C2 i`

C1 i` dN

2p i
z2Nŝab→V„N,QT

2/Q2,Q2/m2,m,as~m!….

~3!

We are able to constructŝab→V(N) because it also
emerges from the factorization ofpartonic cross sections
with respect tot[Q2/S. Up to corrections due to parto
mixing, which we may neglect to leading power in the m
ment variable, we have, from Eq.~1!,

ŝab→V„N,QT
2/Q2,Q2/m2,m,as~m!…

5
1

f̃a/a~N11,m!f̃b/b~N11,m!
E

0

1

dttN21
dsab→V

dQ2dQT
2

.

~4!

The moments,f̃ i / i(N11,m), of the parton-in-parton distri-
butions cancel collinear singularities in the moments of
partonic cross section, and the right-hand side of this exp
sion is infrared safe, order-by-order in perturbation the
when QTÞ0. Our goal now is to determine the singul
structure ofŝab→V at bothz51 and atQT50. To control
these singularities, we follow Refs.@5,30–34#, and refactor-
ize the ~collinear-regularized! partonic cross section
dsab→V /dQ2dQT

2 in this limit. The discussion of the follow-
ing subsection applies entirely to these, purely parto
cross sections.

B. Refactorization and recoil in the partonic cross section

To motivate the refactorization appropriate to joint resu
mation in QT and 12z, it may be useful to review the rel
evant features of the separate resummation formalisms
transverse momentum and threshold. We will continue
work in the context of perturbation theory as in Eq.~4!,
because our aim is always to analyze higher orders in
tonic hard-scattering functions. Each of the refactorizatio
given below involves the introduction of new parton dist
butions, variously at measured transverse momentum an
energy fraction. The new functions are not to be interpre
as physically-accessible distributions. Rather, they are
turbative constructs useful for the analysis of the ha
scattering functions of Eq.~4!.

In the formalism of Ref.@35#, the measured-QT cross sec-
tion is written as a convolution of~parton-in-parton! distri-
butionsPi / j (x,k), at fixed parton transverse momentumk,
and light-cone momentum fractionx, along with an addi-
tional, eikonal functionUcd(q) that describes coherent sof
gluon emission at fixed transverse momentum,
11401
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dsab→V

dQ2d2QT

5(
cd

scd→V
(0) ~Q2!hcd

(kt)~as~Q!!

3E dxad2ka Pc/a~xa ,ka ,Q!

3E dxbd2kb Pd/b~xb ,kb ,Q!

3E d2qUcd„q/m,as~m!…d~Q22xaxbS!

3d2~QT1ka1kb1q!1Ykt , ~5!

wheres (0) is the Born total cross section for the process,
example,saā→g*

(0)
54pa2ea

2/3NC Q2, with NC the number of
colors andea the quark charge. The remainder,Ykt , does not
diverge as a power atQT50. Note that because the function
Pi / j are defined at measuredk, no factorization scale is nec
essary, although the distributions still depend on the ove
momentum scaleQ. The variablem in the arguments ofU is
therefore a renormalization scale. The additive convolut
in this expression implies that the cross section breaks
into a product under a Fourier transform to impact parame
~b! space@8#. The functionhcd

(kt)
„as(Q)…511O„as(Q)… ab-

sorbs hard-gluon corrections that appear in coefficients
d2(QT). The combinations (0) h(kt) is a truly short-distance
function, dominated by lines off-shell byO(Q2) @36#. In
contrast, the full hard-scattering function in Eq.~4! in gen-
eral contains lines that are off-shell only byO(QT

2). This
hierarchy of perturbative scales is characteristic of resum
tion. We shall use the term ‘‘short-distance’’ to refer spec
cally to functions that depend only on the largest scale,Q in
this case.

The refactorized cross section for threshold resummat
with integratedQT , has many of the same features. No
however, the parton-in-parton distributionsc i / j (x) are de-
fined at measured fraction of the energy of partonj ~in the
center-of-mass frame for the hard scattering!, rather than
light-cone fraction, as is the new eikonal functionUcd(ws),
with total energywsQ for soft gluon radiation into the fina
state. Working to leading power in 12Q2/S leads to impor-
tant simplifications. First, the nondiagonal parton-in-part
distributions,cc/a(x,Q) begin at orderas with the emission
of a soft fermion~not a pair! into the final state, which result
in a suppression of order 12x in the distribution, and of 1
2Q2/S in the cross section@5#. To leading power, therefore
we may neglect parton mixing, just as at leading power
the moments, Eq.~4!. The refactorized expression is@5#

dsab→V

dQ2
5

1

S
sab→V

(0) ~Q2!hab
(th)

„as~Q!…E dxa ca/a~xa ,Q!

3E dxb cb/b~xb ,Q!

3E dwsUab„wsQ/m,as~m!…

3d„12Q2/S2~12xa!2~12xb!2ws…1Yth ,

~6!
8-4
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where Yth is nonleading by a power of 12Q2/S. Even
though transverse momenta inc are integrated, the phas
space for radiation is finite for fixed parton energy, andm
again denotes the renormalization scale. An explicit defi
tion of cc/a as a matrix element will be given below. Th
remainder,Yth , does not diverge as a power of 12Q2/S at
threshold. The short-distance functionhab

(kt)511O(as) orga-
nizes infrared safe coefficients ofd(12z) in this case.

It is most natural to analyze the cross section near thre
old, Eq. ~6!, in terms of a Laplace transform
*dtexp@2N(12t)#, with t5Q2/S. For N large, we can
readily relate this Laplace transform to the Mellin mome
in Eq. ~4!. This follows because generally,

e2N(12j);jN, ~7!
a
en
e

a
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rm
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d
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with corrections that are suppressed by a power ofN, and
because in Eq.~6!,

12~12xa!2~12xb!2ws;xaxb~12ws!

1O~@12Q2/S#2!. ~8!

The Laplace moments of Eq.~6! are therefore equivalent to
its Mellin moments to leading power inN, and hence in 1
2Q2/S.

The close correspondence between the factorization
low QT and near threshold makes it rather natural to comb
the two. We therefore propose a convolution at fixed tra
verse momentumand energy fraction:
dsab→V

dQ2d2QT

5
1

S
sab→V

(0) ~Q2!hab
(j)
„as~Q!…E dxad2ka Ra/a~xa ,ka ,Q!E dxbd2kb Rb/b~xb ,kb ,Q!

3E dwsd
2ks Uab~ws ,Q,ks!d„12Q2/S2~12xa!2~12xb!2ws…d

2~QT1ka1kb1ks!1Yj . ~9!
ma-
s.

s-
e

like
i-
ype
on,

s,

ded
an

the
n

The short-distance functionhab
(j) (as) is again an infrared-safe

series in the running coupling, which begins with unity
zeroth order, and which absorbs, in this case, the coeffici
of d(12z) d2(QT) at one loop and beyond. The remaind
Yj is free of power singularities atQT50 at leading power in
12Q2/S. As in threshold resummation, only flavor-diagon
hard scatterings contribute atO@1/(12Q2/S)#. It is impor-
tant to note that in terms that arenot singular inQT , this
leading power emerges only after integration overQT . This
is because at fixed energy (12z)Q, the phase space inQT

behaves as:*0
Q2(12z)2

dQT
25(12z)2Q2.

Equation~9!, and indeed each of the refactorizations d
cussed above, may be represented as in Fig. 1. In the te
nology of Ref.@4# and Appendix A below, Fig. 1 represen
the general ‘‘leading regions’’ in momentum space for th
cross section. The subdiagramsJa,b include lines collinear to
the incoming partons,H lines off-shell by orderQ, and U
soft radiation.

The refactorizations of Eqs.~5! and~9! themselves define
the concept of recoil that we will use in this paper. T
short-distance functions (0) h(kt) is computed with on-shel
external momenta, collinear to the incoming lines. All un
tegrated transverse momentum dependence is containe
the generalized parton densitiesP in ~5! and R in Eq. ~9!.
The dependence of highly off-shell lines on the transve
momentaka andkb of initial-state partons is to be absorbe
into higher orders of the short-distance function, by the us
methods of collinear factorization. On the other hand, in b
transverse momentum and joint resummation, we retain
kinematic linkage of the partonic transverse momentum w
the electroweak final state. This is what we shall mean
including recoil effects.
t
ts
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in
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C. Matrix elements

The refactorization theorems above, and the resum
tions derived from them, involve a number of new function
We now give explicit definitions for the various parton di
tributions, P, R and c, when the incoming partons ar
quarks, as well as for the eikonal functionsU. Gluonic dis-
tributions can be defined similarly, following Ref.@29#.

The parton densitiesRa/a and the eikonal functionsU f f̄ ,
defined at fixed energy and transverse momentum are,
Eq. ~9! itself, straightforward variations of functions ident
fied for theQT and threshold resummed cases. The protot
for these expressions is the partonic light-cone distributi
written as@29#

f f / f~x,m,e!5
1

4NC
E dl

2p
e2 ilxp1

3^ f ~p!uq̄f~lu!g•uqf~0!u f ~p!&, ~10!

wherem is the scale at which the product of quark field
which are connected by a lightlike separation,lum, u250, is
renormalized. An average over colors and spins is inclu
in the definition. In this expression, we have suppressed
ordered exponential,Fu

(q)(l,0;0), which we shall also refer
to as a nonabelian phase line, of the gauge field along
light cone vector between the quark fields, in the notatio

Fb
( f )~l2 ,l1 ;X!5PexpS 2 igE

l1

l2
dhb•A( f )~hb1X! D .

~11!
8-5
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Here the gauge field is a matrix in the representation of p
ton f. In momentum space, these operators correspon
eikonal lines. Equivalently, we may define the matrix e
ment~10! in u•A50 gauge. The perturbative modified min
mal subtraction scheme (MS) distribution, computed as
power series inas(m), is independent of the momentumpm;
it is a ‘‘pure counterterm,’’ that is, a series of poles ine
522D/2 in D dimensions, a dependence which we exhi
among its arguments.

We may regard perturbativeMS distributions as defined
by their evolution equations, which in moment space are

m2
d

dm2 f̃ f / f~N,m,e!5g f f„N,as~m!…f̃ f f~N,m,e!1O~1/N!,

~12!

with g f f(N,as)5*0
1dxxN21Pf f(x,as) the moments of the

splitting function for flavorf. As usual, up to corrections o
order 1/N, we may neglect flavor mixing. A very useful ex
plicit form for the MS distributions is found by solving this
equation, with the boundary conditionf̃(N,m50,e)51,

f̃ f / f~N,m,e!5expF E
0

m2dm82

m82
g f f„N,as~m8!…G . ~13!

This expression is meaningful for the collinear-regulariz
distribution, defined forD.4, or equivalentlye,0, because
of the e-dependence of the strong coupling. Them8 integral
is regulated by reexpressingas(m8) in terms of the strong
coupling evaluated at the fixed scalem: as(m)
5(m8/m)2eas(m8)1••• . TheMS prescription then consist
of reinterpreting the upper limit asmF

2 ln(4peE
2g), with gE

FIG. 1. Leading region for electroweak annihilation in cut d
gram form. The vertical line represents the final state that inclu
an electroweak boson, labeledQ. The subdiagramsJa , Jb , Uab and
H incorporate, respectively, on-shell lines with momenta collin
to pa , lines with on-shell momenta parallel topb , lines with soft
momenta, and lines off-shell by orderQ.
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the Euler constant. We shall not generally exhibit this mo
fication below, nor indicate explicitly thee-dependence of
the coupling.

To leading power inN, g f f is found from moments of the
expansion

Pf f~z!5Af~as! F 1

12zG
1

1Bf~as!d~12z!1O~@12z#0!.

~14!

The plus distribution appears only as a power series inas
times @1/(12z)#1 . It is worth noting here that the form o
Eq. ~14!, with no explicit powers of ln(12z) in the plus
distribution, is required by collinear factorization, and is n
an additional assumption@37#. We shall see this resul
emerge below in Sec. III. A similar observation was ma
recently by Albino and Ball@38#.

For NLL expansions, we will need the anomalous dime
sionsAa(as) to two loops. For flavora, they are given by the
familiar expansion,Aa(as)5(n (as /p)nAa

(n) , with2

Aa
(1)5Ca

Aa
(2)5

1

2
CaK[

1

2
CaFCAS 67

18
2

p2

6 D2
10

9
TRNf G , ~15!

whereCq5CF , Cg5CA . To lowest order, which is the ac
curacy necessary for NLL, we haveBa5(as /p)Ba

(1) , where
Bq

(1) andBg
(1) are given by

Bq
(1)5

3

4
CF , Bg

(1)5
b0

4
, ~16!

with b0511NC/322nf /3, the lowest-order coefficient of th
QCD beta function.

Matrix element representations of the functionsPf / f are
similar @29#,

Pf / f~x,k,p•n,e!5
1

4NC

3E dl

2p

d2b

~2p!2
e2 ilxp•u1 ib•k

3^ f ~p!uq̄f~01,l,b!g•uqf~0!u f ~p!&.

~17!

This matrix element is defined in an axial,n•A50 gauge,
which is how it acquiresp•n dependence. It also require
collinear regularization in perturbation theory.

‘The densitiesc f / f are the distributions of quarks of fixe
energy p05Q/2x;Q/2, in the center-of-mass of the pro
duced pair, whileRf / f(x,k,p0) are distributions in energy
and transverse momentumk. The external line is an on-she

2The functionAa @39# is proportional toGcusp in Refs.@40,41#.
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quark of four-momentumpm5(Q/xA2)vm, with v250. The
inclusive energy distributionc f / f is then given by

c f / f~x,2p0 ,e!5
1

2NC

p0

2p•uE dl

2p
e2 ilxp0

3^ f ~p!uq̄f~ln̂!g•uqf~0!u f ~p!&, ~18!

whereqf(x) is the field for flavorf, um is the light-cone unit
vector opposite tovm, u•v51, andn̂m is the unit vector in
the time direction,n̂m5(1,0W ). Following Ref.@5#, we evalu-
ate the matrix element~18! in n̂•A5A050 gauge in the
center-of-mass frame, which turns out to be convenient
calculational purposes. Werec f / f defined in a spacelike axia
gauge, it would differ only by finite corrections. The opera
product separated by a timelike distance requires no
renormalization. Correspondingly, the functionsRq/q may be
defined as matrix elements by

Rf / f~x,k,2p0 ,e!

5
1

2NC

p0

2p•uE dl

2p

d2b

~2p!2
e2 ilxp01 ib•k

3^ f ~p!uq̄f~ln̂1b!g•uqf~0!u f ~p!&, ~19!

again evaluated inA050 gauge. In these expressions, and
the remainder of this section, we suppress dependence o
renormalization scale, which we take equal toQ52p0. We
will return to the choice of renormalization scale later.

D. Eikonal functions and factorizations

Near partonic threshold, all radiation is soft, compared
the hard scattering function. It is thus natural to study
eikonal approximation for the cross section and for the f
torizations that characterize the dynamics. The discus
below follows Refs.@34,42#.

