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Role of the nonperturbative input in QCD resummed Drell-Yan Q distributions
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We analyze the role of the nonperturbative input in the Collins-Soper-Stet@®8 b-space QCD resum-
mation formalism for Drell-Yan transverse momentu@yj distributions, and investigate the predictive power
of the CSS formalism. We find that the predictive power of the CSS formalism has a strong dependence on the
collision energy\/§ in addition to its well-knownQ? dependence, and théS dependence improves the
predictive power at collider energies. We show that a reliable extrapolation from perturbatively resummed
b-space distributions to the nonperturbative labgegion is necessary to ensure the cor@gtdistributions.
By adding power corrections to the renormalization group equations in the CSS formalism, we derive a new
extrapolation formalism. We demonstrate that at collider energies the CSS resummation formalism plus our
extrapolation has an excellent predictive powerdandZ production at all transverse momera<Q. We
also show that thé-space resumme@- distributions provide a good description of Drell-Yan data at fixed
target energies.
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I. INTRODUCTION tually get two powers of the logarithm for every power of

The perturbation theory of quantum chromodynamicsas’ due to soft and collinear gluons emitted by the incoming

. . . partons. Therefore, at sufficiently sm&l, the convergence
CD) has been very successful in interpreting and predict? : . Do .
(QCD) y b 9 b f the conventional perturbative expansion in powera ois

ing high energy scattering processes. With new data fro 1 paired. and the locarithms must be resummed
Fermilab run Il and the CERN Large Hadron CollideHC) ﬁ;a €d, a " € fotgha | SI us 'the esu CIS ' b
in the near future, we expect to test QCD to a new level of. esummation of the large logarithms in QCD can be car-

accuracy, and also expect that a better understanding of Qcﬂfd gut either 'EQ; S pa?:e dlrectly orin tthef|mpact pareltr-
will underpin precision tests of the electroweak interactions® 1P SPace, Which IS a Fourier conjugate o Qe space.

and particle searches beyond the standard mptel As was _first shown by Dol_<shitzer, D iakonov af.‘d TFOWDT)
pointed out in Ref[1], the description of vector and scalar that in the double leading logarithm approximati@DLA),

boson production properties, in particular their transversg\’hICh corresponds to the ph_ase space where the Fad"_ited
L e gluons are both soft and collinear with strong ordering in
momentum Q) distribution, is likely to be one of the most

: vely i . d . both Fermilab and th their transverse momenta, the dominant contributions in the
Intensively investigated topics at both Fermilab and t .esmaIIQT region can be resummed into a Sudakov form fac-
the purpose of this paper to investigate the predictive powe%.rOr [3]. However, the strong ordering in transverse momenta
in the DDLA overly constrains the phase space of the emit-
Med soft gluons and ignores the overall momentum conserva-
tion. As a result, the DDT resummation formalism unphysi-
cally suppresses th@; distributions at smallQ; [1]. By
imposing transverse momentum conservation without assum-

. . : o ing a strong ordering in the transverse momenta of radiated
collisions has been extensively studigd. WhenQ;~Q, gluons, Parisi and Petronzio introduced tiigpace resum-

effectivc_aly, there is only one hard momentum scale in t.hemation method which allows a resummation of some sub-
production. Therefore, we expect the fixed-order perturbat'v?eading logarithmg4]. By using the renormalization group

calculations |pllpower S‘i”ets oi tcihbe rehgbI?[Z]. Infthls ¢ equation technique, Collins and Soper improvedlitepace
paper, we will concentrate on the production OF VECOToq,mmation to resume all logarithms as singular as

21?;?23 dZE[;n;raél t;%?l?;;% mr%mi((a) ':?zig ’cvc\)lrrlgrse g;%glilok . IN™(Q%Q%)/Q4 asQr— 0 [5]. In the framework of this renor-
' T reg P malization group improved-space resummation, Collins,

phase space that is most relevant to the hadronic Higgs b%-oper and StermaitS9 derived a formalism for the trans-

son production. Y N
T verse momentum distributions of vector boson production in
When Qr<Q, the Qy distributions calculated order by hadronic collisiong6]. This formalism, which is often called

order in Us. in the convent_ional fixedz-order perturbation the CSS formalism, can be also applied to the hadronic pro-
theory receive a large logarithm, ®¥/Q%), at every power duction of Higgs bosonk7].

of as. 2Eve2n at the leading order ias, the cross section For Drell-Yan vector boson production in hadronic colli-
do/dQ°dQt  contains a term  proportional 10 gjons petween hadrona and B, A(P,)+B(Pg)—V(Q)
(as/QD)IN(QYQR) coming from the partonic subprocess: .+ x with V=* W*, andZ, the CSS resummation formal-
+q—V(y*,W/Z)+g. Beyond the leading order, we can ac- ism has the following generic fori6]:

distributions of vector and scalar boson production in ha
ronic collisions.

The production of vector bosons/ & v*, W=, and Z)
with invariant massQ at large and smalQ; in hadronic
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do(hy+hg—V+X) 1
dQ?dydQt (272
+Y(QT7Q7XA1XB)1 (1)

where x,=€YQ/+/S and xg=eYQ/+/S with the rapidityy

and collision energy/S. In Eq. (1), the W term dominates
the Q distributions wherQ<<Q, and theY term gives cor-
rections that are negligible for smally, but becomes im-

portant whenQ;~ Q. In the CSS formalism, th&V has the
following form [6]:

f dzbeiéT. 6\7\/(b7Q=XA 1XB)

W(biQixAixB):izj Wij(biQIXAIXB)UinV(Q)i (2)
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first is the difficulty of matching the resummed and fixed-
order predictions, and the second is knowing the quantitative
difference between the prediction and the fitting because of
the introduction of a nonperturbativeN®. In viewing of
these difficulties, major efforts have been devoted to resume
the large logarithms directly i@+ space{1,14).

In this paper, we argue and demonstrate that both of these
drawbacks can be overcori@]. Since there is no preferred
transverse direction, the two-dimensional Fourier transform
in Eq. (1) can be reduced into a one-dimensional integration
overb=|b| weighted by the Bessel functialy(Q+b) [4,6].

We find that by using an integral form for the Bessel func-
tion, theb-space resummation formalism works smoothly for
all Qr=Q. Because of the smooth resumm®@g distribu-
tions, the transitiorfor switch ovey to fixed order perturba-

wheredj; _,y(Q) is the lowest order cross section for a pair tive calculations at larg& becomes less ambiguo{4].

of quark and antiquark of invariant ma&sto annihilate into

In addition, we find that the predictive power of the

a vector bosolV, and theZ;; run over all possible quark and p-space resummation formalism strongly depends on the col-
antiquark flavors that can annihilate into a vector boson ajision energy+/S in addition to its well-knownQ? depen-

the Born level. In Eq(2), the W;;(b,Q,Xa,Xg) is an effec-
tive flux to have partons of flavarandj from the respective
hadronsA andB, and it has the following fornfi6]:

Wij(b;Q|XA;XB):e_S(b’Q)Wij(b,C/b,XA,XB), (3)

where S(b,Q) will be specified later and is a constant of
order 1[6,8]. TheVVij(b,c/b,xA,xB) in Eq. (3) depends on
only one momentum scale,kl/and is perturbatively calcu-

lable as long as b/is large enough. All large logarithms Parameter fitting,

from In(1b?) to In(Q? in W;;(b,Q,xa,Xg) are completely
resummed into the exponential factor £x{¥(b,Q)].

Since the perturbatively resummeﬁij(b,Q,xA,xB) in
Eq. (3) is only reliable for the smalb region, an extrapola-

tion to the largeb region is necessary in order to complete

the Fourier transform in Eq(l). In the CSS formalism, a
variableb, and a nonperturbative functidi'"(b,Q,Xx ,Xg)
were introduced6]:

Wcs%b!Q!XAIXB)EW(b* !QlXA!XB)FNP(vaIXAIXB)l
4

whereb, =b/ 1+ (b/by2,)°<bmax=0.5 GeV !, andFNP
has a Gaussian-like dependencebpir NP~ exp(—«b?) and

the parametex has some dependence @3, x,, andxg.

The predictive power of the CSB-space resummation

formalism relies on the following criterail) the Fourier
transform(or b integration in Eq. (1) is dominated by the
perturbative(or smallb) region, and2) the nonperturbative
input FNP has a derived dependence whe is large. By
using data at some values Qfto fix the nonperturbativée
dependence dFNP, the CSS formalism predicts tf@; dis-
tributions at different values d@. Existing data are not in-
consistent with such a forfl®—13]. However, improvements
are definitely needed for precision tests of the thdary4].

dence. Because of the steep evolution of parton distributions

at smallx, the \/S dependence of th&/ in Eq. (1) signifi-
cantly improves the predictive power of thespace resum-
mation formalism at collider energies. We demonstrate that
the b-space resummation formalism has excellent predictive
power for Drell-YanQ+ distributions as long a®? is large
and/orx, andxg are small.

To quantitatively separate the QCD prediction from the
we derive a new functional form in Eg.
(36) to extrapolate the perturbatively calculategpace dis-

tribution W(b,Q,X, ,Xg) to the largeb region. Our extrapo-
lation is derived by adding power corrections to the evolu-
tion and renormalization group equations in the CSS
resummation formalism. Our extrapolation preserves the pre-
dictive power of perturbative calculations at smaliwhile it
provides clear physical interpretations for blidependence
in the largeb region. We find that the CSB-space resum-
mation formalism plus our extrapolation gives an excellent
description of the data on the Drell-Yd; distributions at
both collider and fixed target energies.

