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Combining QCD matrix elements at next-to-leading order with parton showers
in electroproduction
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Max-Planck-Institut fu¨r Physik, Werner-Heisenberg-Institut, Fo¨hringer Ring 6, 80805 Munich, Germany

~Received 26 July 2000; revised manuscript received 9 February 2001; published 3 May 2001!

We present a method to combine next-to-leading order~NLO! matrix elements in QCD with leading loga-
rithmic parton showers by applying a suitably modified version of the phase-space-slicing method. The method
consists of subsuming the NLO corrections into a scale-dependent phase-space-slicing parameter, which is then
automatically adjusted to cut out the leading order, virtual, soft and collinear contributions in the matrix
element calculation. In this way a positive NLO weight is obtained, which can be redistributed by a parton
shower algorithm. As an example, we display the method for single-jet inclusive cross sections atO(as) in
electroproduction. We numerically compare the modified version of the phase-space-slicing method with the
standard approach and find very good agreement on the percent level.
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I. INTRODUCTION

Much progress has been made in the last years in mea
ing the hadronic final state ineP scattering at the DESYeP
collider HERA with high precision~see@1# for a recent re-
view!. The theoretical tools which are at hand to describe
hadronic final state are basically fixed order perturbative
culations, which for most processes are available at nex
leading order~NLO!, or a combination of leading order~LO!
matrix elements with parton showers~PS’s!, mostly at lead-
ing logarithmic accuracy, which are implemented in eve
generators~see@2# for an overview of available Monte Carl
programs for both approaches!. However, it appears that th
theoretical calculations are a considerable source for erro
determining physical parameters. As an example, the st
tical errors in a recent determination ofas from dijet produc-
tion @3# are at the 1% level. The systematical and theoret
errors, on the other hand, are considerably larger and bot
around 5%. Therefore, an improvement of the theoret
tools is needed.

The fixed higher order and the PS approaches have c
plimentary strengths. The fixed higher order calculations
duce uncertainties due to unphysical renormalization
factorization scale dependences. Wide-angle emission of
tons, where interference effects between a large numbe
diagrams may be important, is described well. The PS on
other hand allows a description of the cross section in
gions whereas becomes large, especially in the region
collinear particle emission, by means of a resummation
large logarithmic terms. This allows us to, e.g., describe r
sonably well the substructure of jets. In addition, the PS
be terminated at some small scaleQ0, which allows us to
attach some kind of hadronization model, as, e.g., the L
model@4#, to describe the nonperturbative region. It is des
able to find a way of combining the advantages of both
proaches into a NLO event generator. In a complete N
event generator one certainly would like to include not o
the matrix elements at NLO, but likewise the PS in next-
leading log accuracy. Two problems in combining part
showers and matrix elements can be identified. First, one
0556-2821/2001/63~11!/114017~11!/$20.00 63 1140
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to avoid double counting of events which are included b
in the matrix element calculations and in the PS. Seco
negative weights can occur in the calculation of the ma
elements at NLO. Although they are not a principle proble
negative weights can make it difficult in practice to obta
numerically stable results when they are used as a sta
point for the PS.

Basically two strategies can be adopted to combine ma
elements and PS’s. Either the phase space is split into
parts, using the matrix element cross sections in one reg
and the PS in the other@5–7#, or the PS algorithm is modi-
fied as to reproduce the matrix element cross section in
hard limit @8#. In current event generators such as, e
PYTHIA @9# or HERWIG @10#, leading log parton showers ar
combined with leading order matrix elements in the wi
angle scattering region. Recently attempts were made to
prove the leading order accuracy in these approaches by
ing to next-to-leading order. In@11# both, the PS and the
matrix elements were modified to obtain a smooth merge
the PS to the higher order calculation. Collins@12# suggested
a procedure to subtract from the matrix elements those p
which are included already in the PS. Since the PS descr
the soft and collinear region, the divergences associated
the matrix element calculation in this region are avoide
Finally, Sjöstrand and Friberg@13# suggested an improve
ment of the splitting procedure, by using the NLO matr
elements to calculate the weight for the PS region instea
the LO weight. They suggested introducing a function wh
approximates the weight in the PS region in such a way
the negative weight problem is largely avoided. Howev
Sjöstrand and Friberg only gave an outline of their meth
without providing the approximate function for any speci
process, and hence they also did not give numerical res

In this paper, we take the suggestions in@13# as a starting
point and give further details for a general method to get
correct NLO normalization of the PS region. To avoid neg
tive weights, we rely on an older suggestion by Baer a
Reno @14#, based on the phase-space-slicing method. B
and Reno suggested introducing a phenomenologically de
mined fixed slicing parameter such that the sum of the Bo
virtual, soft, and collinear contributions is approximate
©2001 The American Physical Society17-1
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BJÖRN PÖTTER PHYSICAL REVIEW D 63 114017
zero. In this paper, wecalculate a scale dependent cuto
function, which provides a cutoff for each phase-space po
such that the sum isexactlyzero and the improved scale an
scheme dependence of the NLO calculations is preser
The NLO corrections are given by the NLO hard tree-le
matrix elements integrated down to the cutoff. Since th
contributions are positive definite, the NLO weight obtain
from this method can be directly redistributed according t
PS algorithm.