The eikonal cross section is built from ordered expon
tials, Fb

( f )(0,2`;X), of the gauge field in the group repre
sentation of the incoming partons, extending from minus
finity to the point of annihilation, in the notation of Eq.~11!.
We introduce a product that represents the annihilating c
bination of two non-Abelian phase operators:

W (cd̄)~X!5Fb8
(d̄)

~0,2`;X!Fb
(c)~0,2`;X!, ~20!

where for quarks,c and d̄ may carry different flavors, as in
the case ofu1d̄→W1. From the operatorsW (cd̄), we define
an eikonal cross section at fixed energy and transverse
mentum, which represents the QCD radiation generated
the annihilation of the two incoming color sources, negle
ing recoil,
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scd̄
(eik)

~j,Q,k,e!5Q E dl

2p

d2b

~2p!2
e2 iljQ/21 ib•k

3
1

d~c!
Tr ^0u T̄ @W (cd̄)~0!†#

3T @W (cd̄)~ln̂1b!# u0&. ~21!

As aboven̂m[dm0, so thatln̂1b represents the vector with
time componentl and transverse componentsb. In the ma-
trix element, T represents time order and T¯anti-time order.
The trace is over color indices in the representation of par
c. d(c) is the dimension of this representation.3 Because the
velocitiesb andb8 of the incoming lines are lightlike, this
cross section has collinear singularities, and must be re
lated. Infrared divergences, however, cancel in the sum o
final states@4#.

To organize collinear singularities, we introduce eikon
parton distributions, which approximate the radiation at fix
energy and transverse momentum from an energetic, li
like parton,

R a
(eik)~w,Q,k,e!

5
Q

2 d~a!
E dy0

2p

d2b

~2p!2
e2 iwQy0/21 ib•k

3Tr ^0uFb
(a)†~0,2`;0!Fb

(a)~0,2`;y0n̂1b!u0&,

~22!

computed in then̂•A50 gauge, just asRf / f , Eq. ~19!. Simi-
larly, by analogy to Eq.~10!, we can construct an eikona
distribution at fixed light-cone momentum fraction,

fa
(eik)~j,m,e!5

Q

A2 d~a!
E dl

2p
e2 i jQl/A2

3Tr ^0uFb
(a)†~0,2`;0!

3Fb
(a)~0,2`;lv !u0&, ~23!

which as usual requires renormalization of its ultraviolet
vergences, and regularization for its collinear divergenc
As in Eq. ~10!, we omit the ordered exponential in th
opposite-moving light cone direction, between 0 andlv.
Also like theMS distribution,f f / f , fa

(eik) is a pure counter-
term, and is independent of the momentum scaleQ and of
the direction of b. It is also flavor-independent amon
quarks and antiquarks, differing, of course, for gluons. N
thatj in fa

(eik) plays the role of 12x in f f / f . That is, we fix
the light-cone component of the emitted radiation, since
eikonal line does not have a definite initial-state momentu

3The eikonal cross section defined here is normalized
d(j)d2(k) at zeroth order. The average over the colors of the ph
cal incoming partons will be absorbed into a separate overall fac
8-7
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Purely virtual diagrams in bothR (eik) andf (eik) enter as
overall factors, which can be used to normalize these fu
tions. We choose to define the virtual contributions by
requirements that

E
0

1

dwE d2kR a
(eik)~w,Q,k,e!

5E
0

1

djfa
(eik)~j,m,e!

51. ~24!

These conditions ensure that both functions are sums of
distributions in terms of the variablesj or w, integrated over
the interval from zero to unity. This choice does not affe
the N-dependence of the functions at all, but ensures
factorization does not introduce spurious collinear singul
ties. This condition also enables us to define an evolu
equation for the eikonal light-cone distribution of the form
Eq. ~12!, with solution

f̃ f
(eik)~N,m,e!5expF E

0

m2dm82

m82
g f f

(eik)
„N,as~m8!…G , ~25!

which differs from Eq.~13! only in the eikonal approxima
tion to the anomalous dimension. The eikonal anomal
dimensions,g f f

(eik) , are found from the plus distributions o
the splitting functions, when written as in Eq.~14!, subject to
the normalization condition~24!. To leading power inN, the
moments of the eikonal distribution inD dimensions are
given by

f̃ f
(eik)~N,m,e!5expF2 ln N̄E

0

m2dm82

m82
Af„as~m8!…G ,

~26!

where we define

N̄[NegE. ~27!

The discussion on the dimensional regularization andMS
definition of fa/a(N,m,e) given after Eq.~13! applies as
well to its eikonal analog in Eq.~25!.

Essentially the same arguments~see Appendix A! for the
joint factorization of the partonic cross section are valid
the eikonal cross section,sab̄

(eik) . We may therefore factorize

sab̄
(eik) , in terms of energy and transverse momentum dis

butions, as in Eq.~9!,

scd
(eik)~j,Q,k,e!5E dwcd

2kcR c
(eik)~wc ,Q,kc ,e!

3E dwdd2kdR d
(eik)~wd ,Q,kd ,e!

3E dwsd
2ksUcd~ws ,Q,ks!

3d~j2wc2wd2ws!

3d2~k2kc2kd2ks!. ~28!
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Alternately, we may factorize the eikonal cross section
terms of eikonal light-cone distributions,

scd
(eik)~j,Q,k,e!5E dwcfc

(eik)~wc ,m,e!

3E dwdfd
(eik)~wd ,m,e!E dj8

3d~j2wc2wd2j8!ŝcd
(eik)~j8,Q,k!,

~29!

where partonsc andd are implicitly in a color singlet state
This is the eikonal approximation to Eq.~1! for incoming
partonsc and d̄, identifying wi;12xi , j;12Q2/S and
j8;12Q2/ ŝ. In Eqs. ~28! and ~29!, respectively, theR’s
and f ’s absorb collinear singularities associated with s
gluons. The remaining functionsUcd and ŝcd

(eik) are then in-
frared safe.

All of the refactorizations in Eqs.~5!, ~6! and~9! involve
functions that are gauge-dependent. We have already n
the gauge-dependence of the functionsR andR (eik) above.
The soft function Uab also inherits gauge dependen
throughR (eik). To the extent that the factorization formula
are valid, however, all gauge dependence is guarantee
cancel in the cross sections. In Appendix A we study
theoretical basis of these refactorizations; for the purpose
the following discussion, we accept their validity.

E. Transforms and the soft function

As usual, the refactorized cross sections are displa
most conveniently in terms of their appropriate transform
in this case, Laplace and Fourier. Transforms that we w
need below are

R̄f / f~N,bQ,e!

5E
0

`

dxe2N(12x) E d2k e2 ib•kRf / f~x,Q,k,e!

R̄a
(eik)~N,bQ,e!

5E
0

`

dwe2Nw E d2k e2 ib•kR a
(eik)~w,Q,k,e!

Ūcd̄~N,bQ!5E
0

`

dwe2Nw E d2k e2 ib•kUcd̄~ws ,Q,k!

s̄cd̄
(eik)

~N,bQ,e!

5E
0

`

dje2Nj E d2k e2 ib•kscd̄
(eik)

~j,Q,k,e!.

~30!
8-8
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These transforms simplify the double convolutions of the partonic cross section, Eq.~9!. On the other hand, the moments
the hard scattering functions of Eq.~1! are determined from the partonic cross sections via Eq.~4!. In this way, we find

ŝab→V„N,QT
2/Q2,Q2/m2,m,as~m!…5sab→V

(H) ~Q2!
1

f̃a/a~N,m,e!f̃b/b~N,m,e!

3E d2b

~2p!2
eib•QTR̄a/a~N,bQ,e!R̄b/b~N,bQ,e!Ūab~N,bQ!, ~31!

where we define a combination of short-distance function and Born cross section as

sab→V
(H) ~Q2![psab→V

(0) ~Q2!hab
(j)
„as~m!…. ~32!

The factorp relates the azimuthally symmetricds/dQ2d2QT to ds/dQ2dQT
2 , while the Born cross sectionsab→V

(0) absorbs
the color average for the initial-state partons, referred to above. In Eq.~31!, we have approximatedN11 by N in the
arguments of the light-cone distributions, as is acceptable to leading power inN. Again, we suppress the renormalization sc
m5Q; the explicitm here has the interpretation of a factorization scale.

Another useful form of Eq.~31! is

ŝab→V„N,QT
2/Q2,Q2/m2,m,as~m!…5ŝab→V

(H) ~Q2!E d2b

~2p!2
eib•QTc̄a/a~N,b,Q,m!c̄b/b~N,b,Q,m!, ~33!

where the functionsc and their eikonal analogs are defined by

c̃f / f~N,b,Q,m!5
R̄f / f~N,bQ,e! @ Ū f f̄~N,bQ! #1/2

f̃ f / f~N,m,e!
,

c̃f
(eik)~N,b,Q,m!5

R̄f
(eik)~N,bQ,e! @ Ū f f̄~N,bQ! #1/2

f̃ f
(eik)~N,m,e!

. ~34!

The c’s will appear as building blocks in direct photon and other cross sections with color flow into the final state as
the hard scattering.

The eikonal cross section has many of the same properties as its partonic counterpart. Moments of the eikon
scattering function at fixedk are found from Eq.~29!:

ŝcd
(eik)~N,Q,k,m!5

s̃cd
(eik)~N,Q,k,e!

f̃c
(eik)~N,m,e! f̃d

(eik)~N,m,e!
, ~35!

where to avoid unnecessary clutter in our notation, we identify the transforms of the functionsŝ only through its arguments
Then, using the eikonal transforms in Eq.~30! in the eikonal joint convolution~28!, we have

ŝcd
(eik)~N,Q,k,m!5

1

f̃c
(eik)~N,m,e!f̃d

(eik)~N,m,e!
E d2b

~2p!2
eib•kR̄c

(eik)~N,bQ,e!R̄d
(eik)~N,bQ,e!Ūcd~N,bQ!, ~36!
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with the same coherent functionUcd̄ .
For completeness, and for reference below, we obse

that the eikonal functionUi j at measured energy and tran
verse momenta may be defined by its transforms, throug

Ūcd~N,bQ!5
s̄cd

(eik)(N,bQ,e)

R̄c
(eik)(N,bQ,e)R̄d

(eik)(N,bQ,e)
, ~37!

where collinear singularities cancel in the ratio. The oth
11401
ve

r

forms of the soft function in Eqs.~5! and ~6! differ only in
the components of the total final-state momentum that
fixed. Note that this expression is essentially a rewriting
the refactorization for the eikonal cross section, Eq.~36!.

The behavior of the hard scattering function at large m
ment N and impact parameterb may be studied either in
terms ofU and the distributionsR, or, as we see in the nex
section, by relating the partonic and eikonal functions giv
in Eqs.~31! and~36!. In the remainder of the paper, we app
this formalism to derive our jointly resummed cross sectio
8-9
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III. JOINT RESUMMATION FOR ELECTROWEAK
ANNIHILATION

As pointed out in Refs.@27,43,44#, color-singlet cross sec
tions with symmetric phase space exponentiate at high
ments that force the phase space to an ‘‘elastic’’ limit, wh
only soft gluon radiation is allowed. This is the case f
doubly-transformed cross sections, and for the sing
transformed cross section in threshold resummation@5,6#.
The elastic limit is naturally associated with the eikonal a
proximation. As we now show, the full leading-powerN- and
b-dependence of electroweak annihilation cross sections
be deduced for quark-antiquark annihilation and gluon fus
directly from eikonal cross sections.

A. Partonic and eikonal cross sections

Near threshold, that is, to leading power inN, all real-
gluon emission in the partonic hard-scattering function,
~31! may be treated in eikonal approximation, Eq.~36!.
Since the functionU is the same in the partonic cross secti
and its eikonal approximation, the difference, for fixedb,
resides entirely in the parton distributions, and we have

R̄a/a~N,bQ,e!R̄b/b~N,bQ,e!

f̃a/a~N,m,e!f̃b/b~N,m,e!

5Vab~Q,m!
R̄a

(eik)~N,bQ,e!R̄b
(eik)~N,bQ,e!

f̃a
(eik)~N,m,e!f̃b

(eik)~N,m,e!
,

~38!

where Vab(Q,m) is an overall factor, entirely from virtua
corrections, which are of the same graphical form inR and
f. The functionVab(Q,m) is therefore independent ofb and
N to orderN0; its Q andm dependence may be determined
follows.

As shown explicitly in Eqs.~13! and ~25! above, light
cone distributions and their eikonal approximations in
MS scheme are fully determined by the splitting function
In moment space, the leading power inN comes entirely
from the transforms of@1/(12z)#1 and d(12z) contribu-
tions to the splitting functions of Eq.~14!. The former, which
can only arise from the combination of real-gluon and virtu
corrections, are fully represented in the eikonal distributio
f (eik). As a consequence, to leading power, the rat
fa

(eik)(N,m)/fa/a(N,m) only receive contributions from the
left-over d(12z) terms in the splitting functions,

f̃a
(eik)~N,mF ,e!f̃b

(eik)~N,mF ,e!

f̃a/a~N,mF ,e!f̃b/b~N,mF ,e!

5expH 2E
0

mF
2 dm82

m8212e
@Ba„as~m8!…1Bb„as~m8!…#J ,

~39!

with mF the factorization scale, with explicit dimension
regularization, and with the functionsBa given by Eq.~16!.
The collinear divergences in this expression cancel in
ratio in Eq.~38!. The ratio of theR-functions must thus take
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the same form at leading power inN, but with an upper limit
on them8-integral given by the renormalization scale inR,
which, as above, we choose to beQ,

R̄a
(eik)~N,bQ,e!R̄b

(eik)~N,bQ,e!

R̄a/a~N,bQ,e!R̄b/b~N,bQ,e!

5expH 2E
0

Q2 dm82

m8212e
@Ba„as~m8!…1Bb„as~m8!…#J .

~40!

As a result, the uniquely determined form ofVab(Q,m) is

Vab~Q,mF!5expH E
mF

2

Q2dm82

m82
@Ba„as~m8!…1Bb„as~m8!…#J .

~41!
For electroweak annihilation, of course,Ba5Bb , but the re-
sult is quite general.

We are now ready to combine Eqs.~31! for the partonic
hard-scattering function, Eq.~36! for its eikonal approxima-
tion, and Eq.~41! for the ratioV, to derive an expression fo
the refactorized electroweak cross section that we will stu
below. The result is

ŝab→V„N,QT
2/Q2,Q2/mF

2 ,mF ,as~m!…

5sab→V
(H) ~Q2!expH E

mF
2

Q2dm82

m82
@Ba„as~m8!…

1Bb„as~m8!…#J E d2b

~2p!2
eib•QTŝab

(eik)~N,b,Q,m!.

~42!

Equivalently, thehadroniccross section, given as an invers
transform from moment space, takes the form

dsAB→V

dQ2 dQT
2

5(
ab

sab→V
(H) ~Q2!

