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We identify and resum corrections associated with the kinematic recoil of the hard scattering against
soft-gluon emission in single-particle inclusive cross sections. The method avoids double counting and con-
serves the flow of partonic energy. It reproduces threshold resummation fophighrgle-particle cross
sections, when recoil is neglected, aDgdresummation at lovQ+, when higher-order threshold logarithms are
suppressed. We exhibit explicit resummed cross sections, accurate to next-to-leading logarithm, for elec-
troweak annihilation and prompt photon inclusive cross sections.
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. INTRODUCTION Starting at NLO, the computation of involves cancella-
) o tions between soft gluon emission and virtual corrections.
A large class of hard-scattering cross sections in QCD arghese cancellations produce plus distributions and delta
factorized into convolutions of parton distributions and frag-fnctions. which require integration against smooth func-
mentation functions with hard-scattering functidilg. Im-  tjons  such as parton densities. The finite integrals, in turn,
po(rjtagt ﬁ“l? representative examples are | Higgs productiofys yotential sources of numerically large corrections at each
and ¢ refi-yan cross se;:ﬂons,v\'jlt mﬁa}fur? [[nv;';rlant rQass order in perturbation theory. Because of their connection to
and trahsverse momen uQy . We s all reter to these reac- soft-gluon emission, however, such corrections can some-
tions collectively as electroweak annihilation. At fixed, large ;o< ba resummed to all orders in perturbation theory
Qr, electroweak annihilation cross sections are written in . - . L '
For example, in Eq(1), o,y includes distributions that

collinear-factorized form as ) ] -
are singular at partonic threshols=Q?, where partons
and b have just enough invariant mass to produce the ob-

> jdxaqsa,A(xa,,u) J dXybps(Xp, 1) served final state. Defining=Q?s, we find atnth order
ab singularites as strong asal[(1—2) ln*Y(1-2)], .
A A Threshold resummations, which organize these distributions
2 2/A2 O2/,,2 , J
X 0ab-v(Q78,Q7/Q%. Q% 1% iy ars()), have been developed for a large class of cross sedtiong.
(1) Although these singularities are manifestoig,, .\, they do
not generally result in large logarithms in the physical cross
in terms of evolved, nonperturbative distributiofaensitie3  section, because they are smoothed by the integralsxqver
dan(X, 1) of partona in hadronA, and hard-scattering func- andx,, in Eq. (1). Thus, threshold resummation is not a sum-
tions op_v(Q%/5,Q%Q2,Q%/ 2, i, as(1)), computed as Mmation of kinematic logarithms in the physical cross section.
power series inv,. Here%zxaxbs is the partonic invariant It is rather an attempt to quantify the effect on the physical

mass squared, while is a factorization scale, which for the Cross section of a well-defined set of correctionsrito all
time being we equate with the renormalization scale. Generdrders. _ - _ o
single-particle inclusivé1P)) cross sections for photons and ~ Threshold singularities are not the only singular distribu-
light hadrons at highpt take a similar form, including a tions encountered in the computation of In addition,
fragmentation function. the perturbative cross section is singular up to
Many hard-scattering functions have been computed tog[(l/Q%)|nZﬂ—1(Q$/QZ)]+ in o, Eq. (1), when the transverse
next-to-leading ordefNLO) in a(u). Analytic calculations  momentum@Qy, of the electroweak boson is small compared
of still higher-order contribution$2] to o are as yet too to its massQ [8,9]. At each orderQ+ is balanced by soft
complex to carry out, except for fully inclusive processes,gluons, and singularities in the differential cross section at
such as the Drell-Yan production of lepton pairs at measuregh. =0 reflect collinear divergences i not eliminated by
invariant mass(3]. Nevertheless, general arguments showfactorization. These divergences, resummed or not, cancel in
that the functionsr are infrared safe to all ordefd]. the Qr-integrated cross section, even before the integrals

doag v .

dQ?dQ2
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over the partonic fractions, andx,, although the remainder Let us offer a few additional comments on nonperturba-
is still singular at partonic threshold. tive effects in these cross sections. Nonperturbative effects
Much of the recent interest in soft-gluon recoil effects hasplay a crucial role in the phenomenological description of
centered on the normalization apg-dependence of single- electroweak annihilation cross sections at IQw, even for a
particle inclusive cross sectior|d0], particularly direct- large final state mass scale This is the case, even after the
photon production at fixed-target energiéd—17. The for- ~ resummation of logarithms d®+/Q that can give a well-
malism of Q; resummation for Eq(1) is not immediately —defined perturbative prediction for sm&dy. Incorporating
applicable to inclusive higlpy cross sections, because in this Nonperturbative effects, of course, requires the introduction

case most of the transverse momentum of the observed pa‘?g new pararget'er’§8,20,2]]..ln each of these é:abses, the fg)rm
ticle is recoil against other high; particles, while only a ©f nonperturbative corrections is suggested by perturbation

small portion is from soft radiation. A rough-and-ready ap_theow[22—24. In contrast, nonperturbative effedtseyond

roach to soft-gluon radiation is to introduce intrinsic trans_fragmentation functions have not been incorporated in
P 9 . ) .~ prompt photon and other single-particle inclusive cross sec-
verse momentum for the partons in factorized expression

ke Eq. (1 icallv in the f ¢ d d ons, where there is no need for them at fixed order in per-
ike Eq. (1), typically in the form of an energy-dependent turbation theory. For threshold-resummed cross sections the

Gaussian smearing of standard parton densities, which ejtuation is somewhat more subtle, but “minimal” formula-

hances the cross section. This method, however, certainlyong of threshold resummation allow for a class of purely
involves double counting, and does not respect the conservgertyrbative predictiong25,26], with no new parameters. Of
tion of partonic energy. Some time ago, Li and Lai exploredcoyrse, the existence of such a formalism does not by itself
the possibility that nonperturbatiier smearing in higher  preclude the importance of nonperturbative effects. In this
cross sections has the same origin as in the @wDrell-  paper, we develop a perturbative formalism that links both
Yan cross sections described by @e-resummation formal-  sorts of cross sections, and which is consistent with known
ism [17]. More recently, Li[18] has shown how threshold results that have suggested nonperturbative corrections at
and transverse momentum resummation may be derivetheasured)+ in electroweak annihilation. Part of our goal is
from the same parton distribution, defined in transverse moto open the door, not only to further perturbative analysis,
mentum space, as in Rg¢B]. but also to the study of similarities and differences in the
When the conservation of energy is taken into accountfoles of nonperturbative corrections in these cases.
however, it is no longer obvious whether the inclusion of ~We choose to work in the formalism of collinear factor-
recoil effects will lead to an enhancement or a suppressiorization because we do not wish to introduce a new set of
because the extra radiation involves a number of competinghenomenological parton distributions, depending on trans-
effects. On the one hand, a substankialfrom initial-state ~ verse as well as longitudinal degrees of freedom, except
radiation allows a softer 22 subprocess at the hard scat- Where absolutely necessarnfThe resulting combination of
tering, which clearly acts toward enhancement. On the othiireshold and transverse momentum resummations is at least
hand, the extra energy of the initial-state radiation drives thé@s technically challenging as NLO factorization, let alone
physical parton distributions to larger which may more Qr-resummation, and the new formalism will require some
than make up for enhancements in the hard scattering if théme to understand and develop as a practical tool. We there-
distributions are decreasing withAt the same time, larger ~ fore do not attempt to draw immediate phenomenological
is associated with larger threshold enhancements in gener&onclusions in this paper. Instead, we shall concentrate on
The only way to estimate the influence of recoil effects onthe formal development, an@specially in Appendix Athe
cross sections is to develop a self-consistent resummatiofieoretical underpinning of these ideas. We have attempted
formalism. to be as explicit as possible in our arguments and in speci-
In this paper, we shall take up, and we hope clarify, thisfying the functions whose momentum-dependence controls
general viewpoint. Our reasoning is based on a generalizdh€ set of higher-order corrections that we study. This has
tion of threshold resummation which, as we have seen, cord€sulted in a paper of substantial, although we hope not ex-
trols singular distributions a=1. For electroweak annihi- cessive, length.
lation and single-particle inclusive cross sections, such We begin in Sec. Il with a treatment of electroweak an-
contributions are always associated with an underlying 2ihilation processes, such as Drell-Yan and Higgs produc-
—2 hard scatterin§i5]. We use the 252 subprocess to de- tion, whose singular be.hav[or at .vanlshlng transverse mo-
fine the relevant transverse moment@y, whose singulari- Mentum has been studied intensively over the y¢&g],
ties we resum. The recoil we discuss below is always thé@nd which is in many ways the archetype for resummation.
recoil of a 22 subprocess. Thus, just as for threshold re-We show how to introduce threshold resummation consis-
summation, we reorganize a well-defined set of higher ordefently at measure@ for these processes. Our approach to
corrections in hard scattering functions, always working at€summation is through a “refactorization” of partonic cross
leading power in the hard scal®, within collinear factor- ~ S€ctions near threshold,27]. In this discussion, we shall
ization. We do not exclude the possibility of nonperturbative
effects, however. Indeed, we will observe that nonperturba-
tive corrections arise quite naturally from our resummed ex- This may well be the case for vector boson production at@w
pressions. A summary of our results, applied to prompt phof20]. Nevertheless, we feel that it is important to explore fully the
ton cross sections, was described in R&f)]. simpler formalism.
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review the refactorizations at the basis@f and threshold notes the heavy electroweak final state W,Z,H, etc. We
resummations, and define a set of new functions which conbegin by formulating the problem in a standard form,
trol singular behavior in ¥z and Q+ jointly. These will  through collinear factorization.
serve as building blocks both for electroweak annihilation In this section, which is rather technical in parts, we lay
cross sections, in Sec. lll, and for single-particle inclusivethe groundwork for our derivation of jointly resummed cross
processes, in Sec. IV. sections. We have chosen to present our new formalism in
Resummation at threshold and in transverse momentum the context of a review of existing resummations, for the
most often formulated in MellifN) moment space for the purpose of motivation, and also to bring together a set of
former, and impact parametéb) space for the latter. Re- results and methods that are somewhat scattered in the litera-
summed logarithms of these parameters exponentiate in thare. It may be helpful, therefore, to outline the contents and
relevant limits, so that the resummed cross sections are irgims of the subsections that follow.

verse transforms. In Sec. Il we resum logarithm$® @indN We begin(Sec. Il A) by relating the hard-scattering func-
in the electroweak annihilation cross sections. We begin byions that we will resum to partonic cross sections. In Sec.
deriving a relation for the hadron'm:a/szdQ$ in terms of  11B, we review existing refactorizations for partonic cross

parton distributions, eikonal cross sections for partons, andections, which have been used to derive resummations for
universal anomalous dimensions. We observe that thiglectroweak annihilation at low transverse momenti@h
jointly-resummed cross section determines the pattern ond at partonic threshold,6]. We then go on to present a
power corrections ifQ andb that are implied by the behav- novel refactorization that combines the tWq. (9)], and
ior of the strong coupling in perturbation theory. In particu- observe how refactorization provides a natural formulation
lar, we find that in QCD such power corrections appear onlyof the effects of recoil. The all-orders justifications for all of
at even powers of the invariant ma&®sand impact parameter these refactorizations are presented in Appendix A. Equation
b. (9) involves new perturbative functions, denot&g,;. The
Section IV deals first with prompt photon production, andfield-theoretic content of these functions is the subject of
then with general higlp single-hadron or photon inclusive Sec. Il C, which begins with a review of the analogous defi-
cross sections. For the former, we derive the joint resummanitions for light cone parton distributiorig9], as well as the
tion applied in Ref[19], and for the latter we discuss the fixed-energy distributions introduced in Rg5]. Each of the
additional resummation associated with fragmentation. refactorization theorems in Sec. Il B also includes a function
Explicit NLL expressions for jointly resummed exponents that describes coherent radiation, which summarizes the in-
in electroweak annihilation and prompt photon productionterference between emission by incoming and outgoing hard
are given in Sec. V, along with a few comments on thepartons. An analysis of coherent radiation is especially im-
source of enhancement at NLL. Following our conclusionsjportant for processes in which colored particles emerge from
we include two appendixes. The first gives the necessarthe hard scatterinfj7], the simplest of which is prompt pho-
arguments for factorization and refactorization, and the sedon production. This interference may be treated in eikonal
ond gives explicit one-loop results for some of the functionsapproximation. The analysis of the eikonal approximation to
that play an important role in the refactorizations of hard-soft gluon radiation is the subject of Sec. IID, in which
scattering cross sections. various eikonal analogs of the densities in Sec. Il C are in-
troduced. FinallySec. Il B, we review the use of Mellin and
Fourier transforms to isolate hard-scattering functions. The
Il. REFACTORIZATION FOR ELECTROWEAK new results derived in this section are applied in Sec. Il to
ANNIHILATION electroweak annihilation, and in Sec. IV to single-particle

~inclusive cross sections.
As above,Q denotes the mass of an electroweak final

state, such as a vector boson, a Drell-Yan pair or a Higgs

boson. The cross secticdv/szdQ$, at measure®? and A. The hard-scattering function
Q. given in factorized form in Eq(1), is singular atQ+ ) - ) .
=0, order-by-order in perturbation theory. There are a num- _ Although the hard-scattering functian,.y in Eq. (1) is

ber of phenomenological applications Gf-resummation singular atQ1=0, these singularities may bq determined at
for these singularitief20,21]. We know of no simultaneous the same time as threshold singularitiesQ&fs=1. To be
application of threshold resummation, however, although thepecific, we shall derive an expression oy, .\ in terms of

cross sections are singular as well at partonic threst®ld, its moments with respect to=Q?/s:
=Q2 A

As pointed out above, distributions that are singular at O'ab_,V(N,Qi/QZ,QZ/,uJZ,,u,,as(,u,))
threshold are smoothed in the physical cross section by inte- L
gration with the parton densities. Nevertheless, there is a :f dz3" 15 7.02/02 0%/ u? 2
good deal to be learned by resumming singular behavior 0 Oar M2, QH Q" QY (), (2)
from the limit s—Q?, even at fixed, measure@ [28]. To

derive a cross section resummed both in threshold @pd .
variables, we study partonic cross sectiom$b—V+X  Where for economy of notation, we denote the transform of

near threshold, whera andb are partons, and wheNé de- o, .y With respect taz (Q) by its argumend (b). The hat

114018-3



ERIC LAENEN, GEORGE STERMAN, AND WERNER VOGELSANG PHYSICAL REVIEW 68 114018

refers to its role as a hard-scattering function, from which by
collinear divergences are subtracted. The inverse of the Mel- —=——=3 ¢ (Q*)h%)(al(Q))
lin moment(2) is, as usual, dQ°d“Qr cd

- 2 2 2 2 Xf andzkaPc/a(XavkaaQ)
Tap-v(Z,Q7/Q%, Q% u* m,as( 1))

C+ie dN Ne 2o 2 X f dedzkb Pd/b(xb !kb ,Q)
ZJ 5 Z O-ab*?V(NiQT/Q vQ /IU“ !Iu“vas(lu“))'

C—ijc 2qi
* [ 00U @251 3@ x%,S)

X 8%(Qr+Kat+kp+ Q)+ Yy, (5

We are able to construci,, .v(N) because it also \hereo(® is the Born total cross section for the process, for
emerges from the factorization gfartonic cross sections example,oa;)ﬂy*—mm e§/3NCQ2, with N¢ the number of

with respect tor=Q?/S. Up to corrections due to parton -
mixing VF\)lhiCh we n?ay negrl)ect to leading power in t?le mo- colors ands, the quark charge. The remaind¥j, does not
' diverge as a power ,=0. Note that because the functions
ment variable, we have, from E(f), Py); are defined at measuréd no factorization scale is nec-
essary, although the distributions still depend on the overall