The paper consists of two main parts. In the first part
discuss the general method to combine matrix element
NLO with PS’s by use of the described cutoff function.
the second part we consider as a physically important
interesting example single-jet production in deep inela
scattering~DIS!. Here, the LO contribution is of orderas

0

and the NLO corrections are of orderas . Including higher
order matrix elements for this process will become especi
important for diffractive DIS, since the gluon density in th
proton at smallxb j is large compared to the quark densit
Therefore, the photon-gluon fusion process, which is a N
correction to the first order quark-parton model contributio
will not necessarily be small. We explicitly construct an
numerically study the cutoff function for this case. Final
we summarize our results and give an outlook for futu
developments.

II. GENERAL METHOD

A. Jet cross sections at next-to-leading order

We start by summarizing the procedure for the numer
evaluation of an inclusiven-jet cross section in NLO QCD
The first step is to select a jet algorithm, which defines h
partons are recombined to give jets. In the following we ta
for definiteness the invariant masssi j of two partonsi and j
and define then-jet region such thatsi j ,smin , with some
kind of minimum masssmin and likewise the (n11)-jet re-
gion such thatsi j .smin for all i , j . The LO process for the
production ofn jets consists ofn final state partons and ob
viously does not depend on the jet definition. This dep
dence only comes in at NLO. TheO(as) corrections to this
process are given by the ultraviolet~UV! and infrared~IR!
divergent one-loop contributions to then-parton configura-
tion, which are the virtual corrections, and the NLO tr
level matrix elements with (n11) partons, the real correc
tions. The tree-level matrix elements have to be integra
over the phase space of the additional parton, which g
rise to collinear and soft singularities. After renormalizatio
the singularities in the virtual and soft or collinear contrib
tions cancel and remaining poles are absorbed into pa
distribution functions. One wants to integrate most of t
phase space of the real corrections numerically, but
needs to find a procedure to calculate the soft or collin
contributions analytically as to explicitly cancel the pol
from the virtual corrections. The two basic methods to p
form these integrations are the subtraction method@15–17#
and the phase-space-slicing~PSS! method@18–21# ~see also
@22# for a review!.

In the following we will make use of the PSS method a
therefore discuss this method further. To illustrate
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method, we rely on the classical example given by Kun
and Soper@16#. We label the LO Born contribution assLO

5sB. The NLO cross section is given by the sum of t
Born cross section and the virtual and real corrections,sV

andsR,

sNLO5sB1sV1sR5sB1CV2 lim
e→0

1

e
F~0!1E

0

1dx

x
F~x!.

~1!

Here,F(x) is the known, but complicated function represen
ing the (n11)-parton matrix elements. The variablex repre-
sents an angle between two partons or the energy of a gl
the integral represents the phase-space integration that h
be performed over the additional parton. The singularity
the real corrections atx→0 is compensated by the virtua
corrections, given by the pole term and some constant,CV .
In the PSS method, the integral over the real correction
divided into two parts, 0,x,d andd,x,1. We note that
the technical cutoffd should lie within then jet region, i.e.,
if we defineycut5smin /Q2, then we should haved,ycut. If
the cutoff parameter is sufficiently small,d!ycut,1, one
can write

sR5E
0

1dx

x
F~x!. lim

e→0
H E

d

1dx

x
xeF~x!1F~0!E

0

ddx

x
xeJ

.E
d

1dx

x
F~x!1F~0!ln~d!1 lim

e→0

1

e
F~0!, ~2!

where the integral has been regularized by the termxe, as
suggested by dimensional regularization. The pole is n
explicit and the NLO cross sectionsNLO is finite:

sNLO.sB1CV1E
d

1dx

x
F~x!1F~0!ln~d!. ~3!

Clearly, the real correctionssR should not depend ond, and
the logarithmicd dependence of the last term in Eq.~3!
should be canceled by the integral, which sometimes is
merically difficult for very small parametersd. However, an
improvement of the above solution is possible by using
hybrid of the PSS and the subtraction methods suggeste
Glover and Sutton@23#. In this method, one adds and su
tracts only the universal soft/collinear approximations forx
,d, such that

sR5 lim
e→0

H E
0

1dx

x
xeF~x!2F~0!E

0

ddx

x
xe1F~0!E

0

ddx

x
xeJ

.E
d

1dx

x
F~x!1E

0

ddx

x
@F~x!2F~0!#1F~0!ln~d!

1 lim
e→0

1

e
F~0!. ~4!

A cancellation between the analytical and numerical ter
still occurs; however, only the phase space is approxima
7-2
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COMBINING QCD MATRIX ELEMENTS AT NEXT-TO- . . . PHYSICAL REVIEW D 63 114017
so that this method is valid at larger values ofd. In the case
where the phase space is not approximated for smallx the
hybrid method becomes independent fromd.