The rest of this paper is organized as follows. In Sec. I,

we briefly review the CS®-space resummation formalism

for the Drell-Yan transverse momentum distributions. We
show that the predictive power of thespace resummation
formalism has a significant’S dependence. In Sec. lll, we
quantitatively analyze the role of the nonperturbative input at
large b in the b-space resummation formalism. By adding

power corrections to the evolution equation Wij and
power corrections to the renormalization group equations of
corresponding evolution kernels, we derive a new functional
form to extrapolate the perturbatively calcula@dj to the
largeb region. This new functional form clearly separates the
perturbative predictions in the smdllregion from the non-

Although theb-space resummation formalism has beenperturbative physics at large Finally, in Sec. IV, we nu-

successful in interpreting existing data, it was arglied4]

merically compare thds-space resumme@ distributions

that the formalism has many drawbacks associated witlwith experimental data. Our conclusions are also given in

working in impact parameter space. As listed in R&f, the

Sec. IV.
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Il. COLLINS-SOPER-STERMAN FORMALISM A(1)=CF,

In this section, we briefly review the CSfspace resum- )
mation formalism for the Drell-Yan transverse momentum , ) &[N((S—?— W_) 10
distributions. We show that the predictive power of the 2
b-space resummation formalism has a strong dependence on
the collision energyy/S in addition to its well-knownQ? 3
dependence. We demonstrate that{iSedependence signifi- BM=— ECF '
cantly improves the predictive power of thespace resum-
mation formalism at collider energies.

2
It was showr{6] that forb<1/A qcp, theW(b,Q,xa,xg)  B®@= %) [77 —§—12g(3)} % H—;WZ 12%13
is directly related to the singular parts of the Drell-Y@gp
distribution asQ;—0. More precisely, théV(b,Q,Xa,Xg) 17 2
includes all singular terms like 52((§T) and +34(3) |+ TRnf 6 5772}’ ©)

[IN"(Q¥QF)/Q%],eq With m=0. The terms that are less singu-
lar asQ1— 0 are included in th& term in Eq.(1). The QCD  where N=3 for SU3) color, Cr=(N?—1)/2N=4/3, Ty
resummation of the large logarithms in the CSS formalism is=1/2, andng is the number of active quark flavors. The

achieved by solving the evolution equation for thg [6], ~ functions A and B given in Eq.(9) are derived from the
general expressions in R¢6] with the following choices for

d the renormalization constant€,;=c=2¢e 6 and C,=1
i Q2W'J(b ,Q. XA, XB) where ye~0.577 is Euler’s constant.
Substituting Eqg.(8) into Eq. (5), and integrating over
=[K(bp,as( 1))+ G(Q/ u, as( 1)) 1W; (b, Q,Xa , Xg), In(Q? from In(c?/b?) to In(Q?), one obtaindV;; given in Eq.
(3) with
(5
and corresponding renormalization group equations for the u? Q2
kernelsK andG: S(b,Q)= 2/b2 > | Alars( 1))+ Blag( ) |
(10)
J1n u? Kbp,as(mu)==3 wlas(w), ©® Eq. (3), all large logarithms from Inf/b?) to In(Q?) in

Vvij(b,Q,xA,xB) are completely resummed into the expo-
nential factor exp—S(b,Q)], leaving the\7vij(b, c/b ,Xp,Xg)
with only one momentum scalebL/TheVVij (b, c/b,xp,Xg)
in Eq. (3) is then perturbatively calculable when the momen-
The anomalous dimensiong(as(i))=Sn-17 (as(n)/  tum scale 1 is large enough, and is given §,12]
)" in Egs.(6) and(7) are perturbatively calculab[&]. The
renormalization group equations firandG in Egs.(6) and ~ c c o
(7) ensure the correct renormalization scale dependence, Wi b'B’XA’XB):fi/A(XA’M:B)fj/B<XB'/‘:5)-
d/d In £ W(b,Q, x5 ,X5)]=0. The solution given in Eq(3) (11
corresponds to solving the evolution equation in &g from
In(c?b?) to In(@Q%), and solving the renormalization group The functionsf; s andfj,g are the modified parton distribu-
equations in Eqs(6) and (7) from In(c/b?) to In(u?) and  tions[6,12],
from In(Q?) to In(u?), respectively.

Integrating Eq.(6) over In(?) from In(c?/b?) to In(u?), 1dé Xa
and Eq.(7) from In(Q? to In(u?), one derives fira(Xa, p)= E W€ m(g#) ban(én) (12

Kb ag(u)+GQlmas(p)) where3, runs over all parton flavors. In E(L2), ¢oa(€, )

o2 d;2 _ is the normal parton distribution for finding a parton of flavor
f — Alas(1))—B(as(Q)), (8  ain hadronA, and Cj,=3,-oC{{)(as/m)" are perturba-
tively calculable coefficient functions for finding a parton
from a partona. The first two coefficients o€;,, are avail-

1
i MZG(Q/MraS(M)):E'}’K(as(#))- (7)

c2/b?

whereA is a function ofyy (as(x)) andK (¢, as(x)) while B

depends on bothK(c,as(Q)) and G(1,a4(Q)). The func- able(6, 9]

tions A andB do not have large logarithms and have pertur- c(0

bative  expansions A=3,_;AM(as/7)" and B Cijj(zu=clb)=6;8(z=1),
=3,_.BM(ag/7)", respectively. The first two coefficients O

in the perturbative expansions are knof@9): Cijg(z,u=cl/b)=0,

114011-3
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Cr power of theb-space resummation formalism is limited by
C(z,u=clb)=§; 7{(1—2) our inability to calculate the nonperturbatibespace distri-
bution at largeb [1,14].
However, the b-space resummation formalism has a
' remarkable feature that the resummed exponential factor
exd —S(b,Q)] suppresses theintegral wherb is larger than
C(,l)(z,,u=clb)=TRz(1—z) (13) 1/Q. There_fore, Whe-l'Q>,LL0-, it is possible that the Fourier
1o transform in Eq.(1) is dominated by a region db much
wherei and|j represent quark or antiquark flavors agd smaller than 14y, and the calculate@ distributions are
represents a gluon. The coefficient functions given in Eginsensitive to the nonperturbative information at latgen
(13) are derived from the general functional forms in §é].  fact, using the saddle point method, it was shdwy®] that
by setting the renormalization constants and the factorizatiofPr a large enougl®, the QCD perturbation theory is valid
scale asC;=c, C,=1, andu=c/b. even atQr=0, and the Fourier transform in EQL) is domi-
Theai; _y(Q) in Eqg. (2) is the lowest order cross section nated by an impact parameter of order
for a pair of quark and antiquark to annihilate into a vector

2

=
+| 5 —4|81-2)

boson ¥=y*, W*, or Z). ForV=1*, we have 1 /A A
b =—( =2 (16)
SP A Q
L[ Am%agy\1 1 QcD
Tij -y (Q) = 8| —3g— N2 (14

where A =16/(49-2n)~0.41 for quark flavorsn;=5.

whereeg; is the quark fractional charge ami=3 for SU3) From Eq.(16), the momentum scale corresponding to the

color. Theay;_.y(Q) for V=W or Z can be found in Refs. sgdd!e point, Bgp, can be well within the perturbative re-
[6,12]. gion if the value ofQ is large enough. Therefore, the predic-

In the CSS resummation formalism, tieerm in Eq.(1) tive power of theb-space resummation formalism is directly
represents a small correction to tk distribution when related to the numerical value of the vector boson’s invariant

Q;<Q. But it dominates theQ; distributions whenQ,;  MassQ [4,6].

~Q. The Y term has a perturbative expansiory, For W= and Z production, we hav&~M,, or Mz and
=3 ,_ Y™ (ay(w)/7)", and the coefficienty™ have the the corresponding momentum scale fror_n Ef6), 1/bsp.
following factorized form[6]: ~ 10Agcp~2 GeV, WhI.Ch is at the borde_rllne of. the pr¢d|c—
tive power of perturbative QCD calculations without intro-
Y (Qr,Q,Xa X5 1) ducing the power corrections. In the rest of this section, we

show that the next-to-leading order corrections to the func-
tion S(b,Q) reduce the numerical value of thep. Further-
more, we show that the numerical value for the saddle point
has a strong dependence on the collision enefgyand the
4772a§M " _ \JS dependence can either improve or reduce the predictive
X 9075 Rab-v(Qr.Q.Xa/éa Xs /a1 11), power of theb-space resummation formalism.
Since there is no preferred transverse directidhin Eq.
(1) is a function ofb=|b|, and the Fourier transform can be
where3, , run over all possible parton flavors apdrepre- ~ Written as
sents both the factorization and renormalization scale. The
R, in Eq.(15) are perturbatively calculable and have the
same normalization as those introduced in R&f. The lead-

1d 1d
=> &%/A@A,m f §¢b,3<§s,ﬂ>
Xg B

a,b Jxp fA

(15

f d?be?r*W(b,Q, X, Xp)

2
ing order termsR(alb)Hy* are available and are given by Egs. (2m)

(2.9—(2.12 in Ref.[6]. ForW* andZ production, one needs 1 (= <
to change the fractional quark charggin the RSJLV* by :ﬂfo dbbJ,(Qrb)e” >

corresponding weak coupling constafs.

