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Role of the nonperturbative input in QCD resummed Drell-Yan QT distributions
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We analyze the role of the nonperturbative input in the Collins-Soper-Sterman~CSS! b-space QCD resum-
mation formalism for Drell-Yan transverse momentum (QT) distributions, and investigate the predictive power
of the CSS formalism. We find that the predictive power of the CSS formalism has a strong dependence on the
collision energyAS in addition to its well-knownQ2 dependence, and theAS dependence improves the
predictive power at collider energies. We show that a reliable extrapolation from perturbatively resummed
b-space distributions to the nonperturbative largeb region is necessary to ensure the correctQT distributions.
By adding power corrections to the renormalization group equations in the CSS formalism, we derive a new
extrapolation formalism. We demonstrate that at collider energies the CSS resummation formalism plus our
extrapolation has an excellent predictive power forW andZ production at all transverse momentaQT<Q. We
also show that theb-space resummedQT distributions provide a good description of Drell-Yan data at fixed
target energies.
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I. INTRODUCTION

The perturbation theory of quantum chromodynam
~QCD! has been very successful in interpreting and pred
ing high energy scattering processes. With new data fr
Fermilab run II and the CERN Large Hadron Collider~LHC!
in the near future, we expect to test QCD to a new leve
accuracy, and also expect that a better understanding of Q
will underpin precision tests of the electroweak interactio
and particle searches beyond the standard model@1#. As
pointed out in Ref.@1#, the description of vector and scala
boson production properties, in particular their transve
momentum (QT) distribution, is likely to be one of the mos
intensively investigated topics at both Fermilab and
LHC, especially in the context of Higgs boson searches.
the purpose of this paper to investigate the predictive po
of QCD perturbation theory for the transverse moment
distributions of vector and scalar boson production in h
ronic collisions.

The production of vector bosons (V5g* ,W6, and Z)
with invariant massQ at large and smallQT in hadronic
collisions has been extensively studied@1#. When QT;Q,
effectively, there is only one hard momentum scale in
production. Therefore, we expect the fixed-order perturba
calculations in power series ofas to be reliable@2#. In this
paper, we will concentrate on the production of vec
bosons at small transverse momenta,QT<Q, where the bulk
of the data are. The smallQT region also corresponds to
phase space that is most relevant to the hadronic Higgs
son production.

When QT!Q, the QT distributions calculated order b
order in as in the conventional fixed-order perturbatio
theory receive a large logarithm, ln(Q2/QT

2), at every power
of as . Even at the leading order inas , the cross section
ds/dQ2dQT

2 contains a term proportional t
(as /QT

2)ln(Q2/QT
2) coming from the partonic subprocess:q

1q̄→V(g* ,W/Z)1g. Beyond the leading order, we can a
0556-2821/2001/63~11!/114011~18!/$20.00 63 1140
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tually get two powers of the logarithm for every power
as , due to soft and collinear gluons emitted by the incomi
partons. Therefore, at sufficiently smallQT , the convergence
of the conventional perturbative expansion in powers ofas is
impaired, and the logarithms must be resummed.

Resummation of the large logarithms in QCD can be c
ried out either inQT space directly or in the impact param
eter,b space, which is a Fourier conjugate of theQT space. It
was first shown by Dokshitzer, Diakonov and Troyan~DDT!
that in the double leading logarithm approximation~DDLA !,
which corresponds to the phase space where the rad
gluons are both soft and collinear with strong ordering
their transverse momenta, the dominant contributions in
small QT region can be resummed into a Sudakov form fa
tor @3#. However, the strong ordering in transverse mome
in the DDLA overly constrains the phase space of the em
ted soft gluons and ignores the overall momentum conse
tion. As a result, the DDT resummation formalism unphy
cally suppresses theQT distributions at smallQT @1#. By
imposing transverse momentum conservation without ass
ing a strong ordering in the transverse momenta of radia
gluons, Parisi and Petronzio introduced theb-space resum-
mation method which allows a resummation of some s
leading logarithms@4#. By using the renormalization grou
equation technique, Collins and Soper improved theb-space
resummation to resume all logarithms as singular
lnm(Q2/QT

2)/QT
2 asQT→0 @5#. In the framework of this renor-

malization group improvedb-space resummation, Collins
Soper, and Sterman~CSS! derived a formalism for the trans
verse momentum distributions of vector boson production
hadronic collisions@6#. This formalism, which is often called
the CSS formalism, can be also applied to the hadronic p
duction of Higgs bosons@7#.

For Drell-Yan vector boson production in hadronic col
sions between hadronsA and B, A(PA)1B(PB)→V(Q)
1X with V5g* ,W6, andZ, the CSS resummation forma
ism has the following generic form@6#:
©2001 The American Physical Society11-1
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ds~hA1hB→V1X!

dQ2dydQT
2

5
1

~2p!2E d2beiQW T•bWW̃~b,Q,xA ,xB!