B. Event generation with positive NLO weights

We would now like to improve the above NLO jet cro
section by including the PS in then-jet region. We keep the
jet definition, which separates the available phase space
two complementary regions, namely, then-jet region forsi j
,smin and the (n11)-jet ~hard! region for si j .smin . The
NLO corrections, i.e., the virtual and the soft or colline
corrections, will occur in then-jet region, so that then-jet
exclusive cross section has a NLO normalization. On
other hand, the hard (n11)-jet region contains tree-leve
contributions only.

In current event generators, a weight will be generated
the n-jet region by calculating the LO, tree-level matrix el
ment and then redistributing this weight with help of the
algorithm. The same jet criterion used to separate the ma
element and PS regions is used to veto events from the
which would lie outside then-jet region, as to avoid double
counting. The (n11)-jet region is described by the hard (n
11)-parton matrix elements.

If we take the procedure for calculating the NLO corre
tions as described in the previous section, we could in p
ciple calculate the weight in then-jet region in NLO. How-
ever, we would like to avoid the generation of large posit
and negative weights, since this is not a practical star
point for an event generator, especially if one wishes to
hadronization after the showering. Therefore we sugges
choose the PSS parameterd such that the weights are alway
positive. To keep the advantages of the NLO calculation,
aim to find a cutoff functiond nlo(m2) that provides a cutoff
parameter for any given renormalization and factorizat
scale which lies inside then-jet region, such that the sum o
the Born, soft or collinear and virtual contributions are e
actly zero. The NLO corrections inside the jet are then co
pletely enclosed in the (n11)-parton hard matrix elements
integrated down to the cutoff function. Only the tree-lev
matrix elements will serve as starting points for the PS. T
reduced scale and scheme dependence of the NLO cross
tions is subsumed into the scale dependent cutoff funct
Staying in the simple example from Eq.~1!, the aimed cutoff
function reads

d nlo5 expS 2
sB

F~0!
2

CV

F~0! D . ~5!

Substitutingd in Eq. ~3! by d nlo results in

sNLO.E
d nlo

1 dx

x
F~x!, ~6!

which is exactly what we are looking for. The NLO corre
tions are given completely by the hard (n11)-parton tree-
level matrix elements, which are positive definite and can
combined with the PS in the usual way. The functiond nlo

will depend on the kinematics of then parton configuration,
as well as on the renormalization and factorization scales
11401
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course, one has to ensure in the event generation proces
d nlo,ycut, i.e., that the cutoff lies within then-jet region.

In general, the function~5! could yield a relatively large
d, so that the simple PSS method fails to give the corr
answer for the NLO cross section.1 We can, however, calcu
late the missing parts of the approximated matrix eleme
which is the cause of the error, numerically by use of t
hybrid method described above. Improving the result~6!
with the hybrid method, one finds

sNLO.E
d nlo

1 dx

x
F~x!1E

0

d nlodx

x
@F~x!2F~0!#, ~7!

which gives additional terms of orderd nlo ln(dnlo). Here, the
difference between the approximate functionF(x)ux50 and
the full expression is evaluated numerically. This is simi
to what Sjöstrand and Friberg suggested in@13# as a starting
point for the event generation.

To summarize, we propose in close analogy to@13# the
following steps to produce an event in the PS region w
positive weight and NLO normalization:

~1! Define then-jet region by

si j ,ycutQ
2 ~8!

for all partonsi , j . The (n11)-jet region given bysi j .ycut
is described by the hard (n11)-parton matrix elements.

~2! For eachn-jet phase-space point calculated nlo accord-
ing to Eq.~5!. The cross section for then-jet region is then
given by

sn-jet
NLO 5sB1sV1sR

5E
d nlo

ycutdx

x
F~x!1E

0

d nlodx

x
@F~x!2F~0!#. ~9!

We can write this symbolically as

sn-jet
NLO 5~ycut2d nlo!K F~x!

x L 1d nloK F~x!2F~0!

x L ~10!

so as to express the Monte Carlo nature of the procedur
~3! In the n-jet region generate anxk5si j

k /Q2 with xk

P@0,ycut# ~the indexk refers to thekth event!. The weight
which will be redistributed by the parton shower algorithm
given by

Wk5~ycut2d nlo!K F~x!

x L U
x5xk

for xkP@d nlo,ycut#, whereW.0 by construction, or by

Wk5d nloK F~x!2F~0!

x L U
x5xk

1As we will see in the second part of the paper, for DIS single-
production atO(as) the cutoffd nlo actually is sufficiently small for
the soft and collinear approximations to be valid.
7-3
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BJÖRN PÖTTER PHYSICAL REVIEW D 63 114017
for xkP@0,d nlo#, whereW will be rather small.
~4! Use the same jet resolution criterion as in the first s

to veto events from the PS that lie within the (n11)-jet
region.