Since theY term does not have large logarithms and is ~ c
perturbatively calculable, the predictive power of the CSS X% ‘Tiiﬂv(Q)Wii(b'B*XA’XB)’ 17
formalism relies on our ability to predict th& term in Eq.
(1). Because the leading power perturbative QCD calcula- ) ) ) o
tions and the normal parton distributions in E42) are only ~ WhereJo(z) with z= Qb is the Bessel function. In deriving
valid for > puo~1-2 GeV, the perturbatively calculated EG-(17), we used Egs(2) and(3). Thebspin Eq. (16) was
b-space distribution(b,Q,xx.xg) in Eq. (1) is reliaple  9€Mved by solving
only if the momentum scale i . On the other hand, the
Fourier transform in Eq(1) requires ab-space distribution d B
~ " —In(be” S, =0 (18)
W(b,Q,xa,Xg) for be[0). Therefore, the predictive db SP

114011-4
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with only A®) for the functionS(b,Q). Solving Eq.(18) for
the saddle point relies on the assumption thathhgepen-

dence inVVij(b,c/b,xA,xB) is smooth aroundbgp.
However, we find from Eq(11) that theb dependence in

Vvij(b,c/b,xA,xB) is strongly connected to the numerical
values ofx, andxg, and can be very important for deter-
mining the saddle point ik, andxg are very small or very
large [8]. Taking into account the fulb dependence of

\7V|](b c/b,x,,Xg), the saddle point for thé integration in
Eqg. (17) at Q=0 is determined by solving the following
equation:

E In(befs(b’Q))kao

+—In =

2 O’IJHV(Q)WIJ( 1b1XA1XB> 0.

b=by

(19

If the Vvij(b,c/b,xA,xB) has a weakb dependence around
by, the second term in Eq19) can be neglected, and the
bo~bgp. From Eg. (11, the b dependence of

\7Vij (b,c/b,Xxa,Xg) is directly proportional to the evolution of
the modified parton distributions:

%In

E UIJﬂV(Q)WIJ( iy XAvXB>

1
b

d

ding fj/B(XBa/-L)}y

d
fia(Xa,u) or ding

(20

whereu = c/b. Since the coefficient functior in Eq. (13)

PHYSICAL REVIEW [B3 114011
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FIG. 1. (a) Integrand of theb integration in Eq(17) at Q=0
andQ=6 GeV as a function db with an arbitrary normalization at
Tevatron energy(b) the first(solid line) and seconddashed ling
terms in Eq.(19) as a function ob at the sameQ and \/S.

=0.202 GeV[15], one derives from Eq(16) that bgp
~1.2 GeV'!, and might conclude that the perturbatively
resummed); distribution at the given values 6 and\/S s

not reliable. However, as shown in Figal, the integrand of
the b integration in Eq.(17) has a nice saddle point &t
~0.38 GeV'!, which is within the perturbative region. This
is due to the fact thak,~xg~0.003 are very small. The
second terms in Eq19) is negative and it reduces the nu-
merical value of the saddle point, which is clearly shown in
Fig. 1(b). The solid line and dashed line represent the first

do not have @ dependence at these orders, the evolution okind the second term in E(LY9), respectively. Although the

the modified parton distributions in ECRO) is directly pro-

portional to the evolution of normal parton distributions,

solid line in Fig. 1b) never crosses zero fir<1 GeV 1,
which is consistent with the fact thaks~1.2 GeV !, the

(d/d Inw)ya(é,e). Because of the steep falling feature of the dashed line is negative and it cancels the solid line to give a

normal parton distributions wheé increases, the convolu-
tion over ¢ in EqQ. (12) is dominated by the value of

~Xp . Therefore, the evolution of the modified parton distri-

butions in Eq(20) is directly proportional to the evolution of
normal parton distributions,d{d In u)@ya(&p) at E~Xa.
From the Dokshitzer-Gribov-Lipatov-Altarelli-Pariai
(DGLAP) equation, it is known thatd/d In w)p(x,w) is posi-
tive (or negative for x<<xy~0.1 (or X>X;), and the evolu-
tion is very steep wher is far away fromx,. Therefore, the
second term in Eq(19) should be very important whexy
andxg are much smaller than the).

nice saddle point av=by,~0.38 GeV ..

Similar to Fig. 1, we plot the integrand of theintegra-
tion in Eq. (17) for Z production at Tevatron and the LHC
energies in Figs. 2 and 3, respectively. In plotting both fig-
ures, we used CTEQ4M parton distributions and the pertur-
batively calculated functiong\, B, and C to the next-to-
leading order, which are listed in Eq9) and(13). From Eq.
(16), we estimatebgp~0.4 GeV ! for Q=M. As shown
in Fig. 2b), the solid line vanishes ah~0.27 GeV 1,
which indicates that the inclusion &&®), B, and B(®
reduces the numerical value of the saddle pdi. The

Since Eq/(18) has a saddle point solution, the first term in dashed line in Fig. @), which corresponds to the second

Eqg. (19 is a decreasing function df, and it vanishes ab
=bgp. Because of the minus sign in EO) and the fact

term in Eq.(19), further reduces the numerical value of the
saddle point tobg~0.24 GeVl. At the LHC energyx,

that the number of smak partons increases when the scaleandxg are much smaller. We then expect the second term in

u increases, we expect the second term in @§) to be
negative wherx, andxg are smaller than the typicap, and

Eq. (19 to be more important, which is clearly shown in Fig.
3(b). The dashed line in Fig.(B) has a much larger absolute

to reduce the numerical value of the saddle point. As a demvalue in comparison with that in Fig(l®. Consequently, the

let Q=6 GeV and JS=1.8 TeV. Using
parton  distributions  and Agcp(ns=5)

onstration,
CTEQ4M

numerical value of the saddle point is further reduced from
by~0.24 GeV! at /S=1.8 TeV toby~0.13 GeV! at
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FIG. 2. (a) Integrand of theb integration in Eq(17) at Qr=0

and Q=M as a function ofb with an arbitrary normalization at
Tevatron energy (S=1.8 TeV); (b) the first(solid line) and sec-
ond (dashed lingterms in Eq(19) as a function ob at the sam&)

and+/S.
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(a) Q=6 GeV

(b) Q=6 GeV

0

02 04 06 038

1

b(GeV™")

FIG. 4. (8 Integrand of theb integration in Eq(17) at Q=0
andQ=6 GeV as a function db with an arbitrary normalization at
E288 energy {/S=27.4 GeV);(b) the first(solid line) and second
(\(/jflshed lingterms in Eq.(19) as a function ob at the sam& and

S.

VS=14 TeV, where the perturbative QCD calculationsthe argument of the Bessel function is proportionalQe,

should be reliable. In addition, the narrow width of the
distribution shown in Fig. @) ensures that thb integration
is dominated byb~b,. In conclusion, even aQ;=0, the
perturbative QCD baseld-space resummation formalism is
valid as long as the collision energg§ is large enough.
When Q;>0, the Bessel functiordy(z=Q+b) further
suppresses the lardgeregion of theb integration. Because

450
360
270
180

90

FIG. 3. (a) Integrand of theb integration in Eq(17) at Q=0

(@) Q=M,

0 02 04 06 08 1
b(GeV™)

the largeb region is more suppressedQ¥; is larger. That is,

the largerQ+ is, the better thd-space resummation formal-
ism is expected to work. However, it has been kn¢tjthat

the b-space resumme@- distribution from Eq.(1) becomes
unphysical or even negative whé€ is large. For example,

a matching between the resummed and fixed-order calcula-
tions has to take place &;~50 GeV forW= production

when these two predictions cross oy&#d]. We will address
this puzzle in Sec. IV.

In the rest of this section, we investigate the predictive

power of theb-space resummation formalism for the Drell-
Yan production at fixed target energies/S<40 GeV).
Most data at the fixed target energies h&ye (5,12) GeV
andQ at a few GeV or less. From E{L6), we find thatbgp

is of order 1 GeV'! or larger. Because of the low collision
energy, the typical values &, andxg are larger than thg,,.
Therefore, the second term in E@.9) should be positive,
which increases the numerical value of the saddle point. As
an illustration, instead of/S=1.8 TeV, we replot all quan-
tities in Fig. 1 at\/S=27.4 GeV in Fig. 4, which is the
collision energy for Fermilab experiment E2885]. As ex-
pected, the dashed line is now positive and the saddle point
is no longer in the perturbative region. In conclusion, at fixed
target energies, the perturbatively calculatedpace distri-
bution derived from the CSS resummation formalism is not
sufficient to predict the Drell-YarQt distributions atQ+

=0. A nonperturbative extrapolation to the larigeegion is

andQ=M; as a function ob with an arbitrary normalization at the

LHC energy (\fS= 14 TeV); (b) the first (solid line) and second
(dashed lingterms in Eq.(19) as a function ob at the same& and

Vs

necessary.

WhenQ1>0, the Bessel functiody(z= Q+b) suppresses
the largeb region of theb integration, and improves the
predictive power of thé»-space resummation formalism at

the fixed target energies. In Fig. 5, we plot the integrand of
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60 VVCSS(b,QvXAaXB)E% Uij%V(Q)Wij(b* QXA XB)
X FIP(b,Q,Xa . Xg), (21)
40 whereb, was defined following Eq(4), and the perturba-
tively calculated\N”(b Q.,Xa,Xg) are glven in Eq(3). The
nonperturbative input dlstrlbutlorE have the following
functional form[6]:
20
Fi"(D,Q.xa ,Xg) =exf —IN(Q%Q)g1(b) — gi/a(Xa,b)
) | —08(Xg,b)] (22
0 02 04 06 08 1 where the InQ? dependence is a derived result. The func-
b(GeV™") tions g;(b), gi/a(Xa,b), andgjg(xg,b) are nonperturba-

tive, and should go to zero &s—0. The predictive power of
the CSS formalism relies on the derived dependence and
the universality of theFi’\j‘P. Since the low energy Drell-Yan
data are sensitive to the largeregion, in principle, one can
use the lowQ? data to fix the parameters of the nonpertur-
bative Ffj” and predict theQ+ distributions of W* and Z
productlon at highQ?.

Davis, Webber, and StirlingDWS) introduced the fol-
lowing form for the nonperturbative distributid®j” [9]:

FIG. 5. Integrand of theb integration in Eqg.(17) at Q+
=1 GeV(solid line andQ=2 GeV (dashed lingas a function
of b with an arbitrary normalization. Th@ and /S are the same as
those in Fig. 4a).

the b integration in Eq(17) at Q=1 GeV (solid line) and
Q=2 GeV (dashed ling for Q=6 GeV and /S
=27.4 GeV. As shown in Fig. 5, the saddle point for the
-integration moves to the smallbrregion asQ+ increases.