3expH E
mF

2

Q2dm82

m82
@Ba„as~m8!…1Bb„as~m8!…#J

3E
C

dN

2p i
f̃a/A~N11,mF!f̃b/B~N11,mF!t2N

3E d2b

~2p!2
eib•QTŝcd̄

(eik)
~N,b,Q,mF!, ~43!

with mF the factorization scale andt5Q2/S. Corrections are
order 1/N in the hard scattering. The sums overa and b
include quarks, antiquarks and gluons. Thus, for the cas
electroweak annihilation, a direct examination of the eiko
cross section will determine the large-moment and imp
parameter behavior of the partonic hard-scattering functio
Here and below,C is a contour to the right ofN-plane sin-
gularities in the various transform functions.

Equation~43! reduces the computation of the cross se
tion in MS scheme to the determination of the eikonal cro
8-10
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RECOIL AND THRESHOLD CORRECTIONS IN SHORT- . . . PHYSICAL REVIEW D 63 114018
sections. Alternately, one may treat the factorized functi
c and U separately, applying renormalization-group arg
ments@5,9#. The result must be the same. In the remainde
this section, however, we shall examine the eikonal cr
section directly.

B. Exponentiation

We employ a number of general features of eikonal cr
sections, where the graphical analysis introduced in R
@43,45,46# is particularly helpful. Moments of cross section
in the eikonal approximation exponentiate at the level
integrands, with exponents given by the moments of a se
graphical functions@43,45# termed ‘‘webs.’’ Webs can be
generated uniquely from cut diagrams in eikonal cross s
tions order-by-order. They are defined both in terms
graphical topology~irreducibility under cuts of the eikona
lines! and color structure. The lowest-order web is simply
single gluon exchanged between the lines. Beyond low
order, each web is itself a cut diagram, and can be integr
over the momentum,k, that it contributes to the final state.
very useful additional feature of webs is that at fixedk they
have no overall ultraviolet divergences.

Quite generally, then, the joint moment and impact p
rameter dependence of the eikonal cross section may be
pressed as

s̄ab
(eik)~N,bQ,e!5expH2E d422ek

V122e
uS Q

A2
2k1DuS Q

A2
2k2D

3wabS k2,
k•bk•b8

b•b8
,m2,as~m!,e D

3~e2N(k•n̂/Q)2 ib•k21!J , ~44!

wherewab represents the web at fixed total momentumkm,
where n̂m5dm0, and where for convenience we choose t
factor V122e to be 2p12e/G(12e);2p(pegE)2e, equal to
the dimensionally-continued transverse angular integral
this form, the single-gluon emission contribution to the w
is normalized to be

waā
(1)(real)

~k!5
2Caas

p
~4pm2e2gE!e

1

kT
2
d1~k2!. ~45!
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That the overall coefficient is twice the one-loop term in t
function Aa(as) in Eq. ~15! is not, of course, a coincidence
and we shall see below how this relation arises. T
e-dependent factor matches theMS collinear subtraction. In
Eq. ~44!, we explicitly limit the phase space for gluon emi
sion by the plus and minus momenta of the annihilating p
tons at partonic threshold. As in the case of the eikonal d
tributions R (eik) and f (eik) in Eq. ~24!, dependence on the
choice of upper limits is exponentially suppressed inN for
real gluon emission, but must be specified to set the scal
virtual corrections. We determine purely virtual correctio
in the eikonal cross section by demanding that it be norm
ized to unity atb50, N50. This choice ensures that th
perturbative expansion ofs (eik) is a sum of plus distribu-
tions.

Thek-dependence ofwab(k,b,b8) in Eq. ~44! is strongly
constrained by the invariance of the web under rescaling
the light-like eikonal velocities,bm and b8m. We then ob-
serve, based on the lack of overall UV divergences in
webs, that they obey4

m
d

dm
wabS k2,

k•bk•b8

b•b8
,m2,as~m!,e D 50. ~46!

We know even more about webs, because the purely vir
web is the logarithm of the lightlike eikonal form facto
discussed extensively in treatments of the Sudakov form
tor in QCD @40,42#. From these investigations, and by com
parison to resummations for the Drell-Yan cross sect
@5,6#, we learn that the webs may have at most a sin
overall infrared divergence, coupled with a single over
collinear divergence. Additional logarithmic singularities c
arise only through the renormalization of subdiagrams. A
result, at fixed values ofkT , relative to the axis determine
by bW and bW 8, the integral of the web overk2 is finite. The
web integrals are ultraviolet divergent forkT→` and are
collinear and infrared singular atkT50 oncek2 is integrated.

C. The exponent

The exponentiated eikonal cross section contains a c
siderable amount of information, which follows from th
properties of the web described above. We use the azimu
symmetry of the webwab in Eq. ~44! to organize the trans
verse and light-cone integrals ofk into the form
. These
of course,
s̄ab
(eik)~N,bQ,e!5expF 2 E d222ekT

V122e
E

0

Q22kT
2

dk2wab~k2,kT
21k2,m2,as~m!,e!

3S E
(kT

2
1k2)/A2Q

Q/A2 dk1

2k1 e2NA2„k1/Q1~kT
2

1k2!/2Qk1
…2 ib•kT2 lnA Q2

kT
21k2D G , ~47!

4We note that to derive this relation, the webs should be renormalized appropriately in terms of their external eikonal lines
renormalization factors vanish in Feynman gauge, and we shall ignore them below. The overall result for the eikonal cross section,
is gauge independent.
8-11
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where the light-cone variables refer to the frames for whichbT5bT850. For largeN, thek1 integral is well-approximated~up
to exponentially-suppressed contributions! by a Bessel function, and we find

s̄ab
(eik)~N,bQ,e!5expH 2 E d222ekT

V122e
E

0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…

3F e2 ib•kTK0S 2NAkT
21k2

Q2 D 2 lnA Q2

kT
21k2 G1O~e2N!J . ~48!

In view of our comments above about the infrared sensitivity of the web, we are particularly interested in the limitkT
2

1k2 vanishes. From the behavior ofK0(x) for small values of its argument,

K0~x!;2 ln~xegE/2!, ~49!

we see that the momentum dependence ofK0 cancels the logarithm in the collinear limit, leaving a factor ln(NegE). This
remainder generates a collinear logarithmic singularity atkT

250, which is canceled by the moments of eikonal distributions
we now show.

To construct the eikonal hard-scattering functions,ŝ (eik), given by Eq.~35!, we substitute Eq.~48! for the eikonal cross
section, and the explicit expression~25! for the eikonal distributions, into the Fourier transform ofŝ (eik) to derive

ŝab
(eik)~N,b,Q,m!5expF2 E d222ekT

V122e
H E

0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…

3Fe2 ib•kTK0S 2NAkT
21k2

Q2 D 2 lnA Q2

kT
21k2 G1

1

~kT
2!12e

ln N̄ (
d5a,b

Ad„as~kT!…J G, ~50!

where we have relabeled the variablem8 in Eq. ~25! askT , and whereN̄ is defined in Eq.~27!. Equation~50! has a lot in
common with standard resummations in logarithms ofN andb, although it still includes an extra integral overk2. It may be
further simplified, however, using properties of the webs.

We continue by rearranging Eq.~50! into a form that isolates double logarithmic behavior,

ŝab
(eik)~N,b,Q,m!5expF2 E d222ekT

V122e
H E

0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…

3F e2 ib•kTK0S 2NkT

Q D1 lnS kT

Q D G1
1

~kT
2!12e

ln N̄ (
d5a,b

Ad„as~kT!…J G
3expH2 E d222ekT

V122e
E

0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…

3Fe2 ib•kT H K0S 2NAkT
21k2

Q2 D 2K0S 2NkT

Q D J 1 lnSAkT
21k2

kT
D GJ. ~51!

Let us deal with the two exponentials on the right-hand side of this relation in turn. The first exponential in Eq.~51! begins at
the leading logarithm~LL !. We have seen that the webs contain no internal collinear or infrared divergences. Also, beca
web requires no overall ultraviolet subtraction forkT fixed, thek2 integrals ofwab in Eq. ~50! converge on a scale set bykT ,
independent ofN, b or Q. At the same time, the factorizability of the eikonal cross section requires the cancellation
singularities atkT50 in Eq.~51!. We may thus formally expand the integral of the web overk2 in inverse powers ofQ2, with
a leading coefficient that behaves as 1/kT

2 for kT→0, which must match the collinear singularity of the subtraction:

E
0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…5
Aa„as~kT!…1Ab„as~kT!…

~kT
2!12e

1Aab„as~kT!,kT ,Q…, ~52!

where the functionAab behaves as (kT
0/Q2) for kT→0. In this expression we have used the renormalization-scale invari

of the webs, Eq.~46!, to set the scale of the coupling atkT , which is the only remaining kinematic variable. Given this resu
the kT integral in the first exponential of Eq.~51! is seen to be finite, and we may remove the dimensional regularizatio
114018-12
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this factor. Leading threshold logarithms in the perturbative expansion of the exponent, for exampleas
n lnn11N, are generated

by the explicit logarithms ofkT andN, which multiply the 1/kT
2 behavior isolated in Eq.~52!.

In the second exponential on the right-hand side of Eq.~51!, the term in square brackets behaves smoothly forkT
2;k2

→0, as well as forkT→0 with k2 fixed. As a result, this term has a finitee→0 limit, and begins with next-to-leading~NLL !
logarithms, for example,as

n lnnN. With MS eikonal distributions, however, even NLL logarithms are absent, because at le
order the webwab is proportional tod(k2) ~i.e., one-gluon exchange!, which vanishes in this factor.

Using Eq.~52! in Eq. ~51!, and setting the number of dimensions to four, we derive an expression for the resumme
section in transform space,

ŝab
(eik)~N,b,Q,m!5exp@Dab

(eik)~N,b!#exp@Eab
(eik)~N,b,Q,m! #, ~53!

where the leadingN andb-dependence~LL and NLL! is entirely contained in the exponent

Eab
(eik)~N,b,Q,mF!5E

0

Q2dkT
2

kT
2 H (

i 5a,b
Ai„as~kT!…F J0~bkT!K0S 2NkT

Q D1 lnS N̄kT

Q
D G J 2 ln N̄E

mF
2

Q2dkT
2

kT
2 (

i 5a,b
Ai„as~kT!….

~54!

The second term on the right accounts for the difference between the physical scaleQ and the factorization scalemF .
The factor exp@Dab# in Eq. ~53! contains corrections in the form of an infrared safe expansion inas plus NNLL and

nonleading powers inN andb,

Dab
(eik)~N,b!5E

0

Q2

dkT
2Aab„as~kT!,kT ,Q…F e2 ib•kTK0S 2NkT

Q D1 lnS kT

Q D G
1E

0

Q2

dkT
2E

0

Q22kT
2

dk2wab„k
2,kT

21k2,m2,as~m!,e…

3Fe2 ib•kT H K0S 2NAkT
21k2

Q2 D 2K0S 2NkT

Q D J 1 lnSAkT
21k2

kT
D G . ~55!

These, rather elaborate, expressions are accurate to all logarithms inN andb, and implicitly contain as well the structure o
power corrections@22,23#, which we hope to study in future work. Here, we only note that the expansion of the functionK0(x)
for small x contains, up to a single logarithm, only even powers inx. This simple observation is enough to ensure that
threshold resummation of perturbation theory to any order implies the presence of even powers ofQ21 ~andb) only @22,24#.
In this paper, we shall regard the above results as the starting point for a joint NLL resummation inN andb for electroweak
annihilation, and for high-pT photon and hadron cross sections. As noted above, the entire NLL result is associated witEab ,
althoughDab may contribute beginning at NNLL.

D. Hadronic cross sections

The explicit form of the jointly resummed cross section is now found by inserting Eq.~53! in Eq. ~43!. The factorization
scale dependence~denotedmF) may be exhibited explicitly by combining the second term in Eq.~54! with the corresponding
term in Eq.~43!:

dsAB→V

dQ2 dQT
2

5(
ab

ŝab→V
(H) ~Q2!E

C

dN

2p i
expH E

mF
2

Q2dm82

m82 (
i 5a,b

g i i „N,as~m8!…J
3f̃a/A~N11,mF!f̃b/B~N11,mF!t2NE d2b

~2p!2
eib•QTexp@Eab

(eik)~N,b,Q,Q! #exp@Dab
(eik)~N,b!#, ~56!
c-

-

r
to
we
ent
whereg i i is the full N0 (ln N and constant! term in theNth
moment of the diagonal splitting function for partoni. Notice
that we have setm5Q in E(eik). In the resummed cross se
tion ~56!, dependence on the factorization scalemF is sup-
pressed compared to NLO@25,26,31,47–49#, because the ei
konal anomalous dimensions compensate the evolution
11401
of

parton distributions to leading power inN, at all orders in
as .

Equation~56! is our most general form in this paper fo
the Drell-Yan cross section, which we will approximate
NLL in Sec. V. Applications to other processes are, as
shall see, conveniently carried out in terms of the coeffici
8-13
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function c̄i / i , Eq.~34!. By comparing Eqs.~42! and~33!, and
once again using the explicitmF dependence of the re
summed exponent, we derive an analogous expression
the product of coefficient functionsc̄i / i :

c̄a/a~N,b,Q,mF!c̄b/b~N,b,Q,mF!

5expH E
mF

2

Q2dm82

m82 (
i 5a,b

g i i „N,as~m8!…J
3exp@Eab

(eik)~N,b,Q,Q!1Dab
(eik)~N,b!#. ~57!

This result will be useful for direct photon and other har
scattering processes with factoring initial-state interactio
but with final-state color flow.

IV. SINGLE-PARTICLE INCLUSIVE CROSS SECTION

In the following, we apply the methods outlined above
pT

3dsAB→g1X(xT)/dpT , the prompt photon inclusive cros
section at measuredpT . Unlike electroweak annihilation
however, we will not take the limitpT→0. As a result, we
have no explicit logarithms ofpT to resum in the hard-
scattering cross section. Threshold resummation has b
carried out for this process in@32,33#, and its consequence
studied phenomenologically in@26,48#, but there has been n
generally accepted method to incorporate the kind of re
corrections that are so important in describing the low-QT
limit of electroweak annihilation. These effects must, ho
ever, be present in the hard-scattering functions for this p
cess at some level, even if they cancel almost complet
Our goal here is to develop a framework in which we c
identify them systematically. This is a prerequisite to a
reliable estimates of their influence.

Models of ‘‘intrinsic’’ transverse momentum seem to su
gest that recoil effects of magnitude similar to those in el
e

rd

s
a

e

ng

11401
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troweak annihilation may be important@12,13#. Recent ex-
perimental results appear difficult to explain without the
@11#. The inputs to these analyses are primarily nonpertur
tive, in the form of Gaussian distributions in partonic tran
verse momenta, whose widths may be compared directl
nonperturbative parameters in electroweak annihilation@17#.
At the same time, the interpretation of the theory and exp
ment is not without controversy@15,16#. For these reasons a
well, it is of interest to reanalyze the prompt photon cro
section in the light of the joint resummation@18# procedure
introduced for electroweak annihilation above, in the form
ism of collinear factorization.