III. INCLUSIVE SINGLE-JET PRODUCTION IN DIS

In the following we apply the ideas of the previous se
tion to inclusive single-jet production in DISeP scattering at
O(as). For this, we recall the formulas for calculatin
single-jet cross sections at NLO with the standard P
method and describe the modified version of the P
method, which is used to evaluate the cutoff function. W
numerically compare the modified with the standard meth

A. Single-jet cross section up toO„as…

In eP scattering

e~k!1P~p!→e~k8!1X ~11!

the final state with a single jet is the most basic event wit
large transverse energyET in the laboratory frame. The low
est orderO(as

0) partonic contribution to the single-jet cros
section arises from the quark parton model~QPM! subpro-
cess

e~k!1q~p0!→e~k8!1q~p1! ~12!

and the corresponding antiquark process withq↔q̄. The
partonic cross section for this process is given by

ŝq→q
LO 5s0eq

2uMq→qu2 ~13!

where

s05
1

4p0•k

1

4

~4pa!2

Q4
~14!

and

uMq→qu2532@~p0•k!21~p0•k8!2#58ŝ2@11~12y!2#.
~15!

Here,ŝ5xs, with s5(k1p)2, denotes the partonic center o
mass energy squared,a is the electromagnetic coupling, an
Q252(k•k8) is the photon virtuality. The total DIS cros
section can be directly obtained by integrating out the co
plete phase space of the final state parton.

At NLO, the single-jet cross section receives contrib
tions from the real and the one-loop virtual corrections. T
real corrections consist of the photon-gluon fusion and
QCD-Compton processes

e~k!1q~p0!→e~k8!1q~p1!1g~p2!, ~16!

e~k!1g~p0!→e~k8!1q~p1!1q̄~p2!, ~17!
11401
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together with corresponding antiquark processes. The
tonic cross sections for one-photon exchange are

asŝq→qg
LO 5s0eq

2@4pas~mR!#uMq→qgu2, ~18!

asŝg→qq̄
LO

5s0eq
2@4pas~mR!#uMg→qq̄u2,

~19!

with

uMq→qgu25
128

3
~k•k8!

3
~k•p0!21~k8•p0!21~k•p1!21~k8•p1!2

~p1•p2!~p0•p2!
,

~20!

uMg→qq̄u252
3

8
uMq→qgu2~p0↔2p2!

516~k•k8!

3
~k•p2!21~k8•p2!21~k•p1!21~k8•p1!2

~p0•p1!~p0•p2!
.

~21!

Color factors~including the initial state color average! are
included in the squared matrix elements. Note that the ini
state spin average factors are included in the definition ofs0
in Eq. ~15! and that the results in Eqs.~20!,~21! contain the
full polarization dependence of the virtual boson.

As already discussed in the previous section, the real
rections inherit characteristic divergencies, which are the
tial and final state soft and collinear singularities. These
be separated from the hard phase-space regions by intro
ing a cutoff parametersmin @18–22#. The hard part can be
integrated numerically, whereas the soft or collinear par
treated analytically. The analytical integrals can be p
formed inn5422e dimensions. The poles which appear
e cancel against poles from the one-loop corrections.
maining poles in the initial state are proportional to t
Altarelli-Parisi splitting functions and are absorbed into t
parton distribution functions~PDF’s! of the proton,f i(x,mF)
for i 5q,q̄,g. UV divergencies in the one-loop correction
are absorbed into the running coupling constantas(mR).

TheO(as) corrections to theO(as
0) Born term are known

for quite some time@24# and the one-jet inclusive final state
have been discussed in@21,25#. Since we will later on rely on
programs provided together with theMEPJET Monte Carlo
program@26# for tabulating the integrals that occur for th
initial state corrections, we will here apply the method
crossing functions as used in@26# and outlined in@27#, which
is fully equivalent to the results in@21,25#. We take over the
notation in @27#. The finite part of the NLO partonic cros
section, which is arrived at by summing up the virtual co
tributions and the singular parts of the two-parton final st
is given by the expression
7-4
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asŝq→q
NLO 5ass0eq

2uMq→qu2Kq→q~smin ,Q2!. ~22!

The finite parts of the virtual corrections factorize the Bo
matrix element. The factorKq→q , depending on bothsmin
and the invariant mass of the hard partons 2p0•p15Q2, is
given by

Kq→q~smin ,Q2!5
8

9 S NC

2p D F2 ln2S smin

Q2 D 2
3

2
lnS smin

Q2 D
2

p2

3
2

1

2
1O~smin!G , ~23!