Since the saddle points of both curves in Fig. 5 are within the FNP(D,Q,xa Xg) =exp{ — b g; +g,In(Q/2Qy) 1},
perturbative region, one might expect thx«space resumma- (23)
tion formalism to provide a good description of tg dis-
tributions at these energies. However, as a result of the osvhereQy=2 GeV=1/b .4, andg; andg, are flavor inde-
cillatory nature of the Bessel function, the precise value ofpendent fitting parameters. Without the flavor dependence,
the b integration depends on the detailed cancellations in th¢he extrapolated CSS formalism defined in E2{l) reduces
largeb region. Therefore, the predictive power of thspace to that in Eqg. (4). With g,=0.15 GeV¥ and g,
resummation formalism at the fixed target energies is still=0.4 Ge\?, DWS found[9] that the CSSb-space resum-
limited by our knowledge of the nonperturbative information mation formalism gives a reasonable description of the
at largeb. More discussions are given in Sec. IV. Drell-Yan data from Fermilab experiment E288 &fS
=27.4 GeV|[16] as well as CERN Intersecting Storage
Rings (ISR) experiment R209 at/S=62 GeV[17].

In order to incorporate possible (dependence withr

In this section, we quantitatively analyze the role of the= Q% S=XaXs, Ladlnsky and YuarfLY) proposed a modi-
nonperturbative input at largein the b-space resummation fied functional form forF [11]:
formalism. We first briefly review the extrapolation defined
in Eq. (4) and its status in comparison with the existing data. FLv(D,Q,Xa,Xg) = exp{—b?[g; +g,IN(Q/2Qo)]
Then, by adding possible power corrections to the renormal-
ization group equations in Eq&) and(7), we derive a new ~ 0105 In(100¢xx5)} (24

functional form for extrapolating the perturbatively re- an exira parametegs was introduced in the LY parametri-
summedW(b,Q,x,.xg) to the largeb region. This new zation of the nonperturbativiefj” . Similar to the DWS pa-
functional form clearly separates the perturbative predictiotametrization, no flavor dependence was introduced into the
at smallb from the nonperturbative physics in the large nonperturbative distribution. Wltlgl—O.ljlig_gg Ge\?, g,
region. =0.58"01 Ge\?, and g;=-0.15"31 GeVv !, LY were
able to fit the R209 Drell-Yan data as well as CDF data\bn
A. Extrapolation proposed by Collins, Soper, and Sterman and Z production from Fermilab. More recently, Landry,

As discussed in last section. the perturbativel grock, Ladinsky, and YuafLBLY ) performed a much more

- ' perturbatively TeSUMmed, o nsive global fit to the low energy Drell-Yan data as well
W(b,Q.xa.Xg) in Eq. (2) is only reliable for the smalb a5 high energyw and Z data by using both DWS and LY
region. An extrapolation of the perturbatively calculatedparametrization§13]. In order to fit both the low energy
W(b,Q,xa,Xg) to the largeb region is necessary in order to Drell-Yan and the collideiV andZ data, LBLY found that it
complete the Fourier transform in E@L). In Ref.[6], CSS is necessary to introduce a large overall normalization uncer-
proposed the following extrapolation: tainty in order to include the low energy Drell-Yan ddia

IIl. EXTRAPOLATION TO THE LARGE b REGION
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4 of b with both DWS parameter&ashed lingand LY pa-
3 rameters (solid line. In Fig. 6c), we plot the ratio
Rw(b,Q,xa,xg) defined in Eq.(25), which is effectively
2 r equal to a product of Fig.(6) and Fig. &b). From Fig. 6, we
1 learn that the introduction of the, significantly changes the
perturbatively calculatet-space distribution within the per-
‘1’ turbative region, and in the same region, the functioff

can deviate from unity by as much as 50% percents for some

075 F N\ ) fitting parameters. In order to preserve the predictive power

os | N\ of the perturbative calculations, it is important to keep

02s | N WES{b,Q,xa,xg) consistent with the perturbatively calcu-
0 . lated W(b,Q,Xa,Xg) When b<b.x [0r Ry(b,Q,Xa,Xg)

1.5 F e ~1]. However, we find that a significant fitting parameter

P e © dependence (as much as 20% was introduced by

1 ™ WESKb,Q,xa,xg) to theb-space distribution within the per-

\ turbative region. The same conclusion holds if we plot the
0.75 curves at different energies or use other sets of fitting param-
0.5 ‘ ‘ ' eters available for the\P [12,13.

0 025 05 075 1
b(GeV™")

~ _ B. Extrapolation with dynamical power corrections
FIG. 6. (a) ratioW(b, ,Q,Xa,Xg)/W(b,Q,xa,Xg) as a function

of b: (b) FNP(b,Q,x,,Xs) as a function ob; (c) Ratio Ry, defined In order. to separate the perturb{;\tive prgdiction in the
in Eq. (25) as a function ofb. All plots have Q=M and VS small b_ region from th_e nonperturbative physics at latge
—18 TeV. we derive a new functional form to extrapolate the perturba-

tively calculatedW(b,Q,xa,Xg) to the largeb region. Our

particular, E288 dajainto the global fit[13]. LBLY also  goal is to have an extrapolation that preserves the predictive
emphasized that the collider data @rproduction are very power of perturbative calculations in the smialtegion and
useful in determining the value of fitting parameggr They ~ extends to the largl region with as much correct physics as
concluded13] that both DWS and LY parametrizations with we can put in.
updated parameters result in good global fits, but give mea- Taking advantage of our early conclusion that heavy bo-
surable differences i distributions ofZ production at the son production at collider energies should not be very sensi-
Fermilab Tevatron. tive to the largeb region, we can improve the leading power

Based on our discussions in last section, @hedistribu-  perturbative QCD calculations by studying the behavior of
tions of Z production at collider energies should not be verypower corrections in the region bfspace wheré is not too
sensitive to the nonperturbative physics from the lasge- ~ much larger tharb,,,. The power correction in QCD is a
gion. Any significant dependence on the fitting parameterdery rich and difficult subject itseff18—21]. In order to de-
for Z production would cast a doubt on the predictive powerfine the power corrections, we have to identify a nonpertur-
of the b-space resummation formalism. To understand théative momentum scal@,, which should be of orde ocp.
fitting parameter dependence of tAeproduction, we intro- For example, the nonperturbative scale can be the target

duce the following ratio: mass[22] or matrix elements of high twist operator$8—
20]. In addition, we have to distinguish two different types of
VVCSS(b,Q,xA,xB) power corrections(1) the power corrections directly to the
Rw(b,Q,Xa , Xg) =—=% physical observablegsuch as cross sections or structure
W(b,Q,Xa ,Xg) functiong and(2) the power corrections to the evolution or
~ renormalization group equations. The typetdr direc)
:W(b* Q. Xa . Xs) FNP(b,Q, %4, Xg) power corrections are always proportional to the power of
W(b,Q,Xx,Xg) T TANTRR (A/Q) with the physically observed momentum scale
(25 [18-20. Therefore, the effect of this type of power correc-

tions to physical observables can be neglected whelQ]

~ ) . —0. Similarly, the type-Zor indirec) power corrections are
where W(b,Q,xa,xg) is the perturbatively calculated proportional to the power ofA/u) with evolution or renor-
b-space distribution given in Eq2). In deriving the second mgjization scalex. It is important to note that physical ob-
line in Eq. (25), we usechilpthe fact that both DWS and LY gseryables are not directly proportional to the evolution or
parametrizations of th&™" are independent of the parton renormalization group equations; instead, they depend on the
flavors. Using CTEQ4M parton distributions, we plot in Fig. sojutionsof these equations. Therefore, physical observables
6(a) the ratioW(b, ,Q,Xa,xg)/W(b,Q,Xa,Xg) as a function carry the effect of type-2 power corrections for a

of batQ=M, and JS=1.8 TeV. In Fig. @b), we plot the  [Qy,Q] and the boundary conditions at the sc@ig[23].
nonperturbative distributioNP(b,Q,x,xg) as a function Even whenQ is much larger than\, physical observables
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can still carry a large effect of the type-2 power correctionswhere A and B are the same as those defined in B). In
through the evolution fron@Q, to Q [24]. In this subsection, deriving Eq.(28), we neglected the power corrections for the
we concentrate on the type-2 power corrections. Becaussmomentum scale betwees?/b? ., andQ?, which is consis-
they contribute to the evolution or renormalization grouptent with neglecting the §? term in the evolution equation
equations, these power corrections should have a dynamicgt theVVij(b,Q,xA,xB). Substituting the& andG in Eq. (28)
ongin. into the evolution equation in E@5) and solving the evolu-

Whenb>b,,,, we solve the evolution equation in Eq. {ion equation over the IGP) from In(c¥/b2,,) to In(Q?), we
(5) from In(c?/b?,,) to In(Q?) in order to separate the leading optain the solution fob>b

power QCD calculations at smdilfrom the largeb region. max:

Because the scafg of the evplutlon equation is chzosen to be Vvﬁz(b,Q,xA Xg) :Wij(bmaXuQuXA Xg)
larger thanc/by,,x, We can ignore the explicit @ power
corrections to this equation. XFi7(b,Q.Xa Xg 1 bmay)  (29)

However, the kerneK (bu, as(u)) of the evolution equa-
tion has an explicith dependence; we need to add powerwhereW;; is the leading power perturbative solution given in
corrections to its renormalization group equation when Eq. (3), and
>bnhax- Similarly, we need to add power corrections to the

renormalization group equation of the ker@®(Q/ u, as( 1)) FI"(0,Q.Xa X5 ;Drmax)

when 1u>b,.x. Since we are only interested in deriving a _ -
functional form of theb dependence due to power correc- ~ Wij(b,c/bmax,Xa Xg) eXp< —In( Q bmax)
tions, we will not attempt to derive the exact coefficients of Wij(bmawC/bmaXlXA:XB) c2

the power corrections to the renormalization group equations
by going through a detailed analysis of the mixing of leading y Yk
and high twist operatorf23]. Instead, we introduce some X Z[(bz)a_(brznax)a]_'— — (b?=b )
fitting parameters for the size of the possible power correc- ¢
tions. For including only the leading power corrections, we c c
C,ag| — —K(C,a —u)” . (30
J])-lealsr]]]f)
The nonperturbative functioff}"— 1 asb— byay. In deriv-

modify the renormalization group equations in E@. and _
(7) as follows:
1 1
s Kbw, ag(p))=— QVK(QS(M))_ Yk, (26) ing Eq. (30, we approximate theu dependence of
# ylag(m)) in the small u region by }y(ag(n))
~y(u?)~* with constant parameterg and a, and we ex-
1 1_ pect @ to be much less than 1. This approximation is to
G(Q/u,aq(p))= > ye(as(pw))+ —yk, (27)  mimic a summation of a perturbative series in powers of the
I running coupling constantag(x))™, with the scaleuw ex-
trapolated into the nonperturbative regidm25]. Since
BK(c,aS(c/b))— K(c,as(c/bma)] in Eg. (30) depends only

