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We present a method to combine next-to-leading ofB&iO) matrix elements in QCD with leading loga-
rithmic parton showers by applying a suitably modified version of the phase-space-slicing method. The method
consists of subsuming the NLO corrections into a scale-dependent phase-space-slicing parameter, which is then
automatically adjusted to cut out the leading order, virtual, soft and collinear contributions in the matrix
element calculation. In this way a positive NLO weight is obtained, which can be redistributed by a parton
shower algorithm. As an example, we display the method for single-jet inclusive cross sect@tsatn
electroproduction. We numerically compare the modified version of the phase-space-slicing method with the
standard approach and find very good agreement on the percent level.

DOI: 10.1103/PhysRevD.63.114017 PACS nunider13.85.Hd, 13.65ti

[. INTRODUCTION to avoid double counting of events which are included both
in the matrix element calculations and in the PS. Second,
Much progress has been made in the last years in measuregative weights can occur in the calculation of the matrix
ing the hadronic final state i@P scattering at the DES¥P  €lements at NLO. Although they are not a principle problem,
collider HERA with h|gh precisior(see[l] for a recent re- negative Welghts can make it difficult in praCtice to 0bta|n
view). The theoretical tools which are at hand to describe théumerically stable results when they are used as a starting

hadronic final state are basically fixed order perturbative calPoint for the PS. _ _ _
culations, which for most processes are available at next-to- Basically two strategies can be adopted to combine matrix
leading ordefNLO), or a combination of leading ordéO) eIement; and PS’s. E|ther the phase space |s_spI|t into two
matrix elements with parton showe(@S's, mostly at lead- parts, using the matrix element cross sections in one region
ing logarithmic accuracy, which are implemented in event"’.md the PS in the oth¢b-7], or the PS algorithm is _moc_il-

eneratorgsee[ 2] for an overview of available Monte Carlo fied as to reproduce the matrix element cross section in the
9 . hard limit [8]. In current event generators such as, e.g.,
programs for both approachesiowever, it appears that the

PYTHIA [9] or HERWIG [10], leading log parton showers are

theoretical calculations are a considerable source for errors Dombined with leading order matrix elements in the wide

determining physical parameters. As an example, the staliggje scattering region. Recently attempts were made to im-
t!cal errors in a recent determination @f fro_m dijet produc-_ rove the leading order accuracy in these approaches by go-
tion [3] are at the 1% level. The systematical and theoretic hg to next-to-leading order. 1fil1] both, the PS and the
errors, on the other hand, are considerably larger and both ligatrix elements were modified to obtain a smooth merge of
around 5%. Therefore, an improvement of the theoreticaihe PS to the higher order calculation. Coll[1€] suggested
tools is needed. a procedure to subtract from the matrix elements those parts
The fixed higher order and the PS approaches have comvhich are included already in the PS. Since the PS describes
plimentary strengths. The fixed higher order calculations rethe soft and collinear region, the divergences associated with
duce uncertainties due to unphysical renormalization anthe matrix element calculation in this region are avoided.
factorization scale dependences. Wide-angle emission of paFinally, Sjostrand and Friberd13] suggested an improve-
tons, where interference effects between a large number ohent of the splitting procedure, by using the NLO matrix
diagrams may be important, is described well. The PS on thelements to calculate the weight for the PS region instead of
other hand allows a description of the cross section in rethe LO weight. They suggested introducing a function which
gions whereag becomes large, especially in the region of approximates the weight in the PS region in such a way that
collinear particle emission, by means of a resummation othe negative weight problem is largely avoided. However,
large logarithmic terms. This allows us to, e.g., describe reaSjostrand and Friberg only gave an outline of their method
sonably well the substructure of jets. In addition, the PS camvithout providing the approximate function for any specific
be terminated at some small scady, which allows us to process, and hence they also did not give numerical results.
attach some kind of hadronization model, as, e.g., the Lund In this paper, we take the suggestion$18] as a starting
model[4], to describe the nonperturbative region. It is desir-point and give further details for a general method to get the
able to find a way of combining the advantages of both apeorrect NLO normalization of the PS region. To avoid nega-
proaches into a NLO event generator. In a complete NLGive weights, we rely on an older suggestion by Baer and
event generator one certainly would like to include not onlyReno[14], based on the phase-space-slicing method. Baer
the matrix elements at NLO, but likewise the PS in next-to-and Reno suggested introducing a phenomenologically deter-
leading log accuracy. Two problems in combining partonmined fixed slicing parameter such that the sum of the Born,
showers and matrix elements can be identified. First, one hadrtual, soft, and collinear contributions is approximately
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zero. In this paper, wealculate a scale dependent cutoff method, we rely on the classical example given by Kunszt
function, which provides a cutoff for each phase-space pointand Sope|[16] We label the LO Born contribution as-°
such that the sum iexactlyzero and the improved scale and =¢®. The NLO cross section is given by the sum of the
scheme dependence of the NLO calculations is preserveﬂiorn cross section and the virtual and real correctians,
The NLO corrections are given by the NLO hard tree-leveland R,
matrix elements integrated down to the cutoff. Since these L i
contributions are positive definite, the NLO weight obtained yio_ 0Bt oVt gR= oB X
from this method can be directly redistributed according to a tottor=o +Cv—l|£n0€ F(OHJ * F0-
PS algorithm. (1)