whereNC53 is the number of colors.Kq→q may be crossed
in exactly the same manner as the usual tree level cros
from theK factor ine1e2→ 2 partons as given in Eq.~4.31!
with n50 in Ref. @20# or in Eq. ~3.1.68! of @22#. Thus, Eq.
~23! includes also the crossing of a pair of collinear parto
with an invariant mass smaller thansmin from the final state
to the initial state. This ‘‘wrong’’ contribution is replaced b
the correct collinear initial state configuration by adding t
appropriate crossing function contribution to the hadro
cross section, which also takes into account the corresp
ing factorization of the initial state singularities, encoded

the crossing functionsCq
MS for valence and sea quark distr

butions. The crossing functions for an initial state partona,
which participates in the hard scattering process, can be w
ten in the form@27#

Ca
MS~x,mF ,smin!5S NC

2p D FAa~x,mF!lnS smin

mF
2 D 1Ba

MS~x,mF!G ,

~24!

with

Aa~x,mF!5(
p

Ap→a~x,mF!, ~25!

and

Ba
MS~x,mF!5(

p
Bp→a

MS ~x,mF!. ~26!

The sum runs overp5q,q̄,g. The individual functions

Ap→a(x,mF) andBp→a
MS (x,mF) are stated in the Appendix. In

particular all plus prescriptions associated with the factori
tion of the initial state collinear divergencies are absorbed

the crossing functionsCq
MS which is very useful for a Monte

Carlo approach. We note that although the two-parton fi
state contributions~20! and~21! contain the full polarization
dependence of the virtual photon, the singular contributi
occur only for the transverse photon polarization.

Taking into account now virtual, initial, and final sta
corrections we can write the hadronic cross section for
one-parton final state up toO(as) as
11401
ng
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shad
1parton~smin!5s0 (

i 5q,q̄

ei
2E dx dPS(k811)$ f i~x,mF!

3@11as~mR!Kq→q~smin ,Q2!#

1as~mR!Ci
MS~x,mF ,smin!%uMq→qu2.

~27!

To obtain the final,smin independent result, one also has
add the contribution containing the two parton final sta
integrated over those phase-space regions where any pa
partonsi , j with si j 5(pi1pj )

2 hassi j .smin :

shad
2parton~smin!5s0 (

i 5q,q̄

ei
2E

usi j u.smin

dx dPS(k812)4pas~mR!

3@ f i~x,mF!uMq→qgu2

1 1
2 f g~x,mF!uMg→qq̄u2#. ~28!

The Lorentz-invariant phase space measuredPS(k81n) con-
tains both the scattered electron and the partons from
photon-parton scattering process and is defined as

dPS(k81n)5d4S p01k2k82(
i 51

n

pi D 2p
d3k8

2E8
)
i 51

n
d3pi

~2p!32Ei

.

~29!

The bremsstrahlung contribution in Eq.~28! grows with
ln2 smin and lnsmin with decreasingsmin . Oncesmin is small
enough for the soft and collinear approximations to be va
this logarithmic growth is exactly canceled by the expli
2 ln2 smin and 2 ln smin terms inKq→q and thesmin depen-
dence in the crossing functions.

B. Cutoff function

We are now in the position to reformulate the PSS meth
for the single-jet inclusive cross section for our purposes.
explained in Sec. II, we wish to avoid the NLO one-part
contributions contained in Eq.~27! completely. Integrating
out the delta function~29! in Eq. ~27! we obtain, omitting
scale dependences,

dshad
1parton

dx dQ2
5

2pa

xQ4
@11~12y!2# (

i 5q,q̄

ei
2x$ f i~x!

3@11asKq→q~Q2!#1asCi
MS~x!%. ~30!

The smin dependence of this one-parton cross section is c
celed by the respective unresolved two-parton cross sec
for each phase-space point (x,Q2). In order to avoid the
one-parton final states, it will be sufficient to chose an a
propriate value of the cutoff parameter~which we denote as
smin

nlo ) for each phase-space point (x,Q2), so that

dshad
1parton

dx dQ2
~smin

nlo !50. ~31!
7-5
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To solve Eq.~31! for smin , it is sufficient to solve the equa
tion

(
i 5q,q̄

ei
2$ f i~x,mF!@11as~mR!Kq→q~smin ,Q2!#

1as~mR!Ci
MS~x,mF ,smin!%50. ~32!

The smin dependence ofKq→q can be seen in Eq.~23!,

whereas thesmin dependence ofCi
MS is given in Eq.~24!. For

convenience, we define the sums

F5 (
i 5q,q̄

ei
2f i~x,mF!, ~33!

A5 (
i 5q,q̄

ei
2Ai~x,mF!, ~34!

B5 (
i 5q,q̄

ei
2Bi

MS~x,mF! ~35!

and the functions

h5 lnS Q2

M2D 2
3

4
1

9

16

A

F
, ~36!

c52 ln2S Q2

M2D 1
3

2
lnS Q2

M2D 2
p2

3
2

1

2

1
9

8 F 2p

NCas
1

B

F
2

A

F
lnS mF

2

M2D G , ~37!

which are independent ofsmin up toO(smin). We have intro-
duced some arbitrary scaleM2 to keep the functionsh andc
dimensionless. The solution of Eq.~32! is then given by the
solution of the quadratic equation

ln2S smin

M2 D 22h lnS smin

M2 D 5c. ~38!