K

alnu

dln u?

wherey!< is tregted as an unknown parameter here, thpu'gh on b andb,,, throughag, we can combine it with the first
;P;%u(ljdf rllri}gﬁrtl\?v(i:éﬁﬂ(fpgszg[i?g ﬁ?éégggﬂ;?;{w;agigﬁﬂc term and trgat the power and the cgefficient as fitting pa-
etrize the leading power corrections in such a way that they@meters. Since thb dependence ofV;;(b,c/bmay,Xa,Xs)
preserve @/d In Mz)\7\/ij(b,Q,XA,XB)=0- Since we are inter- deEends on the ~evo|ut|on of parton dlstrlbut_lons,
ested in the region db not too much larger thab,,,, we  NEWi(0.C/BmaxXa Xg) Wi (Bmax C/bmax.Xa Xe) ] changes  sign
neglect higher power corrections in Eq26) and(27). This  Whenxa andxg are larger or smaller than the typicey.
approximation is going to be tested in Sec. IV. Therefore, we can parametrize the ratio

By integrating Eq.(26) over In@? from In(c?b?) to ~
In(«?) and Eq.(27) from In(Q?) to In(?), we have _Wij(B,€/Bmax, Xa X8)

Wij(bmaXvC/bmaerAyxB)

Kbu,as(n)+G(Q/u,as(u))
%exp{g3ln(Xi;(B)[(bZ)B—(bzmax)B]] (31)

0

2 du? _
~ |8 A Bl @) | B
C/bmax M with parametergy; and 8. In principle, the parameteng,
and g as well asxy can depend on parton flavors because of
the flavor dependence of parton evolutions. Since parton dis-
tributions are near saturation at a very small momentum
scale[26], we expect botlg; and 8 to be very small, and
C,as(%))—K(C,as<bi)”, (29  therefore, this term can be neglected in comparison with
max

other terms in thé=j”. Consequently, we can neglect the

w2 du?(1 - 1
—fz , =5 |5 vklas(w) T =«
c/b 72 o

+K
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flavor dependence of tHel\”. In conclusion, without losing Where the explicit InQ?b;,.,/c?) dependence is derived from
the characteristic features of thedependence in Eq30),  the evolution equation in Eq5). In Eg. (32), the b? term

we can reparametrize| * as represents the leading power corrections to the renormaliza-
tion group equations of the kernetsand G, and the b?)®
P szmax term is a consequence of extrapolating the leading power
Foz(b,Q,Xa,Xg ;bmax) =exp; —In =2 part of the kernel& andG to the small momentum scaletil/

with all powers of running coupling constants resummed

X{gq[ (6% %= (bZ,.0%] [25]. The actual size ofy, signals the size of dynamical
power corrections. The choices for the parameggrg,, and
a<1, will be discussed in Sec. IV.

+9,(b%—Db maX)}] (32 We summarize this subsection by writing down our de-
rived extrapolatiorf8]:

~ 7 W(b,Q,XA,XB), bgbma)ﬂ
WQ (vavava): _ ~NP (33)
W(bmaX1Q1XA1XB)FQZ(b1Q1XAyXB;bmax)a b>bmaX1

with W(b,Q, Xa,Xg) given in Eq.(2), and the func“orFNE tions have any constraints on the functional form of the
specified in Eq(32). Since the evolution equation in E@) F(b), as long as it is not a function @.

and the renormalization group equations in E(@land (7) Physically, however, we do not have an arbitrary function
do not include any power corrections, the solution of thesd=(b). The inclusion of any functior(b) should have a
equations,W(b,Q,x,,xg) in Eq. (33), is valid only forb ~ correct physics origin. In the above derivation of the
<b, with b,~0.75 GeV !, which was estimated by setting Vvij(b,Q,xA,xB), we added the missing physigsower cor-
|n(1/b§)~b§. Therefore, the numerical value bf,,,in Eq.  rectiong to the QCD resummation formalism wheb

(33) should not be larger thab, in order to be consistent >b,,... However, we did not include the effect of the par-
with the approximation used to deri\YN(b,Q,xA Xg). tons intrinsic transverse momentum, which should appear as

a part ofVVij(b,c/b,xA,xB) — the boundary condition for
C. Corrections from the parton intrinsic transverse momentum  €volution equation. Wheb is small, the factorized formula

for the\7vll(b c/b,Xa,Xg) in Eq. (11) should be reliable. But

nature from the way we solve the evolution and renormahzawhen b is larger thanbpay or 1b is of the order of the
tion group equations. We show in this subsection that ther@artons intrinsic transverse momentum, the perturbatlve
could be corrections from th@-independent intrinsib de- ~ QCD factorized formula requires a so-calleQt smearing”
pendence to thd-space distributiontVR%(b,Q,Xa,Xg) in to be consistent with experimental dg2]. A Gaussian-like
Eq. (33). smearing function is often used and doe; a good job in in-

For an arbitrary functior(b), we introduce terpreting the datg27]. In b space, we can include the effect

due to the partons nonvanishing intrinsic transverse momen-

tum by choosing

In Eg. (32), all b dependence nFQZ is dynamical in

W (b,Q,Xa Xg) =F(D)W;;(b,Q,Xa,Xg),  (34)

and find that bottW;;(b,Q,Xx ,Xg) andVVij(b,Q,xA,xB) can F(b)=exp(—52b2), (35)

be solutions of the same evolution equation in Eg). In

principle, the functior(b) can also have a dependence on

parton flavord andj. If we use theW;;(b,Q,xa ,Xg) instead

of Wi;(b,Q,Xa,Xg) as our solution for the QCD resummed With & constanig,, which should be of ordengcp. Let

b- space distribution in Eq2), the functionF(b) should be 92 A2 ocp; We estimate=(b)=0.99 forb<by,,x, which has
very close to 1 wherb is small (<b,,,). Otherwise, its I|teraIIy no effect on the perturbative regime. However, when
inclusion will not be consistent with the leading power QCD p>b,,,,,, theF(b) is expected to have a sizable effect on the
calculation because the dominant physics in the sinaél-  |ow energy Drell-Yan data.

gion has been included in the perturbatively calculated To include the corrections due to the partons nonvanish-
W”(b Q.Xa,Xg). But whenb is larger thanb,,,,, neither ing intrinsic transverse momentum, we modify our extrapo-
the evolution equation nor the renormalization group equalation in Eq.(33) as follows:
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- W(b,Q,Xx,Xg), b<b ..,
WQZ<b,Q,xA,xB>={~ A - (36)
W(bmanyvXA:XB)FQz(baQaXA-XB;bmax), b>Dbpmax,

where the perturbatively calculat®d(b,Q,x, ,Xg) is the same as that in E¢B3). The modified nonperturbative functicﬂﬁ?
in Eq. (36) is given by

szrznax -
FSE(b,Q,xA,xB;bma»=exp{—In( . ){glubz)“—<b5nax>“]+gz<b2—b%ax>}—gz<b2—b%ax>- (37)

Although the terms withy, andg, have the samé depen- ~ corrections resummed from?/Q? to A%/(1/b},,,) is pro-
dence, they have different physics origins. The term \gigh ~ Portional to the numerical value o2\, whereA? is the
represents the effect of the partons nonvanishing intrinsi€haracteristic scale of the power corrections. For a larger
transverse momentum. The term wigh comes from the by, the perturbatively calculated/(b,Q,x, ,Xg) receives
dynamical power corrections, and has an explicit dependence larger power correction.

on Q. In deriving Eq.(36), we neglected the intrinsic trans-  On the other hand, the leading power contributions are

verse momentum corrections exp,b?) to W in the pertur-  resummed from In(bf,,) to In(Q?), and are proportional to

bative region, which is consistent with keeping only the leadthe numerical value of If?). When Q2~M3 at collider

ing power QCD calculations in this region. energies, the i) is much larger than thbrznaXAz, and the
Our extrapolation defined in E¢36) clearly separates the power corrections to the perturbatively calculated

calculable perturbative region from the larg@onperturba-  {y/(b,Q,x,,xg) can be neglected. However, at the fixed tar-
tive region. In addition, alb dependence in Eq37) has its  get energies, botk®? and the leading power contributions
their own physics origins. Theb{)* dependence mimics the are much smaller. Therefore, the power corrections to the
summation of the perturbatively calculable leading powerperturbatively calculated leading power contributions be-
contributions to the kernel& and G to all orders in the come relatively more important at fixed target energies.
running coupling constanis(x) with the scalex running Therefore, in order to reduce the relative size of the power
into the nonperturbative regid5]. Theb® dependence is a corrections in the perturbativer smallb) region, we need
direct consequence of dynamical power corrections to they reduce the numerical value bf,,,. On the other hand,
renormalization group equations of the kern¢landG. We e prefer to keep thb,,,.,as large as possible to have more
did not include power corrections to the evolution equationcontributions from the perturbative region in order to have
because of our choice &f,.,. We believe that whe®?is  more prediction than parameter fitting. Thé, .,
much larger thare?/bf,,,, our extrapolation defined in Eq. =05 GeV ! was proposed in Ref6]. For our numerical
(36) should give a good description of thedependence in  results in Sec. IV, we will test the sensitivities on the choices
the region not too much larger thdy,,y, which is most  of b, .

relevant to heavy boson production. Uncertainties for not The In@Q%?2,,/c? dependence in Olﬁg; is a direct con-
including higher power corrections can be tested by studyingequence of dropping the type-2 power corrections to the
the sensitivities on the parameteys and by, [8]. evolution equation in Eq5). Therefore, in order to preserve
the In(szﬁm/cz) dependence in our extrapolation, we expect
to require a smalleb,,, for a better description of the low