The paper consists of two main parts. In the first part we
discuss the general method to combine matrix elements &ere,F(x) is the known, but complicated function represent-
NLO with PS’s by use of the described cutoff function. In ing the (n+ 1)-parton matrix elements. The variableepre-
the second part we consider as a physically important andents an angle between two partons or the energy of a gluon,
interesting example single-jet production in deep melasthhe integral represents the phase-space integration that has to
scattering(DIS). Here, the LO contribution is of ordet]  be performed over the additional parton. The singularity of
and the NLO corrections are of ordet. Including hlgher the real corrections at—0 is compensated by the virtual
order matrix elements for this process will become especiallgorrections, given by the pole term and some constagt,
important for diffractive DIS, since the gluon density in the In the PSS method, the integral over the real corrections is
proton at smallx,,; is large compared to the quark density. divided into two parts, 8x<<é and §<x<1. We note that
Therefore, the photon-gluon fusion process, which is a NLGhe technical cutoffs should lie within then jet region, i.e.,
correction to the first order quark-parton model contribution,if we defineyy=Smin/Q?, then we should havé<y.. If
will not necessarily be small. We explicitly construct and the cutoff parameter is sufficiently smab<y.,<1, one
numerically study the cutoff function for this case. Finally, can write
we summarize our results and give an outlook for future

. 1dx
developments oR= _|: ~I|m{f —fo(x)+F(0)f —X]

0 e—0
Il. GENERAL METHOD

1dx 1
A. Jet cross sections at next-to-leading order zf —F(xX)+F(0)In(8)+ lim—F(0), 2
- . S X €— €
We start by summarizing the procedure for the numerical 0

evaluation of an inclusive-jet cross section in NLO QCD.

t | has b I d by the tef
The first step is to select a jet algorithm, which defines how, yhere the integral has been regularized by the tefmas

suggested by dimensional regularization. The pole is now

partons are recombined to give jets. In the following we take explicit and the NLO cross sectianMC is finite:

for definiteness the invariant masg of two partonsi andj

and define then-jet region such thas;; <sp,, with some 1dx

kind of minimum masss,;, and likewise the 1+ 1)-jet re- oNP=gB+Cy+ f 57F(x)+ F(0)In(5). (3)

gion such thas;;>s, for all i,j. The LO process for the
production ofn jets consists of final state partons and ob-
viously does not depend on the jet definition. This depen-
dence only comes in at NLO. The(«s) corrections to this
process are given by the ultraviol@dV) and infrared(IR)
divergent one-loop contributions to theparton configura-
tion, which are the virtual corrections, and the NLO tree
level matrix elements withr(+1) partons, the real correc-
tions. The tree-level matrix elements have to be integrate
over the phase space of the additional parton, which glves

Clearly, the real corrections® should not depend o8, and

the logarithmic 5 dependence of the last term in E®)
should be canceled by the integral, which sometimes is nu-
merically difficult for very small parameter& However, an
improvement of the above solution is possible by using a
hybrid of the PSS and the subtraction methods suggested by
lover and Suttori23]. In this method, one adds and sub-
racts only the universal soft/collinear approximations xor

rise to collinear and soft singularities. After renormalization, =9, such that

the singularities in the virtual and soft or collinear contribu- 1dx sdx sdx
tions cancel and remaining poles are absorbed into partongR= Iim:f —XF(x)—F 0)f —X +F(0)f —X ]
distribution functions. One wants to integrate most of the e—0

phase space of the real corrections numerically, but one N
- : dx sdx

needs to find a procedure to calculate the soft or collinear ZJ _F(X)Jrj —Z[F(x)—F(0)]+F(0)In(5)
contributions analytically as to explicitly cancel the poles s X 0 X
from the virtual corrections. The two basic methods to per-
form these integrations are the subtraction methids-17] + IimEF(O). (4)
and the phase-space-slicifl@SS method[18-21] (see also e0€
[22] for a review.