A. Hard-scattering functions for inclusive prompt photons

The prompt photon cross section may be written in fa
torized form as

pT
3dsAB→g1X~xT!

dpT
5(

ab
E dxafa/A~xa ,m! E dxb

3fb/B~xb ,m!pT
3

3
dŝab→g„x̂T

2 ,pT /m,as~m!…

dpT
,

~58!

where we definexT and x̂T by

xT
2[

4pT
2

S
, x̂T

2[
4pT

2

ŝ
, ~59!

with ŝ5xaxbS. To leading power in N, moments of
pT

3dŝ/dpT are
pT
3 dŝab→g„N,pT /m,as~m!…

dpT
5E

0

1

dx̂T
2~ x̂T

2!N21pT
3
dŝab→g„x̂T

2 ,pT /m,as~m!…

dpT

5
1

f̃a/a~N11,m!f̃b/b~N11,m!
E

0

1

dxT
2~xT

2!N21pT
3 dsab→g

dpT
. ~60!
ea-

into
en-
-
in
ra-
Following our discussion of electroweak annihilation, w
will use a combination of threshold andQT resummation to
estimate higher-order corrections in the partonic ha

scattering function,pT
3ŝab→g /dpT , always working to lead-

ing power in the moment variableN.

At fixed photon rapidityĥ in the partonic center-of-mas
system, singularities arise when the partonic center-of-m

energyAŝ, reaches the threshold value of the final state n

essary to produce the photon at thatpT andĥ. Any such final
state is kinematically equivalent to the photon recoili
-

ss

c-

against a massless jet. The minimum invariant mass at m
suredpT is

ŝmin54pT
2 cosh2ĥ5

4pT
2

x̂T
2

. ~61!

This kinematic relation changes, however, when we take
account the recoil of the photon-jet pair transverse mom
tum, denotedQT below, against perturbative initial-state ra
diation. In effect, when the incoming partons get a kick
the direction of the observed photon through initial-state
8-14
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RECOIL AND THRESHOLD CORRECTIONS IN SHORT- . . . PHYSICAL REVIEW D 63 114018
diation, the minimum invariant mass necessary to prod
the photon at measuredpT decreases. These effects a
present in higher orders inŝ, but are not reflected directly in
logs of 12 x̂T

2 .
We can only begin to take recoil into account system

cally, however, when we have defined what we mean
initial-state radiation and by the short-distance scatter
This is precisely an issue of refactorization, discussed ab
in Sec. II. There we showed that refactorization into gen
alized initial-state parton distributions, soft radiation and
short-distance process is quite natural to leading powe
threshold singularities, (12z)21, for electroweak annihila-
tion. As we shall see, leading power at threshold for prom
photons allows refactorization in an analogous manner,
cluding now a new function for the final-state jet, and
generalization of the function for soft radiation. The essen
point, however, is that at partonic threshold it is possible
identify a 2→2 short-distance scattering, involving on
lines off-shell byO(pT

2), that underlies the production of th
high-pT photon. Our aim is to treat this short-distance sc
tering in the same manner as the short-distance cross se
in electroweak annihilation, in terms of its invariant ma
squared,s̃[Q2, and its transverse momentumQT ~defined in
the hadroniccenter-of-mass system!. WhenQT is in the di-
rection of the observed photon,s̃ may be less thanŝ, the
partonic invariant mass squared in Eq.~58!.

To take recoil into account in joint resummation, we ide
tify the transverse momentum of the photon in the center
mass system of the final-state photon-jet pair as one-half
relative transverse momentum of the photon and recoiling
at partonic threshold,

pT85pT2
1

2
QT . ~62!

In terms of the kinematics of the short-distance 2→2 sub-
process, we can define a natural ‘‘scaling’’ variable for th
refactorized scattering, analogous toxT and x̂T in Eq. ~59!,

x̃T
2[

4upT8 u2

Q2
5

1

cosh2 h̃
, ~63!

with h̃ the rapidity in the refactorized hard-scattering cent
of-mass system. The variablesxT

2 and x̃T
2 are related by

x̃T
25xT

2 S S

Q2

upT8 u2

upTu2D , ~64!

a relation that we will use below in the analysis of momen
We will estimate the partonic cross section as the integ

overQT andQ25 s̃ of the doubly-resummed cross section
measuredQT and Q2, limiting the QT integral to a cut-off
scalem̄. That is, we will write the cross section as
11401
e

i-
y
g.
ve
r-
a
in

t
-

l
o

t-
ion

-
f-
he
et

-

.
al
t

pT
3dsab→g

dpT
5pT

3
dsab→g

(resum)

dpT
1D~pT ,m̄ !, ~65!

with

pT
3

dsab→g
(resum)

dpT
5E dQ2d2QTpT

3
dsab→g

(resum)

dQ2d2QT dpT

u~m̄2uQTu!.

~66!

We have introduced a cutoffm̄ in the recoil transverse mo
mentumQT , which we include to avoid going outside th
range where the approximations for joint resummation f
that is, where the recoil transverse momentum becomes c
petitive with the hard scattering. The need for a match
condition for the resummed to fixed-order expressions
high recoil is familiar fromQT-resummation in electrowea
annihilation. Nonsingular finite-order terms, corrected for t
matching@9,20# are included inD(pT ,m̄). The implementa-
tion of such a matching procedure remains to be carried
in the new joint resummation formalism. We shall, howev
exhibit the theta function inQT in each of our expression
below, as a reminder of its importance.

In our analysis below we will determine the jointly re
summed cross section at fixedQ2 and QT . To develop a
jointly resummed cross section, we begin, as for electrow
annihilation, with a study of perturbation theory near pa
tonic threshold.

B. Leading regions in single-photon production

The derivation of a refactorization formula for the singl
photon inclusive cross section is quite similar to the analy
that leads to Eq.~9! for electroweak annihilation. In the pho
ton cross section, however, final-state interactions play
important role. To analyze their contributions, we need
analysis of the leading regions in the momentum space of
diagrams that produce logarithmic corrections to the cr
section. The analysis is quite similar to that carried out
threshold resummation in heavy quark@30,31# and jet pro-
duction @34#, but now taking into account transverse m
menta near threshold. In this analysis, we shall neglect,
the time being, fragmentation components in the prom
photon cross section, which are relatively modest in a s
nificant kinematic region@26#.

The relevant leading regions for the 2→2 partonic sub-
processa1b→c1g are illustrated by Fig. 2, which may b
compared to Fig. 1 for electroweak annihilation. In additi
to the jetsRa/a andRb/b associated with the incoming pa
tons, and the short-distance subdiagramsH, there is also a
subdiagramJc that account for partons collinear to the ou
going partonc, and a new soft subdiagramSabc , which ac-
counts for soft radiation from the final as well as initial ha
partons. These leading regions are of the general class
cussed in Ref.@4#, and identified for hard-scattering cros
sections in Ref.@50#, on the basis of analyticity propertie
and power counting bounds. In the general case, there
8-15
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be an arbitrary number of noncollinear jets in the final sta
Leading power in the threshold variable, 12 x̂T

2 , limits their
number to a single jet recoiling against the hard photon.

The role of the final state jetJc in threshold resummation
is well-understood, and has been treated in Refs.@32,33,26#.
The outgoing jet may interact with soft radiation, throu
subdiagramSabc in Fig. 2. We may think of the soft function
as associated with coherent soft radiation, describing em
sion and absorption by sources with specified four-veloci
and color charges. The role of soft gluon functions enco
tered in threshold resummation has been extensively stu
elsewhere@51#. We will give a formal definition of the fully
factorized soft function in Sec. IV C.

There is a potential complication for the joint resumm
tion of the single-photon cross section in the influence of s
radiation on the recoil transverse momentumQT of the
photon-Jc pair. By analogy to electroweak annihilation, w
seek to resum logarithms of 12 x̂T

2 as well as logarithms o
the total transverse momentum of the partons involved in
underlying 2→2 hard scattering,QT . This transverse mo
mentum is defined relative to the~initial-state! hadronic
center-of-mass system, evaluated at fixed observed ph
transverse momentum,pT , in that frame. Referring to Fig. 2
we must ask, however, whetherQT is the same on both side
of the cut, i.e., for the amplitude and for its complex con
gate. An imbalance in the relative transverse momenta of
two hard-scatterings would make it necessary to introduc
more complicated convolution than in Eq.~9!. Such an im-
balance, however, can arise only from the transverse mom
tum that flows through the soft functionSabc between the
incoming jet subdiagramsRf / f and the outgoing recoil je
Jc . In the absence of such a flow, the transverse momen
of the final-state jet is a dependent quantity, and does
appear directly in the transverse momentum logarith

FIG. 2. Leading region for prompt photon production near p
tonic threshold. The vertical line represents the final state, includ
the photon,g, and the recoil jet,Jc .
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More importantly, a singleQT describes the relative trans
verse momenta of the hard scattering on both sides of
cut.

We must therefore study the flow of transverse mom
tum through the soft subdiagram. We begin with diagra
that have initial-state interactions only, in which soft gluon
as in electroweak annihilation, couple only to the initial-sta
jets,Ra/a andRb/b in Fig. 2. The transverse momentum th
they carry into the final state must come from the hard sc
tering, through the initial-state partons,a and b, equally in
both the amplitude and the complex conjugate amplitu
that is, with the sameQT on the two sides of the cut diagram
of Fig. 2. At the same time, infrared divergences associa
with coherent soft gluons cancel as we sum overdifferentcut
diagrams, withdifferentconnections of soft gluons to the je
diagrams. In the diagrams necessary to cancel infrared di
gences, therefore, the initial-state parton transverse mom
ka and kb will each vary. Examples are shown in Fig. 3
This imperfect match means that the cancellation proce
through plus distributions inka

2 and kb
2 , and can produce

logarithms ofb in the impact parameter space conjugate
QT . These purely initial-state interactions can be treated
actly as in Sec. II above.

Consider next soft connections to the final-state jet,
cluding interference between initial- and final-state inter
tions, as in Fig. 3b, where the soft functionSabc now has
contributions in which soft radiation is emitted by an initi
state line, and absorbed by the final state jet. As usual,
must sum over final states to cancel the infrared divergen
associated with this soft radiation. There is, however, a c
cial difference between the cancellation of initial-state a
initial-final coherent soft radiation. In the case of initial-sta
radiation, as just described, we must sum over different d

-
g

FIG. 3. Diagrams that illustrate the cancellation of infrared
vergences:~a! initial-state interactions, which require different dia
grams, with different parton momentaka and kb; ~b! initial-final-
state interference, for which the cancellation proceeds through
of a single diagram, at fixedka andkb .
8-16
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RECOIL AND THRESHOLD CORRECTIONS IN SHORT- . . . PHYSICAL REVIEW D 63 114018
grams to effect the cancellation. Final-state, and initial-fin
state interference divergences, however, cancel in the
over cuts ofindividual uncut diagrams, as discussed in co
text of factorization proofs in@50#. Li and Lai also observed
that thekT-dependence due to final state interactions can
in the context of prompt photon production@17#. Hence, un-
like singularities that arise from purely initial-state intera
tions, the cancellation of final-state singularities can be
fected atfixed transverse momentum for all lines in a c
diagram, in particular, for fixed pair transverse moment
QT of the initial-state partonsa and b, and hence for the
short-distance process in both the amplitude and its com
conjugate. In contrast to initial-state interactions, t
transverse-momentum dependence of the final-state sof
diation cancels algebraically, rather than through plus dis
butions.

It is worth noting that the above result requires that
resum logarithms of the transverse momentumat the short-
distance scattering, rather than of the observed photon-j
pair in the final state. In the latter case, the transverse
mentum at the short-distance scattering depends on whic
the soft gluons attached to the final-state jet are virtual
which are real, and the cancellation of final state infra
divergences reverts from algebra@50# to plus distributions,
and may produce logarithms in impact parameter spa
When the recoil jet is observed independently, therefore
somewhat different analysis is necessary, which we shall
carry out here.

To summarize our considerations so far, only the tra
verse momenta of coherent soft radiation associated
initial-state hard partons must be taken into account in jo
resummation. In contrast, final-state and coherent soft ra
tion linking the outgoing jet with one or both of the incomin
jets produces no logarithms in the pair transverse mom
tum.

The cancellation between the final states in Fig. 3b s
requires an integral over energy@1,4#. For this reason, both
initial- and final-state interactions contribute logarithms
threshold resummation. We must incorporate the distinc
between initial-state and initial-final interference logarithm
into the refactorized convolution that generalizes Eq.~9! for
electroweak annihilation to the case of prompt photons
the next subsection, we show that it is possible to do this
separating purely initial-state soft radiation from initial-fin
interference, at least to the level of next-to-leading log
rithms in both threshold and pair transverse momenta.

C. The soft function

To derive an analog of the electroweak annihilation ref
torization formula, Eq.~9!, for direct photon production, it is
necessary to identify a function that summarizes final-s
soft gluon radiation. In particular, we want to separate th
effects associated with initial-state radiation, which are s
sitive to transverse momenta, from those from the final st
which are not. In this subsection, we will construct such
function.
11401
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The soft function will be built from nonabelian phase o
erators, following the discussion of Sec. II C above. We b
gin by generalizing Eq.~20!, which describes the annihila
tion of a pair of phase operators to a product that correspo
to the color flow@30,31,51# at the hard scattering, for th
partonic process,a1b→g1c:

@ Wabc~X! #ec ;eb ,ea
5@ Fbc

(c) ~`,0;X! #ec ,dc
~ cabc !dc ;db ,da

3@ Fbb

(b)~0,2`;X! #db ,eb

3@ Fba

(a)~0,2`;X! #da ,ea
. ~67!

As in Sec. II C, we go on construct an eikonal cross sect
in the form of Eq.~21!, at fixed soft-gluon energy, param
etrized aswsQ, and fixed transverse momentumk @30,34#,

sabc
(eik)~ws ,Q,k,m,e!5Q E dl

2p

d2b

~2p!2
e2 ilwsQ1 ib•k

3
1

CACF
Tr^0u T̄ @W abc

† ~0!#

3T@Wabc~ln̂1b!# u0&, ~68!

where the trace is over the external color indices (ei) of the
operators. In this expression,n̂ is the unit vector in the time
direction, and we leave the renormalization scalem free. The
relevant transforms with respect tows andk are Laplace and
Fourier, respectively,

s̄abc
(eik)S Nm

Q
,bQ,e D5E

0

`

dwse
2Nws E d2k e2 ib•k

3sabc
(eik)~ws ,Q,k,m,e!. ~69!

The soft radiation function for thea1b→g1c subprocess
in prompt photon production is now constructed fro
s̄ (eik)(N,b), by analogy to the soft functionU for elec-
troweak annihilation, Eq.~37!.