)

- N,Q2/0Q2,0% u? u, momentum scal€. The variableu in the arguments df) is
an-v(N Qr/QTQY " s ars(w) therefore a renormalization scale. The additive convolution
1 1 doap .y in this expression implies that the cross section breaks up
== = J N % into a product under a Fourier transform to impact parameter
Para(N+1u) Pop(N+1u) dQ°dQr (b) space[8]. The functionh{Y(as(Q))=1+ O(a¢(Q)) ab-

(4) sorbs hard-gluon corrections that appear in coefficients of
5%(Qr). The combinations(®) h is a truly short-distance
_ function, dominated by lines off-shell b®(Q?) [36]. In
The momentsg;;(N+1,u), of the parton-in-parton distri- contrast, the full hard-scattering function in E¢) in gen-
butions cancel collinear singularities in the moments of theeral contains lines that are off-shell only l@(Q%)- This
partonic cross section, and the right-hand side of this expresierarchy of perturbative scales is characteristic of resumma-
sion is infrared safe, order-by-order in perturbation theorytion. We shall use the term “short-distance” to refer specifi-
when Qr#0. Our goal now is to determine the singular cally to functions that depend only on the largest sc@lé
structure ofc,, .y at bothz=1 and atQ;=0. To control  this case.
these singularities, we follow Refg5,30—34, and refactor- The refactorized cross section for threshold resummation,
ize the (collinear-regularized partonic cross section with integratedQt, has many of the same features. Now,
doap_v/dQ?d Q2 in this limit. The discussion of the follow- however, the parton-in-parton distributionls;;(x) are de-

ing subsection applies entirely to these, purely partonicfined at measured fraction of the energy of paridin the
Ccross sections. center-of-mass frame for the hard scattexingither than
light-cone fraction, as is the new eikonal functibiy(ws),
o . ) ) with total energywQ for soft gluon radiation into the final

B. Refactorization and recoil in the partonic cross section state. Working to leading power in1Q?/S leads to impor-
To motivate the refactorization appropriate to joint resum-tant simplifications. First, the nondiagonal parton-in-parton

mation inQy and 1—z, it may be useful to review the rel- distributions,#,(x,Q) begin at ordei with the emission

evant features of the separate resummation formalisms fa¥f a soft fermion(not a paiy into the final state, which results

transverse momentum and threshold. We will continue tdn a suppression of order-ix in the distribution, and of 1

work in the context of perturbation theory as in Ed), —Q?/Sin the cross sectiofb]. To leading power, therefore,

because our aim is always to analyze higher orders in pawe may neglect parton mixing, just as at leading power in

tonic hard-scattering functions. Each of the refactorizationghe moments, Eq4). The refactorized expression[i§]

given below involves the introduction of new parton distri- d

butions, variously at measured transverse momentum and/oY%ab—v _ () (th) f

energy fraction. The new functions are not to be interpreted ¢Q? S ab_’V(Q Mhap' (@s(Q)) | B Yerel%a, Q)

as physically-accessible distributions. Rather, they are per-

turbative constructs useful for the analysis of the hard- % f dx (X5, 0)
scattering functions of Eq4). o Yoro(Xo.

In the formalism of Ref[35], the measure@ cross sec-
tion is written as a convolution ofparton-in-parton distri- XJ dWeU 5p(WeQ/ e, ()
butions P;;;(x,k), at fixed parton transverse momentkn

and light-cone momentum fractioxy along with an addi- 2
tional, eikonal functiorlJ .4(q) that describes coherent soft- X 0(1=QYS=(1=Xa) = (1= Xp) =W+ Yin,
gluon emission at fixed transverse momentum, (6)

114018-4



RECOIL AND THRESHOLD CORRECTIONS IN SHORT .. PHYSICAL REVIEW D 63 114018

where Yy, is nonleading by a power of 1Q?%S. Even with corrections that are suppressed by a poweNp&nd

though transverse momenta if are integrated, the phase because in Eq6),

space for radiation is finite for fixed parton energy, and

again denotes the renormalization scale. An explicit defini- 1 —(1—x_)— (1—xp) —Wg~XaXp(1— W)

tion of ¢, as a matrix element will be given below. The

remainder,Yy,, does not diverge as a power ofQ?/S at

threshold. The short-distance functibff = 1+ O(«s) orga-

nizes infrared safe coefficients 6{1—z) in this case. )
It is most natural to analyze the cross section near threshLhe Laplace moments of E¢6) are therefore equivalent to

old, Eg. (6), in terms of a Laplace transform, its I\élellln moments to leading power iN, and hence in 1

Jfdrexgd—N(1—7], with 7=Q?%S. For N large, we can —-Q%S. o

readily relate this Laplace transform to the Mellin moments The close correspondence between the factorizations at

+0O([1-Q?S]?). 8

in Eq. (4). This follows because generally, low Q+ and near threshold makes it rather natural to combine
the two. We therefore propose a convolution at fixed trans-
e NA=8 N (7)  verse momenturand energy fraction:

doapv _1 (g

40 —Soabﬁv(Qz)hgé(as(Q))f dxadzkaRa/a(Xa’ka-Q)f dx,d°Kp Riosb(Xp Ko, Q)
.

X f dWs0d?Ks U ap(Ws, Q,Ks) 8(1— Q%S (1—X,) — (1—Xp) —Wg) 6% (Qr+Ka+kp+ke) + Y. 9)

The short-distance functidnﬁgj(as) is again an infrared-safe C. Matrix elements

series in the running coupling, which begins with unity at  The refactorization theorems above, and the resumma-
zeroth order, and which absorbs, in this case, the coefficientgons derived from them, involve a number of new functions.
of 8(1-2) 6*(Qr) at one loop and beyond. The remainderwe now give explicit definitions for the various parton dis-
Y; is free of power singularities =0 at leading power in  triputions, 7, R and ¢, when the incoming partons are
1-Q%S. As in threshold resummation, only flavor-diagonal quarks, as well as for the eikonal functiobs Gluonic dis-
hard scatterings contribute &1/(1—Q?/S)]. It is impor-  tributions can be defined similarly, following RéR9].
tant to note that in terms that ar®t singular inQr, this The parton densitie® ,,, and the eikonal functiondf,
leading power emerges only after integration o@ar. This  defined at fixed energy and transverse momentum are, like
is because at fixed energy {Z)Q, the phase space @  Eq. (9) itself, straightforward variations of functions identi-
behaves asfon(lfz)zd Q2=(1-2)%Q> fied for theQ+ and threshold resummed cases. The prototype
Equation(9), and indeed each of the refactorizations dis-for these expressions is the partonic light-cone distribution,
cussed above, may be represented as in Fig. 1. In the termiritten as[29]
nology of Ref.[4] and Appendix A below, Fig. 1 represents
the general “leading regions” in momentum space for this
cross section. The subdiagradg, include lines collinear to
the incoming partonst lines off-shell by orderQ, and U —
soft radiation. X(f(p)lgs(Au)y-ug;(0)|f(p)), (10
The refactorizations of Eq$5) and(9) themselves define
the concept of recoil that we will use in this paper. The . ) i
short-distance function® h® is computed with on-shell wh_ere,u is the scale at WhICh.the produ<_:t of quzark fllelds,
external momenta, collinear to the incoming lines. All unin- Which are connected by a lightlike separatinn;”, u“=0, is
tegrated transverse momentum dependence is contained ffgnormalized. An average over colors and spins is included
the generalized parton densiti@sin (5) and R in Eq. (9). in the definition. I_n this expression, we have suppressed an
The dependence of highly off-shell lines on the transvers@dered exponentiaip((x,0;0), which we shall also refer
momentak, andk, of initial-state partons is to be absorbed t0 as a nonabelian phase line, of the gauge field along the
into higher orders of the short-distance function, by the usuafght cone vector between the quark fields, in the notation
methods of collinear factorization. On the other hand, in both
transverse momentum and joint resummation, we retain the .
kinematic linkage of the partonic transverse momentum with (f W) — i 2 RG)
the electroweak final state. This is what we shall mean by Pp' (A2 AiX) Pexp( Ingl dnp- AT 1B+ X) .
including recoil effects. (11

1 dA

_ 0 o—inxpt

114018-5



ERIC LAENEN, GEORGE STERMAN, AND WERNER VOGELSANG PHYSICAL REVIEW 68 114018

the Euler constant. We shall not generally exhibit this modi-

fication below, nor indicate explicitly the-dependence of
a Ja the coupling.

To leading power iN, vy¢; is found from moments of the

expansion
H 1 0
Pit(2)=Ar(as) | 1| +Bilas)d(1-2)+0([1-2]°).
+
(14)
The plus distribution appears only as a power seriegdn
times[1/(1—2)]. . It is worth noting here that the form of
Eqg. (14), with no explicit powers of In(t+z) in the plus
distribution, is required by collinear factorization, and is not
9

an additional assumptiofi37]. We shall see this result
emerge below in Sec. Ill. A similar observation was made
recently by Albino and Bal[38].

For NLL expansions, we will need the anomalous dimen-

sionsA,(«as) to two loops. For flavoe, they are given by the
FIG. 1. Leading region for electroweak annihilation in cut dia- {3 miliar expansionA,(ag) ==, (as/) nAlM  with?
a !

gram form. The vertical line represents the final state that includes
an electroweak boson, label€d The subdiagrams, , J,,, U,, and AD=C
H incorporate, respectively, on-shell lines with momenta collinear =~ 2
to pa, lines with on-shell momenta parallel m,, lines with soft
; 1
momenta, and lines off-shell by ord€x. 2)_ = _
Ay > C.K=

a

1

ECa , (15

Here the gauge field is a matrix in the representation of par-
ton f. In momentum space, these operators correspond twhereC,=Cg, Cq=C,. To lowest order, which is the ac-
eikonal lines. Equivalently, we may define the matrix ele-curacy necessary for NLL, we ha®Bg=(as/m) Bgl), where
ment(10) in u-A=0 gauge. The perturbative modified mini- B{" andB{" are given by

mal subtraction schemeMS) distribution, computed as a
power series ineg(u), is independent of the momentuprt;

po _ € ; B(1)=§C B(l):@ (16)
it is a “pure counterterm,” that is, a series of poles én a 4R 9 4"
=2-D/2 in D dimensions, a dependence which we exhibit
among its arguments. L with Bo=11N/3—2n;/3, the lowest-order coefficient of the
We may regard perturbativielS distributions as defined QCD beta function.
by their evolution equations, which in moment space are Matrix element representations of the functioRg; are
similar [29],
d - ~
Mzd—ﬂz¢f/f(N,M,6)=Yff(N,as(M))fﬁff(N,M,€)+O(1/N), 1
(12) Pf/f(x1k1p'n7€)_4_,\lc

with (N, ag) = [5dxXN"1P(x,as) the moments of the dn d%b Ciaxpeutibk
splitting function for flavorf. As usual, up to corrections of X 2m(21m)2 €
order 1N, we may neglect flavor mixing. A very useful ex-
plicit form for the MS distributions is found by solving this ><<f(p)|af(o+,)\,b)y. ug(0)|f(p)).
equation, with the boundary conditi(fﬁl(N,M=0,e)= 1, 17)

~ B p2dp'? ) This matrix element is defined in an axial; A=0 gauge,

d)”f(N”“’e)_exF{ fo g yiMNoas(w)) ) A3 ek is how it acquirep-n dependence. It also requires

collinear regularization in perturbation theory.
This expression is meaningful for the collinear-regularized The densities); are the distributions of quarks of fixed
distribution, defined foD >4, or equivalentlye<0, because ~E€Nergy po=Q/2x~Q/2, in the center-of-mass of the pro-
of the e-dependence of the strong coupling. Théintegral ~ duced pair, whileR(x,k,p") are distributions in energy
is regulated by reexpressing(u’) in terms of the strong andtransverse momentukn The external line is an on-shell
coupling evaluated at the fixed scaleu: ag(u)
=(u'lw)*ag(p')+ - - - . TheMS prescription then consists
of reinterpreting the upper limit aﬁ,zz In(4mez”), with yg “The functionA, [39] is proportional tol'¢,s,in Refs.[40,41].
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quark of four-momentunp” = (Q/x+2)v*, with v?=0. The
inclusive energy distributioy;s is then given by

) 1 po fd)\
his(X, po,f)—mzp.u pPn

X(f(p)[ge(An)y-ug(0)|f(p)), (18)

efi)\xpo

whereq;(x) is the field for flavorf, u* is the light-cone unit
vector opposite t@*, u-v=1, andn* is the unit vector in
the time directionn®= (1,0). Following Ref.[5], we evalu-
ate the matrix elementl8) in n-A=A%=0 gauge in the

PHYSICAL REVIEW D 63 114018

i d\ d2b
U((:%k)(f,Q,k,e):Q J’ me

—iNEQI2+ib-k

1 o _
mer(m TIwed(0)N

XT[WEDNA+D)][0). (D)

As aboven#= 0,0, SO that\n+b represents the vector with
time componenh and transverse componertsin the ma-

trix element, T represents time order andafiti-time order.
The trace is over color indices in the representation of parton
c. d(c) is the dimension of this representatibBecause the
velocities 3 and B8’ of the incoming lines are lightlike, this

center-of-mass frame, which turns out to be convenient fo
calculational purposes. Wetlg,; defined in a spacelike axial
gauge, it would differ only by finite corrections. The operator
product separated by a timelike distance requires no ne
renormalization. Correspondingly, the functioRg,, may be
defined as matrix elements by

tross section has collinear singularities, and must be regu-
lated. Infrared divergences, however, cancel in the sum over
final stated4].

Y To organize collinear singularities, we introduce eikonal
parton distributions, which approximate the radiation at fixed
energy and transverse momentum from an energetic, light-
like parton,

Ri1(X,K,2pg , €)

1 p fd)\ d’b
" 2Ng 2p-u) 2m(24)2

RE(W,Q,k, €)
_Q [dy, d%
_2d(a)f 2m (2m)? ©

XTr (0] ®*(0,—o;0)® 2 (0,— ;o0 +b)|0),

~iAxpgtib-k
e MPo —iwQyg/2+ib-k

X(f(p)[gs(An+b)y-ugi(0)|f(p)), (19

(22)
again evaluated iA°=0 gauge. In these expressions, and in

the remainder of this section, we suppress dependence on tBemputed in ther- A=0 gauge, just a&¢, Eq.(19). Simi-

renormalization scale, which we take equalQe-2po. We  Jarly, by analogy to Eq(10), we can construct an eikonal
will return to the choice of renormalization scale later. distribution at fixed light-cone momentum fraction,

Q d_)‘ e—ng)\/V“?
J2d(a)

2m
XTr(0|®{7(0,~;0)

D. Eikonal functions and factorizations

P& €)=

Near partonic threshold, all radiation is soft, compared to
the hard scattering function. It is thus natural to study the
eikonal approximation for the cross section and for the fac-
torizations that characterize the dynamics. The discussion
below follows Refs[34,42.

The eikonal cross section is built from ordered exponenwhich as usual requires renormalization of its ultraviolet di-
tials, Cngf)(O,—oo;X), of the gauge field in the group repre- vergences, and regularization for its collinear divergences.
sentation of the incoming partons, extending from minus inAs in Eq. (10), we omit the ordered exponential in the
finity to the point of annihilation, in the notation of E(L1). opposite-moving light cone direction, between 0 and.