We find for smin
nlo

smin
nlo ~mF ,mR ,x,Q2!5 exp@ ln~M2!1h2Ah21c#,

~39!

where we have taken the smaller of the two solutions, si
we requiresmin to be sufficiently small for the soft and co
linear approximations to be valid. The ln(M2) dependence in
Eq. ~39! cancels in the sum of the individual terms in th
exponent.

Inserting thesmin
nlo function into Eq.~28! as a lower inte-

gration boundary for each phase space point (x,Q2) will give
the complete answer for the single-jet cross section in NL
This is well suited for the purpose of combining matrix e
ments in NLO with the PS. It is important to note that t
smin

nlo function depends on the factorization and renormali
tion scales, so that the improved scale dependence of
11401
e

.

-
he

NLO cross section is preserved in our modified approach
crucial point, which we will study in detail in the next sec
tion, is whether thesmin

nlo function obtained with Eq.~39! is
small enough for the soft and collinear approximations, ma
to evaluate the expressions~23! and ~24!, to be valid.

C. Numerical results

In this section we numerically investigate the soluti
~39!. We look at the size ofsmin

nlo for givenx andQ2 and study
the effect of scale changes onsmin

nlo . Furthermore, we check
whether NLO single-jet inclusive cross sections obtained
integrating out the two-parton contributions down tosmin

nlo

gives the same result as in the conventional approach, w
one-parton and two-parton contributions, separated by s
fixed smin , are summed.

We start by looking at thesmin
nlo function in the region

given byxP@1024,1021# andQ2P@10,104# GeV2. We pro-
duce all results for one-photon exchange, i.e., neglec
possible contributions fromZ-exchange. We employ the
Martin-Roberts-Stirling-Thorne~MRST! @28# parton distri-
butions for the proton and use the integration package p
vided with MEPJET to calculate and tabulate the crossin
functions @26# for these parton distributions. This makes
numerically very convenient to use the functionsmin

nlo , Eq.
~39!.2 In Fig. 1 we have plottedsmin

nlo as a function ofQ2

for the four fixed valuesx51024, 1023, 1022, and 1021 for
the scalesm5mR5mF5jQ2 with j5 1

4 , 1, and 4. We find
values around 2 GeV2 in the smallQ2 region, whereas they
rise up to values between 100 and 200 GeV2 for the largest
Q2 values. Thesmin values are larger for smallerx. The scale
variation lead to small changes of thesmin values. The scale
variation in the actual cross sections will be still smalle
since thesmin dependence of the cross sections is logar
mic. For the two largerx values, the smaller scales leads to
larger value ofsmin

nlo which will therefore produce smalle
cross sections. For the two smallerx values there seems to b
a compensation between the renormalization and factor
tion scale variations, leading to a very small overall variati
in smin

nlo , especially at largeQ2.
Next, we numerically compare the standard PSS met

with our modified approach. The following comparisons a
done for HERA conditions, i.e.,Ee527.5 GeV andEp

5820 GeV, givingAs5300 GeV. A cut ofEe8.10 GeV is
applied to the final state electron and we choosey
P@0.04,1#. We take the sameQ2 region as above, namely
Q2P@10,104# GeV2. Jets are defined in the laboratory fram
with the kT algorithm with ET

lab.5 GeV anduh labu,2. All
cuts together restrict thex range to bexP@1023,1#. The
numerical results for the one-jet inclusive cross sections
the following are produced withMEPJET @26#.

In Fig. 2 we plot the NLO cross sections for the on
parton final states, which include the Born term, the virtu
corrections, and the soft and collinear contributions, toget

2The FORTRAN code for thesmin
nlo function can be obtained upo

request from the author.
7-6



COMBINING QCD MATRIX ELEMENTS AT NEXT-TO- . . . PHYSICAL REVIEW D 63 114017
FIG. 1. The functionsmin ver-
sus Q2 for the scalesmR5mF

5
1
4 Q2,Q2,4Q2 for the four values

x51024, 1023, 1022, and 1021.
n
e

d
t

b
o

to
nd
t
in

es
s
r
e

d

te

r

with

gle-

ale
fac-

s

ed
d
-

with the hard two-parton final states and their sum as a fu
tion of smin for four differentQ2 regions integrated over th
whole x range. In Fig. 2~a! we see how the logarithmicsmin
dependence of the two-parton final states is compensate
the one-parton final states to give ansmin independent resul
of s511.6660.02 nb up to values ofsmin.10 GeV2.
Above that value a slight variation of the sum can be o
served and thesmin independence is no longer ensured. F
smin.30 GeV2 the one-parton final state obviously fails
give a correctsmin dependence and the sum of one- a
two-parton final states strongly decreases. We note tha
even largersmin values, the one-parton final states will aga
give zero, which is the second solution of Eq.~32! which we
rejected in Eq.~39!. As an important result, one also se
that the value ofsmin , for which the one-parton final state
vanish and the two-parton final states give the full answe
well within the smin independent region. Indeed, after w
have introduced oursmin

nlo function into theMEPJET program
we found that the one-parton final states did give zero an
a result for the two-parton final state we founds511.59
60.01 nb, which agrees with the answer for smallsmin very
11401
c-

by

-
r

at

is

as

well. Similar results hold for the largerQ2 ranges, Figs.
2~b!–2~d!. The point at which the NLO one-parton final sta
contributions vanish are well within thesmin independent re-
gion. This holds also for the largestQ2 values, where the
absolute size of thesmin function is rather large, of the orde
of 100 GeV2, as we have seen in Fig. 1. At the largestQ2

values the results seem to become even more stable
respect to thesmin dependence.