D. Extrapolation to low Q2
P Q energy Drell-Yan data.

When we apply our extrapolation defined in E(&6) and

(37) to the low Q? Drell-Yan data, we might need a few IV. NUMERICAL RESULTS AND CONCLUSIONS
modifications. As discussed in Sec. Il, the Fourier transform _ . . o
from b space toQ; space is sensitive to the largeregion In this section, we numerically compare tQg distribu-

whenQ? and /S are both small. Therefore, th@; distribu-  tions derived from thé-space resummation formalism with
tions at low energies are much more sensitive to the paranfxperimental data frorV andZ production at collider ener-

etersg, andb,,,, Or even higher power corrections. gies to the low energy Drell-Yan processes.
For deriving our extrapolation, we systematically dropped
the power corrections of momentum scale betweéﬁﬂg,[ A. Numerical accuracy

and Q?>. WhenQ? is small, the leading power perturbative  One of the potential drawbacks of thespace resumma-
QCD calculations receive relatively largeiQE/ corrections,  tion formalism is the difficulty of matching the resummed
in particular, type-2 power corrections. For example, @1/ and fixed-order predictions to th@; distributions at large
term in the evolytion equation in E¢p) res.ults inatype-2 Q. [1]. It was generally believed1] that theb-space re-
power correction to the perturbatively calculated symmedQ; distribution from Eq.(1) becomes unphysical or
W(b,Q,xa,Xg) in Eq. (36). The size of the type-2 power negative wherQ+ is large. For example, a matching between
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the resummed and fixed-order calculations has to take place
at Qr~50 GeV for W production when these two predic-
tions cross ovef14]. On the other hand, as we discussed in
Sec. I, we expect the predictions derived from thepace
resummation formalism in Eq1) to work better wherQ- is
larger becausél) the b integral is dominated by the smaller

b region and2) the perturbatively calculatedterm is larger

than the resummetlV term. We find that this puzzle was

do/dQ, (pb/GeV)

mainly caused by a lack of numerical accuracy of the Bessel 10 o 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 -~ 8‘0 "
function used to perform the Fourier transform in E4j7).
As we show below, the; distributions derived from the Qr (GeV)

b-space resummation formalism are smoothly consistent
with data for all transverse momenta upQo

As a result of the oscillatory nature of the Bessel function
a high numerical accuracy of thi(z) with z=Q+b in Eq.

(17) is necessary for ensuring an accurate cancellation in thg; cqliider energief8]. We show that thé-space resummed

large z region for a reliableb integration. Becauseis pro- o _ gistributions are very insensitive to the parameters in the
portional to Qt, the number of oscillations of the Bessel nonperturbativng;.

function strongly depends on the value @f fcir the same Since we are not interested in a detailed fitting to the data
range ofb. For example, wheib e (0,2) GeV'™, Jo(Q1b) in this paper, we did not perform any simulation on final-

crosses zero 0, 6, and 63 times @f=1, 10, and 100 GeV, ¢ia1e cyts to improve the theory curves in the following plots.
respectively. It is clear that numerical accuracy of the Bessg|, g plots, CTEQ4M parton distributions are used, and for

function is extremely important for the largg; region. We . 1 [~? P
) . : . . JQZ+ Q2
noticed that most work published in the literature used som(g1 nedY rt:;?”:: alﬁg a(t?())’ nW:C;;ezi n (é q ((fg)foiiérru\e/\}‘zcntgrzlz;::—n

kind of asymptotic form to approximate the Bessel funcuonduction, a fixed range of the rapidity was integrated and a

whenz=Qqb is large. We_ f'nq that th.e use of an asympiotic narrow width approximation was used f@? integration
form for the Bessel function is a major source of the uncers

o . ; [28].
tainties observed for the larg@; region. Instead of using an I )
asymptotic form, we use the following integral form for the We test the sensitivities on the parameterﬁﬁﬁ by first

FIG. 7. Comparison between thespace resumme@ distri-
bution and CDF dat&29]. The inset shows th@;<20 GeV re-
'gion.

Bessel function: settingg,=0 andg,=0 (no “power” corrections. We then
fix g, and « in Eq. (37) by requiring the first and second

1 . order derivatives of théV to be continuous ab=Db,ax

Jo(2)= ;fo coqzsin(0)]do. (38) =0.5 GeV !, and plot our predictiongsolid lineg to the

Q- distributions ofZ andW production at Tevatron in Figs.
The great advantage of using an integral form is that we caf and 8, respectively. In Fig 7, we plot tde/dQr of e" e~
control the numerical accuracy of the Bessel function by im-pairs as a function o+ at \fS= 1.8 TeV. The data are from
proving the accuracy of the integration in E§8). One can the CDF Collaboratior{29]. Theory curves Z only) are
test the numerical accuracy of the Fourier transform in Edfrom Eq. (1) with W given in Eq.(36). The same as in Ref.
(17) by using functions whose Fourier transform can be car{29], an overall normalization 1.09 was used. In Fig. 8, we
ried out analytically. In view of the nonperturbatibedepen-  plot do/dQ; for W production with the samb,,, andg,.
dence in the largeb region, we used two functions The data forW production are from the DO Collaboration
exp(—ab) and exp(-b7o?) to test the numerical accuracy of [30]. For the theory curves, we integrate the rapidity of\tie
the b integration in Eq(17). Theb integration for these two particle from—3 to +3 and set the overall normalization to

functions can be carried out analytically. Having an analyti-pe 1. From Figs. 7 and 8, it is clear that the QCD predictions
cal solution inQt space, we can study the convergence and

numerical accuracy of the Fourier transform at differ@st

by varying the parametar of these two functions. We find
that by using the integral form of the Bessel function, the
numerical integration oveb defined in Eq.(17) is very ac-
curate for a wide range of and Q, and the accuracy is
only limited by the precision of variables used in a computer
programming language.

do/dQ, (pb/GeV)

B. Q distributions of W and Z production
0 10 20 30 40 50 60 70 80

In this subsection, we compare the predictions of the Q, (GeV)

b-space resummation formalism with Fermilab data\Wn
andZ production, and quantitatively demonstrate the excel- FIG. 8. Comparison between thespace resumme®; distri-
lent predictive power of thé-space resummation formalism bution and DO dat#30]. The inset shows th@;<20 GeV region.
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from theb-space resummation formalism are consistent with 2
the data for allQ+<Q.
We notice that the theory curves in Figs. 7 and 8 are LS |
slightly below the data at larg®;. We believe that it is AN
because we have only the leading order contribution torthe U =
term in Eq.(1). At large Qt, theY term dominates. Similar {
to the fixed-order perturbative calculations, the next-to- 0.5 |
leading order contribution will enhance the theoretical pre- 0 , ,
dictions[31]. In addition, the inclusion of the virtual photon g— 4l
channel and its interference with techannel should shift K
the peak of the theory curve to a slightly largef value and F
make the theory curves closer to the dgta,29. 2
We now test the theory curves’ sensitivities on the param-
eters of Fg5. SinceQ is fixed to the mass of the vector 0 [i
boson and the terms witlp, andg, have the samb depen- ¥
dence, we can simplify the following discussion by rewriting Y
0 05 1 15 2 25 3

Fog in Eq. (37) for W and Z production as follows8]:

Fw;(bynyAva;bmax) . . .
FIG. 9. RatioR(b.,Q7) in Eg. (41) as a function ob, for Z
=exp{ — g1[ (b?)*— (b5, “1— g2(b?— b0} production at Tevatron energyQ:=0 GeV (solid line), Qr
(39) =5 GeV (dashed lingin the top plot;Q;=10 GeV (solid line),
Qr=20 GeV(dashed lingin the bottom plot.

b (GeV ™)

We letg, in Eq. (39 be a fitting parameter for any given
value ofb,,,, and fixg, and« by the derivatives. Although
the fitting prefersg,~0.8 Ge\f, the Qr distributions are
extremely insensitive to the choices bf,,, and g,. The
total x2 are very stable fob,,.e (0.25,0.8) GeV! and
g,€(0,1.6) GeV. In Figs. 7 and 8, we also plot the theory
curves (dashed lineswith g,=0.8 Ge\? (the best fitting
valug. Non-vanishingg, gives a small improvement to the
Q7 distributions at smalQ+. We then vary the value af in

Because of the oscillatory nature of the Bessel function, we
expect the ratidR(b.,Q+) to oscillate around 1 and eventu-
ally converge to 1 ab, increases. In Fig. 9, we plot the ratio
R(b.,Q7) as a function ob, for Z production at different
values ofQ+. In plotting the theory curves in Fig. 9, we set
JS=1.8 TeV,b,.,=0.5 GeV'!, andg,=0.8 Ge\’. For
Qr=0, 5, 10, and 20 GeV, as shown in Fig. 9, the
R(b;,Q7) quickly reaches 1 ab.~1/Q¢ as b, increases.