We introduce a product that represents the annihilating comalso like theMS distribution, ¢/, ¢ is a pure counter-
bination of two non-Abelian phase operators: term, and is independent of the momentum s@land of

the direction of 8. It is also flavor-independent among
quarks and antiquarks, differing, of course, for gluons. Note
that¢ in ¢{® plays the role of £ x in ¢ . That is, we fix

the light-cone component of the emitted radiation, since the
where for quarkse andd may carry different flavors, as in eikonal line does not have a definite initial-state momentum.

the case ofi+d— W™ . From the operatorg) (Y, we define

an eikonal cross section at fixed energy and transverse mo-

mentum, which represents the QCD radiation generated by3The eikonal cross section defined here is normalized to
the annihilation of the two incoming color sources, neglect-5(¢) §2(k) at zeroth order. The average over the colors of the physi-
ing recaoill, cal incoming partons will be absorbed into a separate overall factor.

X ®@(0,~;\0)[0), (23

W(cg)(x):qyg)(o,—oo;x)é(ﬁc)(O,—oo;X), (20)
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Purely virtual diagrams in botf® (% and #(¢¥ enter as  Alternately, we may factorize the eikonal cross section in
overall factors, which can be used to normalize these functerms of eikonal light-cone distributions,
tions. We choose to define the virtual contributions by the
requirements that ‘ _
: § 0£W§de=JdN¢9WWmmd
fodwf d?kR M(w,Q,k, €)

. XJdN@§MW%4mdfd5
=fd@$%ama .
° X 8= we—wy— &) algd(¢,Q,k),
=1. (24) (29)

These conditions ensure that both functions are sums of plus

distributions in terms of the variablgsor w, integrated over where partong andd are implicitly in a color singlet state.
the interval from zero to unity. This choice does not affectThis is the eikonal approximation to E¢l) for incoming
the N-dependence of the functions at all, but ensures thasartonsc andd, identifying w,~1—x;, é~1—Q%S and
fgctonzatlon do_e_s not introduce spurious co_llmear smgula}rl- '~1-Q%S. In Egs. (28) and (29), respectively, theR's
ties. This condition also enables us to define an evolutio nd ¢'s absorb collinear singularities associated with soft

equation for the eikonal light-cone distribution of the form of - . ~ (ei .
Ecé]. (12), with solution g gluons. The remaining functioris.q and o' are then in-

frared safe.
All of the refactorizations in Eqg5), (6) and(9) involve

. (29 functions that are gauge-dependent. We have already noted

the gauge-dependence of the functidhsand R (% above.
which differs from Eq.(13) only in the eikonal approxima- The soft function U,, also inherits gauge dependence
tion to the anomalous dimension. The eikonal anomaloushroughR (9. To the extent that the factorization formulas
dimensions,yﬁ'k), are found from the plus distributions of are valid, however, all gauge dependence is guaranteed to
the splitting functions, when written as in Ed4), subjectto  cancel in the cross sections. In Appendix A we study the
the normalization conditio(24). To leading power irN, the  theoretical basis of these refactorizations; for the purposes of
moments of the eikonal distribution iD dimensions are the following discussion, we accept their validity.
given by

o szM/Z ) ,
¢§e'k)(N,M,€)=eXF{ fo F?’ﬁ'k’(N.as(M )

20 "2 E. Transforms and the soft function

~ (eik) _ Y K '
¢ (N, €) ex;{ InN 0 MrzAf(aS(“ DI As usual, the refactorized cross sections are displayed
(26)  Most conveniently in terms of their appropriate transforms,

) in this case, Laplace and Fourier. Transforms that we will
where we define need below are

= YE _
N=Ne. @0 Rir(N.bQ.e)
The discussion on the dimensional regularization &l .
definition of ¢,,,(N,u,€) given after Eq.(13) applies as :f dxe N(1-x) f d2%k e KR, (x,Q.K,€)
well to its eikonal analog in Eq25). 0

Essentially the same argumelitee Appendix Afor the

joint factorization of the partonic cross section are valid for
the eikonal cross section-,;e—'k). We may therefore factorize

(eik) iatrie % _ .
0., » interms of energy and transverse momentum distri _ fo dwe*NWJ' a2k & 1KR EW(w, Q k, €)

butions, as in Eq(9),

REW(N,bQ, €)

(eik) _ 2 (eik) —

oP(E.Q k)= [ R Qe -

od U Ke/vg c c UCH(N,bQ)=f dwe’NWJ d?k ef'b'kUCﬁWS,Q,k)
0

X f dwyd?kqR $(wy,Q Ky, €)
o (N,bQ,€)
X J‘ dWsdzksUcd(WS lekS)

X 8( &= We—Wg— W) =fwd§e*fo d%k e *al®9(£,Q,k,€).
0
X 6%(k—ko—kg—Ks). (28 (30)
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These transforms simplify the double convolutions of the partonic cross sectiofQ)E@n the other hand, the moments of
the hard scattering functions of E@.) are determined from the partonic cross sections via(&q.In this way, we find

Tanv(N, QY Q%,Q% 2, p,a( )= ) (Q?)=
TV T ot AR TG (N ©) dorp(Nojae)

d’b . — _ _
8 f 5 €% 9Ry/a(N,bQ. €) Ryn(N,bQ, €)Uyp(N,bQ), (31)
(2m)

where we define a combination of short-distance function and Born cross section as
o) Q=7 ) (Q2)hU(as( ). (32)

The factor relates the azimuthally symmetritr/dQ?d?Q+ to da/szdQ$, while the Born cross sectio:mélb_,V absorbs
the color average for the initial-state partons, referred to above. In(#gy. we have approximatetil+1 by N in the
arguments of the light-cone distributions, as is acceptable to leading poMeAigain, we suppress the renormalization scale
n=Q; the explicit u here has the interpretation of a factorization scale.

Another useful form of Eq(31) is

€' QC4a(N,b,Q, 1) Coyp(N,b,Q, 1), (33

Tabv(N,QY Q% Q% 2, ag( )= aéﬁlv@z)f (2m)2

where the functiong and their eikonal analogs are defined by

~ Rii(N,bQ,€) [ Ugr(N,bQ) 142
C Nybl i) = ~ H
£ ( Q.,u) B (Nt ©)

RI™I(N,bQ,€) [ Ur(N,bQ) '
O, )

The c¢’s will appear as building blocks in direct photon and other cross sections with color flow into the final state as part of
the hard scattering.

The eikonal cross section has many of the same properties as its partonic counterpart. Moments of the eikonal hard-
scattering function at fixed are found from Eq(29):

Cl(N,b,Q,u) = (39)

(elk)(N Q k 6)
DN, €) DN, )

(EIK)(N Qk,pu)== (35

where to avoid unnecessary clutter in our notation, we identify the transforms of the funetimmiy through its arguments.
Then, using the eikonal transforms in E§0) in the eikonal joint convolutiori28), we have

1 I i —
al9(N,Q.k : ~ PERE(N,bQ, &) REM(N,bQ, €)Ucq(N,bQ), 36
(NQ ks = Cbge'k)(N.M,6)¢8e'k)(N,,u.e)j(277)26 o (NPQARGTHNDQOUed MOQ), (39

with the same coherent functids.. forms of the soft function in Eq45) and (6) differ only in
For completeness, and for reference below, we observéhe components of the total final-state momentum that are
that the eikonal functiotJ;; at measured energy and trans- fixed. Note that this expression is essentially a rewriting of
verse momenta may be defined by its transforms, through the refactorization for the eikonal cross section, B).
The behavior of the hard scattering function at large mo-
B _(e"‘)(N bQ. €) ment N and impact 'pa.ram.eteht may be studieq either in
Ucg(N,bQ) =— , (37 termsofU and the distribution®, or, as we see in the next
REV(N,bQ, &) REM(N,bQ, €) section, by relating the partonic and eikonal functions given
in Egs.(31) and(36). In the remainder of the paper, we apply
where collinear singularities cancel in the ratio. The otherthis formalism to derive our jointly resummed cross sections.
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l. JOINT RESUMMATION FOR ELECTROWEAK the same form at leading power My but with an upper limit
ANNIHILATION on the u'-integral given by the renormalization scale7i

As pointed out in Refd.27,43,44, color-singlet cross sec- which, as above, we choose to Qe

tions with symmetric phase space exponentiate at high mo- ﬁgeik)(N,bQ,E)ﬂ)eik)(N,bQ,E)
ments that force the phase space to an “elastic” limit, where — =
only soft gluon radiation is allowed. This is the case for  Raa(N,DQ,€)Rpn(N,bQ,€)

doubly-transformed cross sections, and for the singly- 0 du'?

transformed cross section in threshold resummg[@ﬁ]. =exp{ _J T[Ba(as(l’v’))""Bb(as(l/«’))]]-
The elastic limit is naturally associated with the eikonal ap- reree

proximation. As we now show, the full leading-poweérand (40)
b-dependence of electroweak annihilation cross sections can

be deduced for quark-antiquark annihilation and gluon fusiorAs a result, the uniquely determined formf,(Q, ) is
directly from eikonal cross sections.

2q 12
vab<Q,MF>=exp{ f © %{Ba(as(mw Bo(as(1')]

HE
(41)
For electroweak annihilation, of courd®,=B,,, but the re-
sult is quite general.

We are now ready to combine Eg81) for the partonic
hard-scattering function, E@36) for its eikonal approxima-
tion, and Eq(41) for the ratioV, to derive an expression for
the refactorized electroweak cross section that we will study

A. Partonic and eikonal cross sections

Near threshold, that is, to leading power i all real-
gluon emission in the partonic hard-scattering function, Eq
(31) may be treated in eikonal approximation, E®6).
Since the functiotd is the same in the partonic cross section
and its eikonal approximation, the difference, for fixed
resides entirely in the parton distributions, and we have

Rara(N,bQ, ) Rin(N,bQ, €) below. The result is
Bara(N, 1, €) boyp(N, 1, €) Tapv(N,QY/Q?, Q% uf , e as( )
REVN,bQ, ) REM(N,bQ, €) 22
—V, (Q )2 b , _ ) (02 JQL :
ab( Q. ¢(aelk)(N,M,€)(ﬁée”()(N,,lL,E) UabHV(Q )ex M|2: ,u'2 [Balas(u'))
(39) 0

where V,,(Q,x) is an overall factor, entirely from virtual +Bb(as(//«'))]]f 5 € o E(N,b,Q, ).
corrections, which are of the same graphical fornfkirand (2m)
¢. The functionV,,(Q, 1) is therefore independent bfand (42)

0. ;
gﬁgv(\),;dem ; its Q andy dependence may be determined asEquivalently, thehadroniccross section, given as an inverse

As shown explicitly in Eqs(13) and (25) above, light transform from moment space, takes the form

cone distributions and their eikonal approximations in the doag .y H) 5
MS scheme are fully determined by the splitting functions. 40?d02 :% Tap-v(Q%)
In moment space, the leading power fhcomes entirely T

from the transforms of1/(1—2z)]. and §(1—2z) contribu- o2dp'?
tions to the splitting functions of E14). The former, which X ex f X —,Z[Ba(as(,u'))-i- Bp(ag(u))]
can only arise from the combination of real-gluon and virtual ME M
corrections, are fully represented in the eikonal distributions, dN
. As a consequence, to leading power, the ratios X j —baa(N+1,u0) Ppa(N+Lup)r N
HE(N, 1)/ dpaya(N, ) only receive contributions from the c2mi
left-over §(1—z) terms in the splitting functions, 2
_ - % ib-Qp ~.(ek)
gelk)(N”uF ,€)¢E)8|k)(N,,LL|: ,E) f (277_)2 e U-Cd (vayQuu“F)r (43)
bara(N, e, €) bpyp(N, g, €) with g the factorization scale ang=Q?/S. Corrections are
) dy'? order 1N in the hard scattering. The sums owerand b
_ | ug GM , , include quarks, antiquarks and gluons. Thus, for the case of
—exp{ fo w2+ 26[83(%(’“ NFBolas(u)1, electroweak annihilation, a direct examination of the eikonal

cross section will determine the large-moment and impact
(39 parameter behavior of the partonic hard-scattering functions.
with up the factorization scale, with explicit dimensional Here and below( is a contour to the right oN-plane sin-
regularization, and with the functior, given by Eq.(16).  gularities in the various transform functions.
The collinear divergences in this expression cancel in the Equation(43) reduces the computation of the cross sec-
ratio in Eq.(38). The ratio of theR-functions must thus take tion in MS scheme to the determination of the eikonal cross
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sections. Alternately, one may treat the factorized functiong hat the overall coefficient is twice the one-loop term in the
¢ and U separately, applying renormalization-group argu-function A,(«s) in Eq. (15) is not, of course, a coincidence,
ments[5,9]. The result must be the same. In the remainder oand we shall see below how this relation arises. The
this section, however, we shall examine the eikonal crosg-dependent factor matches tMS collinear subtraction. In
section directly. Eq. (44), we explicitly limit the phase space for gluon emis-
sion by the plus and minus momenta of the annihilating par-
B. Exponentiation tons at partonic threshold. As in the case of the eikonal dis-

- (eik) (eik) ;
We employ a number of general features of eikonal cros%r'bl.Jt'onSR a_nd_d) o Eq. (2.4)' dependence on the
choice of upper limits is exponentially suppressedirior

sections, where the graphical analysis introduced in Refs’ . o
[43,45,46 is particularly helpful. Moments of cross sections real gluon emission, but must be specified to set the scale of
in t'he’eikonal approximation exponentiate at the level 0fvirtual corrections. We determine purely virtual corrections
integrands, with exponents given by the moments of a set af the e|ko_nal cross section by (_deman_dmg that it be normal-
graphical functiond43,45 termed “webs.” Webs can be ized to unity atb=0., N=(%éik')l'h|s choice ensures .tha.t the
generated uniquely from cut diagrams in eikonal cross Secgerturbatlve expansion of is a sum of plus distribu-
tions order-by-order. They are defined both in terms oil'or_l_sh' ked d ol (k " in Eq.(44) i |
graphical topology(irreducibility under cuts of the eikonal ek-dependence ?b( 5,87) In Eq. (44) is strongy
lines) and color structure. The lowest-order web is simply acons_tram(_ad by_ the Invariance of the wetz under rescalings of
single gluon exchanged between the lines. Beyond lowedf'® light-like eikonal velocitiesp” and g'#. We then ob-
order, each web is itself a cut diagram, and can be integrate%erg’e' tr)]aseg on E)hée lack of overall UV divergences in the
over the momenturrk, that it contributes to the final state. A W€ S, that they ob€y

very useful additional feature of webs is that at fixethey

have no overall ultraviolet divergences. d 2 k-gk-g" o 46
Quite generally, then, the joint moment and impact pa- '“ﬁwab N w5 as(p), e =0 (46)

rameter dependence of the eikonal cross section may be ex-

pressed as

We know even more about webs, because the purely virtual
d4-2¢k ( Q ) ( Q ) web is the logarithm of the lightlike eikonal form factor,
—0 ——k" |0 k™~ discussed extensively in treatments of the Sudakov form fac-
Q1212 tor in QCD[40,42. From these investigations, and by com-

, parison to resummations for the Drell-Yan cross section
K2 k-gk-B [5,6], we learn that the webs may have at most a single
’ B-B' ’ overall infrared divergence, coupled with a single overall
collinear divergence. Additional logarithmic singularities can
NIk AO)— arise only through the renormalization of subdiagrams. As a
X (e~ NenQ) Ib'k_l)] ' (44) result, at fixed values df;, relative to the axis determined
’ T
by 8 and 8’, the integral of the web over? is finite. The
wherew,, represents the web at fixed total momentiefn ~ web integrals are ultraviolet divergent fer—o and are

wheren= 8,0, and where for convenience we choose thecollinear and infrared singular & =0 oncek? is integrated.
factor);_,. to be 271~ /T (1— €)~2m(mwe”e) "¢, equal to

V2

;gﬂk)(N,bQ,e)=exp[2

X Wap, plas(p), e

the dimensionally-continued transverse angular integral. In C. The exponent
this form, the single-gluon emission contribution to the web Th tiated eikonal . tai
is normalized to be e exponentiated eikonal cross section contains a con-

siderable amount of information, which follows from the
| 2C.a 1 properties of the web described above. We use the azimuthal
wRe ) == (47 p2e 7e)<=5,(k?).  (45)  symmetry of the welw,, in Eq. (44) to organize the trans-
m kT verse and light-cone integrals kfinto the form

d? 2y o 21,2 1,2 2
2 Ql—Z 0 dkwab(k !kT+k M ,a’s(/.L),E)

- + 2
« fol‘z dk o~ NV 1Q+(Ke+K2)/2QK ) =ib-kr _ |1y + | Q
(k2+k?2)12Q2K " k$+k?

a8(N,bQ,e)=exp

: (47)

“We note that to derive this relation, the webs should be renormalized appropriately in terms of their external eikonal lines. These
renormalization factors vanish in Feynman gauge, and we shall ignore them below. The overall result for the eikonal cross section, of course,
is gauge independent.
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where the light-cone variables refer to the frames for wiigks 3+=0. For largeN, thek™ integral is well-approximatetup
to exponentially-suppressed contributiphy a Bessel function, and we find

i Z*ZEkT Q27k2
ARNDQ=erp| 2 | G| T oK 1.0

0

| 1 \/7
—ib-k T _ <
e TKO( 2N o2 ) In 212

In view of our comments above about the infrared sensitivity of the web, we are particularly interested in the Iilkﬁt that
+k? vanishes. From the behavior Kf(x) for small values of its argument,

X

+ O(e‘N)] ) (48)

Ko(X)~ —In(xe”E/2), (49

we see that the momentum dependenc& gfcancels the logarithm in the collinear limit, leaving a factoMNe(E). This
remainder generates a collinear logarithmic singularit?at0, which is canceled by the moments of eikonal distributions, as
we now show.