In the following we will make use of the PSS method andA cancellation between the analytical and numerical terms
therefore discuss this method further. To illustrate thestill occurs; however, only the phase space is approximated,
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so that this method is valid at larger values®fin the case course, one has to ensure in the event generation process that
where the phase space is not approximated for smtle  6"°<vy,.,, i.e., that the cutoff lies within the-jet region.

hybrid method becomes independent frém In general, the functiori5) could yield a relatively large
S, so that the simple PSS method fails to give the correct
B. Event generation with positive NLO weights answer for the NLO cross sectidnVe can, however, calcu-

late the missing parts of the approximated matrix elements,
which is the cause of the error, numerically by use of the
brid method described above. Improving the reg6)t
ith the hybrid method, one finds

We would now like to improve the above NLO jet cross
section by including the PS in thejet region. We keep the
jet definition, which separates the available phase space in
two complementary regions, namely, thget region fors;;
<Smin and the (+1)-jet (hard region for s;;>sy,. The wo. [t dx snlod X
NLO corrections, i.e., the virtual and the soft or collinear o zf nloyF(XHJ ~[FO=FO)1 (@
corrections, will occur in ther-jet region, so that tha-jet g 0

exclusive cross section has a NLO normalization. On thg,hich gives additional terms of ordé™°In(6™°). Here, the
other_ hand, the hardn(+1)-jet region contains tree-level jitterence between the approximate functistx)|,_, and
contributions only. the full expression is evaluated numerically. This is similar

In current event generators, a weight will be generated ifg \yhat Sjstrand and Friberg suggested[8] as a starting
the n-jet region by calculating the LO, tree-level matrix ele- point for the event generation.

ment and then redistributing this weight with help of the PS" 14 < mmarize. we propose in close analogy[18] the

algorithm. The same_jet c_riterion used to separate the matriﬁ)llowing steps to produce an event in the PS region with
element and PS regions is used to veto events from the Pﬁ)sitive weight and NLO normalization:

which would lie outside tha-jet region, as to avoid double

counting. The 0+ 1)-jet region is described by the hard (

+1)-parton matrix elements. Sij <YeuQ? (8
If we take the procedure for calculating the NLO correc-

tions as described in the previous section, we could in prinfor all partonsi,j. The (n+1)-jet region given bys;; >y

ciple calculate the weight in thejet region in NLO. How- is described by the harch(+1)-parton matrix elements.

ever, we would like to avoid the generation of large positive  (2) For eachn-jet phase-space point calculat#® accord-

and negative weights, since this is not a practical startingng to Eq.(5). The cross section for the-jet region is then

point for an event generator, especially if one wishes to ad@iven by

hadronization after the showering. Therefore we suggest to

(1) Define then-jet region by

NLO_O'B+O'V+O'R

choose the PSS parametesuch that the weights are always On-jet™

positive. To keep the advantages of the NLO calculation, we VoudX shodx

aim to find a cutoff functions"°(?) that provides a cutoff =j | ?F(X)-i-f ?[F(X)_ F(O)]. (9
sMo 0

parameter for any given renormalization and factorization
scale which lies inside the-jet region, such that the sum of We can write this svmbolically as
the Born, soft or collinear and virtual contributions are ex- wh IS Sy icatly

actly zero. The NLO corrections inside the jet are then com- F(x) F(x)—F(0)

pletely enclosed in then(+ 1)-parton hard matrix elements, onia= Yeur 5“'°)<—> + 5”'°< —> (10
integrated down to the cutoff function. Only the tree-level X X

matrix elements will serve as starting points for the PS. The,y 55 to express the Monte Carlo nature of the procedure.
reduced scale and scheme dependence of the NLO cross SEC<(3) In the n-jet region generate am,=s</Q? with x
tions is subsumed into the scale dependent cutoff function, Ko «

2 ; . [0y (the indexk refers to thekth evenj. The weight
ﬁjtr?g;ir:)%'pe?sss'mple example from EQ), the aimed cutoff which will be redistributed by the parton shower algorithm is

given by

nlo_ o® Cy .
ol ) © vvk=<ym—(sm°><$>

XZ)(l<
Substitutingd in Eq. (3) by " results in
for x,e[ 8™y, whereW=>0 by construction, or by

I:(X)—F(O)>

X

1 dx
o= [ e, ©)
shlo X W, = 5n|0<

which is exactly what we are looking for. The NLO correc- X

tions are given completely by the hard« 1)-parton tree-

level matrix elements, which are positive definite and can be

combined with the PS in the usual way. The functiéf IAs we will see in the second part of the paper, for DIS single-jet
will depend on the kinematics of theparton configuration, production ai¥(«,) the cutoff §™° actually is sufficiently small for
as well as on the renormalization and factorization scales. Ohe soft and collinear approximations to be valid.
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for x,e[0,6™°], whereW will be rather small. together with corresponding antiquark processes. The par-
(4) Use the same jet resolution criterion as in the first stegonic cross sections for one-photon exchange are

to veto events from the PS that lie within tha+1)-jet
i ~ LO 2

region. aso-laﬂqu O-Oeq[47TaS(MR)]| Mqﬂqg|21 (18)