For a more detailed study we have calculated the sin
jet inclusive cross section for nine different bins inx andQ2,
namely, Q2P@10,102# GeV2, Q2P@102,103# GeV2, and
Q2P@103,104# GeV2 together with xP@1023,1022#, x
P@1022,0.1#, and finally xP@0.1,1#. The actual bins are
summarized in Table I. In addition, we have tested the sc
dependence by varying the squared renormalization and
torization scales together by a factor of 4, i.e.,m25mR

2

5mF
25jQ2 with j5 1

4 ,1,4. The results are shown in Table
II–IV in pb, also indicating the relative differenceD5usstd
2smodu/sstd of the standard PSS method to the modifi
PSS. For allQ2 intervals we find agreement of our modifie
approach compared to thesmin independent standard ap
7-7
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FIG. 2. Inclusive single-jet
cross section forET

lab.5 GeV,
uh labu,2, andQ2.10 GeV2 as a
function of smin . The smin values
at which the one-parton contribu
tions vanish lie well within the
smin independent region for al
Q2.
n
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te

O
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in
proach to around 1% or better. The overall scale depende
is small, indicating a very good perturbative stability, as
be expected. However, it was not our intention to test
scale dependence, but to test whether oursmin

nlo function
would reproduce the scale behavior correctly.

This concludes our numerical studies, showing
equivalence of the standard PSS method with our modi
approach by integrating out only the two-parton final sta
down to a dynamicalsmin

nlo function given by Eq.~39!.

IV. SUMMARY AND OUTLOOK

We have given a prescription for combining fixed NL
matrix elements with PS’s within the PSS method. It cons

TABLE I. Bins in x andQ2 ~given in GeV2) for y.0.04. Two
bins are kinematically excluded.

Q2P@10,102# Q2P@102,103# Q2P@103,104#

xP@1021,1# bin 3 bin 6
xP@1021,1022# bin 1 bin 4 bin 7
xP@1022,1023# bin 2 bin 5
11401
ce

e

e
d
s

ts

in removing the Born, virtual, and soft or collinear contrib
tions from the NLO cross section for then-jet region by
adjusting the PSS parametersmin for each phase space poin
and each scalemR ,mF . These contributions are then in
cluded in the hard part of the NLO matrix elements, whi

TABLE II. Cross sections in pb for the bins 1–7 defined
Table I, comparing the standard PSS method with thesmin

nlo modified
PSS method for three different scales.D gives the difference of
both methods in percent.

Scalem25Q2

Bin Standard PSS modified PSS D

1 10446 3 10376 2 0.7
2 57346 15 57006 9 0.6
3 19.996 0.18 20.226 0.04 1.2
4 21936 3 22146 4 1.0
5 18826 4 18756 2 0.4
6 54.106 0.20 55.606 0.18 2.8
7 129.36 0.5 131.16 0.4 1.4
7-8
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are positive definite. This allows to directly redistribute t
weight provided from these matrix elements with a PS al
rithm.

For the case of inclusive single-jet production ineP scat-
tering atO(as) we have calculated the dynamicalsmin pa-
rameter for each phase space pointx andQ2 and each scale
mR ,mF . We have numerically compared the standard cal
lation with our new approach of evaluating fixed NLO co
tributions and found the new approach to give reliable
sults. We especially found that the values ofsmin , for which
the virtual plus soft or collinear contributions vanish, a
small enough for the soft and collinear approximations, u
in the PSS method, to be valid. We note that the cu
function has been successfully implemented in theRAPGAP

event generator@29#, which includes theO(as) tree level
matrix elements. Numerical results and comparison to d
will be discussed in a forthcoming paper.

The next, more complicated step is the case of dijet p
duction ineP scattering, which is especially interesting b
cause it allows a precise determination ofas or the gluon
density in the proton. NLO calculations in the PSS meth
from which the cutoff function can be determined are ava
able@21,26,27,30#. It might turn out that the PSS method h
to be supplemented with the hybrid method to numerica
evaluate terms of ordersmin ln(smin) as outlined in Sec. II.
NLO calculations within the subtraction method are ava
able for dijet production ineP scattering@17#, so that the
expressions needed for the hybrid of PSS and subtrac
method can readily be evaluated. We finally note that
O(as

2) tree level matrix elements foreP scattering inter-

TABLE III. Same as Table II form254Q2.