We find the soft function by dividing the transformed e
konal cross section~69! by functions that eliminate double
counting with the external jets near partonic threshold: b
incoming, and, in this case, outgoing. For the incoming lin
these functions are theR̄a

(eik)(N,b), defined in Eq.~30!.
Similarly, for the outgoing jet, we identify a new parton
function, which will appear in the refactorization formul
along with its eikonal partner. As we have seen, infrar
divergences associated with final state interactions canc
fixed recoil for the hard scattering. We may therefore tr
the outgoing jet inclusively in its transverse momentum. T
relevant functions are then the same as those encounter
pure threshold resummation@34#. For example, for a quark
jet they may be defined as two-point functions,
8-17
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J̃c
(eik)~Nm/Q!5E dwce

2NwcE dse2 i (wcQ/A2)s
1

NC
Tr^0uFbc

(q) †~0!Fbc

(q) ~sbc!u0&,

J̃c~Nm/Q,Q/m!5E dwce
2NwcE dlds

d2y

~2p!2
e2 i (Q/A2)l2 i (wcQ/A2)s

pQ

A2NC

Tr^0uqc~0!g•b̄cq̄c~lb̄c1sbc1y!u0&

[E dwce
2NwcJc~wc ,Q!, ~70!

for the eikonal and partonic jet, respectively. In the partonic jet function,bc is the light-like velocity vector in the direction o
the jet, andb̄c is the velocity vector opposite tobc in the overall partonic center-of-mass. The matrix elements are evalu
in n•A50 gauge. The traces refer to color and Dirac indices. Outgoing gluon jets may be defined analogously, with o
similar to those used for fragmentation functions@29#. In momentum space,wcQ

2 is the squared invariant mass of the outgoi
jet.

The above reasoning leads to the following generalization of the soft function to prompt photon processes:

S̄(ab→gc)S Q

Nm
,bQ,as~m!,nD5

s̄abc
(eik)S Q

Nm
,b,as~m!,e D

R̄a
(eik)~Nm/Q,bQ,e! R̄b

(eik)~Nm/Q,bQ,e! J̃c
(eik)~Nm/Q!

. ~71!

As in the case of electroweak annihilation, Eq.~37!, this expression is a rewriting of the refactorization of the eikonal cr
section into incoming and outgoing jets and soft radiation. Again, theRa,b

(eik) remove initial-state eikonal radiation fromŝabc
(eik) ,

andJ̃c
(eik)(N) removes dependence on the outgoing jet. In this form, however, the soft function inherits the gauge dep

implicit in Eq. ~71! of the incoming and outgoing jet functions. We can eliminate this dependence, and simplify the o
formalism, by following an observation made in Refs.@30,51# and employed in@32#. We define a variant soft function in
transform space by dividingS̄ by a factorŪ i ī

1/2(Nm/Q,bQ) for each of the incoming jetsa andb, and byŪcc̄
1/2(N,0) for the

outgoing jet,

S̄8 (ab→gc)S Q

Nm
,bQ,as~m! D5

S̄(ab→gc)S Q

Nm
,bQ,as~m!,nD

Ūaā
1/2

~Nm/Q,bQ! Ūbb̄
1/2

~Nm/Q,bQ!Ūcc̄
1/2

~Nm/Q,0!
. ~72!

By shifting factors ofŪ1/2 from the soft radiation function to the jets in transform space, we produce slightly modifie
functions, of the convolution form

Ra/a8 ~x,Q,k,e!5E dwdyd~w1y2x!E dkrdkud2~kr1ku2k!Ra/a~w,Q,kr ,e!Uaā
1/2

~y,Q,ku!

5E
x

1

djfa/a~j,m! c̃a/aS x

j
,k,Q,m D1O~1/N!,

Jc8~wc ,Q!5E dw8dwud~w81wu2wc!Jc~w8,Q!E dkuUcc̄
1/2

~wu ,ku!, ~73!

where in the second equality forRa/a8 , c̄a/a is the double inverse transform of the infrared safe functionc̄a/a defined in Eq.~34!
above.

D. Refactorization, recoil and the resummed cross section

The refactorization formula for prompt photon production generalizes the corresponding expression for electrowe
hilation, Eq.~9!, by including the outgoing jet functionJc8 in Eq. ~73!, and the modified soft radiation functionS8, Eq. ~72!.
In transform space the refactorization is in terms of products; in momentum space in terms of convolutions,
114018-18
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pT
3

dsab→cg
(resum)

dQ2 d2QT dpT

5E dxad2ka Ra/a8 ~xa ,ka ,Q!E dxbd2kb Rb/b8 ~xb ,kb ,Q!

3E dwcJc8~wc ,Q!E dws E d2ksS8 (ab→gc)
„ws ,Q,ks ,as~m!…

3
1

S
d„12Q2/S2~12xa!2~12xb!2ws2wc…d

2~QT1ka1kb!

3Cd
ab→gc

„as~m!,x̃T
2
…pT

3
dpT8

dpT

dŝab→cg
(0) ~ x̃T

2!

dpT8
. ~74!

Equation~74! generates, order-by-order in perturbation theory, the same singularities atQT50 as the full cross section, to
leading power in 12Q2/S. The factordpT8 /dpT compensates for the difference in phase space between fixingpT andpT8 . The
function Cd

(ab→gc)511O(as), times the Born cross section, is the perturbative short-distance function, which in the c

prompt photon production~as opposed to electroweak annihilation! depends onx̃T
2 .5 This means that, beyond the lowest ord

the short-distance scattering function need not have the same angular dependence as the Born cross section. The sh
function contains only corrections from~virtual! lines that are off-shell by at leastO(pT). It contains no real-gluon emission
since all radiation has, to leading power in 12Q2/S, been absorbed into the long-distance functionsR8, Jc8 and S8. The
computation of these short-distance functions is equivalent to the matching conditions of effective field theories.

With S8 constructed as above, the soft transverse momentumks is associated entirely with final-state interactions, and is
included in the recoil momentum of the hard subprocess. We may therefore integrate overks and redefine

S8 (ab→gc)
„ws ,Q,as~m!…[E d2ksS8 (ab→gc)

„ws ,Q,ks ,as~m!…, ~75!

where on the left we retain the same notation for the function, but omit the transverse argument. Our refactorization
then simplifies to

pT
3

dsab→cg
(resum)

dQ2d2QT dpT

5E dxad2kaRa/a8 ~xa ,ka ,Q!E dxbd2kbRb/b8 ~xb ,kb ,Q!E dwcJc8~wc ,Q!E dwsS8 (ab→gc)
„ws ,Q,as~m!…

3
1

S
d„12Q2/S2~12xa!2~12xb!2ws2wc…d

2~QT1ka1kb!

3Cd
(ab→gc)

„as~m!,x̃T
2
…pT

3
dpT8

dpT

dŝab→cg
(0) ~ x̃T

2!

dpT8
. ~76!
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To simplify the notation further, we also introduce a ne
function F, which combines contributions from the fina
state jet and soft final-state radiation,

Fabc~wf !5E dwsdwc S8 (ab→gc)
„ws ,Q,as~m!…

3Jc8~wc ,Q!d~wf2ws2wc!. ~77!

As described above, this convolution does not involve
recoil transverse momentum. In moment space, Eq.~77! be-
comes a product

5From Eq.~64!, x̃T
2 is determined bypT , QT andQ.
11401
e

F̃abc~N!5S̃8 (ab→gc)S Q

Nm D J̃8~N!1O~1/N!. ~78!

We will discuss the explicitN-dependence from soft gluo
radiation and the final-state jet below.

Equation~76! defines recoil in the prompt photon cros
section in much the same way that Eq.~9! defines it for
electroweak annihilation. The short distance functio
Cd ds (0)( x̃T

2)/dpT include only lines off-shell byO(pT8
2),

and are evaluated at zero relative transverse momenta
initial-state partons. Expansions in the transverse mome
of the incoming partons are to be absorbed into higher ord
in Cd . In this convolution form, however, the kinematics
the hard scattering influences the cancellation of singulari
at vanishingka andkb . This procedure has a straightforwa
interpretation order-by-order. At fixed order, all contrib
8-19
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tions that are singular at threshold for fixedQ2 may be put in
the form of Eq.~76!. To evaluate the cross section at a
fixed order, we would integrate each such contribution o
Q2 andQT , as in Eq.~66!, with no further approximations
The result would contain finite corrections resulting from t
kinematic linkage of the hard scattering with the cancellat
of singularities in transverse momentum. We would th
sum to all orders. In the resummed formalism, we sim
approximate the short-distance function toO(as), sum the
11401
r

n
n
y

singularities to all orders at leading or next-to-leading log
rithmic accuracy, and do theQ2 andQT integrals last. In the
following, we shall derive the consequences of this reor
nization of perturbation theory.

We are now ready to return to Eq.~66!, and derive the
jointly-resummed partonic cross section as an integral of
differential resummed cross section~76! over the hard-
scattering scaleQ and its relative transverse momentum,QT .
Changing variables fromQ2 to x̃T

2 , we derive
ronic

that
pT
3dsab→g

(resum)

dpT

5
pT

4

8pS2
(
i j

E
0

1

dj idj jf i /a~j i ,m!f j /b~j j ,m!E d2QTu~m̄2uQTu!E
0

1

dx̃T
2
uMi j ~ x̃T

2!u2

A12 x̃T
2

Cd
( i j →gk)

„as~m!,x̃T
2
…

3E d2k id
2k jd

2~QT1k i1k j ! E
0

j i
dxi E

0

j j
dxj E

0

1

dxf dXx̃T
22S pT8

2

pT
2 D xT

2

xixj~12xf !
C

3 c̄i / iS xi

j i

,k i ,
2pT8

x̃T

,m D c̄ j / jS xj

j j

,k j ,
2pT8

x̃T

,m DFi jk~xf ,x̃T
2! S 1

xixj~12xf !
D 2

, ~79!

where we have used Eq.~73! to isolate the partonic hard-scattering function inMS scheme, and Eq.~77! to summarize the
contribution of soft and jet radiation in the final state. In the argument of the delta function, we have used Eq.~64! to reexpress
the ratioQ2/S as

Q2

S
5S pT8

2

pT
2 D xT

2

x̃T
2

. ~80!

In Eq. ~79!, we have also reexpressed the Born cross sections in terms of the 2→2 invariant amplitudesM ( x̃T
2), and have used

the approximate relationpT8(dpT8 /dpT)5pT , valid up to a nonsingular term ofO(QT), which we neglect.
It is a relatively small step from Eq.~79! to a jointly resummed cross section for hadrons, by replacing partonic by had

MS distributions,

pT
3dsAB→g

(resum)

dpT

5
pT

4

8pS2
(
i j

E
0

1

dj idj jf i /A~j i ,m!f j /B~j j ,m!E d2QT

~2p!2
u~m̄2uQTu!E

0

1

dx̃T
2
uMi j ~ x̃T

2!u2

A12 x̃T
2

Cd
( i j →gk)

„as~m!,x̃T
2
…

3E d2beib•QTS S

2pT8
2D E0

j i
dxi E

0

j j
dxj E

0

1

dxf dXx̃T
22S pT8

2

pT
2 D xT

2

xixj~12xf !
C

3 c̄i / iS xi

j i

,b,
2pT8

x̃T

,m D c̄ j / jS xj

j j

,b,
2pT8

x̃T

,m DFi jk~xf ,x̃T
2! S 1

xixj~12xf !
D 2

, ~81!

where we have also replaced the convolution in transverse momenta by a Fourier transform, so that the functionsc̄ are now
in impact parameter space.

Equation~81! factorizes underxT
2 moments at largeN, up to 1/N corrections. Thus, following essentially the same steps

led to Eq.~43! for electroweak annihilation, we find the physical cross section as an inverse transform@19#,

pT
3dsAB→g

(resum)

dpT

5
pT

4

8pS2
(
i j

E
C

dN

2p i
f̃ i /A~N,m!f̃ j /B~N,m!E

0

1

dx̃T
2~ x̃T

2!N
uMi j ~ x̃T

2!u2

A12 x̃T
2

Cd
( i j →gk)

„as~m!,x̃T
2
…E d2QT

~2p!2
u~m̄2uQTu!

3S S

4upT2QT/2u2
D N11

E d2beib•QTc̄i / iS N,b,
4pT8

2

x̃T
2

,m D c̄ j / jS N,b,
4pT8

2

x̃T
2

,m D F̃i jk~N,x̃T
2!. ~82!
8-20
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RECOIL AND THRESHOLD CORRECTIONS IN SHORT- . . . PHYSICAL REVIEW D 63 114018
In the c̄’s, the impact parameterb is conjugate toQT at fixed
values ofQ254pT8

2/ x̃T
2 . In this form, however, eachc̄i / i also

depends implicitly onQT , throughpT8
2. Explicit forms for

the functionsc̄i / i have been given in Eq.~57! above. In the
next subsection, we will find theN-dependence of the final
state functionF.

E. Resummation for the final state

Constructed as in Eq.~71!, S̃8 (ab→gc) satisfies the same
renormalization group equation as the soft functions enco
tered in heavy quark@30# and jet @34# threshold resumma
tions,

m
d

dm
ln S̃8 (ab→gc)S Q

Nm
,as~m! D522ReGS8

(ab→gc)
„as~m!…,

~83!

where the anomalous dimensionGS8
(ab→gc) is a function of the

velocitiesb i associated with the phase lines corresponding
partonsa, b and c. For the special case of prompt photo
production,GS8 is a number, rather than a matrix, becau
the short-distance cross section has only one color struc
@32,33#. The solution to Eq.~83! is therefore a simple expo
nential,

S̃8 (ab→gc)S Q

Nm
,as~m! D

5S̃8 (ab→gc)
„1,as~Q/N!…

3expF E
m

Q/Ndm8

m8
2ReGS8

(ab→gc)
„as~m8!…G .

~84!

The logarithm of the soft function, constructed in this fas
ion, has at most a single logarithm ofN per loop, so that by
calculatingGS8

(ab→gc) to one loop, we determineS8 (ab→gc) at
the level of its leading logarithms, that is,as

L lnLN in the
exponent, while remaining at NLL in the overall cross se
tion. GS8

(ab→gc) is calculated from theMS counterterms for
the three diagrams shown in Fig. 4, in which a single glu
is exchanged between pairs of eikonals. The details of th
calculations, which are to be carried out in an axialn•A
50 gauge, are described in@51#. Many terms cancel, and in
Fig. 4a, the additional crosses on the gluon lines deno
slightly modifiedA050 gauge propagator:

1

k2 S 2gmn1
n̂mkn1kmn̂n

n̂•k
2

1

2

kmkn

~ n̂•k!2D . ~85!