IIl. INCLUSIVE SINGLE-JET PRODUCTION IN DIS ~LO 2
aso-g*}qa: O-Oeq[47TaS(IU“R)]|Mg—>qazl

In the following we apply the ideas of the previous sec- (19
tion to inclusive single-jet production in DISP scattering at _
O(ay). For this, we recall the formulas for calculating With
single-jet cross sections at NLO with the standard PSS
method and describe the modified version of the PSS , 128
method, which is used to evaluate the cutoff function. We | q*qg| 3
numerically compare the modified with the standard method.

X(k-po)2+(k’-p0)2+(k-p1)2+(k’-p1)2

(P1-P2)(Po- P2)
In eP scattering (20)

(k-k")

A. Single-jet cross section up taO(as)

e(k)+P e(k')+X 11 3

( ) (p)_> ( ) ( ) |Mg~>qa‘2:_§|Mq~>qg|2(p0<_)_p2)
the final state with a single jet is the most basic event with a
large transverse enerdy; in the laboratory frame. The low-
est orderO(ag) partonic contribution to the single-jet cross

=16(k-k')

section arises from the quark parton mod@PM) subpro-

cess
e(k) +a(po)—e(k’) +a(py) (12)

and the corresponding antiquark process vq'tek»ﬁ The
partonic cross section for this process is given by

042 q= 00E5 Mg _ql? (13)
where
1 1(47ma)? 14
0-0_4p0'kZ Q4 ( )
and

M _ql?=32(po-k)2+(po-k')2]=85[ 1+ (1—y)?].
(15

Here,s=xs, with s= (k+ p)?, denotes the partonic center of
mass energy squared,is the electromagnetic coupling, and
Q?=2(k-k') is the photon virtuality. The total DIS cross
section can be directly obtained by integrating out the com

plete phase space of the final state parton.

At NLO, the single-jet cross section receives contribu-
tions from the real and the one-loop virtual corrections. Th
real corrections consist of the photon-gluon fusion and th%

QCD-Compton processes

e(k)+q(po)—e(k’)+a(py) +9(p2), (16)

e(k)+g(po)—e(k’)+a(py) +a(p.), (17)

(K- p2)?+ (K- p2)2+ (K- py)?+ (K - py)?
X .
(Po- P1)(Po- P2)

(21)

Color factors(including the initial state color averagare
included in the squared matrix elements. Note that the initial
state spin average factors are included in the definitiosof

in Eqg. (15) and that the results in Eq&0),(21) contain the
full polarization dependence of the virtual boson.

As already discussed in the previous section, the real cor-
rections inherit characteristic divergencies, which are the ini-
tial and final state soft and collinear singularities. These can
be separated from the hard phase-space regions by introduc-
ing a cutoff parametes,,;, [18—23. The hard part can be
integrated numerically, whereas the soft or collinear part is
treated analytically. The analytical integrals can be per-
formed inn=4-—2e dimensions. The poles which appear in
e cancel against poles from the one-loop corrections. Re-
maining poles in the initial state are proportional to the
Altarelli-Parisi splitting functions and are absorbed into the
parton distribution functionPDF’s) of the protonf;(X, wg)

for i=q,q,9. UV divergencies in the one-loop corrections
are absorbed into the running coupling constag(tug).

The O(as) corrections to th@(a(s)) Born term are known
for quite some tim¢24] and the one-jet inclusive final states
have been discussed|ia1,25. Since we will later on rely on
programs provided together with theePJET Monte Carlo

rogram[26] for tabulating the integrals that occur for the
nitial state corrections, we will here apply the method of
rossing functions as used[iB6] and outlined if 27], which
is fully equivalent to the results if21,25. We take over the
notation in[27]. The finite part of the NLO partonic cross
section, which is arrived at by summing up the virtual con-
tributions and the singular parts of the two-parton final state
is given by the expression
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~ NLO _ 2 2 . 2 ’
@s0q-q= @s00€G | Mg_ql“Kqq(Smin, Q). (22 aﬁggm'(smm)=ao_ > e?| dx dPSK I (x, up)
i=a,q
The finite parts of the virtual corrections factorize the Born )
matrix element. The factok, ., depending on botls;, X[1+ as(1r) Kg—q(Smin, Q)]
and the invariant mass of the hard partons,2,=Q?, is VS
g|ven by ' +aS(Iu’R)CiMS(X’Iu‘F'Smin)}|Mqu|2'
(27)
2 8 NC 2 Smin 3 Smin . " .
Kq-q(Smin, Q%) = olonll ~ In > |~ Eln > To obtain the finals,,, independent result, one also has to
77 Q Q add the contribution containing the two parton final state,
2 integrated over those phase-space regions where any pair of
a i H _ 2 .
35 +@(Smm)1 , (23) partonsi,j with s;;=(p;+p;)* hass;;>Spy;,:

O_ﬁggrtor( Smin) = 09 E_ e?f dx dPSk’ N 2)47Tas(MR)
Isij 1> Smin

whereN¢c=3 is the number of colorsC,_,, may be crossed iZa.q

in exactly the same manner as the usual tree level crossing )

from theK factor ine*e™— 2 partons as given in E¢4.31) X[fi(6 me) Mg gl

with n=0 in Ref.[20] or in Eq.(3.1.68 of [22]. Thus, Eq. +1f (x M 2 28
(23) includes also the crossing of a pair of collinear partons o0 te)Mg-gql”]: 9
with an invariant mass smaller thap,,, from the final state The Lorentz-invariant phase space meagiPS " con-

to the initial sta_te. Th.'s. wrong contr'lbutlo'n IS replacgd by tains both the scattered electron and the partons from the
the correct collinear initial state configuration by adding the

appropriate crossing function contribution to the hadronicphOton_parton scattering process and is defined as
cross section, which also takes into account the correspond-
ing factorization of the initial state singularities, encoded in ypgk’+n) — s4

the crossing functioné:g"S for valence and sea quark distri-

n n
REX d3p;
Potk—k =2 pi)277 11 il
i=1

2E’i=1 (27)%2E,;

butions. The crossing functions for an initial state paron (29
which participates in the hard scattering process, can be writ- o ,
ten in the form[27] The bremsstrahlung contribution in EQR8) grows with

In? s, and Insy,, with decreasingm,. ONncesy, is small
enough for the soft and collinear approximations to be valid,
this logarithmic growth is exactly canceled by the explicit
— In? iy @and — In sy, terms inKy . and thesy,;, depen-
(24)  dence in the crossing functions.

Smin

2
HE

Aa(xllu’F)In +BgAS(X1/*LF)

CQAS(X!/-LF !Smin) = (E)

with B. Cutoff function

We are now in the position to reformulate the PSS method
Al(X, ip) = E Apa(X,up), (25) for the single-jet inclusive cross section for our purposes. As
P explained in Sec. Il, we wish to avoid the NLO one-parton

contributions contained in Eq27) completely. Integrating

and out the delta functior(29) in Eq. (27) we obtain, omitting

scale dependences,
BYS(X, i) = 2 BES 2(X, ). (26) o Lparton
B el =S (L)% S ex{fi(x)
dxd@ xQ* iZaq

X[1+ asky_o(QD)]+asC¥(x)}.  (30)

The sum runs ov_erp=q,ag. The individual functions

Ap_a(X, uE) andB'g'fa(x,,uF) are stated in the Appendix. In

particular all plus prescriptions associated with the factoriza- . o
. o . ) ; - The s, dependence of this one-parton cross section is can-
tion of the initial state collinear divergencies are absorbed in . .

— celed by the respective unresolved two-parton cross section

the crossing functlonﬁ,'\q"S which is very useful for a Monte_ for each phase-space point,Q?). In order to avoid the

Carlo approach. We note that although the two-parton finahne-parton final states, it will be sufficient to chose an ap-

state contribution$20) and(21) contain the full polarization  prgpriate value of the cutoff paramet@vhich we denote as

dependence of the virtual photon, the singular contributiongnic ) for each phase-space point,0?), so that

occur only for the transverse photon polarization. mi e
Taking into account now virtual, initial, and final state

1parton
corrections we can write the hadronic cross section for the Ahad (sh°)=0. (31)
one-parton final state up 0(«a) as dxd@
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To solve Eq.(31) for sy, it is sufficient to solve the equa- NLO cross section is preserved in our modified approach. A

tion crucial point, which we will study in detail in the next sec-
tion, is whether thes™® function obtained with Eq(39) is
2 2 small enough for the soft and collinear approximations, made
er{fi(x 1+ K Smin s . ;
i:EqE {06 o)1 as(pp)Kg—q(Smin, Q)] to evaluate the expressiof3) and (24), to be valid.