To construct the eikonal hard-scattering functiom&™), given by Eq.(35), we substitute Eq(48) for the eikonal cross
section, and the explicit expressi@@5) for the eikonal distributions, into the Fourier transformedf® to derive

~ (eik) d?" ks o 212412 .2
oap (N,b,Q,u)=exp|2 —9172 . dkwap(k?, kT + K, u® as(u),€)
. k2+ k2 Q? 1 _
—ib-k T
—>—|—In+/ + >
X|e TKO(ZN Q2 ) In k$+k2 (k%)lfflnNd=a,b Aglag(k) || (50)

where we have relabeled the variahlé in Eq. (25 asky, and whereN is defined in Eq(27). Equation(50) has a lot in
common with standard resummations in logarithm&aindb, although it still includes an extra integral ovet. It may be
further simplified, however, using properties of the webs.

We continue by rearranging E¢0) into a form that isolates double logarithmic behavior,

~ (eik) d?” 2%y O 202,12 .2
Tap (N,b,Q,u)=exp| 2 . ) Ak Wap(k®, KT+ k= u” as(u), €)

) 2Nk k
e"b‘kTK(,( T)+In(—T)

~ Q Q

1 _
+————InN d;a i Ad(as(kT))] ]

(ki e

d*" ks (=i, 212412 2
X exp)2 0. Jo dkw,p(ke, K5+ K=, w as(m),€)

_ k24 k? 2Nk k2 +k?
oo el o

Let us deal with the two exponentials on the right-hand side of this relation in turn. The first exponential %i)Hmegins at

the leading logarithniLL ). We have seen that the webs contain no internal collinear or infrared divergences. Also, because the
web requires no overall ultraviolet subtraction farfixed, thek? integrals ofw,;, in Eq. (50) converge on a scale set ky,
independent ofN, b or Q. At the same time, the factorizability of the eikonal cross section requires the cancellation of all
singularities ak;=0 in Eq.(51). We may thus formally expand the integral of the web difein inverse powers o?, with

a leading coefficient that behaves ak%lfor k+— 0, which must match the collinear singularity of the subtraction:

X

]. (51)

sz kidkzwab(kz,k$+kz,uz,as(,u),f):Aa(aS( ARACCE T))+~Aab(a's(kT):kTvQ): (52)

0 (KPre
where the function4,, behaves ask@/Qz) for kt—0. In this expression we have used the renormalization-scale invariance
of the webs, Eq(46), to set the scale of the couplinglat, which is the only remaining kinematic variable. Given this result,
the kg integral in the first exponential of E¢51) is seen to be finite, and we may remove the dimensional regularization on
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this factor. Leading threshold logarithms in the perturbative expansion of the exponent, for ex\@rhrﬁrélN, are generated
by the explicit logarithms ok andN, which multiply the 1Ik$ behavior isolated in Eq52).

In the second exponential on the right-hand side of (&d), the term in square brackets behaves smoothlyk$0r k?
—0, as well as fok;— 0 with k? fixed. As a result, this term has a finige- 0 limit, and begins with next-to-leadingNLL )
logarithms, for examplez In"N. With MS eikonal distributions, however, even NLL logarithms are absent, because at leading
order the webw,,, is proportional tod(k?) (i.e., one-gluon exchangewhich vanishes in this factor.

Using Eq.(52) in Eq. (51), and setting the number of dimensions to four, we derive an expression for the resummed cross
section in transform space,

olS(N,b,Q, 1) =exd DEI(N,b) Jexd ESF(N,b,Q, ) 1, (53

where the leadindN andb-dependencélL and NLL) is entirely contained in the exponent

NkT>

o B
Q

The second term on the right accounts for the difference between the physicaQsaatethe factorization scaleg .
The factor exfD,] in Eqg. (53) contains corrections in the form of an infrared safe expansiongimplus NNLL and

nonleading powers iN andb,
el
Q Q

& o[, 212412 .2
+ | aKke AK2W (K2, K2+ K2, 12, arg( ), €)
0 0
2Nky

ki+k? k§+k?
e”"kT(K (ZN\/ |- +In<\/—T
° Q* Q kr

These, rather elaborate, expressions are accurate to all logaritixharidb, and implicitly contain as well the structure of
power correction§22,23, which we hope to study in future work. Here, we only note that the expansion of the fuKgf{ah

for small x contains, up to a single logarithm, only even powers.iiThis simple observation is enough to ensure that the
threshold resummation of perturbation theory to any order implies the presence of even po@ers(ahdb) only [22,24).

In this paper, we shall regard the above results as the starting point for a joint NLL resummati@nib for electroweak
annihilation, and for highpt photon and hadron cross sections. As noted above, the entire NLL result is associatég,with
althoughD ., may contribute beginning at NNLL.

. 20 k2 2Nk
EGR(N,b,Q,up)= fOQ T%T{ ;a’b Ai<as<kT>>{ Jo<ka>Ko(TT

_ 2d
}—I ¢ T.E;' Ai(erg(kn)).

MFk

(54)

DEY(N,b)= J dkGAap(as(kr) kr,Q)| e

X

0 (55

D. Hadronic cross sections

The explicit form of the jointly resummed cross section is now found by inserting®3).in Eq. (43). The factorization
scale dependenddenotedur) may be exhibited explicitly by combining the second term in &d) with the corresponding
term in Eq.(43):

dopgv _ (H) Q2du'?
e P abﬁv<Q>f2 o f 52, i)
2
X‘N’Sa"‘('\”1'“F)&b’B(N+1'“F)T_Nf o eERND.Q.0) Jex DEINDY, (58

where;; is the full N° (InN and constantterm in theNth  parton distributions to leading power M, at all orders in
moment of the diagonal splitting function for partoNotice  «as.

that we have set.=Q in E(®¥, In the resummed cross sec-  Equation(56) is our most general form in this paper for
tion (56), dependence on the factorization scale is sup- the Drell-Yan cross section, which we will approximate to
pressed compared to NLI25,26,31,47—-4P because the ei- NLL in Sec. V. Applications to other processes are, as we
konal anomalous dimensions compensate the evolution afhall see, conveniently carried out in terms of the coefficient
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functionc;;;, Eq.(34). By comparing Eqsi42) and(33), and  troweak annihilation may be importaﬁlz,l?ﬂ_. Recent ex-
once again using the exp"CuLF dependence of the re- pel‘lmental results appear difficult to eXplaIn without them

summed exponent, we derive an analogous expression fb#1]. The inputs to these analyses are primarily nonperturba-
the product of coefficient functions - tive, in the form of Gaussian distributions in partonic trans-

verse momenta, whose widths may be compared directly to

- - nonperturbative parameters in electroweak annihildtiaf.
CaraN:D, Q. 17) Corp(N.D. Q. 1) At tr?e same timer? the interpretation of the theory and experi-
o2du'? ment is not without controverdyl5,16. For these reasons as
=e f T 2 Yi(N, as(ne)) well, it is of interest to reanalyze the prompt photon cross
KR gt i=ab section in the light of the joint resummati¢t8] procedure

(eik) (eik) introduced for electroweak annihilation above, in the formal-
XX Egp"(ND,Q.Q)+ Dap(N.b)] - (57) ism of collinear factorization.
This result will be useful for direct photon and other hard- ) ) ) )
scattering processes with factoring initial-state interactions, A Hard-scattering functions for inclusive prompt photons
but with final-state color flow. The prompt photon cross section may be written in fac-
torized form as
IV. SINGLE-PARTICLE INCLUSIVE CROSS SECTION

3doag.. X

In the following, we apply the methods outlined above to Pr AZ pr( i =E f dXadaa(Xa,pt) f dx,
p3doag .+ x(X7)/dpr, the prompt photon inclusive cross T ab
section at measureg;. Unlike electroweak annihilation,
however, we will not take the limipr—0. As a result, we X pya(Xp . ) PY
have no explicit logarithms op; to resum in the hard-
scattering cross section. Threshold resummation has been dor G2 .prl g )
carried out for this process 82,33, and its consequences w__abzy ToPTis as(p
studied phenomenologically [126,48], but there has been no dpr
generally accepted method to incorporate the kind of recoil
corrections that are so important in describing the Qw- (58)
limit of electroweak annihilation. These effects must, how-
ever, be present in the hard-scattering functions for this pro%
cess at some level, even if they cancel almost completely.
Our goal here is to develop a framework in which we can
identify them systematically. This is a prerequisite to any
reliable estimates of their influence. .

Models of “intrinsic” transverse momentum seem to sug- With s=xzx,S. To leading power inN, moments of
gest that recoil effects of magnitude similar to those in elecp3do/dp; are

here we define; and §<T by

2 APT e AP

~ ~ 2
3 da_ab—»y(N! pT/IUH as(lu’)) _ ldg(-%()A(-Zr)N_lp-?-dUab_)y(XT va//-L!aS(IU/))
0

Pr

dpr dpr
== d f 1dx$(x$)“*1p$—%. (60)
bara(N+ L) dpp(N+1,u) o dpr

Following our discussion of electroweak annihilation, we against a massless jet. The minimum invariant mass at mea-
will use a combination of threshold ar@; resummation to suredpr is
estimate higher-order corrections in the partonic hard- )
. . 3~ . R R 4p
_scattermg f_unctloinaab_,yld_pT, always working to lead- Syin=4p2 cost = AZT- 61)
ing power in the moment variabls. XT

At fixed photon rapidity;; in the partonic center-of-mass his ki ic relati h h h ke'i
system, singularities arise when the partonic center-of-mash IS Kinematic relation changes, however, when we take into
= ) account the recoil of the photon-jet pair transverse momen-
energy\/;, reaches the threshold value of the final state necg,, denoted); below, against perturbative initial-state ra-

essary to produce the photon at thatand 7. Any such final  diation. In effect, when the incoming partons get a kick in
state is kinematically equivalent to the photon recoilingthe direction of the observed photon through initial-state ra-
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diation, the minimum invariant mass necessary to produce doap. Uggiy;ﬁ) _
the photon at measured; decreases. These effects are 3 dp =p} dp +A(pr,p), (65
T T

present in higher orders im, but are not reflected directly in

logs of 1—x2. with
We can only begin to take recoil into account systemati-

cally, however, when we have defined what we mean by

A L. X . do_(resum) O_(resum) o

initial-state radiation and by the short-distance scattering. 3%%ab—y 2 12 3 ab—y

This is isel i f ref it i T _J dQ°d“Qrpy 0(:“_|QT|)-

precisely an issue of refactorization, discussed above dpr dQ%d?Q,dp;

in Sec. Il. There we showed that refactorization into gener- (66)

alized initial-state parton distributions, soft radiation and a

short-distance process is quite natural to leading power in —

threshold singularities, (2z) %, for electroweak annihila- We have introduced a cutoff in the recoil transverse mo-

tion. As we shall see, leading power at threshold for prompfentumQr, which we include to avoid going outside the

photons allows refactorization in an analogous manner, intange where the approximations for joint resummation fail,

cluding now a new function for the final-state jet, and athatis, where the recoil transverse momentum becomes com-

generalization of the function for soft radiation. The essentiaPetitive with the hard scattering. The need for a matching

point, however, is that at partonic threshold it is possible tocondition for the resummed to fixed-order expressions at

identify a 2—2 short-distance scattering, involving only high recoil is familiar fromQ-resummation in electroweak

lines off-shell byO(p2), that underlies the production of the annihilation. Nonsingular finite-order terms, corrected for the

high-pr photon. Our aim is to treat this short-distance scatmatching[9,20] are included inA(pt,u). The implementa-

tering in the same manner as the short-distance cross sectitian of such a matching procedure remains to be carried out

in electroweak annihilation, in terms of its invariant massin the new joint resummation formalism. We shall, however,

squareds=Q?2, and its transverse momentu@y (defined in exhibit the theta function ifQ; in each of our expressions
the hadronic center-of-mass systémWhenQy is in the di-  Pelow, as a reminder of its importance.

. ~ ~ In our analysis below we will determine the jointly re-
rection of the observed photos, may be less thais, the ; )
o . : summed cross section at fixé@® and Q. To develop a
partonic invariant mass squared in E§8).

To take recoil into account in joint resummation, we iden_jointly resummed cross section, we begin, as for electroweak

tify the transverse momentum of the photon in the center-ofgnmh'latlon’ with a study of perturbation theory near par-
. : . tonic threshold.

mass system of the final-state photon-jet pair as one-half the

relative transverse momentum of the photon and recoiling jet

at partonic threshold,
B. Leading regions in single-photon production

1 The derivation of a refactorization formula for the single-
pr=pr— EQT- (62 photon inclusive cross section is quite similar to the analysis

that leads to Eq9) for electroweak annihilation. In the pho-
ton cross section, however, final-state interactions play an
In terms of the kinematics of the short-distance:2 sub-  important role. To analyze their contributions, we need an
process, we can define a natural “scaling” variable for thisanalysis of the leading regions in the momentum space of cut
refactorized scattering, analogousxtpandx in Eq. (59, diagrams that produce logarithmic corrections to the cross
section. The analysis is quite similar to that carried out for

i threshold resummation in heavy qud®0,31] and jet pro-

v 4/l _ 1 63) duction [34], but now taking into account transverse mo-
T Q% cosky menta near threshold. In this analysis, we shall neglect, for
the time being, fragmentation components in the prompt

s o ) ) photon cross section, which are relatively modest in a sig-
with # the rapidity in the refactorized hard-scattering centerqjficant kinematic regio26.

of-mass system. The variablg$ andx? are related by The relevant leading regions for the-22 partonic sub-
processa+b—c+ y are illustrated by Fig. 2, which may be
"2 compared to Fig. 1 for electroweak annihilation. In addition
X2=x2 S [prl (64) to the jetsR,, and Ry, associated with the incoming par-
o Q2|pT|2 ’ tons, and the short-distance subdiagramshere is also a

subdiagram].. that account for partons collinear to the out-

. . : : oing partonc, and a new soft subdiagra , which ac-
a relation that we will use below in the analysis of moments.g ap graBup.