The factor 1/2 in this expression is specific to the lowe
order calculation. It takes into account the effect of subtra
ing the factorUaāUbb̄ implicit in the definition ofcacb , Eq.
~34!. The ‘‘missing’’ terms in Eq.~85! completely cancel the
real part of the diagram of Fig. 4b. The resulting anomalo
dimension is then
11401
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ReGS8
(qq̄→gg)

5
as

2p
CA lnS tu

s2D
ReGS8

(qg→gg)
5

as

2p F2CF lnS 2u

s D1CA lnS t

uD G , ~86!

where s, t and u are the invariants for the partonic 2→2
subprocess. These anomalous dimensions are independe
the gauge vectornm at one loop @51#. The functions
S8 (ab→gc), defined as the solutions to Eq.~83!, with the
usual boundary conditionS8 (ab→gc)(N50)51, are free of
initial-state radiation that would be sensitive to recoil at t
logarithmic level. They continue to contribute to the thres
old phase space through the energywsQ @30,34#, in a manner
described below.

Explicit expressions forS̃8(N) are found from Eqs.~84!
and~86! above. The transform of the recoil jet function ma
be found from Ref.@52#, and is given in its most genera
form by

J̃c8~N!5exp@ Ec8~N!#

Ec8~N!5E
0

1

dz
zN2121

12z H E
(12z)2

(12z) dl

l
Ac@as~AlQ!#

1Bc8@as~A12zQ!#1Bc9@as„~12z!Q…#J , ~87!

where theAc are given in Eq.~15!. In the specific normal-
ization chosen for the recoil jet,Jc8 , in Eq. ~73! above,Bc8 8
vanishes, while

FIG. 4. ~a! Diagrams which contribute to the soft anomalo
dimension. The crosses on the gluon lines denote the mod
propagator given in the text. The remainder of theA°50 gauge
propagator cancels the real part of~b!.
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Bq85
as

p S 2
3

4DCF , Bg85
as

p S 2
b0

4 D . ~88!

These results, along with Eq.~57! for the functionsc̃i / i ,
specify the explicit NLL resummed cross section as an
verse Mellin moment in Eq.~82!. We will give the relevant
expressions in Sec. V. We close this section with a disc
sion of the additional considerations necessary to incl
fragmentation effects in the formalism.

F. Including fragmentation

For single-particle inclusive hadron production, and ev
for high-pT photon production, we must supplement the co
siderations above to include final-state fragmentation. Thi
relatively easy, since the dynamics of fragmentation fac
izes from initial-state, hard virtual, and soft coherent rad
tion as well as from the final-state corrections associa
with the recoiling jet, as illustrated in Fig. 5. The analysis
this section applies to pure threshold resummation~as dis-
cussed in@26#! as well as to joint resummation.

The underlying short-distance scattering subproces
again a 2→2 reaction, but now with two outgoing colore
particles, one of which fragments into the observed had
which we may take to be a pion~or photon!:

a~xapa!1b~xbpb!→c1d~P/z!→p~P!1X, ~89!

where we have exhibited the partons’ momenta. The ou
ing jet, Jd , fragments into the observed hadron (p). The
short-distance scattering involves more than one color fl
the set depending on the flavors of the partons in Eq.~89!. At
any order in perturbation theory, the color flow in the amp
tude and complex conjugate need not be the same. Refe
to Fig. 5, and adopting the notation of electroweak annih
tion, we represent the~dimensionless! short-distance func-
tion aspT

3dŝJI
(f) ( x̃T

2)/dpT85hJ* hI , where f denotes the 2→2
partonic scattering of Eq.~89!. The soft function is built in
the same way as for prompt photon production, treating
color tensorscI ,J for each color exchange at the hard sc
tering as an effective local vertex linking phase operators
the flavors of the partonsa . . . d. The soft function is written
as SJI

(f) . The same arguments regarding the cancellation
recoil effects in the soft function apply to single-hadron
clusive as to prompt photon production. Also, the normali
tion of the soft function follows Eq.~72! above, for each of

FIG. 5. Leading region for a single-particle inclusive cross s
tion in cut diagram form.cI andcJ represent color tensors@51#.
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the matrix elements ofSJI
(f) , but now with factorsU1/2 for

both outgoing jets. The resulting anomalous dimensions
most relevant flavor flows have been computed in Re
@30,51#.

Near threshold, in the notation of Eqs.~74! and ~80!, the
phase space is slightly modified, relative to the prompt p
ton case, because the fragmenting jet has invariant masqd

2

>0, and because the outgoing parton at the hard scatte
carries momentumP/z>P, which shifts the scaling variable
x̃T by a factorz. This changes the transverse momentum
the hard-scattering center-of-mass system:pT8→pT9(z)
[pT /z2QT/2, which is related to the short-distance scatt
ing and overall invariant masses squared,Q2 andS, by

Q2

S
5S upT9 u2

upTu2
D xT

2

x̃T
2

;S upT8 u2

upTu2
D xT

2

z2x̃T
2

. ~90!

In the second relation we have expanded in 12z, and have
neglected corrections of the form (12z)QT . In place of the
argument of the first delta function in Eq.~74! for resummed
prompt photon production, we find the following kinemat
constraint near partonic threshold for single-particle inc
sive cross sections with fragmentation:

15
Q2

S
1~12xa!1~12xb!1ws1qc

2/S1qd
2/S

5
upT8 u2

upTu2

xT
2

x̃T
2

12~12z!1~12xa!1~12xb!

1ws1qc
2/S1qd

2/S, ~91!

with xT
2 as in Eq.~59! and x̃T

2 as in Eq.~63!.
The refactorization that generalizes Eq.~74! includes an

additional integral overz, linked through the restriction~91!,
and a function that describes the fragmentation of partod
into hadronp(P). We parameterize the momentum of part
d as

qd
m5

Pm

z
1S zqd

2

2P•b̄d
D b̄d

m[
P•b̄d

z
bd

m1
zwdQ2

2P•b̄
b̄d

m ~92!

whereb̄d
m is the opposite-directed unit light-cone vector re

tive to momentumPm5(P•b̄d)bd
m , which is itself taken to

be lightlike. The second form introduces a dimensionle
variablewd[qd

2/S.
The fragmentation dynamics of the outgoing jet can

described by a function that is quite similar to a stand
fragmentation function@29#, and to the inclusive jet func-
tions ~70! above. As above, we illustrate the case of a qu
qf , computed inn•A50 gauge,

-
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Jf / f~wd ,P,z,e!5
Q

8NC
(
X

E dlds

2p
e2 i (P•b̄d /z)l2 iqd•bds

3Tr^0u qf~0! u f ~P!,X&

3b”̄ d ^ f ~P!,Xuq̄f~lbd1sb̄d! u0&

5E
z

1dj

j
ef / f S z

j
,wd ,P,mFDD f / f~j,mF ,e!,

~93!

with mF a factorization scale. In the first, defining, relatio
the trace is over both color and Dirac indices. A sum o
spins is understood. In the second equality,D f / f is a frag-
mentation function, which we may define inMS factoriza-
tion scheme. As usual, at partonic threshold, the infrared-
coefficient functioned/d may be taken diagonal in flavor, u
to corrections that vanish as 1/N in moment space.

It is convenient to define a final state threshold funct
by analogy to Eq.~77!, as a convolution of the soft functio
11401
r

fe

with the recoiling jet,

F JI
(f)~wf ![

1

SE dws dqc
2 d~wf2ws2qc

2/S!

3SJI8
(f)~ws ,Q,m!Jc8~qc

2!. ~94!

Laplace moments reduce the convolution to a product,

F̃JI
(f)~N!5E

0

`

dwfe
2NwfF JI

(f)~wf !

5S̃JI8
(f) S Q

Nm
,as~m! D J̃c8~N!. ~95!

It is now straightforward to generalize each of Eqs.~76!, ~82!
and~81!, corresponding to refactorization at partonic thres
old, and to the jointly-resummed hadronic cross section w
ten as an inverse moment, and in convolution form, resp
tively. We give below the first two of these generalize
expressions explicitly.

The refactorized partonic single-particle inclusive cro
section is given by
g
rbative

ction by
pT
3

ds f
(resum)

dQ2 d2QT dpT

5E dxad2kaRa/a8 ~xa ,ka ,Q!E dxbd2kbRb/b8 ~xb ,kb ,Q!d2~QT1ka1kb! E dzE dwd

3(
IJ

E dwfF JI
(f)~wf !pT

3
dpT8

dpT

dŝJI
(f)~ x̃T

2!

dpT8
E

z

1dj

j
ed/dS z

j
,wd ,P,mFDDd/d~j,mF ,e!

3
1

S
d„12Q2/S2~12xa!2~12xb!2wf2wd…, ~96!

wherex̃T is specified by Eq.~90!. As indicated in Eq.~66!, the resummed cross section is found by integrating overQ2 and
QT . The form convenient forxT

2-moments is found by changing variables fromQ2 to x̃T
2 . We compute the hard-scatterin

cross section in moment space, by dividing by perturbative distributions for the incoming partons, and by a pertu
fragmentation function for the parton that fragments into the observed particle.

The resummed hadronic cross section is found by replacing the perturbative distributions and fragmentation fun
their hadronic analogs in moment space, and inverting the transform with respect toxT

2 . The result is

pT
3dsAB→g

(resum)

dpT

5
pT

4

8pS2
(

f
E

C

dN

2p i
f̃a/A~N,m!f̃b/B~N,m!D̃p/d~2N13,m!E

0

1

dx̃T
2~ x̃T

2!N
uMIJ

(f)
„x̃T

2 ,as~m!…u2

A12 x̃T
2

Cd
(f)
„as~m!,x̃T

2
…

3E d2QT

~2p!2
Q~m̄2uQTu!S S

4upT2QT/2u2
D N11

E d2beib•QTc̄a/aS N,b,
4pT

2

x̃T
2

,m D c̄b/bS N,b,
4pT

2

x̃T
2

,m D
3F̃JI

(f)~N,x̃T
2!ẽd/d~2N13,N,P,mF!, ~97!

where we define
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ẽd/d~M ,N,P,mF![E dydwde2M (12y)2Nwded/d~y,wd ,P,mF!. ~98!
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In Eq. ~98!, MIJ
(f) denotes the projection of the amplitud

squared at lowest nonvanishing order on each of the c
flows in the amplitude and complex conjugate, andCd

(f) is the
corresponding expansion inas of the complete hard-
scattering function. A similar form was found in Ref.@26# in
the context of threshold resummation for the fragmentat
component of high-pT photon production. The functionẽd/d
in Eq. ~98! is a double moment, with respect to the jet i
variant mass squared,wdQ2 and the scaling variable,y. Its
double logarithmic behavior@26#, however, is determined
entirely by the latter, because in the momentum configu
tions that give rise to double logarithms, we have 12y
@wd , corresponding to the collinear emission of soft gluo
Finally, we note once again the dependence of the resum
cross section on a cutoff scalem̄. At this scale, the resumme
cross section must be matched to a finite-order, or parti
resummed cross section. The investigation of the best im
mentation of this procedure remains for future work.

V. EXPONENTS AT NLL

In this section we apply joint resummation to electrowe
annihilation and prompt photon production, and exhibit t
relevant exponents to next-to-leading logarithm. For prom
photons, these expressions were the basis of the phenom
logical estimates given in Ref.@19#. We reserve for future
work the corresponding results for single-particle annih
tion including fragmentation, since they will require slight
more elaborate calculations involving color mixing at t
hard scattering@30,51#.

A. Electroweak annihilation

Starting from Eq.~56!, we can identify an explicit expres
sion for the resummed electroweak annihilation cross sec
that is accurate to NLL in bothN andb @19#. We recall first
that the exponentDab in Eq. ~56! contributes only at NNLL.
For the NLL exponentEab , we have used for guidance th
NLL approximation to threshold resummation introduced
Ref. @26#. Our expression for the perturbative exponentEab

PT

in Eq. ~56! is

Eab
PT~N,b,Q,Q!5E

(b/c11N̄/Q)21

Q dm8

m8
@ Aa„as~m8!…

1Ab„as~m8!… #2 ln
N̄m8

Q
, ~99!

where as above, we defineN̄5NegE. Equation ~99! ap-
proaches the normal forms ofQT-resummation~in b-space!
as b→` at fixed N, and of threshold resummation forN
→` at fixed b. We have introduced an explicit dimensio
11401
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less scalec1 into theb-dependence of the lower limit in th
first integral. In Eq.~99!, the factorization scale, set tomF
5Q in the upper limit of the integral, replaces the conve
tional upper limit c2Q in the QT-resummation formalism
@8,9#.

Following the format of@26#, we find the following closed
expression forEaā

PT, accurate to NLL in bothN andb:

Eaā
PT

~N,b,Q,mF!5
2

as~m!
ha

(0)~l,b!12ha
(1)~l,b,Q,m,mF!,

~100!

where fora5q or g we define

ha
(0)~l,b!5

Aa
(1)

2pb0
2 @2b1~122l!ln~122b!#, ~101!

and

ha
(1)~l,b,Q,m,mF!

5
Aa

(1)b1

2pb0
3 F1

2
ln2~122b!1

122l

122b
„2b1 ln~122b!…G

1
1

2pb0
X2

Aa
(2)

pb0
1Aa

(1) lnS Q2

m2D C
3F2b

122l

122b
1 ln~122b!G2

Aa
(1)

pb0
l lnS Q2

mF
2 D ,

~102!

in terms of moment variables,

l5b0as~m!ln~N̄!,

b5b0as~m!ln~N̄1bQ/c1!.
~103!

The coefficientsAa
(1) andAa

(2) in Eqs.~101! and ~102! have
been given in Eq.~15!. The last term on the right-hand sid
of Eq. ~102! is the contribution at NLL of the first exponen
of Eq. ~56!, including the anomalous dimensions. The be
function coefficients in these expressions are given by

b05
11CA24TRNF

12p
,

b15
17CA

2210CATRNF26CFTRNF

24p2
. ~104!
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‘We recall that Eq.~56! was derived choosing the renorma
ization scale asQ, the mass of the produced boson. In t
expressions immediately above,mF is the factorization scale
while the argumentm denotes the renormalization scale d
pendence that arises when the scale ofas is shifted fromQ
to m.

Using these results in Eq.~56!, we derive doubly-
resummed expressions for the production ofW, Z and Higgs
at measuredQT , through electroweak annihilation, accura
to NLL in both transforms. Compared to existin
QT-resummation formalisms@20,21#, we anticipate modes
changes associated with the additional threshold resum
tion, especially for theW andZ, when their mass is far below
collider energies, as at the Tevatron. Nevertheless, we ex
a decreased sensitivity to the choice of factorization sc
@25,26,31,47–49#. At the same time, it may be of interest
study the b-space integral in Eq.~56! in the ‘‘minimal-
principal value’’ prescription introduced in Ref.@19#. We
shall not pursue these phenomenological implications h
however.