+ ag R) C'S(X, 1, Sin)} = 0. (32 C. Numerical results
The sy, dependence ofC, ., can be seen in Eq(23), In this section we numerically investigate the solution
whereas the,,;, dependence B is given in Eq.24). For ~ (39). We look at the size o1, for givenx andQ? and study
convenience, we define the sums the effect of scale changes sfl°,. Furthermore, we check

whether NLO single-jet inclusive cross sections obtained by

. ) N o

F= S e2f(x.up) (33 integrating out the two-parton contrlbl_Jtlons down sff°
R gives the same result as in the conventional approach, where

e one-parton and two-parton contributions, separated by some
fixed s.,n, are summed.
A= 2 A (X ue), (34) We start by looking at thespo. function in the region
'=e.q given byxe[10 4,10 1] andQ?e[10,1¢] Ge\2. We pro-
o duce all results for one-photon exchange, i.e., neglecting
B= > e’BMS(x,up) (35  possible contributions fronZ-exchange. We employ the
i=a,9 Martin-Roberts-Stirling-ThorndMRST) [28] parton distri-

butions for the proton and use the integration package pro-

vided with MEPJET to calculate and tabulate the crossing
Q? 3 9 A functions[26] for these parton distributions. This makes it

In(—) — Z T6F" (36)  numerically very convenient to use the functiefl®,, E

and the functions

7 M? 16 (39).2 In Fig. 1 we have plotted® as a function on2
for the four fixed values=10"%,10 3,10 2, and 10! for
,[Q%) 3 [Q*) #* 1 the scalesu=ur=ur=£Q? with £=1,1, and 4. We find
g=—1In M2 +35ln Mz 3 2 values around 2 GEVin the smallQ? region, whereas they
rise up to values between 100 and 200 Gédt the largest
9 27 B A [pu? Q? values. Thes,, values are larger for smaller The scale
+ 3 W+E_ Eln — 11 (37)  variation lead to small changes of thg;, values. The scale
c%s variation in the actual cross sections will be still smaller,

since thes,,;, dependence of the cross sections is logarith-
mic. For the two largex values, the smaller scales leads to a
larger value ofs® which will therefore produce smaller
cross sections. For the two smallevalues there seems to be

a compensation between the renormalization and factoriza-

which are independent &f,i, up to O(Spn). We have intro-
duced some arbitrary scalé? to keep the functiong andy
dimensionless. The solution of E@2) is then given by the
solution of the quadratic equation

s s tion scale variations, leading to a very small overall variation
| Z(Lg‘) 2n1 (ﬂ) =1 (389 in st especially at larg&?.
M Next, we numerically compare the standard PSS method

nlo with our modified approach. The following comparisons are
We find for spip done for HERA conditions, i.e.E,=27.5 GeV andE,
=820 GeV, glvmg\/§ 300 GeV. A cut ofE.>10 GeV |s
nIo 2 / 2
Smin 47 4R X Q%) = exiIN(M?) + 7 T, (39 applied to the final state electron and we chooge
€ [0 04,1]. We take the sam@? region as above, namely,

where we have taken the smaller of the two solutions, sinc®” €[10,10] Ge\2. Jets arelagefmed in the Iatl)act)’ratory frame
we requires,, to be sufficiently small for the soft and col- With the kr algorithm with Ef”>5 GeV and| 7] |<2. Al
linear approximations to be valid. The M) dependence in Cuts together restrict the range to bexe[107%1]. The

Eq. (39) cancels in the sum of the individual terms in the numerical results for the one-jet inclusive cross sections in
exponent. the following are produced withEPJET[26].

Inserting thesM function into Eq.(28) as a lower inte- In Fig. 2 we plot the NLO cross sections for the one-
gration boundary for each phase space poi®@) will give parton final states, which include the Born term, the virtual
the complete answer for the single-jet cross section in NLocorrections, and the soft and collinear contributions, together
This is well suited for the purpose of combining matrix ele-
ments in NLO with the PS. It is important to note that the

s function depends on the factorization and renormaliza- 2The ForTRAN code for thes™ function can be obtained upon
tion scales, so that the improved scale dependence of thequest from the author.
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with the hard two-parton final states and their sum as a funowell. Similar results hold for the large®? ranges, Figs.
tion of s, for four differentQ? regions integrated over the 2(b)—2(d). The point at which the NLO one-parton final state
whole x range. In Fig. 2a) we see how the logarithmig,;, contributions vanish are well within th&,;, independent re-
dependence of the two-parton final states is compensated Iggon. This holds also for the large§? values, where the
the one-parton final states to give 8§, independent result absolute size of the,,, function is rather large, of the order
of ¢=11.66-0.02 nb up to values of,,~10 Ge\?.  of 100 GeVf, as we have seen in Fig. 1. At the largest
Above that value a slight variation of the sum can be ob-values the results seem to become even more stable with
served and ths,,, independence is no longer ensured. Forrespect to the,;, dependence.