We will estimate th o " the int ounts for soft radiation from the final as well as initial hard
€ will estimate the partonic cross section as the in egraﬁartons. These leading regions are of the general class dis-

overQr andQ*=s of the doubly-resummed cross section ateyssed in Ref[4], and identified for hard-scattering cross
measuredQr and Q°, limiting the Qr integral to a cut-off  sections in Ref[50], on the basis of analyticity properties
scalew. That is, we will write the cross section as and power counting bounds. In the general case, there may
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FIG. 3. Diagrams that illustrate the cancellation of infrared di-
vergences(a) initial-state interactions, which require different dia-
%rams, with different parton momenkg andky,; (b) initial-final-
state interference, for which the cancellation proceeds through cuts
of a single diagram, at fixeld, andk,, .

FIG. 2. Leading region for prompt photon production near par-
tonic threshold. The vertical line represents the final state, includin
the photon,y, and the recoll jet).. .

be an arbitrary number of noncollinear jets in the final state.

Leading power in the threshold variable;- X7, limits their  \ore importantly, a singled; describes the relative trans-
number to a single jet recoiling against the hard photon.  yerse momenta of the hard scattering on both sides of the
The role of the final state jel. in threshold resummation ¢t
is well-understood, and has been treated in H&,33,24. We must therefore study the flow of transverse momen-
The outgoing jet may interact with soft radiation, throughtym through the soft subdiagram. We begin with diagrams
subdiagran®,, in Fig. 2. We may think of the soft function that have initial-state interactions only, in which soft gluons,
as associated with coherent soft radiation, describing emisgs in electroweak annihilation, couple only to the initial-state
sion and absorption by sources with specified four-velocitiegets =, andRy, in Fig. 2. The transverse momentum that
and color charges. The role of soft gluon functions encounthey carry into the final state must come from the hard scat-
tered in threshold resummation has been extensively studiqgrmg, through the initial-state partors,and b, equally in
elsewherd51]. We will give a formal definition of the fully  poth the amplitude and the complex conjugate amplitude,
factorized soft function in Sec. IVC. o that is, with the sam@; on the two sides of the cut diagram
There is a potential complication for the joint resumma-of Fig. 2. At the same time, infrared divergences associated
tion of the single-photon cross section in the influence of softyith coherent soft gluons cancel as we sum alifferentcut
radiation on the recoil transverse momentu® of the  diagrams, withdifferentconnections of soft gluons to the jet
photond,. pair. By analogy to electroweak annihilation, we diagrams. In the diagrams necessary to cancel infrared diver-
seek to resum logarithms of—lx% as well as logarithms of gences, therefore, the initial-state parton transverse momenta
the total transverse momentum of the partons involved in th&, and k, will each vary. Examples are shown in Fig. 3a.
underlying 2-2 hard scatteringQ+. This transverse mo- This imperfect match means that the cancellation proceeds
mentum is defined relative to th@nitial-state hadronic  through plus distributions irk? and k2, and can produce
center-of-mass system, evaluated at fixed observed photdogarithms ofb in the impact parameter space conjugate to
transverse momenturpy, in that frame. Referring to Fig. 2, Q+. These purely initial-state interactions can be treated ex-
we must ask, however, wheth@ is the same on both sides actly as in Sec. Il above.
of the cut, i.e., for the amplitude and for its complex conju-  Consider next soft connections to the final-state jet, in-
gate. An imbalance in the relative transverse momenta of theluding interference between initial- and final-state interac-
two hard-scatterings would make it necessary to introduce #ons, as in Fig. 3b, where the soft functi®,. now has
more complicated convolution than in E@). Such an im-  contributions in which soft radiation is emitted by an initial
balance, however, can arise only from the transverse momestate line, and absorbed by the final state jet. As usual, we
tum that flows through the soft functio8,,. between the must sum over final states to cancel the infrared divergences
incoming jet subdiagram®;;; and the outgoing recoil jet associated with this soft radiation. There is, however, a cru-
Jc. In the absence of such a flow, the transverse momentumial difference between the cancellation of initial-state and
of the final-state jet is a dependent quantity, and does nahitial-final coherent soft radiation. In the case of initial-state
appear directly in the transverse momentum logarithmsradiation, as just described, we must sum over different dia-
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grams to effect the cancellation. Final-state, and initial-final- The soft function will be built from nonabelian phase op-
state interference divergences, however, cancel in the suerators, following the discussion of Sec. Il C above. We be-
over cuts ofindividual uncut diagrams, as discussed in con-gin by generalizing Eq(20), which describes the annihila-
text of factorization proofs ifi50]. Li and Lai also observed tion of a pair of phase operators to a product that corresponds
that thek-dependence due to final state interactions cancel® the color flow[30,31,51 at the hard scattering, for the

in the context of prompt photon productiph7]. Hence, un- ~ Partonic processa+b— y+c:

like singularities that arise from purely initial-state interac- c )

tions, tr?e cancellation of final-st:te si};gularities can be ef- [ VandX) legie, e, =1 CI)%C)(OO,O,X) le .d( Cabe)a gy

fected atfixed transverse momentum for all lines in a cut X[ ®P(0,—0:X) ]

diagram, in particular, for fixed pair transverse momentum Bt Ay B

Qr of the initial-state partons and b, and hence for the X[ D@ (0,—0;X) ] (67)
Ba ’ ’ da,ea'

short-distance process in both the amplitude and its complex
conjugate. In contrast to initial-state interactions, the
transverse-momentum dependence of the final-state soft ras in Sec. I1C, we go on construct an eikonal cross section
diation cancels algebraically, rather than through plus distriin the form of Eq.(21), at fixed soft-gluon energy, param-
butions. etrized asw,Q, and fixed transverse momentukr{ 30,34,
It is worth noting that the above result requires that we
resum logarithms of the transverse momentainthe short-
distance scatteringrather than of the observed photon-jet (eik) B dn d%b
ir i - - Tapc(Ws, QK p,€)=Q [ 5—
pair in the final state. In the latter case, the transverse mo abc 27 (2m7)2
mentum at the short-distance scattering depends on which of
the soft gluons attached to the final-state jet are virtual and

e IAWQ-Hib-k

Trynt
which are real, and the cancellation of final state infrared XCACF Tr(0] T[Wap(0)]
divergences reverts from algebfa0] to plus distributions, R
and may produce logarithms in impact parameter space. X T[Wapd An+b)]|0), (68)

When the recaoll jet is observed independently, therefore, a

somewhat different analysis is necessary, which we shall not i o

carry out here. where the trace is over theAexternaI color indiceg 0f the
To summarize our considerations so far, on|y the transoperators. In this expression,is the unit vector in the time

verse momenta of coherent soft radiation associated witHirection, and we leave the renormalization sqalfree. The

initial-state hard partons must be taken into account in joinfélevant transforms with respectuq andk are Laplace and

resummation. In contrast, final-state and coherent soft radid=ourier, respectively,

tion linking the outgoing jet with one or both of the incoming

jets produces no logarithms in the pair transverse momen- (

tum. ok

N o _
—”‘,bQ,e):f dwse’Nst d2%k e bk
The cancellation between the final states in Fig. 3b still Q 0

requires an integral over ener)¥,4]. For this reason, both « @Ry K e 69
initial- and final-state interactions contribute logarithms to Tabc (Ws: QK. ,). 69
threshold resummation. We must incorporate the distinction

between initial-state and initial-final interference logarithmsThe soft radiation function for tha+b— y+c subprocess

into the refactorized convolution that generalizes ED].for in prompt photon production is now constructed from
electroweak annihilation to the case of prompt photons. |na__(eik)(N b), by analogy to the soft functiot) for elec-
the next subsection, we show that it is possible to do this b¥roweak' aﬁnihilation Eq37)

separating purely initial-state soft radiation from initial-final = “\\/a find the soft function by dividing the transformed ei-

mtﬁrfer_enge,hath Iears]t Iéo th; level of next-to-leading 1098y cross sectio69) by functions that eliminate double

fithms In both threshold and pair transverse momenta. ., nting with the external jets near partonic threshold: both
incoming, and, in this case, outgoing. For the incoming lines,

these functions are th&{¥(N,b), defined in Eq.(30).
Similarly, for the outgoing jet, we identify a new partonic

To derive an analog of the electroweak annihilation refacfunction, which will appear in the refactorization formula,
torization formula, Eq(9), for direct photon production, itis along with its eikonal partner. As we have seen, infrared
necessary to identify a function that summarizes final-statelivergences associated with final state interactions cancel at
soft gluon radiation. In particular, we want to separate thoséixed recoil for the hard scattering. We may therefore treat
effects associated with initial-state radiation, which are senthe outgoing jet inclusively in its transverse momentum. The
sitive to transverse momenta, from those from the final stateelevant functions are then the same as those encountered in
which are not. In this subsection, we will construct such apure threshold resummatiqg4]. For example, for a quark
function. jet they may be defined as two-point functions,

C. The soft function
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—_ ) =~ 1
HNIQ) = | dwe e [ doe 2T O (0)B1P (00)[0),

~ - d?y
J(NulQ,Qlp) = f dwee N f dhdoge (@ R ﬁNCTr<Olqc<ow BeOc(ABe+ aBc+Y)|0)

Ef dw.e N"eJ (w,,Q), (70)

for the eikonal and partonic jet, respectively. In the partonic jet funciiiris the light-like velocity vector in the direction of

the jet, andﬁC is the velocity vector opposite 16 in the overall partonic center-of-mass. The matrix elements are evaluated
in n- A=0 gauge. The traces refer to color and Dirac indices. Outgoing gluon jets may be defined analogously, with operators
similar to those used for fragmentation functi¢@8]. In momentum spacey.Q? is the squared invariant mass of the outgoing
jet.
The above reasoning leads to the following generalization of the soft function to prompt photon processes:

g(ab—‘ yC)

Q _g%?(Ng,b,as(M),e)
( (71

b
Q, CYs(M) ) R(elk)(N,lL/Q bQ, €) R(e'k)(N,u/Q bQ, ) J(e'k)(N,u/Q)

As in the case of electroweak annihilation, Eg7), this expression is a rewriting of the refactorization of the eikonal cross
section into incoming and outgoing jets and soft radiation. AgainR{f§’ remove initial-state eikonal radiation froot5ys ,
andJ®M(N) removes dependence on the outgoing jet. In this form, however, the soft function inherits the gauge dependence
implicit in Eq. (71) of the incoming and outgoing jet functions. We can eliminate this dependence, and simplify the overall
formalism, by following an observation made in Reff80,51 and employed irf32]. We define a variant soft function in
transform space by d|V|d|n§ by a factorU (N,u/Q bQ) for each of the incoming jeta andb, and byUllz(N 0) for the

outgoing jet,

g(ab*)‘yc)(% bQ,ag(x),n

— Q =
s’ (abﬂyc)(—,b Qs ) =T i
Ny Q,as(n) a%(NM/Q bQ) U b’ Nu/Q, bQ)UC/CZ(N,u/Q 0) "

By shifting factors ofU*2 from the soft radiation function to the jets in transform space, we produce slightly modified jet
functions, of the convolution form

Ré/a(X!Q:kaf):f dey5(W+y—X)f dkrdku52(kr+ku k) a/a(W Q, kr rE)Ule(y Q, ku)

K,Q, | +O(IN),

1 ~ X
= fx dédaalé 1) Ca/a(g

JL(we,Q)= fdw dw, (W' +w,— W) Jo(wW' Q)f dkoU 2w, ky), (73)

where in the second equality f&t,, , Cu/a is the double inverse transform of the infrared safe funatippdefined in Eq(34)
above.

D. Refactorization, recoil and the resummed cross section

The refactorization formula for prompt photon production generalizes the corresponding expression for electroweak anni-
hilation, Eq.(9), by including the outgoing jet functiod, in Eq. (73), and the modified soft radiation functi@®i, Eq. (72).
In transform space the refactorization is in terms of products; in momentum space in terms of convolutions,
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do_(rgsum)

ab—c ’ !

piszsz ;p ZJ’ andzkaRa/a(Xavkan)f dx,d°Kp Riyp(Xo Ko, Q)
TUPT

Xj dWC‘J(,)(WCVQ)J dWSJ dzksS' (abﬂyc)(WSvakSvas('““))

X%5(1—Q2/S—(1—Xa)—(1—Xb)—Ws—Wc)52(QT+ Katkp)

— 74
dpr dp; 79

X CA7 7 (arg(p), x2)p3

Equation(74) generates, order-by-order in perturbation theory, the same singularitigs=ad as the full cross section, to
leading power in + Q?/S. The factord p;/d pr compensates for the difference in phase space between fixiagdp;. The
function C%abﬂyc)zlnt(’)(as), times the Born cross section, is the perturbative short-distance function, which in the case of

prompt photon productiotas opposed to electroweak annihilaticlepends o2 .° This means that, beyond the lowest order,
the short-distance scattering function need not have the same angular dependence as the Born cross section. The short-distanc
function contains only corrections frofwirtual) lines that are off-shell by at leal(py). It contains no real-gluon emission,
since all radiation has, to leading power ir-Q?/S, been absorbed into the long-distance functi®is J. andS'. The
computation of these short-distance functions is equivalent to the matching conditions of effective field theories.

With S’ constructed as above, the soft transverse momektusiassociated entirely with final-state interactions, and is not
included in the recoil momentum of the hard subprocess. We may therefore integrate, avel redefine

s’ (abﬁyc)(WS’Q’as(M))EJ‘ dzkssl (ab—>yc)(ws 1Q:k51as(:u’))a (75

where on the left we retain the same notation for the function, but omit the transverse argument. Our refactorization formula
then simplifies to

3 dUggﬂ@ 2 , 2 / / 1 (ab—yc)
me: and kaRa/a(Xa’kaaQ) ded kbRb/b(Xb'kb'Q) dWC‘JC(WC’Q) dWSS (WS’Q'aS(’u))
T T

1
Xgo(1— Q?/S—(1=%a) = (1= Xp) = W= We) 6*(Qr+Kat k)

— 76

X C@P=7) (ag(w),X2)p3

To simplify the notation further, we also introduce a new - = (ab Q
function F, which combines contributions from the final- FapdN) =5 (20=7) N

—)3'(N)+O(1/N). (78)
state jet and soft final-state radiation, #

We will discuss the expliciN-dependence from soft gluon

_ / (@b 0) radiation and the final-state jet below.
FapdWi) = | dwsdw, S (Ws,Q, as(w)) Equation(76) defines recoil in the prompt photon cross
section in much the same way that H§) defines it for
X Je(We,Q) S(Ws—Ws—We). (77)  electroweak annihilation. The short distance functions,

C, do(@(x3)/dpy include only lines off-shell byd(p}?),

As described above. this convolution does not involve theand are evaluated at zero relative transverse momenta for
. ’ initial-state partons. Expansions in the transverse momenta
recoil transverse momentum. In moment space,(Eq). be-

of the incoming partons are to be absorbed into higher orders
comes a product ) : . . _

in Cs. In this convolution form, however, the kinematics of
the hard scattering influences the cancellation of singularities
at vanishingk, andky, . This procedure has a straightforward
SFrom Eq.(64), X2 is determined by, Qr and Q. interpretation order-by-order. At fixed order, all contribu-
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tions that are singular at threshold for fixed may be putin  singularities to all orders at leading or next-to-leading loga-
the form of Eq.(76). To evaluate the cross section at any rithmic accuracy, and do th@? andQ+ integrals last. In the
fixed order, we would integrate each such contribution ovefollowing, we shall derive the consequences of this reorga-
Q? andQy, as in Eq.(66), with no further approximations. hization of perturbation theory.