‘o . . Even atQ+=0, R(b.,Q7) is close to 1 within a few percent
Eq. (39) by requiring only the first order derivative to be atb.~2 GeV-L It tells us that the physics of the dis-

continuous ah=Dbp,q,, and find equally good theoretical tribution is dominated by the perturbatier small b) re-

predictions, except very mild oscillations in the curves atgion However, as a result of the oscillatory nature of the
very lar due to the Fourier transform of a less smoother ) S . . .
y largeQy Bessel function, thé integral for the Fourier transform in

b-space distribution. It is well known that whépy is larger, Eq. (1) converges roughly at a common value bf
any small kink in theb-space distributions transforms into ~2 GeV-L, which is larger thatb, ... That is, the nonper-

oscillations in theQ+ distributions due to more rapid oscil- turbative extrapolation to the largbregion is necessary to
lations from the Bessel functiody(Qyb). The observed in- ensure the correct cancellations in the lalgeegion. The

sensitivity onb,ay, 92, and « is a clear evidence that the
b-space resummation formalism is not sensitive to the powe?mall dependgnce on.the parame@gandbmax shows that
qur extrapolation defined in Eq37) catches most of the

corrections at collider energies. That is, at collider energies, hvsics in this region. and higher bower corrections are not
direct extrapolation of the leading power contributions to thePYSICS s region, a gher power corrections are no

; Na important.
L?ergzg(;:gfengp E\I%E‘) term] represents the most relevant In addition, we show the quantitativeg, dependence of

To further test the sensitivities on the nonperturbativel € P-Space resumme@y distributions by introducing the

FNP we introduce a cutofb, to the b-integration in Eq. following ratio:

17),
0 do(gy) do(g,)

dQ?dyd@/ dQ*dydQ@’

(400  where da/szdde% is defined in Eg.(1), and 92,
=0.8 GeV is the best fit value fog,. In Fig. 10, we plot

RA(Qt.92)= (42)

1 (be ~
W(bCYQT)Eﬂfo dbb}(Qrb)We%(b,Q,xa ,Xg),

and define the ratio the ratioR,(Qr.,9,) in Eq. (42) as a function ofQ; for Z
production at the Tevatron energy. The solid line corre-

R(b,.0r)= w(b¢,Qr) (a1) sponds tog,=2g, , while the dashed line has the,

¢ =T w(be=»,Qq)" =303, For almost allQr<Q, the deviation of thés-space
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~ 105 [ TABLE |. Nonperturbative parameters in tiig); obtained by
;’-_ 104 E fitting 28 data points on Drell-Yai@Q+ distributions at the fixed
103 | target energies.
Lo2 & Pmax 91 g
1.01 ’\ (Gevh X o (GeV")  (GeV?)  Nggs  Neoos
1 H :Y\ N wfx*/-"\ _
:V\-V k [ — 0.5 78 0.65 0.4 0 0.85 0.9
0.99 '.," 0.5 32 0.15 1.14 0.19 0.88 0.93
0.98 0.4 27 0.15 1.06 0.23 0.93 0.98
0.97 | 0.3 24 015 092 0.28 097  1.00
0.96
095 ‘; 10 20 30 40 50 60 70 $0 90 through this fitting procedure, we can learn the importance of
Q. (Gev") each parameter and the corresponding physics.
N

We choose the following Fermilab data to fit the param-
FIG. 10. RatioR,(Qr.g,) in Eq. (42 at Q=M, and VS  eters in theF5: Qe(5,6) GeV andQe (7,8) GeV from
=18 TeV as a function oRQr: g,=29,, (solid ling andg,  E288 [16], and Qe (7,8) GeV andQe(10.5,11.5) GeV
=(1/2)g,, (dashed ling from E605[32]. We have a cut on the transverse momentum,
Qr=1.4 GeV, which is the same as that used in R&8].
resummedQ+ distributions at the Tevatron energy is less Since theg, dependence is very small at collider energies,
than 2% when we changp from half to twice the best fig, ~ we try to fit these Drell-Yan data with two parametegs,
value. The small irregularity fo®1>50 GeV is due to the anda, plus two overall normalizations for two experiments.
fact that the calculated cross section has about half of a petdsing theFSE in Eq. (37) andb,,,,,=0.5 GeV !, we obtain
cent numerical uncertainty in this region, which is of thea convergent fit with a totay?>= 78 for 28 data points. The
same order as the deviation. We find that the deviation at theorresponding numerical values of the fitting parametgrs,
LHC energy is much less than 1%. That is, the Fourier transer, and two overall normalization constants for these two
form from b space tdQ space is completely determined by experiments are given in Table I. The largé clearly indi-
the perturbatively calculatdatspace distribution plus our ex- cates that power correctiorier terms proportional td? in
trapolation, which is totally fixed by the continuity & the F{j}) are very important for understanding the low en-
=bnax. Therefore, we conclude that thespace resummed ergy data.
Qy distributions for vector boson production at collider en-  \We now include thé? dependence of tnég; into the fit.
ergies have excellent predictive power. In order to use a minimum number of fitting parameters, we

first combine bottg, andaz terms and define
C. Drell-Yan Q distributions at low energies

2|2
As discussed in Sec. Il, the Drell-YaDy distributions at g,In Q" bhax
fixed target energies are much more sensitive to the nonper- 2 c2
turbative input at largeb. The predictive power of the

b-space resummation formalism may be limited. To explor . - .
o I e approximate thg as a constant fitting parameter. With
the predictive power of thé-space resumme@ distribu- "
three fitting parameters},, «, andg, plus two overall nor-

tions for the low energy Drell-Yan process, we compare themalizations for two experiments, we fit the same 28 data
low energy Drell-Yan data with the predictions from the CSS P '

. — 1 . .
b-space resummation formalism plus the extrapolation depomts for bna,=0.5 GeV™=. We obtain a much better fit

fined in Eq.(36). We use a subset of available data to fix theWith a total =32, and the corresponding fitting parameters

iven i i - 1 -
parameters in the nonperturbatiF%E, and then, we com- are given in Table I. U_smglpmax 0.5 Ge\_f and the nu-

- : merical values of the fitting parameters in Table I, we find
pare the predictions calculated by using these parameteﬁ%at theb? term in FNP is less than thet)® term for b as
with the rest of the data. QZ

, large as b~24 Gev! (~20 Gev! for b
When Qt=<4 GeV, the Bessel function does not have ™ 1 - max
any oscillation in the perturbative regiob<€b,.,). A less =0.3 GeV 7). It indicates that although the power correc-

. ~ tions (the b? dependendeare important, the extrapolation
smooth connection of th#V/(b,Q,X,Xg) at b=Db,., does ( b oe y P

d ation f distribut from the leading power contributiorithe (b?)® dependence
hot produce any apparent oscillation for W distribution 5, 4,0 Foyl is crucial for understanding the low energy data.

in this region. Therefore, we do not have to require the de- As we discussed in Sec. Il D, we can test the size of
rivative of W%(b,Q,xa ,xg) in Eq. (36) to be continuous at power corrections to the perturbative regidn<(b.,) by
b=b,.x. In this subsection, we treat;, g,, g,, anda in studying theb,,,, dependence. We find that the fitting pa-
the Fg; as fitting parameters. In order to maximize the pre-rametera is extremely stable when we change thg,,, and
dictive power of theb-space resumme@- distributions, we it prefers a numerical value around~0.15. This can be
try to fit the data with the least number of parameters, andinderstood as follows. The parametemwas introduced in
then add more parameters to see the improvements. By goirggc. 1ll B to approximate the.? dependence when we ex-

+0,=0. (43

114011-14



ROLE OF THE NONPERTURBATIVE INPUT IN QCD . ..

R.(Qy.9,)

18 [

12 |

16 |

14 |

1

Edo/dQ® (pb/GeV)
[ ]

-
n

w

tn

[

ot

PHYSICAL REVIEW [B3 114011

£288

e
tn
T

A

0.8 |

0
| | T | | | 1

0.6 |

! | !
0 02040608 1 12141618 2
Q, (GeV)

002040608 1 12141618 2
Q, (GeV™)
FIG. 12. Comparison between thespace resumme@+ distri-

bution and Fermilab E288 dafa6]. The overall normalization for
the theory curvesNg,gg=0.97.

FIG. 11. Same as that in Fig. 10 @=6 GeV and E288 col-
lision energy.

trapolate the leading power contributionsS(h, Q) into the
small u? region[25]. Therefore, the parametarshould only
depend on the effective anomalous dimensjsasummed to

value. In contrast to the 2% deviation at collider energies, as
shown in Fig. 10, the large variation shown in Fig. 11 further
all orders in the running coupling constants(u)], and  confirms that the power corrections are very important for
should not be sensitive to the numerical value of ihg,. describing the Drell-Yan data at the fixed target energies
We then fixa:=0.15 and re-fit those 28 data points with two [33]- o
parametersg, and g, plus two overall normalization con-  To explore the predictive power of thespace resummed
stants. Qq distributions at fixed target energies, we compare the
We find a smooth reduction of the tOtﬁ? when we de- I’esummeCQT distributions with eXiSting Drell-Yan data in
crease thd,,,,to as low as 0.3 GeVt. Forb,,,=0.5, 0.4, Figs. 12, 13,_and 14. All theor_y curves in t_hese figures are
and 0.3, we obtain convergent fits with the togd=32, 27,  Calculated with our extrapolation defined in E@6) and
and 24, respectively. The corresponding fitting parameter8max=0.3 GeV *. The nonperturbative extrapolation to the
are listed in Table I. Although the totgf is still very stable largeb region:Fgg is defined in Eq(37) with theg, andg,
when we further reduceb,, we stop at b,,, termscombined as in E¢43). We fix the parametes to be
=0.3 GeV ! because it is difficult to distinguish the pertur- 0.15, and use the fitted valueg;=0.92 GeV* and g
bative prediction from the parameter fitting whieg,,is too ~ =0.28 Ge\f from Table I. Although we only used 28 data
small. We confirm from the fitting results listed in Table | points withQ;<1.4 GeV in our fits for determining the two
that the p2)“ term in our extrapolation is very important and parametersy; andg, we plot both theory curves and data for
it dominates the transition region between the perturbativea much enlarged phase space in Figs. 12, 13, and 14. We plot
calculation and the nonperturbative extrapolation. We learmlata withQt as large as 2 GeV at different values @fin
that the overall normalizations, which are needed to fit theorder to explore the predictive power of the theoretical cal-
different experimental data sets, have a strong dependencelations. In Fig. 12, we compare the theoretical calculations
on theb,,.x. As shown in Table I, the overall normalizations

are driven to unity a®,,,x decreases. That is, if we reduce s12
the relative size of the power corrections in the perturbative 3
region (b<b.., by a reduction ob,,,,, both data sets used 817
in the fit are in an excellent agreement with each other. “% 0s |
In order to show the quantitative size of the power cor- K
rections(the b? term in theFg?) at low energy, we replot Woe [
Fig. 10 atQ=6 GeV and\S=27.4 GeV in Fig. 11. In 04 |
plotting Fig. 11, we use the ratiR,(Qt,9,) defined in Eq. ’
(42) with the g, dependence replaced by tgedependence 02 L
defined in Eq.(43). Theg,_in Eq. (42) is replaced by the —
best fit valueg, . We choosd,,,=0.3 GeV ! and the cor- o T RS

responding fitting parametera; g,, andg given in Table I.
The best fit valugy,=0.28 Ge\f. In Fig. 11, the solid line
corresponds t@=2g, while the dashed line hag=3g,.
For Q from 0 to 2 GeV, theb? dependence can change the  FIG. 13. Comparison between thespace resumme@; distri-
b-space resummed; distributions by as much as 80% when bution and Fermilab E605 daf&2]. The overall normalization for
the parameteg changes from half to twice of the best fit the theory curvesNggos=1.0.