Smin=>30 GeV? the one-parton final state obviously fails to ~ For a more detailed study we have calculated the single-
give a corrects,,, dependence and the sum of one- andjet inclusive cross section for nine different binsiandQ?,
two-parton final states strongly decreases. We note that aamely, Q?e[10,1¢] GeV?, Q?e[1(?,10°] GeV?, and
even largess,,, values, the one-parton final states will again Q%e[10%10*] GeV? together with xe[1073,10 2], x

give zero, which is the second solution of Eg§2) which we e[10°2,0.1], and finally xe[0.1,1]. The actual bins are
rejected in Eq.(39). As an important result, one also seessummarized in Table I. In addition, we have tested the scale
that the value of,,,, for which the one-parton final states dependence by varying the squared renormalization and fac-
vanish and the two-parton final states give the full answer isorization scales together by a factor of 4, i.g2=pu3

well within the s, independent region. Indeed, after we =M§:§Q2 with €=%,1,4. The results are shown in Tables
have introduced ousﬂq'?n function into theMePJET program  II-IV in pb, also indicating the relative differenae= oy

we found that the one-parton final states did give zero and as o ,o{/osq Of the standard PSS method to the modified
a result for the two-parton final state we found=11.59 PSS. For allQ? intervals we find agreement of our modified
+0.01 nb, which agrees with the answer for snsafl, very  approach compared to th&,,, independent standard ap-
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proach to around 1% or better. The overall scale dependende removing the Born, virtual, and soft or collinear contribu-
is small, indicating a very good perturbative stability, as totions from the NLO cross section for thejet region by

be expected. However, it was not our intention to test theadjusting the PSS parametsy;, for each phase space point
scale dependence, but to test whether eflf, function  and each scalgir,ur. These contributions are then in-

would reproduce the scale behavior correctly. cluded in the hard part of the NLO matrix elements, which
This concludes our numerical studies, showing the

equivalence of the standard PSS method with our modified TABLE II. Cross sections in pb for the bins 1-7 defined in
approach by integrating out only the two-parton final statesrable I, comparing the standard PSS method withsfffemodified

down to a dynamica:l;”m'?n function given by Eq(39). PSS method for three different scales.gives the difference of

both methods in percent.
IV. SUMMARY AND OUTLOOK

) I T Scaleu?=Q?
We have given a prescription for combining fixed NLO
matrix elements with PS’s within the PSS method. It consistssjn Standard PSS modified PSS A

TABLE I. Bins in x andQ? (given in Ge\?) for y>0.04. Two

_ : _ 1 1044+ 3 1037+ 2 0.7
bins are kinematically excluded. 2 5734+ 15 5700+ 9 0.6
2 2 2 3 19.99+ 0.18 20.22+ 0.04 1.2

Q*c[10.16] Q°c[10°10°] Q°<[10°10] 2193+ 3 2214+ 4 1.0

xe[1071,1] bin 3 bin 6 5 1882+ 4 1875+ 2 0.4
xe[1071,10 2] bin 1 bin 4 bin 7 6 54.10+ 0.20 55.60+ 0.18 2.8
xe[1072,10 3] bin 2 bin 5 7 129.3+ 0.5 131.1+ 0.4 1.4
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TABLE Ill. Same as Table Il foru?=4Q?. faced with the PS are not yet available in a working Monte

Carlo event generator.

Scaleu?=4Q?
Bin Standard PSS Modified PSS A ACKNOWLEDGMENTS
1 1124+ 4 1120+ 2 0.4 We have benefited from discussions with S. Catani, H.
2 6218+ 15 6191+ 7 04 Jung, G. Kramer, J. Rathsman, T. Saier, T. Sjstrand,
3 19.97+ 0.18 20.15+ 0.04 10 and M. Sutton. | am grateful to G. Kramer for comments on
4 2260+ 4 2288+ 5§ 1.2 the manuscript. D. Chapin and N. Kauer have been helpful
5 1987+ 6 1981+ 2 0.3 concerning details of th®EPJET program.
6 54.21+ 0.22 55.69+ 0.13 2.7
7 130.9+ 0.8 132.1+ 0.2 1.0 APPENDIX: CROSSING FUNCTIONS