The result would contain finite corrections resulting from the We are now ready to return to E(66), and derive the
kinematic linkage of the hard scattering with the cancellationdointly-resummed partonic cross section as an integral of the
of singularities in transverse momentum. We would therdifferential resummed cross sectiqi76) over the hard-
sum to all orders. In the resummed formalism, we simplyscattering scal® and its relative transverse momentu@y;.

approximate the short-distance function@f«s), sum the Changing variables fror? to x2, we derive

il pd

dpr 87S? ]

|]( T)|

V1-%2

& (4. (1. [, [P Xt
X f dzkidzkjéz(QT+ki+kj) f dXi f dXJ f de o XX—\\ —Q7/ | /¢
0 0 0 2 XiX]‘(l_Xf)

pr
_ Xj 2p-,|- ~ 1 2
Cjj f' 1=~ M ijk(xerT) m , (79
J Xt i

where we have used E(73) to isolate the partonic hard-scattering functionMi$ scheme, and Ed77) to summarize the
contribution of soft and jet radiation in the final state. In the argument of the delta function, we have ug@4) Exreexpress
the ratioQ?/S as

> . §.d§,¢./a<§.,m¢,/b(a ) f d2Qré(u—|Qq)) f de ———ClU M (ay(n),X5)

XCii| —Ki,=u

— ( Xi  2pt
i Xr

QZ
s

p%)% (80)
Pt / X7

In Eq.(79), we have also reexpressed the Born cross sections in terms of-tRei2variant amplitude (?(%), and have used
the approximate relatiop;(dp;/dpy) =py, valid up to a nonsingular term @(Qy), which we neglect.

__Itis arelatively small step from Eq79) to a jointly resummed cross section for hadrons, by replacing partonic by hadronic
MS distributions,

pidafEy bt (e “Qr, SO g
> d&id§;dialéim) djs(§; ,M)f ©—1Qq]) f —C ™ (ag( 1), X5)
dpr 8ns?i Jo (277) Vi1-x2

3 pr¥) %G

f d?be® Qr j dx,f dx]f dx; 8| x2— _

2p’2 p3 | XiXj(1=X)

S LA o S P P ~2>( 1 )2 @D
C|| oM, 1y C WMy, y M | X 1X - 1]
& Xt a & Xr s XiXj(1=X¢)

where we have also replaced the convolution in transverse momenta by a Fourier transform, so that the tuactiomsvy
in impact parameter space.

Equation(81) factorizes undex% moments at larg®l, up to 1N corrections. Thus, following essentially the same steps that
led to Eq.(43) for electroweak annihilation, we find the physical cross section as an inverse traf&frm

3 (resum) 4
P P s [ N BN [ )NJC“WW (1)3) 0( n=1Qd)
< 2 irAlLN, ) @jglIN, (L T(XT ag(m), X o T
dpr 8mS*ij Jc2ml 0 1-X2 2m)?
s e 4p;? 4p;? .
X —2 fd belb QTC ifi N,b, — M C]/] N,b, — o M ijk(N!X'%)' (82)
4|pr—Qr/2| X3 Xt
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In thec's, the impact parametdris conjugate td+ at fixed }3

2 g1 2[32 - - a
values ofQ“=4p+“/x7. In this form, however, eacty;; also
depends implicitly onQ+, throughp’2. Explicit forms for jg b
the functionsc;;; have been given in E457) above. In the c
next subsection, we will find th&l-dependence of the final-
state functionF.

E. Resummation for the final state jgb (a)

Constructed as in Eq71), S’ (879 satisfies the same
renormalization group equation as the soft functions encoun-
tered in heavy quark30] and jet[34] threshold resumma-
tions,

d -
papns <abﬂ°’(%,as(m) = —2Rel'$" " (ay(n)),

b
@3 (b)

FIG. 4. (a) Diagrams which contribute to the soft anomalous
where the anomalous dimensib is a function of the  dimension. The crosses on the gluon lines denote the modified
velocitiesB; associated with the phase lines corresponding t@®ropagator given in the text. The remainder of te=0 gauge
partonsa, b and c. For the special case of prompt photon Propagator cancels the real part(bf.
production,I's, is a number, rather than a matrix, because
the short-distance cross section has only one color structure — g tu
[32,33. The solution to Eq(83) is therefore a simple expo- ReF(Sq,qﬁyg)IECAln(?)
nential,

ab— yc)
U

_S -
™ S

& — Q o u
S (@b 7°>(m,as(m Rel'g?"9=2 [ZCFIn( )+CAIn

)
m } (86)

wheres, t and u are the invariants for the partonic—22
QINdu' (b ) , subprocess. These anomalous dimensions are independent of
X ex f —2Rel’g, (as(n)) . the gauge vectom* at one loop[51]. The functions
BOH S’ (@=79) defined as the solutions to E¢B3), with the
(84)  usual boundary conditio§’ (8*=")(N=0)=1, are free of
initial-state radiation that would be sensitive to recoil at the
The logarithm of the soft function, constructed in this fash-|ogarithmic level. They continue to contribute to the thresh-

ion, has at mcg)st a single logarithm Rfper loop, so that by  |d phase space through the enengy [30,34, in a manner
calculatingl' &°~ 7 to one loop, we determin® *~9 at  described below.

the level of its Ieading Iogarithms, that IS/,IS_ In“N in the Exp|icit expressions foé’(N) are found from Eqs(84)
exponent, while remaining at NLL in the overall cross sec-and(86) above. The transform of the recoil jet function may
tion. F(Sfbﬁyc) is calculated from theviS counterterms for be found from Ref[52], and is given in its most general
the three diagrams shown in Fig. 4, in which a single gluorform by

is exchanged between pairs of eikonals. The details of these

calculations, which are to be carried out in an axialA j’(N)=exp[ E/(N)]

=0 gauge, are described [iB1]. Many terms cancel, and in ¢ ¢
Fig. 4a, the additional crosses on the gluon lines denote a

slightly modifiedA°=0 gauge propagator: 1 N1 ra-2dn
Eé<N>=f dz——— f ~—Adas(VAQ)]
0 1-z (1-22 N

= 01 (1ay(QIN))

1 n“k’+k“*n* 1 KkHK”
| —g"+ -5 (85)

g A - .
k n-k 2 (n-k)? +Blas(V1-2Q]+B[as((1-2)Q)]}, (87

The factor 1/2 in this expression is specific to the lowest-

order calculation. It takes into account the effect of subtract-

ing the factorU ;U implicit in the definition ofc,c,, EQ.

(34). The “missing” terms in Eq(85) completely cancel the where theA; are given in Eq(15). In the specific normal-
real part of the diagram of Fig. 4b. The resulting anomalouszation chosen for the recoil jef, , in Eq. (73) above,B’
dimension is then vanishes, while
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the matrix elements o8{ , but now with factorsu*? for
both outgoing jets. The resulting anomalous dimensions for
most relevant flavor flows have been computed in Refs.
[30,51].

Near threshold, in the notation of Eq§4) and(80), the
phase space is slightly modified, relative to the prompt pho-
ton case, because the fragmenting jet has invariant qﬁass
=0, and because the outgoing parton at the hard scattering
carries momentun®/z= P, which shifts the scaling variable
X7 by a factorz. This changes the transverse momentum in
FIG. 5. Leading region for a single-particle inclusive cross secthe hard-scattering center-of-mass system;— p7(2)

tion in cut diagram formc, andc, represent color tensof$§1]. =pr/z—Q+/2, which is related to the short-distance scatter-
ing and overall invariant masses squar@d,andS, by
B’=a—3<—§)c B'za—s(—@) 89
a g\ 47" 9 7 4/
B Q_2_( |p¥|2)X_$N( |p+|2) X7 00
These results, along with Eq57) for the functionsc;;, S pel? ')“(% 72 Zz;(%'

specify the explicit NLL resummed cross section as an in-
verse Mellin moment in Eq82). We will give the relevant

expressions in Sec. V. We close this section with a discusm the second relation we have expanded inzl and have
sion of the additional considerations necessary to includ@eglected corrections of the form {Iz)Q;. In place of the

fragmentation effects in the formalism. argument of the first delta function in E€f.4) for resummed
prompt photon production, we find the following kinematic
F. Including fragmentation constraint near partonic threshold for single-particle inclu-

For single-particle inclusive hadron production, and eversiVe Cross sections with fragmentation:

for highpt photon production, we must supplement the con-

siderations above to include final-state fragmentation. This is Q2
relatively easy, since the dynamics of fragmentation factor- 1= —+(1—xg) +(1—xp) + W+ q§/5+ qﬁ/S
izes from initial-state, hard virtual, and soft coherent radia- S
tion as well as from the final-state corrections associated 1012 %2
W|_th the recomng_jet, as illustrated in Fig. 5. The e}naly§|s of — PT ~—T+2(1—z)+(1—xa)+(1—xb)
this section applies to pure threshold resummatas dis- |pr|? x-2r
cussed i 26]) as well as to joint resummation. 5 5
The underlying short-distance scattering subprocess is +Wst 0/ S+qgy/S, (97)

again a 2-2 reaction, but now with two outgoing colored
particles, one of which fragments into the observed hadron, ~
which we may take to be a piofor photon: with x$ as in Eq.(59) andx7 as in Eq.(63).
The refactorization that generalizes E@4) includes an
a(Xapa) +b(Xppp) —c+d(P/z)—m(P)+X, (89  additional integral over, linked through the restrictiof91),
and a function that describes the fragmentation of padon

yvhe_re we have exhibitgd the partons” momenta. The outgog,, hadron(P). We parameterize the momentum of parton
ing jet, Jq, fragments into the observed hadrom)( The

short-distance scattering involves more than one color flow,
the set depending on the flavors of the partons in(B9). At

any order in perturbation theory, the color flow in the ampli- pu zqﬁ P'E 7w, Q2
tude and complex conjugate need not be the same. Referring qg=_+< — ) Egz dlgg+ d __g (92
to Fig. 5, and adopting the notation of electroweak annihila- Z  \2P- By z 2P-B

tion, we represent thédimensionless short-distance func-

tion asp3da{?(x3)/dp;=h%*h,, where f denotes the-22 _ o o

partonic scattering of Eq89). The soft function is built in  WhereBg is the opposite-directed unit light-cone vector rela-
the same way as for prompt photon production, treating théive to momentumP*= (P 84) 85, which is itself taken to
color tensorsc, ; for each color exchange at the hard scat-be lightlike. The second form introduces a dimensionless
tering as an effective local vertex linking phase operators in/ariablewdzqgls.

the flavors of the partors. . . d. The soft function is written The fragmentation dynamics of the outgoing jet can be
as SS‘?. The same arguments regarding the cancellation oflescribed by a function that is quite similar to a standard
recoil effects in the soft function apply to single-hadron in-fragmentation functiorf29], and to the inclusive jet func-
clusive as to prompt photon production. Also, the normalizations (70) above. As above, we illustrate the case of a quark
tion of the soft function follows Eq(72) above, for each of q;, computed im-A=0 gauge,
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d)\da o _ with the recoiling jet,
Jf/f(Wd,P,Z,G) 8NC 2 J —i(P-Bglz)\—iqy- Bqo

Fiw) =g dwsde stw—w,— )
XTi(0] a(0) 1(P),X)

x S5, O (wg,Q,u)I(ad). (94)

Laplace moments reduce the convolution to a product,

X By (F(P),X[q(\ B+ 0 Ba) |0)

1d¢
=| —e
e

z

_,W ’P’
g d MF

i€ ), )= [ “awe M)
0

©9 =Ss.<f>(N3.as<u>>Jg<N). (95
with up a factorization scale. In the first, defining, relation, H
the trace is over both color and Dirac indices. A sum ovelt js now straightforward to generalize each of E$), (82)
spins is understood. In the second equalily;; is a frag-  and(81), corresponding to refactorization at partonic thresh-
mentation function, which we may define MS factoriza-  old, and to the jointly-resummed hadronic cross section writ-
tion scheme. As usual, at partonic threshold, the infrared-safeen as an inverse moment, and in convolution form, respec-
coefficient functioney,q may be taken diagonal in flavor, up tively. We give below the first two of these generalized
to corrections that vanish asNLin moment space. expressions explicitly.

It is convenient to define a final state threshold function The refactorized partonic single-particle inclusive cross
by analogy to Eq(77), as a convolution of the soft function section is given by

. d a_gresum)

pTdQZ dZQpoT:j andzkaR;/a(Xa,ka,Q)f dxbdzkbRé/b(Xbakb,Q)é\z(QT'f'ka'f'kb) f de de

,dpr doP(x4) [1dé (z

X dw; FO( ——,,P,)D,,
%:f Wi F 5 Wf)ppo dp! ged/d ng e |Daa(é e s €)

x%b‘(l—QZIS—(l—xa)—(1—xb)—Wf—Wd), (96)

whereX; is specified by Eq(90). As indicated in Eq(66), the resummed cross section is found by integrating @%and
Qt. The form convenient fox%—moments is found by changing variables fr@3 to ?(% We compute the hard-scattering
cross section in moment space, by dividing by perturbative distributions for the incoming partons, and by a perturbative
fragmentation function for the parton that fragments into the observed particle.

The resummed hadronic cross section is found by replacing the perturbative distributions and fragmentation function by
their hadronic analogs in moment space, and inverting the transform with respéct't‘dne result is

prdofEy Pt dN MO e
- - f o Bara(N ) DN, 1) 2N+ 340) f XN CO(arg( ) X3)
Pt 87wSe f c 1— XT
dQr s " apt | 4p3
x| —otu-loh| —————| [ e ey N =[G Nb =
(2m)? 4|pr—Qr/2/? pé X7
X FH (N X2 eqq(2N+3N,P, up), (97)

where we define
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eqa(M,N,P, pg)= J dydwe MAY "N, \(y,wy,P,ur). (99)

In Eq. (99), M,(? denotes the projection of the amplitude |ess scale, into theb-dependence of the lower limit in the
squared at lowest nonvanishing order on each of the colofst integral. In Eq.(99), the factorization scale, set {@F
flows in the amplitude and complex conjugate, @flisthe = Q in the upper limit of the integral, replaces the conven-
corresponding expansion inxs of the complete hard- tional upper limitc,Q in the Q-resummation formalism
scattering function. A similar form was found in Rg26]in  [8,9].

the context of threshold resummation for the fragmentation Following the format of26], we find the following closed
component of highpr photon production. The functiogy,y  expression fonEg, accurate to NLL in botiN andb:

in Eq. (98) is a double moment, with respect to the jet in-

variant mass square#yQ? and the scaling variable;, Its o7 2 o L
double logarithmic behaviof26], however, is determined E_;(N,b,Q,ug)= ol )hé N B)+2hD(N,B.Q, 1 ),
entirely by the latter, because in the momentum configura- sLp (100

tions that give rise to double logarithms, we have yi
>Wq, corresponding to the collinear emission of soft gluons.ynere fora=q or g we define
Finally, we note once again the dependence of the resummed

cross section on a cutoff scale At this scale, the resummed (1)
cross section must be matched to a finite-order, or partially hgo)()\,,B)= 2 >
resummed cross section. The investigation of the best imple- by
mentation of this procedure remains for future work.