Scalem254Q2

Bin Standard PSS Modified PSS D

1 11246 4 11206 2 0.4
2 62186 15 61916 7 0.4
3 19.976 0.18 20.156 0.04 1.0
4 22606 4 22886 5 1.2
5 19876 6 19816 2 0.3
6 54.216 0.22 55.696 0.13 2.7
7 130.96 0.8 132.16 0.2 1.0

TABLE IV. Same as Table II form25
1
4 Q2.

Scalem25
1
4 Q2

Bin Standard PSS Modified PSS D

1 984.16 3 970.76 2 1.4
2 54126 14 53436 6 1.3
3 20.006 0.21 20.306 0.05 1.5
4 21346 5 21586 6 1.1
5 17816 6 17586 2 1.3
6 54.906 0.29 55.906 0.21 1.8
7 129.06 0.9 130.36 0.3 1.0
11401
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faced with the PS are not yet available in a working Mon
Carlo event generator.
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APPENDIX: CROSSING FUNCTIONS

For reasons of completeness, in this appendix we col
from @27# the definitions of the functionsAp→a and Bp→a

MS

which are needed to compute the crossing functionsCi
MS.

The functions are defined via a one dimensional integra
over the parton densitiesf p , which also involves the integra
tion over ()1 prescriptions. The finite, scheme independe
functionsAp→a(x,mF) are given by

Ag→g5E
x

1dz

z
f g~x/z,mF!H ~11NC22nf !

6NC
d~12z!

12S z

~12z!1
1

~12z!

z
1z~12z! D J , ~A1!

Aq→q5E
x

1dz

z
f q~x/z,mF!

2CF

3 H 3

4
d~12z!

1
1

2 S 11z2

~12z!1
D J , ~A2!

Ag→q5E
x

1dz

z
f g~x/z,mF!

1

4
P̂g→q

(4) ~z!, ~A3!

Aq→g5E
x

1dz

z
f q~x/z,mF!

1

4
P̂q→g

(4) ~z!. ~A4!

The scheme dependent functionsBp→h
MS (x,mF) are given by

Bg→g
MS 5E

x

1dz

z
f g~x/z,mF!H S p2

3
2

67

18
1

5nf

9NC
D d~12z!

12zS ln~12z!

~12z! D
1

12S ~12z!

z
1z~12z! D

3 ln~12z!J , ~A5!

Bq→q
MS 5E

x

1dz

z
f q~x/z,mF!

2CF

3 H S p2

6
2

7

4D d~12z!

1
1

2
~12z!1

1

2
~11z2!S ln~12z!

~12z! D
1
J , ~A6!
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Bg→q
MS 5E

x

1dz

z
f g~x/z,mF!

1

4
$P̂g→q

(4) ~z!ln~12z!

2 P̂g→q
(e) ~z!%, ~A7!

Bq→g
MS 5E

x

1dz

z
f q~x/z,mF!

1

4
$P̂q→g

(4) ~z!ln~12z!

2 P̂q→g
(e) ~z!%. ~A8!

Here, nf denotes the number of flavors andNC53 is the
number of colors. The Altarelli-Parisi kernels in the previo
equations are defined by:

P̂g→g
(nÞ4)~z!5Pg→g

(nÞ4)~z!54S z

12z
1

12z

z
1z~12z! D ,

~A9!

P̂q→g
(nÞ4)~z!5

8

9
Pq→g

(nÞ4)~z!5
16

9 S 11~12z!2

z
2ezD ,

~A10!

P̂g→q
(nÞ4)~z!5

1

3
Pg→q

(nÞ4)~z!5
2

3 S z21~12z!22e

12e D ,

~A11!

P̂q→q
(nÞ4)~z!5

8

9
Pq→q

(nÞ4)~z!5
16

9 S 11z2

12z
2e~12z! D .

~A12!
p

ra
-

om

11401
The Pi j
(e) are thee dimensional part of thesen-dimensional

splitting functions

P̂q→g
(e) ~z!5

8

9
Pq→g

(e) ~z!52
8

9
2z, ~A13!

P̂g→q
(e) ~z!5

1

3
Pg→q

(e) ~z!52
4

3
z~12z!.

~A14!

The ()1 prescriptions in these equations are defined for
arbitrary test functionG(z) ~which is well behaved atz
51) as

E
x

1

dzF1~z!G~z!5E
x

1

dzF~z!@G~z!2G~1!#

1G~1!E
0

x

dzF~z!. ~A15!

The structure and use of the crossing functions are c
pletely analogous to the usual parton distribution function

The numerical integrations have been performed in
computer program, which is provided together with the fix
order Monte Carlo programMEPJET @26#. The results for
Ap→a andBp→a

MS for different values ofx andmF are stored in
an array in complete analogy to the usual parton densit
which allows a convenient and numerically quick evaluati
of the crossing functions.
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