In addition to a perturbative exponent, we expect t
nonperturbative contributions, of the sort familiar fro
QT-resummation, will be phenomenologically importa
wheneverQT!Q @8,9,20,21#. As noted above, the form o
power corrections associated with the running coupling m
be inferred from Eqs.~53!–~55!, with the result that only
even powers inQ21 andb are required@22,24#.

B. Prompt photons

We now turn to the prompt photon cross section, a
show how the NLL resummed cross section, already stud
in a preliminary fashion in Ref.@19#, is derived. We start
with Eq. ~82!, which expresses the resummed cross sec
in terms of doubly-transformed initial-state coefficient fun
tions c̄, given in Eq.~57!, and final-state functionsF, speci-
fied by Eqs.~78!, ~84! and ~87!. All logarithms of b and N
exponentiate, and we find the form

pT
3dsAB→g

(resum)

dpT

5(
i j

pT
4

8pS2
E

C

dN

2p i
f̃ i /A~N,mF!f̃ j /B~N,mF!

3E
0

1

dx̃T
2~ x̃T

2!N
uMi j ~ x̃T

2!u2

A12 x̃T
2

Cd
( i j →gk)

„as~m!,x̃T
2
…

3E d2QT

~2p!2
Q~m̄2QT!S S

4pT8
2D N11

3E d2b eib•QT expFEi j →gkS N,b,
4pT

2

x̃T
2

,mFD G .

~105!

The final factor in this expression, the inverse transform
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the exponential, was described as a ‘‘profile’’ function
Ref. @19#, and was denotedPi j (N,QT ,Q,m).

The exponential moment dependence at NLL is given
plicitly by

Ei j →gk
PT ~N,b,Q,mF!5Hi~N,b,Q,mF!1H j~N,b,Q,mF!

1Fk~N,Q!1Gi jk~N!. ~106!

Here the contributions from the initial state jets inc̄i / i are
computed from Eq.~99!, and are contained in the function

Ha~N,b,Q,mF!5
1

as~m!
ha

(0)~l,b!1ha
(1)~l,b,Q,m,mF!,

~107!

with the ha
( i ) given above in Eqs.~101! and~102!. Contribu-

tions in F̃i jk from the final state jets are the LL and NL
functions

Fa~N,Q![
1

as~m!
f a

(0)~l!1 f a
(1)~l,Q,m!, ~108!

while those inF̃i jk , from the soft functions, are NLL only,

Gabc~N![gabc
(1) ~l!. ~109!

The new functionsf a
( i ) are found from Eqs.~87! and ~88!,

while the gabc
(1) are computed following Eqs.~84! and ~86!,

with the results

f a
(0)~l!52ha

(0)~l/2,l/2!2ha
(0)~l,l!, ~110!

f a
(1)~l,Q,m!52ha

(1)~l/2,l/2,Q,m,Q!2ha
(1)~l,l,Q,m,Q!

1
Aa

(1)ln 2

pb0
„ln~122l!2 ln~12l!…

2
Ba

(1)

pb0
ln~12l!, ~111!

gqq̄g
(1)

~l!5
CA

2pb0
ln~122l!lnS tu

s2D , ~112!

gqgq
(1) ~l!5

1

pb0
ln~122l!

3FCFlnS 2u

s D1
1

2
CA lnS t

uD G , ~113!

where the coefficientsAa
(1) and Ba

(1) have been defined in
Eqs. ~15! and ~16!, respectively. These formulas were em
ployed in Ref.@19# to test the sensitivity of the inclusive
prompt photon cross section to joint resummation.6

Again, to the perturbative expressions, nonperturba
corrections must in general be added. For prompt photo

6We note a slight difference in notation from Ref.@19#, where the
functionsCd were not exhibited separately.
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we do not yet have all-orders expressions of the full gen
ality of Eqs. ~53!–~55! for electroweak annihilation, so w
cannot yet conclude that all nonperturbative corrections
of even powers inb andN. We consider this the most likely
scenario, however, and in Ref.@19#, the significant role of a
modest nonperturbative term proportional tob2 in the expo-
nent was highlighted. Clearly, this issue bears further stu

C. Recoil and enhancement

The jointly-resummed electroweak annihilation cross s
tion, Eq. ~56!, differs from b-space formalisms for
QT-resummation@8,20# in the inclusion of threshold loga
rithms at leading power in the Mellin moment variableN. At
NLL, these corrections are included through the modifi
lower limit in the exponent, Eq.~99!, which stabilizes the
exponent to an integration rangeQ/N,m8,Q at b50. This
limit gives exactly the threshold resummed exponent for
QT-integrated cross section@5,6#.

In view of the above, we see that, in them8 integral in the
exponent, Eq.~99!, the effects ofQT-resummation and o
threshold resummation are additive. This feature may be
derstood from the distinct origins of threshold and transve
momentum logarithms. The logarithms ofN in threshold re-
summation, which enhance the cross section, come prim
from subtracting negative corrections to the perturbative p
ton distributions in the construction of the hard-scatter
function in theMS ~or other! scheme@5#. These subtractions
produce enhancements because virtual corrections sup
the denominator of Eq.~4! at the edge of phase space, i.e.,
large N. The logarithms ofb, however, are associated wit
real-gluon emission, in the numerator of Eq.~4!, the partonic
cross section. They are negative in the exponent, bec
they cancel the divergent lower limit of the virtualm8 inte-
gral in Eq. ~99!. Notice that the integrand changes sign
m85Q/N̄, which is the dividing line between threshold an
transverse momentum dependence. Very roughly speakin
is possible to resum threshold and transverse momen
logarithms simultaneously because they come from ‘‘diff
ent’’ gluons: gluons from the parton distributions for th
former and from the unsubtracted partonic cross section
the latter. In essence, when recoil is taken into account,
Sudakov suppression associated with large values ofb in Eq.
~99! does not cancel the threshold enhancement, but re
tributes it over a range of partonic invariant masses and
mentum transfers at the hard scattering.

In the jointly-resummed prompt photon cross section,
~105!, the explicit enhancement of the integrand is associa
with the inclusion of recoil, relative to the threshold
resummed cross section. The recoil allowsx̃T

2, x̂T
2 for pT8

,pT , even while the full partonic invariantŝ5j1j2S is
bounded from below by 4pT

2 . In moment form, Eq.~82!, this
enhancement appears through the factor (S/4pT8

2)N

>(S/4pT
2)N. Equation ~105! reduces to the inclusive

threshold-resummed cross section in Ref.@26# if we neglect
recoil, that is, if we setb to zero in the functionsci / i , or at
NLL, the exponentEi j in Eq. ~106!. Then, the exponent re
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verts to its form in threshold resummation, and theb integral
gives a delta function, which eliminates theQT integral, and
freezespT85pT .

VI. CONCLUSIONS

We have described a joint resummation procedure
threshold and transverse momentum singularities. The
summation organizes a well-defined set of corrections
single-particle and electroweak annihilation cross section
measured transverse momentum, to all orders in perturba
theory. Although the arguments for specific applications
somewhat involved, the basic observation is relativ
simple: for those contributions that are singular at parto
threshold, the transverse momentum,QT , of the short-
distance scattering can be identified meaningfully. The f
torization properties of perturbation theory near parto
threshold allow us to control logarithms simultaneously
QT and the relevant threshold variable, 12z, for electroweak
annihilation, or 12 x̂T

2 for single-particle inclusive~1PI!
cross sections. For electroweak annihilation cross secti
QT may be identified with the observed final-state boson.
high-pT 1PI cross sections,QT must be integrated to deriv
the hard-scattering function in the formalism of collinear fa
torization. The integral over singular distributions inQT
leaves behind finite remainders that modify, and may
hance, the predictions of threshold resummation.

Joint resummation extends our control over a class of
fects that can have an important phenomenological influen
At the same time, the resummed expressions afford new
sights into nonperturbative power corrections in ha
scattering cross sections, which may be competitive with
summed perturbation theory, or even overshadow it.
preliminary study points to the importance of both high o
ders in perturbation theory and of nonperturbative effects
prompt photon production at fixed target energies@19#.

For electroweak annihilation at measuredQT!Q, the gap
between existing formalisms that resum in transverse m
mentum, and the joint resummation described here, sho
be relatively easy to close. Such an application would p
duce, we conjecture, a decrease in sensitivity to the fac
ization scale.

Work remains to make our joint resummation formalism
tool for phenomenological predictions in 1PI cross sectio
From a numerical point of view, the resummed expressi
involve extra integrals compared even to threshold resum
tion, so purely computational considerations make it m
challenging to implement. Perhaps more significantly, it w
be necessary to develop an appropriate matching forma
for large recoil. Nevertheless, we believe that the joint
summation formalism sheds valuable light on the reliabil
of perturbative calculations in hadronic scattering, and on
influence of nonperturbative effects.
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APPENDIX A: STATUS OF THE REFACTORIZATIONS

Specific arguments for the refactorized cross section,
~6! for threshold resummation were given in Ref.@34#. The
QT-refactored expression, Eq.~5! was analyzed in some de
tail at one loop in Ref.@35#, although explicit arguments fo
its validity to all orders have not, to our knowledge, appea
in the literature. Equation~9! is new to this paper. In fact, we
believe that all three of these refactorized cross sections,
~5!, ~6! and~9! are on a theoretical footing similar to that o
collinear factorization, Eq.~1!, but, of course, with different
corrections as indicated above. We summarize below the
gredients of general factorization proofs for these relatio
modeled after the arguments for collinear factorization giv
in Refs. @1,4# and summarized recently in Ref.@53#. The
following reasoning applies explicitly to electroweak annih
lation cross sections; the extension to single-particle inc
sive cross sections is straightforward@50#.

Leading regions and cut diagrams

Each of the functions in the refactorized expressions
electroweak annihilation, Eqs.~5!, ~6! and ~9!, corresponds
to one of the subdiagrams in Fig. 1, which represents a g
eral leading region, in the terminology of Ref.@1#. A leading
region in momentum space is one that gives rise to a co
bution to the cross section that is leading power in the h
momentumQ. In general, leading regions can be classifi
by a set of on-shell virtual lines, whose vanishing denom
nators produce logarithmic corrections. In the following,
on-shell momentum is one whose invariant mass is m
less thanQ, and a soft momentum means one all of who
components are much less thanQ in the specified leading
region @1#.

Figure 1 is in cut diagram notation, in whichC represents
a particular final state, with a graphical contribution to t
amplitude on the left ofC, and a contribution to the comple
conjugate amplitude on the right ofC. In this notation, the
cross section is a sum over all cutsC of forward-scattering
diagramsG, consistent with the specified final state. In th
case, all relevant final states contain an electroweak ve
bosonV, with momentumQm. In Fig. 1, the subdiagramsJA ,
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JB , U and H include, respectively, on-shell lines with mo
menta collinear topA ~to be absorbed intoPa/a , ca/a or
Ra/a), lines with on-shell momenta parallel topB ~to Pb/b ,
cb/b or Rb/b), lines with soft momenta~to U), and lines
off-shell by orderQ ~to H).

Following the notation of Ref.@1#, we represent the con
tribution from regionL of graphG to the cross section as

GL5(
C

E dkA
1

2p

dkB
2

2p
H (C)~kA

1 ,kB
2!)

l
E d4ql

~2p!4

3)
j
E d4q̄ j

~2p!4
JA

(C)~kA
1 ,ql

a!$m1 . . . mn%

3U (C)~ql
a ,q̄ j

b!$m1 . . . n1 . . . %JB
(C)~kB

2 ,q̄ j
b!$n1 . . . nm%.

~A1!

In this expression, we have suppressed the flavor label@a
andb in Eq. ~1! and so on#, and the corresponding Lorent
indices, that link the jets with the hard scattering. Equat
~A1! is a representation of the most general leading-po
contribution to the cross sectionds/d4Q, considered as an
integral in the space of loop and final-state momenta.
shall argue that for each such leading regionL, GL may be
rewritten as in Eq.~5!, ~6! or ~9!, up to the corrections indi-
cated in those expressions. For this discussion, it is con
nient to introduce the lightlike vectorsvm and um, in the
directions of the incoming momentapa andpb , according to

vm5
pa

m

pa
1 5dm1 , um5

pb
m

pb
2 5dm2 . ~A2!

Already at the first step in our factorization argument, E
~A1!, we have made the approximation that the sho
distance functionH(kA

1 ,kB
2) depends on the large light-con

components of the quarks that annihilate to produce the e
troweak vector boson. In particular, we identify (kA

1/pa
1)

5xa and (kB
2/pb

2)5xb in Eq. ~1!. We know of no other
approximation that can be extended beyond lowest orde
formulate the short-distance function in a consistent fash
as a collinear-finite quantity@1#. Thus, we neglect transvers
momenta in the calculation ofH. This implies that in our
factorized cross section, as in Eq.~5!, the measured trans
verse momentum,QT does not appear in the short-distan
function directly, but only through its kinematic linkag
~‘‘recoil’’ ! with the total final-state transverse momenta
the jetsJ, and of the soft subdiagramU. Notice that the short
distance functionH in Eq. ~A1! need not be identical to the
partonic hard scattering functionŝ, which will in general
absorb infrared-safe corrections fromU.

a. The soft approximation and the eikonal function

The desired factorized expression for each case discu
above reduces to an identity, if we make the following su
stitutions for the jet functionsJA

(C) andJB
(C) :
8-27
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JA
(C)~kA

1 ,ql
a!$m1 . . . mn%→JA

(C)
„kA

1 ,~ql•v !ua
…
$j1 . . . jn%uj1

. . . ujn
vm1 . . . vmn

JB
(C)~kB

2 ,q̄ j
b!$n1 . . . nm%→JB

(C)
„kB

2 ,~ q̄ j•u!vb
…
$l1 . . . lm%vla

. . . vlm
un1 . . . unm. ~A3!
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These substitutions are the ‘‘soft approximation’’@1#. In the
soft approximation, the momenta and polarizations of all s
gluons connected toJA are approximated by their minu
components, that is, the components moving opposite to
direction of lines in the jet. Similarly, forJB , only plus com-
ponents are kept. Notice that although the transverse com
nents of soft momenta are neglected in the jet functions
approximation is made in the soft function itself.