[28+(1—2\)In(1-28)], (101

and
V. EXPONENTS AT NLL hgl)(?\,,B,Q,M,ﬂF)

In this section we apply joint resummation to electroweak )
annihilation and prompt photon production, and exhibit the :Aa by Eln2(1—2,8)+
relevant exponents to next-to-leading logarithm. For prompt 2ng 2
photons, these expressions were the basis of the phenomeno- (

1-2\
1-25 2B+In(1-28))

()

a
’7Tb0

2

2

logical estimates given in Refl19]. We reserve for future 1

work the corresponding results for single-particle annihila- + Fbo

tion including fragmentation, since they will require slightly

more elaborate calculations involving color mixing at the 1—2) Agl) Q2

hard scatterin30,51]. X[Z’Bl—z +In(1—2,8)}— b N In(—z),
B 0 MF

1
+AM In

w

A. Electroweak annihilation (102

_ Starting from Eq(56), we can identify an e_xplicit eXPres- 1 tarms of moment variables,
sion for the resummed electroweak annihilation cross section
that is accurate to NLL in botN andb [19]. We recall first
that the exponerD,y, in Eq. (56) contributes only at NNLL.

For the NLL exponenE,,, we have used for guidance the _
NLL approximation to threshold resummation introduced in B=bgas(w)IN(N+bQ/c,).

Ref. [26]. Our expression for the perturbative exponEgf (103
in Eq. (56) is

N =Dboag(u)IN(N),

The coefficientsA(Y) and A®®) in Egs.(101) and (102 have
w' been given in Eq(15). The last term on the right-hand side
— Aalas(r’)) of Eq. (102 is the contribution at NLL of the first exponent
M of Eqg. (56), including the anomalous dimensions. The beta
WM' function coefficients in these expressions are given by
+ Aplas(p’)) 12 In—=-, (99
Q o= 11C,—4TrNE
o 127 '

Q
EZE(N,b,Q,@:f

(blc;+N/Q) 1

where as above, we defini=Ne’e. Equation (99) ap-

proaches the normal forms @,-resummation(in b-space 2 _

asb—oo at fixed N, and of threshold resummation fot = 17CA— 10CATRNF 6CFTRNF_
—oo at fixedb. We have introduced an explicit dimension- 247?

(104

114018-24



RECOIL AND THRESHOLD CORRECTIONS IN SHORT .. PHYSICAL REVIEW D 63 114018

‘We recall that Eq(56) was derived choosing the renormal- the exponential, was described as a “profile” function in
ization scale a®), the mass of the produced boson. In theRef.[19], and was denote®;;(N,Qr,Q, u).
expressions immediately abovye; is the factorization scale, The exponential moment dependence at NLL is given ex-
while the argumenjc denotes the renormalization scale de-plicitly by
pendence that arises when the scalexpfs shifted fromQ -
to . Eij— (N,b,Q, ) =Hi(N,b,Q, ) +H;(N,b,Q, uup)
Using these results in Eq(56), we derive doubly- -
resummed expressions for the productiongfZ and Higgs RN Q)+ Gij(N). (106
at measure@y, through electroweak annihilation, accurate yare the contributions from the initial state jetso_'ni are

to NLL in both transforms. Compared to existing computed from Eq(99), and are contained in the functions
Qr-resummation formalismg20,21], we anticipate modest

changes associated with the additional threshold resumma- 1 ) o
tion, especially for th&V andz, when their mass is far below ~ Ha(N.b,Q,up) =~ ) ha” (N, B) +hg” (N, B,Q, k),
collider energies, as at the Tevatron. Nevertheless, we expect ° (107

a decreased sensitivity to the choice of factorization scale _
[25,26,31,47—4P At the same time, it may be of interest to with theh{ given above in Eqs(101) and(102. Contribu-
study theb-space integral in Eq(56) in the “minimal-  tions in 7, from the final state jets are the LL and NLL
principal value” prescription introduced in Refl19]. We  functions
shall not pursue these phenomenological implications here,
however.

In addition to a perturbative exponent, we expect that Fa(N,Q)= aS(M)ng)()‘Hfgl)()"Q'“)'
nonperturbative contributions, of the sort familiar from
Qr-resummation, will be phenomenologically important while those in7-‘ijk, from the soft functions, are NLL only,
wheneverQ:<Q [8,9,20,21. As noted above, the form of
power corrections associated with the running coupling may Gand N)=05HN). (109
be inferred from Eqs(53)—(55), with the result that only
even powers Q! andb are required22,24.

(108

The new functionst{) are found from Eqs(87) and (89),
while the g{}). are computed following Eqg¢84) and (86),
with the results
B. Prompt photons

We now turn to the prompt photon cross section, and fgo)(A)ZZhéo)()\/zNz)_hgo)()h)\)’ (110
show how the NLL resummed cross section, already studied_,, (D) (1)
in a preliminary fashion in Ref{19], is derived. We start  fa (MQiu)=2h"(NM2N/2,Q,1,Q) —hg (AN, Q, 11,Q)
with Eq. (82), which expresses the resummed cross section A 2
in terms of doubly-transformed initial-state coefficient func- a
tionsc, given in Eq.(57), and final-state functiong, speci- bo
fied by Eqs.(78), (84) and (87). All logarithms ofb and N B

a

(In(1—=2\)—=In(1—X\))

exponentiate, and we find the form b In(1—N\), (111
0
AT 5 B[ N et . w
I - . @i [} i 3 1
dpy gt c2mi AT R PiBLL I géa)g(’\):mm(l—a)m(?), (112
1~ |Mij(§$)|2 ok -~ g(l)()\):im(l_z)\)
X J A (xHN————=—C " (ag( 1) X} 99\ ™ 7,
0 1-%2
T con| 2]+ Zcn| 113
o o x| Celn| —= |+ 5Caln| £ 11, (113
T —
Xf 2®(M—QT)( ,2) where the coefficienta(") and B{") have been defined in
(2m) 4pr Egs. (15) and (16), respectively. These formulas were em-

ployed in Ref.[19] to test the sensitivity of the inclusive
prompt photon cross section to joint resummafion.

Again, to the perturbative expressions, nonperturbative
corrections must in general be added. For prompt photons,

2

- 4pt
X | d?be'®mexp Eij k| N.b,— ue
X7

(105
5We note a slight difference in notation from REE9], where the
The final factor in this expression, the inverse transform offunctionsC; were not exhibited separately.

114018-25



ERIC LAENEN, GEORGE STERMAN, AND WERNER VOGELSANG PHYSICAL REVIEW 68 114018

we do not yet have all-orders expressions of the full generverts to its form in threshold resummation, and thiategral
ality of Egs. (53)—(55) for electroweak annihilation, so we gives a delta function, which eliminates tQg integral, and
cannot yet conclude that all nonperturbative corrections aréreezespr=p .

of even powers itb andN. We consider this the most likely

scenario, however, and in R¢fL9], the significant role of a

modest nonperturbative term proportionaldoin the expo- VI. CONCLUSIONS

nent was highlighted. Clearly, this issue bears further study.
We have described a joint resummation procedure for

threshold and transverse momentum singularities. The re-
summation organizes a well-defined set of corrections to
C. Recoil and enhancement single-particle and electroweak annihilation cross sections at

The jointly-resummed electroweak annihilation cross secnéasured transverse momentum, to all orders in perturbation
tion, Eq. (56), differs from b-space formalisms for theory. Although the arguments for specific applications are
Q--resummation8,20] in the inclusion of threshold loga- somewhat involved, the basic observation is relatively
rithms at leading power in the Mellin moment variableAt ~ Simple: for those contributions that are singular at partonic
NLL, these corrections are included through the modifiedNréshold, the transverse momentu@y, of the short-
lower limit in the exponent, Eq(99), which stabilizes the distance scattering can be identified meaningfully. The fac-
exponent to an integration ran@gN< ' <Q atb=0. This  torization properties of perturbation theory near partonic
limit gives exactly the threshold resummed exponent for théreshold allow us to control logarithms simultaneously in
Qq-integrated cross sectids,6]. Q+ and the relevantAthreshoId variables z, for electroweak

In view of the above, we see that, in tpé integral in the ~ annihilation, or 1—x$ for single-particle inclusive(1PI)
exponent, Eq(99), the effects ofQ;-resummation and of Cross sections. For electroweak annihilation cross sections,
threshold resummation are additive. This feature may be urQr may be identified with the observed final-state boson. For
derstood from the distinct origins of threshold and transvers&igh-pr 1Pl cross section€) must be integrated to derive
momentum logarithms. The logarithms Nfin threshold re-  the hard-scattering function in the formalism of collinear fac-
summation, which enhance the cross section, come primariliorization. The integral over singular distributions @
from subtracting negative corrections to the perturbative parteaves behind finite remainders that modify, and may en-
ton distributions in the construction of the hard-scatteringhance, the predictions of threshold resummation.
function in theMS (or othe) schemd5]. These subtractions Joint resummation extends our control over a class of ef-
produce enhancements because virtual corrections supprdf§§ts that can have an important phenomenological influence.
the denominator of Eq4) at the edge of phase space, i.e., atAt the same time, the resummed expressions afford new in-
large N. The logarithms ob, however, are associated with Sights into nonperturbative power corrections in hard-
real-gluon emission, in the numerator of E4), the partonic ~ Scattering cross sections, which may be competitive with re-
cross section. They are negative in the exponent, becaus¢mmed perturbation theory, or even overshadow it. A
they cancel the divergent lower limit of the virtual inte- ~ Preliminary study points to the importance of both high or-
gral in Eq.(99). Notice that the integrand changes sign atders in perturbation thgory anq of nonperturbative effects in
' =QI/N, which is the dividing line between threshold and prompt photon productl_on a_t fixed target enerdiea].
transverse momentum dependence. Very roughly speaking, it For electr_ovyeak annlh_llat|on at measu@qKQ, the gap
is possible to resum threshold and transverse momentuffgtWeen existing formalisms that resum in transverse mo-
logarithms simultaneously because they come from “differ-mentum.’ and the joint resummation desc_nbgd here, should
ent” gluons: gluons from the parton distributions for the be relatively easy to close. Such an appl_u_:a_tlon would pro-
former and from the unsubtracted partonic cross section fofiiC&: W€ conjecture, a decrease in sensitivity to the factor-
the latter. In essence, when recoil is taken into account, thation scale. ) . .
Sudakov suppression associated with large valuésoEq. Work remains to make our joint resummation formahsm a
(99) does not cancel the threshold enhancement, but redi§9°| for phenomenological predictions in 1PI cross sections.

tributes it over a range of partonic invariant masses and moErom a numgncal point of view, the resummed expressions
mentum transfers at the hard scattering involve extra integrals compared even to threshold resumma-

In the jointly-resummed prompt photon cross section, Eqnon, so purely computational considerations make it more

(105), the explicit enhancement of the integrand is associate. hallenging to implement. Perhaps more signifi(_:antly, i W.i"
with the inclusion of recoil, relative to the threshold- P€ Necessary to develop an appropriate matching formalism

d i Th | allowiss 32 f , for large recoil. Nevertheless, we believe that the joint re-
resummed cross section. The recoll a O“‘)ﬁ X7 10F PT - symmation formalism sheds valuable light on the reliability

<pr, even while the full partonic invariané=¢;£,S is  of perturbative calculations in hadronic scattering, and on the
bounded from below by|4-2r. In moment form, Eq(82), this  influence of nonperturbative effects.

enhancement appears through the factoB/4g;2)N
=(S/4p3)N. Equation (105 reduces to the inclusive
threshold-resummed cross section in R&6] if we neglect
recoil, that is, if we seb to zero in the functions;;;, or at We have benefited from conversations with many of our
NLL, the exponen€;; in Eq. (106). Then, the exponent re- colleagues on the issues discussed in this paper. We would
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APPENDIX A: STATUS OF THE REFACTORIZATIONS (A1)

Specific arguments for the refactorized cross section, Eq.

(6) for threshold resummation were given in RE34]. The | this expression, we have suppressed the flavor Iglaels
Qq-refactored expression, E(5) was analyzed in some de- andb in Eq. (1) and so off, and the corresponding Lorentz
tail at one loop in Ref[35], although explicit arguments for jndices, that link the jets with the hard scattering. Equation
its validity to all orders have not, to our knowledge, appearedA1) is a representation of the most general leading-power
in the literature. Equatiof) is new to this paper. In fact, we contribution to the cross sectiatr/d*Q, considered as an
believe that all three of these refactorized cross sections, Eqgtegral in the space of loop and final-state momenta. We
(5), (6) and(9) are on a theoretical footing similar to that of shall argue that for each such leading regigrG, may be
collinear factorization, Ec(1), but, of course, with different yewritten as in Eq(5), (6) or (9), up to the corrections indi-
corrections as indicated above. We summarize below the incated in those expressions. For this discussion, it is conve-
gredients of general factorization proofs for these relationspient to introduce the lightlike vectors* and u*, in the
modeled after the arguments for collinear factorization giveryjrections of the incoming moments, andp,,, according to

in Refs.[1,4] and summarized recently in RdB3]. The

following reasoning applies explicitly to electroweak annihi- “ “
lation cross sections; the extension to single-particle inclu- v“=p—i= ., uu:p_ﬁzg o (A2)
sive cross sections is straightforwdgD. [ Py

Already at the first step in our factorization argument, Eq.
(A1), we have made the approximation that the short-
distance functiorH (k. ,kg) depends on the large light-cone
Each of the functions in the refactorized expressions focomponents of the quarks that annihilate to produce the elec-
electroweak annihilation, Eqg5), (6) and (9), corresponds  troweak vector boson. In particular, we identifiA(p,)
to one of the subdiagrams in Fig. 1, which represents a gen=y_ and Kks/py)=Xp in Eq. (1). We know of no other
eral leading region, in the terminology of Ret]. A leading  approximation that can be extended beyond lowest order to
region in momentum space is one that gives rise to a contrigrmulate the short-distance function in a consistent fashion,
bution to the cross section that is leading power in the hargs g collinear-finite quantityl]. Thus, we neglect transverse
momentumQ. In general, leading regions can be classifiedmomenta in the calculation dfi. This implies that in our
by a set of on-shell virtual lines, whose vanishing denomi-tactorized cross section, as in E@), the measured trans-
nators produce logarithmic corrections. In the following, anyerse momentumQ; does not appear in the short-distance
on-shell momentum is one whose invariant mass is Muclnction directly, but only through its kinematic linkage
less thanQ, and a soft momentum means one all of whose(«gcgjl” ) with the total final-state transverse momenta of
components are much less th@nin the specified leading  he jetsJ, and of the soft subdiagral. Notice that the short
region[1]. distance functiorH in Eq. (A1) need not be identical to the

Figure 1 is in cut diagram notation, in whi€represents ic hard ing f iom which will i |
a particular final state, with a graphical contribution to thepartonlc_ ard scattering functioa, which will in genera
; absorb infrared-safe corrections frdth

amplitude on the left o€, and a contribution to the complex
conjugate amplitude on the right &. In this notation, the
cross section is a sum over all cuEsof forward-scattering
diagramsG, consistent with the specified final state. In this  The desired factorized expression for each case discussed
case, all relevant final states contain an electroweak vect@bove reduces to an identity, if we make the following sub-
bosonV, with momentunQ*. In Fig. 1, the subdiagraml,, stitutions for the jet functiond{®) and J{ :

Leading regions and cut diagrams

a. The soft approximation and the eikonal function
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IO gyt -l IO (- v)u)té - 'gn}ugl. S Ug v#L. vk