For reasons of completeness, in this appendix we collect

— : MS
are positive definite. This allows to directly redistribute thefrom [27] the definitions of the functiond, ., and By,

weight provided from these matrix elements with a PS algowhich are needed to compute the crossing functiGifs.
rithm. The functions are defined via a one dimensional integration
For the case of inclusive single-jet productiorei® scat-  over the parton densiti€fg , which also involves the integra-
tering atO(as) we have calculated the dynamics);, pa-  tion over (), prescriptions. The finite, scheme independent
rameter for each phase space poistnd Q? and each scale functionsA,_ (X, ug) are given by
MR, Mg - We have numerically compared the standard calcu-
lation with our new approach of evaluating fixed NLO con-
tributions and found the new approach to give reliable re-
sults. We especially found that the valuessgf,, for which
the virtual plus soft or collinear contributions vanish, are
small enough for the soft and collinear approximations, used
in the PSS method, to be valid. We note that the cutoff
function has been successfully implemented in ’aeGAP 1dz 2C (3
event generatof29], wh|(_:h includes theO(ay) tree level Aq_,qu ?fq(X/ZvMF)T(Zé(l_Z)
matrix elements. Numerical results and comparison to data x
will be discussed in a forthcoming paper. 1
The next, more complicated step is the case of dijet pro- +=
duction ine P scattering, which is especially interesting be- 2
cause it allows a precise determination af or the gluon
density in the proton. NLO calculations in the PSS method
from which the cutoff function can be determined are avail-
able[21,26,27,30 It might turn out that the PSS method has
to be supplemented with the hybrid method to numerically
evaluate terms of ordes,,In(syin) as outlined in Sec. Il.
NLO calculations within the subtraction method are avail-
able for dijet production ireP scattering[17], so that the .
expressions needed for the hybrid of PSS and subtractiohhe scheme dependent functioB$>  (x, ur) are given by
method can readily be evaluated. We finally note that the

O(a?) tree level matrix elements foeP scattering inter- Vs 1dz
Bg—»g: ?fg(X/ZuU'F)
X

+22(In(1—z)) +2((1;z) +z(1—z))
+

idz (1INc—2ny)
Ag_.g= L — To(X/2,ne) 6—Nc5(1—2)

Z (1-2)

+2 =2, +—

+z(1—z))], (A1)

1+27°
(1-2),

], (A2)
1dz 1. (@)
Ag_.q= fx 7fg(x/z,MF)ZPgﬂq(z), (A3)

A= [ (x/z )Eﬁﬂ“) (2) (A4)
a—g” | 7 VSRR amgle)

@? 67 5n¢
3 18" 9Ng

TABLE IV. Same as Table Il fou?= Q2

Scaleu?=1Q? (1-2)
Bin Standard PSS Modified PSS A
xln(l—z)], (A5)
1 984.1+ 3 970.7+ 2 1.4
2 5412+ 14 5343+ 6 1.3
3 20.00+ 0.21 20.30+ 0.05 1.5 - 1d7 2C (7 7
4 2134* 5 2158+ 6 1.1 quq:f ?fq(X/Z,MF)T[(F—Z) 8(1—2)
5 1781+ 6 1758+ 2 1.3 X
6 54.90+ 0.29 55.90+ 0.21 1.8 1 1 In(1—2)
7 129.0+ 0.9 130.3+ 0.3 1.0 +5(1-2)+ 5(1+22) f) J (AB)
(1-2) ],
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BYS = f:d fo(x/z, )7 {P‘gﬂq 2)In(1-2)

-PY (2}, (A7)
By = f:d fo(X/2,me)5 {Pﬁ;ﬂg 2)In(1-2)

—PY (2} (A8)

Here, n; denotes the number of flavors ant=3 is the

PHYSICAL REVIEW D 63 114017

The Pi(f) are thee dimensional part of these-dimensional
splitting functions

(e) (€) 8
Pl ,(2) —5 P (2=~ 522 (A13)
Pl 4(2) ——P<f> ) (2=~ —z(l 2).
(A14)

The (), prescriptions in these equations are defined for an

number of colors. The Altarelli-Parisi kernels in the previousarbitrary test functionG(z) (which is well behaved az

equations are defined by:

z 1-z
P(n:“l)(Z) = P(n$4)(2) =4(TZ + T +Z(l—2)) s

9-—9 9-—9 1
(A9)
8 16(1+(1- 2)?
(n#4) (n#4) R
P (=g P (@)= ez,
(A10)
. 2(%+(1-2)°—€
(n+4) p(n#4) R
Pgqu (Z) 3 grL»q ( )_ 1—e¢ )
(A11)
8 16/ 1+2°
(n#4) (n#4) o~ _ _
Pqn—>q ( ) 9Pqn—>q (Z)_ 9 ( 1_Z 6(1 Z))
(A12)

=1) as
1 1
fx dzF.(2)G(2)= L dzR(z)[G(2)-G(1)]

+G(1)foxsz(z). (A15)

The structure and use of the crossing functions are com-
pletely analogous to the usual parton distribution function.
The numerical integrations have been performed in a
computer program, which is provided together with the fixed
order Monte Carlo progranmeprJET [26]. The results for
Ap_a andBp_>a for different values ok and g are stored in
an array in complete analogy to the usual parton densities,
which allows a convenient and numerically quick evaluation
of the crossing functions.
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