0 02040608 1 12141618 2
Q, (GeV)
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curves in Figs. 12 and 13, except a much larger overall nor-
malization constantNg;;= 1.6, which is consistent with
what was found in Ref[13]. Although none of these data
points in Fig. 14 were used in our fitting, the theory curves
describe the data well. Without plotting another figure, we
state that theb-space resumme@y distributions are also
consistent with the R209 dafa7].
02l — In order to get a feeling on the relative size of the contri-
butions from the partons intrinsic transverse momentum and

by the dynamical power corrections, we separategpandgz

Edo/d@® (pb/GeV?)
. o

-
=

107 T T terms in Eq.(43). With b,,,,=0.3 GeV ! and a fixeda
002040608 1 12141618 2 =0.15, we perform a new fit with three fitting parameters,
Or (GeV) d1, 92, andaFor the same 28 data points, we did not get
FIG. 14. Comparison between thespace resumme@y distri- ~ much improvement in the totgf®. This result should be
bution and Fermilab E772 daf84]. The overall normalization for €xpected becaugé&) we already have an excellent fit with a
the theory curvesNg77,=1.6. x?/Npe~1 wheng, andg, terms is combined, ant?) the

range ofQ values in our 28 data points are limited. Never-

ttheless, the fitting result indicates that theterm and thejz
term are roughly equal. That is, the effect of the partons

with Fermilab E288 data afS=27.4 GeV[16]. The theory
curves are multiplied by an overall normalization constan

Ngoge= 0.97 as listed in Table I, which is different from what "~ " © . ) .
was found in Ref[13]. From top to bottom in Fig. 12, the intrinsic transverse momentum, which @ independent, is

four curves along with four data sets correspondQo &S important as that Qf the dynamical power corrections at
c(5,6) GeV, (6,7) GeV, (7,8) GeV, and (8,9) GeV, re- the fixed target energies.

spectively. Two of the four data setQe (5,6) GeV and From all three figures, in Figs. 12, 13, and 14, we con-
(7,8) GeV with Q;<1.4 GeV, were used in our fitting. clude that the CSS resummation formalism in combination
That is, only 14 of the 40 data points plotted in Fig. 12 wereWith our derived extrapolation provides a very good descrip-
used in the fitting. Clearly, for alQ; up to 2 GeV, the tion of the Drell-YanQy distributions at the fixed target
b-space resumme@®; distributions are in excellent agree- energies. Using only 28 data points wifi <1.4 GeV to fix
ment with the data from E288. In Fig. 13, we plot the re-the parametersg); andg, our numerical results are consistent
summedQ+ distributions along with Fermilab E605 data with over 100 data points from three experiments. In particu-
[32]. The overall normalization constant for E605 is 1. Ex- lar, except the E772 data, the overall normalization constants
actly the same values of, andg are used for calculating the between the theory and the data are extremely close to the
theory curves in Figs. 12 and 13. In Fig. 13, from top tounity.

bottom, the four curves along with four data sets correspond To conclude this subsection, we demonstrate the conver-
to Qe(7,8) GeV, (89) GeV, (10.511.5) GeV, and gence and stability of the Fourier transform at the fixed tar-
(13.5,18.0) GeV, respectively. Similar to E288 data, onlyget energies by plotting the ratR(b.,Qr) as a function of
two of the four data sets,Qe(7,8) GeV and p_in Fig. 15. The ratioR(b,Qy), defined in Eq.(41), is
(10.5,11.5) GeV witlQr<1.4 GeV, were used in our fit- o q1yated aQ=6 GeV and\S=27.4 GeV. For calculat-
ting. Although only 14 of the 40 data points in Fig. 13 were ing the resummedb-space distributioniR%(b,Q,xx . xg).

used in the fitting, théb-space resumme@®+ distributions - 1 . >
are in a good agreement with all 40 points, except a few'€ CN00SEma,=0.3 GeV'= and the corresponding fitting

points withQ e (7,8) GeV. Actually, seven of the ten data parameters Iigted in Table I, which.are the same as those
points in this set withQ  (7,8) GeV were used in our fit- used for plotting theory_curves in Figs. 12, ;3, and 14. In
ting. However, because of the relatively large error barsFig- 15, we plot the ratidR(b.,Qr) for four different Qr
these data points did not have enough weight in the fittingvalues: 0, 0.5, 1.0, and 2.0 GeV. The raffith. ,Qr) quickly
Nevertheless, the theory curves calculated with two fittingconverges to 1 ab,~3 GeV *. By comparing Fig. 9 and
parametersy; andg, give a very good description of the low Fig. 15, we conclude that the Fourier transform for the
energy Drell-Yan data in Figs. 12 and 13. In particular, theb-space resummeQ+ distributions converges &t~ a few
overall normalization constants for both experiments aréseV ', and therefore, higher power corrections are not very
very close to the unity. important. On the other hand, because the Fourier transform

As pointed out in Ref[13], the b-space resumme@;  converges in the nonperturbative region, a reliable extrapo-
distributions have to multiply a large overall normalization lation from the perturbatively calculatdgispace distribution
constant in order to be consistent with the Fermilab E772t smallb to the nonperturbative largeregion is necessary
data. In Fig. 14, we plot thb-space resumme@ distribu-  and crucial in order to be consistent with experimental data.
tions along with the E772 daf&4]. Three data sets from top From the consistency shown in Figs. 12, 13, and 14, we
to bottom correspond t® € (5,6) GeV, (8,9) GeV, and further conclude that the functional dependence on the im-
(11,12) GeV, respectively. The theory curves are calculategact paramete, introduced in ouan‘;, catches the correct
with the same formula and parameters used to calculate thghysics.
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1 . duction for Q7 as large a€Q. Because of the smooth re-
08 L summed Q- distributions, the matching between the
p resummed and fixed-order calculations at la@eg is less
0.6 ambiguous.
04 In this paper, we have explicitly shown that the power
02 | corrections are very important for the resumn@d distri-
butions at the fixed target energies. With only two param-
~ 0 ' ' . : - :
a eters:g; an'd 9, obf[alned by fitting 28 data pom.ts, the calcu-
215 | lated Q+ distributions using the CSS formalism plus our
g extrapolation are in a good agreement with all existing data.
1 In our derived extrapolation in Eq(36), the resummed
b-space distributions fdv<<b,,,, do not include perturbative
05 power corrections, while the nonperturbative extrapolation
. have both leading power contributions as well as the power
0 Lall corrections. Therefore, by choosing a smaligy,,, we ef-
0 05 1 15 2 25 3 fectively move the power corrections to the relatively srball

b (GeV ™) region. We find that by reduciny,,,,, the overall normal-
. . ization constants for E288 and EG05 data sets are driven to
FIG. 15. RatioR(b.,Qr) as a function ofb. for Drell-Yan  the ynity. This result not only shows a good consistency
production alQ=6 GeV andyS=27.4 GeV:Q;=0 GeV(solid  petyeen different experiments, but also tells us that the
line), Qr=0.5 GeV (dashed ling in the top plot Qr=1 GeV  qyer corrections are very important for describing the low
(solid line) Qr=2 GeV (dashed lingin the bottom plot. energy Drell-Yan transverse momentum distributions.
Finally, we argue that the CS$space resummation for-
malism should provide a reliable prediction for Higgs boson
In conclusion, we have quantitatively investigated the roleproduction at LHC energy. A{/S=14 TeV, we expect the
of the nonperturbative input in the C®pace QCD resum- partonic subprocesg+ g— H+ X, to dominate Higgs boson
mation formalism for the Drell-YaQ distributions at both  production when the Higgs boson mabt,~115 GeV.
collider and fixed target energies. We find that the predictiveFrom the fact thai,~xz~0.008 are small and the gluon
power of the CSS resummation formalism has a strong dedistribution has a steeper evolution than the quark distribu-
pendence on the collision energ{. The /S dependence is tion at small X, we expect the /S dependence of
a consequence of the steep evolution of parton distribution§p @, x, ,xg) to move the saddle poitt, to a value much
at smallx, and it significantly improves the predictive power gmgjier than thdge—=0.37 estimated by using E¢L6), and
of the CSS formalism at collider energies, in particular, aty,ost likely, even smaller than 0.13 shown in Figo)3for Z
the LHC energy. We show that although the resumi@gd  production at LHC energy. Therefore, thespace QCD re-
distributions are mostly determined by the perturbatively calsymmation formalism should be valid for predicting Qe

culatedb-space distributions at smdi| a reliable extrapola-  gistribution of the hadronic production of Higgs bosons at
tion to the nonperturbative largle region is necessary to | yc energy.

ensure the correct cancellations of théntegration wherb
>1/Q+. By adding power corrections to the renormalization
group equations in the CSS resummation formalism, we de-
rive a new functional form in Eq(36) to extrapolate the We thank P. Nadolsky and C.P. Yuan for help on the
perturbatively resummelbtspace distributions to the lardgle  LEGACY program package, and thank S. Kuhlmann for help
region. We demonstrate that at collider energies, the CS8n the experimental data. This work was supported in part by
resummation formalism with our extrapolation has an excelthe U.S. Department of Energy under Grant No. DE-FG02-
lent predictive power foQ+ distributions of W andZ pro-  87ER40731.

D. Conclusions
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