I (kg g1 w5 3O (kg (g upp Py Ay, Loy ULt (A3)

These substitutions are the “soft approximatioft]. In the  after the sum, the, integrals are no longer pinched in the
soft approximation, the momenta and polarizations of all sofidangerous region, and the soft approximation may be carried
gluons connected td, are approximated by their minus out.
components, that is, the components moving opposite to the For collinear factorization, Eq1), the cancellation of fi-
direction of lines in the jet. Similarly, folg, only plus com-  nal state interactions is verified once the interméhusmo-
ponents are kept. Notice that although the transverse compeaentum integrals internal to je,, as well as the internal
nents of soft momenta are neglected in the jet functions, nplus momentum integrals of the remainder of the diagram,
approximation is made in the soft function itself. are carried out. Details can be found in Ref]; here we
Once the soft approximatior{&\3) have been carried out, shall only need the result that no other integrals are neces-
the decomposition 0B, , Eq.(Al), into the appropriate con- sary. We must verify that corresponding arguments apply to
volutions in transverse momentum and light-cone or energyhe Qt, threshold and joint refactorized cross sections.
fraction, requires only that we sum over all connections of
gluons from the soft diagramd to the corresponding jet

. i . o . factorizati
subdiagrams. The graphical Ward identities of the theory en- C. Qr refactorization

sure this result, illustrated by Fig.[@]. After the sum over An essential feature of the cancellation of final-state in-
diagrams, the coupling of the soft gluons to jets is replacederactions in the collinear-factorized cross section is that it
by their coupling to eikonal lines, as in EL1), in the di-  requires integrals over light-cone momenta ofdy. The

rections of the jet momenta, which serve as sources for thgéancellation is therefore consistent witkedtransverse mo-
gluons in the functiond). The Ward identities, which are menta. The new feature of ti@-refactorized Eq(5), rela-
essentially algebraic, also do not require an integral ovefive to the collinear-factorized cross section, &b, is sim-
soft-gluon momenta, which may be treated as fixed. The usely that in the former the total transverse momentum of the
of Ward identities is thus consistent with the restrictions onsoft and jet functions is frozen at Q. The arguments for
final-state momenta necessary to define cross sections at digctorization as in Eq(1) are therefore adequate for refac-

served transverse momenta or near threshold. torization as in Eq.(5), where Qy is the total transverse
momentum carried by quanta that are absorbed by the short
b. Justification of the soft approximation distance functionH|? in Eq. (A1).

Equation (5) refers to a cross section in which the ob-

We have now seen that a refactorization appropriate to d final-stat tum is that of a sinal tor b
each of our theorems is assured if the soft approximation cap ' ved fina-state momentum IS that of a singie vector boson
nly, with all real QCD radiation incorporated into the jets or

justified. What m herefor verified is th r _ X !
be justified at must therefore be verified is the accurac oft function. In general, the short distance functifi|?,

of the soft approximation, as it is used in each factorized o e the iet and Soft functi includ i iated
refactorized cross section. As discussed, for example, in Ref. € the jet and soft functions, includes corrections associate

[1], the soft approximation fails, on a graph-by-graph basisWith QCD radiation into the final state. The structure of the
for 3% whenever; <q,  for any one of the soft lines that

connectl™ to U, and inJ§” whenevem;* <q; 1 for one of

the lines that connect™ with U. The central step in the T Jn
proof of collinear factorizatiofi4] is to show that all regions ‘g dq

where the soft approximation fails cancel in the sum over

final states. Equivalently, we must show that theintegrals . y
linked to J,~, considered as contour integrals in the com- d|e
plex plane, are not pinched between coalescing singularities
with g, <q, 1. For a fixed final state, however, it is easy to U
identify such pinches, between poles in the upper half-plane
from the Feynman denominators of “spectator” lines, which (@)

(b)

carry large plus momenta into the final state, and poles in the

'O‘N.er half-plane from the Qenomlnators of “active .Il'ne's, FIG. 6. (a) Gluons attached to jet, in the soft approximation,
which carry plus momenta into the electroweak ann'h'lat'onindicated by the dashed line. Color indicgésnd e are to be con-
[54,55. The former may be thought of as characteristic ofycteq with the hard scatteringb) Result of the Ward identity
final-state interactions, and the latter of initial-state interacyjscyssed in the text, in which the jet is replaced by an eikonal
tions. After the sum over final states, h9wever; _f'na_|:5tathouble line with velocity vector,p*. Note the color trace on the
interactions cancel, and all remaining singularitiesgin  remaining jet functions, normalized ly,, the dimension of the
from the functionJ, are in the lower half-plane. As a result, color representation of partam
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leading regions in EqA1), however, ensures that these cor- step from collinear factorization to th@-refactorized form
rections are not singular when the total transverse momern(s). The extra ingredient is again to fix transverse momenta
tum of the extra, “hard” QCD radiation vanishes. By con- for the soft radiation and the jets, a condition that we have
struction, singular behavior is entirely in the jets and softalready argued is consistent with the cancellation of final-
function. As a result, such regions, although of leadingstate interactions, and hence with the validity of the soft
power inQ?, are not singular as a power@;=0, whenQ;  approximation.
is the vector bosonmomentum[9,35]. These nonsingular Of course, as emphasized in Rdf$,4], complete factor-
contributions, which begin at next-to-leading order, are abization proofs should rest on arguments based upon system-
sorbed into the correctioly; in the Qr-refactorized cross atic subtraction procedures. This level of sophistication is
section, Eq(5). still to be attained in hadronic scattering cross sections. Nev-
ertheless, we consider the arguments outlined above to be
d. Threshold refactorization adequate to justify an analysis based on the refactorization

. . L . theorems in Secs. Il and IV.
The situation for threshold resummation is a bit more

subtle. In this case, we want to fix the energy of radiation

from the jets and soft function in the hard-scattering center- APPENDIX B: ONE-LOOP PARTON DISTRIBUTIONS
of-mass frame. This clearly puts restrictions on the light- AND REFACTORIZATION

cone momentum integrals needed to ensure the cancellation
of final state interactions. Near threshold, howewadlrradia-
tion into the final state, including the radiation within the
jets, is soft compared tQ, because near threshold the total
energy of final state radiation is of order {¥)Q, with
=Q?/S. All radiation, including “spectator” gluons in the

In this appendix we present for illustration, at one-loop
accuracy, the various generalized distributions of Sec. Il C.
To keep the presentation brief, we will only present results
for quark distributions. We begin with the familiar distribu-
tions, defined at fixed “plus”-component of their momen-
tum, and then turn to those at fixed energy. The latter, with

jets may thus be absorbed into the soft functidrin Eq. }ransverse momentum fixed also, are then used to verify the
(A1). Corrections to this result are less singular by a power ajoint refactorization(9) to one loop for electroweak annihi-

7=1 than the(leading 1/(1— 7) behavior in perturbation . . o . i
theory. The jet subdiagrams that remain after this factorizal-atlon' lllustrations of joint refactorization for the one-loop

. . ; T prompt photon cross section will be given elsewhere.

tion are purely virtual, with only “active” lines, whose en-

ergies flow into the hard scattering]. In this case, as

pointed out in Sec. Ill of Refl34], the same mechanism for 1. Quark distribution at fixed light-cone momentum fraction

fche _cancellation of final-state interactions .in collinear factor-  \ye give first the one-loop partonic light-cone distribution
!zat|on, Eq.(D), ensures that th(_e soft funct!on near threshold(lo) in n-A=A*=0, n=0 gauge. The familiar result is
is free of overlapping soft-collinear logarithms, even when 56,57

the light-cone integrals are restricted. Collinear singularities

are present in the soft subdiagram, which is now the eikonal Daq(X 1, €)= (1—X)

cross section discussed above, and they factorize in the usual
way, as in Eq(37) above(integrated oveky).

We can now reorganize the cross section in moment space
to derive Eq.(6). We remove factorizing, purely collinear
singularities fromU by multiplying and dividing the eikonal %
cross section by eikonal jet functiog®™ , corresponding to
the incoming partons, and defined by analogy to 8), in
the appropriatéLaplace transform space. The ratio of the
soft function to eikonal jets in transform space, as in Eg.
(37), is free of collinear singularities altogether. The eikonal
jets combine with the virtual remainders from the original Next we computePg (XK, u,€), Eq. (17), in n-A=0
factorization to form the functiong at fixed energy, near gauge withn?+0. For simplicity, we choos@ir=0. One
threshold, as in Eq(6). finds

We expect there to be singular but integrable remainders
in the sofl?c function, after theg sum over figal state interac- Paia(%:Ki,€)=8(1=x) &~ 2(k)[1+ 4" (x,2p-n,€)]
tions. These remainders are precisely the logarithms associ-

1 as(p)
;+|n(477)—'yE) ;—WCF

1+x2 3
+=8(1-x)|. (B1)
+ 2

(1-x)

2. Quark distribution at fixed light-cone fraction and
transverse momentum k

ated with the soft function [34]. Corrections resulting +M(4w2ﬂ2)e
from the factorization of final-state radiation intd, which 272
areO([1— 7]°%), are absorbed int¥y, in Eq. (6), and begin
at one loop. y 1-x| N 2X v
2 k?+(1-x)2v
e. Joint refactorization
The step from the threshold-refactorized expresginto — M ' (B2)
the jointly refactorized Eq(9) is essentially equivalent to the (k?+(1—x)%v)?
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CYSCF
v

with ()" the same function of the gauge vectet given

below for the one-loop virtual correction 4, and where aiq(X:2pg, €)= 6(1—x)+
v=(2p-n)?/|n?|. It is not difficult to check that

X ! 1+I 4
Y. 5| 2 TIn(4m) — e
A4 2K Pyg(X,k, € =—f dk?(k?)~€
J e V) [ 18 3
X|———+ z8(1—x
X Perq(X.K, 1, €) (1=x); 2
2
= arg(X, 1, €) +finite, (B3 (=31 | |
1-x 1-x v
+ +
i.e., that the singularities Py, match those of¢, up to 2
finite (n- and w-dependentremainders. X1 T& 1=, (B7)
+
3. Quark distribution at fixed energy plus non-singular terms. Note @ °) the appearance of the

double-logarithmic  plus-distribution [In(1—x)/(1—X)]. ,
which is a remnant of the &7 cancellation between real and
virtual contributions.

For the one-loop energy distributi¢h8), the computation
is described in detail in Ref5]. We work inn-A=0, n*
= 6“9 gauge and treat the 1/(k) terms in the gluon propa-

gator in principal value prescription. The result is
4. Quark distribution at fixed energy and transverse

Yarq(X:2P0, €)= 8(1—x) + Y5 (x,2po  €) momentum
+ ¢(}),V(X’2po,e), (B4) The one-loop result for the distributioRq,4(X,k,2pg, €)
ard in Eq. (19) is
where po=Q/2, and the real and virtual contributions are Raiq(X.K.2Pg,€)=8(1—x) 8°~2(k) +R {3 (x,k,2po, €)
iven b
9 y +RGIV(x,k,2po, €), (B8)
2\ €
(MR _ a(u)Cr [dmu\ T (2—¢€) —_1 where
Vaia~ (X:2P0,€)= —5 = v | T(2-20) | e

R GyR(x,k, 200, €)= F(X,k,2D0, €) Pgo(X)

a/q
" 1+x%—e(1—x)? (5
T a2 | 1 2
(1—x)t+2e X|————— | (B9
k2 (2pg)?(1—x)?
2\ € 1),V — sb-2 1),V
(1) _as(wCe dmu”\cl 1 R 5V (x,k,2pg,€)= 8P 2(K) iV (X,2p0, €).
¢q/q (X,2pg, €)= p o(1—x) v 2e? (B10)
1-—€ In these expressions, we define
X F1-e)l'(1+2¢)
1-2¢ 1o
1 Fixk,2p0, )= (422 1 4 )
X, K, p ,E)= Y € I — y
XRe[z(sgrrn%)f " en? (1-%)%(2po)°
1 . 1+x%— e(1—x)?
+ E(sgr(nz) e‘z’”)f} Pag(X)= — I (B11)
" ;(E+In(4w)— 7E) ] , (B6) R(%%is identical toRg};. Consistency requires that
€
fdd’szg}A'i(x,k,Zpo,e)
where againv=(2p-n)?/|n?|. 1/;%;— is identical. The coun- )
. . (1)1V e~ . —€ 200 N2 )
terter.m contrlbutlo_n to,_//q,q _ results fromMS fermion wave __T fpo(l X) dk2(k2) <R @ (x,k,2pg, €)
function renormalization in then-A=0 gauge, and the I'l—e€) Jo a'a
double pole ine reflects an overlapping soft and collinear Y ]
divergence. The expansion inof Eq. (B4) reads =igq (X,2pg,€), =RV, (B12)
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which is straightforward to verify. Note that iR the double-
logarithmic singularities in +x andk are generated by the

term
~1/2
2 2 :
po)

2042 1 k2
Po(1=X)% 41 2 12y —1—¢ _
JO dk2(k?) 1_X(1
(B13)

(1-x)

5. Drell-Yan cross section

The lowest order cross section for the reaction

q(py) +a(p2)— ¥*(a) (B14)
reads inD=4—2¢e dimensions
dogg 41ra? ( Qz) -
= 1-¢e)d8|1— )
40 20, aNgs @ - © Q)
=008(1-2)8° 4 Qy). (B15)

The one-gluon
sulting from the reaction

q(py) +a(p2)— ¥* (@) +9(k), (B16)

radiative correction to this cross section, re-

PHYSICAL REVIEW D 63 114018

6. Joint refactorization at one loop

Let us now illustrate the refactorization of the Drell-Yan
cross section in Eq(9) at one loop. We will see that its
singularities inQ+ and 1—z are accounted for by the distri-

butionsR;;;, i=q,q, and the soft functiotd ;4.

At one loop, the right-hand side of EQ) expands into a
sum of the one-loop expressions for its factors. Virtual cor-
rections in Eq.(9) are exactly equivalent to those of E®)
in threshold resummatioft]. Thus, we restrict ourselves to
the real contributions, and check that the hard-scattering
function found by expanding Eq9) to one loop:

(1)R

@) _

oh !X szdD G .Q%.Qr)
—ao[Rg}Wz,QT,Qlﬁ,e)

+ RGN (2,Qr, QzZ,0)+ U (1-2,Q1)],
(B18)

Is free of singularities a®Q;= O and(afterQT integration at
1-z=0. The soft functloanq may be found from Eg.

(37). At one loop, it is quite simple to determine, because
only the interference graphs contribute in the ratio, and even

is straightforwardly computed, using for example the expresin these diagrams only thie*k”/(n-k)? term in the gluon

sions given in58]. In terms of the quantities defined in Eq.
(B11), the result is written compactly as

Aol (2,Q%,Qr)
dQ?d® 2Q;

=2 0oF2,Qr,Q/z,€)

2z
(1-2)Q?]’
(B17)

with Pf given in Eq.(B11). One can easily verify that upon
mtegratlon overd® 2Q+ this expression gives the real-

1 €
X Q—?I-qu(Z)_

polarization tensor survives. The result is

8
Uga " (1=2.00=F2.Qr. Q2. 527

(1-2)°
(B19)
Using Eqgs.(B8), (B17) and(B19), we then find
; 8(1+2)
oo = — 54 F(2,Q7,Q/Vz, e)m. (B20)

This is the desired behavior, because, when integrated over

emission correction to the inclusive Drell-Yan cross sectionQt, the result is nonsingular as—1 [see the discussion

given in Eq.(88) of [58].

after Eq.(9)].
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