Once the soft approximations~A3! have been carried out
the decomposition ofGL , Eq.~A1!, into the appropriate con
volutions in transverse momentum and light-cone or ene
fraction, requires only that we sum over all connections
gluons from the soft diagramsU to the corresponding je
subdiagrams. The graphical Ward identities of the theory
sure this result, illustrated by Fig. 6@4#. After the sum over
diagrams, the coupling of the soft gluons to jets is repla
by their coupling to eikonal lines, as in Eq.~11!, in the di-
rections of the jet momenta, which serve as sources for
gluons in the functionsU. The Ward identities, which are
essentially algebraic, also do not require an integral o
soft-gluon momenta, which may be treated as fixed. The
of Ward identities is thus consistent with the restrictions
final-state momenta necessary to define cross sections a
served transverse momenta or near threshold.

b. Justification of the soft approximation

We have now seen that a refactorization appropriate
each of our theorems is assured if the soft approximation
be justified. What must therefore be verified is the accur
of the soft approximation, as it is used in each factorized
refactorized cross section. As discussed, for example, in
@1#, the soft approximation fails, on a graph-by-graph ba
for JA

(C) wheneverql
2!ql ,T for any one of the soft lines tha

connectJA
(C) to U, and inJB

(C) wheneverq̄ j
1!q̄ j ,T for one of

the lines that connectJB
(C) with U. The central step in the

proof of collinear factorization@4# is to show that all regions
where the soft approximation fails cancel in the sum o
final states. Equivalently, we must show that theql

2 integrals
linked to JA

(C) , considered as contour integrals in the co
plex plane, are not pinched between coalescing singular
with ql

2!ql ,T . For a fixed final state, however, it is easy
identify such pinches, between poles in the upper half-pl
from the Feynman denominators of ‘‘spectator’’ lines, whi
carry large plus momenta into the final state, and poles in
lower half-plane from the denominators of ‘‘active’’ lines
which carry plus momenta into the electroweak annihilat
@54,55#. The former may be thought of as characteristic
final-state interactions, and the latter of initial-state inter
tions. After the sum over final states, however, final-st
interactions cancel, and all remaining singularities inql

2

from the functionJA are in the lower half-plane. As a resu
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after the sum, theql
2 integrals are no longer pinched in th

dangerous region, and the soft approximation may be car
out.

For collinear factorization, Eq.~1!, the cancellation of fi-
nal state interactions is verified once the internalminusmo-
mentum integrals internal to jetJA , as well as the interna
plus momentum integrals of the remainder of the diagra
are carried out. Details can be found in Ref.@4#; here we
shall only need the result that no other integrals are ne
sary. We must verify that corresponding arguments apply
the QT , threshold and joint refactorized cross sections.

c. QT refactorization

An essential feature of the cancellation of final-state
teractions in the collinear-factorized cross section is tha
requires integrals over light-cone momenta only@4#. The
cancellation is therefore consistent withfixed transverse mo-
menta. The new feature of theQT-refactorized Eq.~5!, rela-
tive to the collinear-factorized cross section, Eq.~1!, is sim-
ply that in the former the total transverse momentum of
soft and jet functions is frozen at2QT . The arguments for
factorization as in Eq.~1! are therefore adequate for refa
torization as in Eq.~5!, where QT is the total transverse
momentum carried by quanta that are absorbed by the s
distance functionuHu2 in Eq. ~A1!.

Equation ~5! refers to a cross section in which the o
served final-state momentum is that of a single vector bo
only, with all real QCD radiation incorporated into the jets
soft function. In general, the short distance function,uHu2,
like the jet and soft functions, includes corrections associa
with QCD radiation into the final state. The structure of t

FIG. 6. ~a! Gluons attached to jetJA in the soft approximation,
indicated by the dashed line. Color indicesd ande are to be con-
tracted with the hard scattering.~b! Result of the Ward identity
discussed in the text, in which the jet is replaced by an eiko
~double! line with velocity vector,vm. Note the color trace on the
remaining jet functions, normalized byda , the dimension of the
color representation of partona.
8-28
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leading regions in Eq.~A1!, however, ensures that these co
rections are not singular when the total transverse mom
tum of the extra, ‘‘hard’’ QCD radiation vanishes. By co
struction, singular behavior is entirely in the jets and s
function. As a result, such regions, although of lead
power inQ2, are not singular as a power atQT50, whenQT
is the vector bosonmomentum@9,35#. These nonsingula
contributions, which begin at next-to-leading order, are
sorbed into the correctionYkt in the QT-refactorized cross
section, Eq.~5!.

d. Threshold refactorization

The situation for threshold resummation is a bit mo
subtle. In this case, we want to fix the energy of radiat
from the jets and soft function in the hard-scattering cen
of-mass frame. This clearly puts restrictions on the lig
cone momentum integrals needed to ensure the cancell
of final state interactions. Near threshold, however,all radia-
tion into the final state, including the radiation within th
jets, is soft compared toQ, because near threshold the to
energy of final state radiation is of order (12t)Q, with t
5Q2/S. All radiation, including ‘‘spectator’’ gluons in the
jets may thus be absorbed into the soft functionU in Eq.
~A1!. Corrections to this result are less singular by a powe
t51 than the~leading! 1/(12t) behavior in perturbation
theory. The jet subdiagrams that remain after this factor
tion are purely virtual, with only ‘‘active’’ lines, whose en
ergies flow into the hard scattering@5#. In this case, as
pointed out in Sec. III of Ref.@34#, the same mechanism fo
the cancellation of final-state interactions in collinear fact
ization, Eq.~1!, ensures that the soft function near thresh
is free of overlapping soft-collinear logarithms, even wh
the light-cone integrals are restricted. Collinear singularit
are present in the soft subdiagram, which is now the eiko
cross section discussed above, and they factorize in the u
way, as in Eq.~37! above~integrated overkT).

We can now reorganize the cross section in moment sp
to derive Eq.~6!. We remove factorizing, purely collinea
singularities fromU by multiplying and dividing the eikona
cross section by eikonal jet functionsc f

(eik) , corresponding to
the incoming partons, and defined by analogy to Eq.~22!, in
the appropriate~Laplace! transform space. The ratio of th
soft function to eikonal jets in transform space, as in E
~37!, is free of collinear singularities altogether. The eikon
jets combine with the virtual remainders from the origin
factorization to form the functionsc at fixed energy, nea
threshold, as in Eq.~6!.

We expect there to be singular but integrable remaind
in the soft function, after the sum over final state intera
tions. These remainders are precisely the logarithms ass
ated with the soft function,U @34#. Corrections resulting
from the factorization of final-state radiation intoU, which
areO(@12t#0), are absorbed intoYth in Eq. ~6!, and begin
at one loop.

e. Joint refactorization

The step from the threshold-refactorized expression~6!, to
the jointly refactorized Eq.~9! is essentially equivalent to th
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step from collinear factorization to theQT-refactorized form
~5!. The extra ingredient is again to fix transverse mome
for the soft radiation and the jets, a condition that we ha
already argued is consistent with the cancellation of fin
state interactions, and hence with the validity of the s
approximation.

Of course, as emphasized in Refs.@1,4#, complete factor-
ization proofs should rest on arguments based upon sys
atic subtraction procedures. This level of sophistication
still to be attained in hadronic scattering cross sections. N
ertheless, we consider the arguments outlined above to
adequate to justify an analysis based on the refactoriza
theorems in Secs. II and IV.

APPENDIX B: ONE-LOOP PARTON DISTRIBUTIONS
AND REFACTORIZATION

In this appendix we present for illustration, at one-lo
accuracy, the various generalized distributions of Sec. I
To keep the presentation brief, we will only present resu
for quark distributions. We begin with the familiar distribu
tions, defined at fixed ‘‘plus’’-component of their momen
tum, and then turn to those at fixed energy. The latter, w
transverse momentum fixed also, are then used to verify
joint refactorization~9! to one loop for electroweak annihi
lation. Illustrations of joint refactorization for the one-loo
prompt photon cross section will be given elsewhere.

1. Quark distribution at fixed light-cone momentum fraction

We give first the one-loop partonic light-cone distributio
~10! in n•A5A150, n250 gauge. The familiar result is
@56,57#

fq/q~x,m,e!5d~12x!

2S 1

e
1 ln~4p!2gED as~m!

2p
CF

3F 11x2

~12x!1
1

3

2
d~12x!G . ~B1!

2. Quark distribution at fixed light-cone fraction and
transverse momentum k

Next we computePq/q(x,k,m,e), Eq. ~17!, in n•A50
gauge withn2Þ0. For simplicity, we choosenT50. One
finds

Pq/q~x,k,m,e!5d~12x! dD22~k!@11cq/q
(1),V~x,2p•n,e!#

1
as~m!CF

2p2
~4p2m2!e

3H 12x

k2 F12e1
2x n

k21~12x!2n
G

2
2n~12x!

„k21~12x!2n…2
J , ~B2!
8-29



-

re

ar

e

d

ERIC LAENEN, GEORGE STERMAN, AND WERNER VOGELSANG PHYSICAL REVIEW D63 114018
with cq/q
(1),V the same function of the gauge vectornm given

below for the one-loop virtual correction tocq/q , and where
n5(2p•n)2/un2u. It is not difficult to check that

E dd22k Pq/q~x,k,m,e!5
p12e

G~12e!
E

0

m2

dk2~k2!2e

3Pq/q~x,k,m,e!

5fq/q~x,m,e!1finite, ~B3!

i.e., that the singularities inPq/q match those off, up to
finite (n- andm-dependent! remainders.

3. Quark distribution at fixed energy

For the one-loop energy distribution~18!, the computation
is described in detail in Ref.@5#. We work in n•A50, nm

5dm0 gauge and treat the 1/(n•k) terms in the gluon propa
gator in principal value prescription. The result is

cq/q~x,2p0 ,e!5d~12x!1cq/q
(1),R~x,2p0 ,e!

1cq/q
(1),V~x,2p0 ,e!, ~B4!

where p05Q/2, and the real and virtual contributions a
given by

cq/q
(1),R~x,2p0 ,e!5

as~m!CF

2p S 4pm2

n D e G~22e!

G~222e! S 21

e D
3F11x22e~12x!2

~12x!112e G , ~B5!

cq/q
(1),V~x,2p0 ,e!52

as~m!CF

p
d~12x!H S 4pm2

n D e S 1

2e2D
3S 12e

122e DG~12e!G~112e!

3ReF1

2
„sgn~n2!…e

1
1

2
„sgn~n2! e22p i

…

eG
1

3

4 S 1

e
1 ln~4p!2gED J , ~B6!

where againn5(2p•n)2/un2u. c q̄/q̄
(1) is identical. The coun-

terterm contribution tocq/q
(1),V results fromMS fermion wave

function renormalization in then•A50 gauge, and the
double pole ine reflects an overlapping soft and colline
divergence. The expansion ine of Eq. ~B4! reads
11401
cq/q~x,2p0 ,e!5d~12x!1S asCF

p D
3H 2

1

2 S 1

e
1 ln~4p!2gED

3F 11x2

~12x!1
1

3

2
d~12x!G

12F ln~12x!

12x G
1

2F 1

12xG
1

2 lnS m2

n D
3F 1

12xG
1

1
p2

6
d~12x! J , ~B7!

plus non-singular terms. Note atO(e0) the appearance of th
double-logarithmic plus-distribution @ ln(12x)/(12x)#1 ,
which is a remnant of the 1/e2 cancellation between real an
virtual contributions.

4. Quark distribution at fixed energy and transverse
momentum

The one-loop result for the distributionRq/q(x,k,2p0 ,e)
in Eq. ~19! is

Rq/q~x,k,2p0 ,e!5d~12x! dD22~k!1R q/q
(1),R~x,k,2p0 ,e!

1R q/q
(1),V~x,k,2p0 ,e!, ~B8!

where

R q/q
(1),R~x,k,2p0 ,e!5F~x,k,2p0 ,e! Pqq

e ~x!

3F 1

k2
2

2

~2p0!2 ~12x!2G , ~B9!

R q/q
(1),V~x,k,2p0 ,e!5dD22~k!cq/q

(1),V~x,2p0 ,e!.
~B10!

In these expressions, we define

F~x,k,2p0 ,e!5
asCF

2p2
~4p2m2!eS 12

4k2

~12x!2~2p0!2D 21/2

,

Pqq
e ~x!5

11x22e~12x!2

12x
. ~B11!

R q̄/q̄
(1) is identical toR q/q

(1) . Consistency requires that

E dd22k R q/q
(1),i~x,k,2p0 ,e!

5
p12e

G~12e!
E

0

p0
2(12x)2

dk2~k2!2e R q/q
(1),i~x,k,2p0 ,e!

5cq/q
(1),i~x,2p0 ,e!, i 5R,V, ~B12!
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which is straightforward to verify. Note that inR the double-
logarithmic singularities in 12x andk are generated by th
term

E
0

p0
2(12x)2

dk2~k2!212e
1

12x S 12
k2

~12x!2p0
2D 21/2

.

~B13!

5. Drell-Yan cross section

The lowest order cross section for the reaction

q~p1!1q̄~p2!→g* ~q! ~B14!

reads inD5422e dimensions

dsqq̄

dQ2dD22QT

5
4pa2

3NCs Q2
~12e!dS 12

Q2

s D dD22~QT!

[s0d~12z!dD22~QT!. ~B15!

The one-gluon radiative correction to this cross section,
sulting from the reaction

q~p1!1q̄~p2!→g* ~q!1g~k!, ~B16!

is straightforwardly computed, using for example the expr
sions given in@58#. In terms of the quantities defined in E
~B11!, the result is written compactly as

d2sqq̄
(1),R

~z,Q2,QT!

dQ2 dD22QT

52 s0F~z,QT ,Q/Az,e!

3F 1

QT
2

Pqq
e ~z!2

2z

~12z!Q2G ,

~B17!

with Pqq
e given in Eq.~B11!. One can easily verify that upo

integration overdD22QT this expression gives the rea
emission correction to the inclusive Drell-Yan cross sect
given in Eq.~88! of @58#.
en

.
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6. Joint refactorization at one loop

Let us now illustrate the refactorization of the Drell-Ya
cross section in Eq.~9! at one loop. We will see that its
singularities inQT and 12z are accounted for by the distri
butionsRi / i , i 5q,q̄, and the soft functionUqq̄ .

At one loop, the right-hand side of Eq.~9! expands into a
sum of the one-loop expressions for its factors. Virtual c
rections in Eq.~9! are exactly equivalent to those of Eq.~6!
in threshold resummation@5#. Thus, we restrict ourselves t
the real contributions, and check that the hard-scatte
function found by expanding Eq.~9! to one loop:

s0hqq̄
(j)(1)

5
dsqq̄

(1),R

dQ2dD22QT

~z,Q2,QT!

2s0 @R q/q
(1),R~z,QT ,Q/Az,e!

1R q̄/q̄
(1),R

~z,QT ,Q/Az,e!1Uqq̄
(1),R

~12z,QT!#,

~B18!

is free of singularities atQT50 and~afterQT integration! at
12z50. The soft functionUqq̄

(1),R may be found from Eq.
~37!. At one loop, it is quite simple to determine, becau
only the interference graphs contribute in the ratio, and e
in these diagrams only thekmkn/(n•k)2 term in the gluon
polarization tensor survives. The result is

Uqq̄
(1),R

~12z,QT!5F~z,QT ,Q/Az,e!
8

Q2~12z!3 .

~B19!

Using Eqs.~B8!, ~B17! and ~B19!, we then find

s0hqq̄
(j)(1)

52s0F~z,QT ,Q/Az,e!
8~11z!

Q2~12z!2
. ~B20!

This is the desired behavior, because, when integrated
QT , the result is nonsingular asz→1 @see the discussion
after Eq.~9!#.
s.
s.
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