1Y~QT ,Q,xA ,xB!, ~1!

where xA5eyQ/AS and xB5e2yQ/AS with the rapidity y

and collision energyAS. In Eq. ~1!, the W̃ term dominates
theQT distributions whenQT!Q, and theY term gives cor-
rections that are negligible for smallQT , but becomes im-
portant whenQT;Q. In the CSS formalism, theW̃ has the
following form @6#:

W̃~b,Q,xA ,xB!5(
i j

W̃i j ~b,Q,xA ,xB!s i j →V~Q!, ~2!

wheres i j →V(Q) is the lowest order cross section for a pa
of quark and antiquark of invariant massQ to annihilate into
a vector bosonV, and the( i j run over all possible quark an
antiquark flavors that can annihilate into a vector boson
the Born level. In Eq.~2!, the W̃i j (b,Q,xA ,xB) is an effec-
tive flux to have partons of flavori and j from the respective
hadronsA andB, and it has the following form@6#:

W̃i j ~b,Q,xA ,xB!5e2S(b,Q)W̃i j ~b,c/b,xA ,xB!, ~3!

whereS(b,Q) will be specified later andc is a constant of
order 1@6,8#. The W̃i j (b,c/b,xA ,xB) in Eq. ~3! depends on
only one momentum scale, 1/b, and is perturbatively calcu
lable as long as 1/b is large enough. All large logarithm
from ln(1/b2) to ln(Q2) in W̃i j (b,Q,xA ,xB) are completely
resummed into the exponential factor exp@2S(b,Q)#.

Since the perturbatively resummedW̃i j (b,Q,xA ,xB) in
Eq. ~3! is only reliable for the smallb region, an extrapola-
tion to the largeb region is necessary in order to comple
the Fourier transform in Eq.~1!. In the CSS formalism, a
variableb* and a nonperturbative functionFNP(b,Q,xA ,xB)
were introduced@6#:

W̃CSS~b,Q,xA ,xB![W̃~b* ,Q,xA ,xB!FNP~b,Q,xA ,xB!,
~4!

whereb* 5b/A11(b/bmax)
2,bmax50.5 GeV21, andFNP

has a Gaussian-like dependence onb, FNP;exp(2kb2) and
the parameterk has some dependence onQ2, xA , andxB .

The predictive power of the CSSb-space resummation
formalism relies on the following critera:~1! the Fourier
transform~or b integration! in Eq. ~1! is dominated by the
perturbative~or smallb) region, and~2! the nonperturbative
input FNP has a derivedQ dependence whenQ is large. By
using data at some values ofQ to fix the nonperturbativeb
dependence ofFNP, the CSS formalism predicts theQT dis-
tributions at different values ofQ. Existing data are not in-
consistent with such a form@9–13#. However, improvements
are definitely needed for precision tests of the theory@1,14#.

Although theb-space resummation formalism has be
successful in interpreting existing data, it was argued@1,14#
that the formalism has many drawbacks associated w
working in impact parameter space. As listed in Ref.@1#, the
11401
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first is the difficulty of matching the resummed and fixe
order predictions, and the second is knowing the quantita
difference between the prediction and the fitting because
the introduction of a nonperturbativeFNP. In viewing of
these difficulties, major efforts have been devoted to resu
the large logarithms directly inQT space@1,14#.

In this paper, we argue and demonstrate that both of th
drawbacks can be overcome@8#. Since there is no preferre
transverse direction, the two-dimensional Fourier transfo
in Eq. ~1! can be reduced into a one-dimensional integrat

over b5ubW u weighted by the Bessel functionJ0(QTb) @4,6#.
We find that by using an integral form for the Bessel fun
tion, theb-space resummation formalism works smoothly f
all QT<Q. Because of the smooth resummedQT distribu-
tions, the transition~or switch over! to fixed order perturba-
tive calculations at largeQT becomes less ambiguous@14#.

In addition, we find that the predictive power of th
b-space resummation formalism strongly depends on the
lision energyAS in addition to its well-knownQ2 depen-
dence. Because of the steep evolution of parton distributi

at smallx, the AS dependence of theW̃ in Eq. ~1! signifi-
cantly improves the predictive power of theb-space resum-
mation formalism at collider energies. We demonstrate t
the b-space resummation formalism has excellent predic
power for Drell-YanQT distributions as long asQ2 is large
and/orxA andxB are small.

To quantitatively separate the QCD prediction from t
parameter fitting, we derive a new functional form in E
~36! to extrapolate the perturbatively calculatedb-space dis-

tribution W̃(b,Q,xA ,xB) to the largeb region. Our extrapo-
lation is derived by adding power corrections to the evo
tion and renormalization group equations in the C
resummation formalism. Our extrapolation preserves the p
dictive power of perturbative calculations at smallb, while it
provides clear physical interpretations for allb dependence
in the largeb region. We find that the CSSb-space resum-
mation formalism plus our extrapolation gives an excelle
description of the data on the Drell-YanQT distributions at
both collider and fixed target energies.

The rest of this paper is organized as follows. In Sec.
we briefly review the CSSb-space resummation formalism
for the Drell-Yan transverse momentum distributions. W
show that the predictive power of theb-space resummation
formalism has a significantAS dependence. In Sec. III, we
quantitatively analyze the role of the nonperturbative inpu
large b in the b-space resummation formalism. By addin

power corrections to the evolution equation ofW̃i j and
power corrections to the renormalization group equations
corresponding evolution kernels, we derive a new functio
form to extrapolate the perturbatively calculatedW̃i j to the
largeb region. This new functional form clearly separates t
perturbative predictions in the smallb region from the non-
perturbative physics at largeb. Finally, in Sec. IV, we nu-
merically compare theb-space resummedQT distributions
with experimental data. Our conclusions are also given
Sec. IV.
1-2
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II. COLLINS-SOPER-STERMAN FORMALISM

In this section, we briefly review the CSSb-space resum-
mation formalism for the Drell-Yan transverse momentu
distributions. We show that the predictive power of t
b-space resummation formalism has a strong dependenc
the collision energyAS in addition to its well-knownQ2

dependence. We demonstrate that theAS dependence signifi
cantly improves the predictive power of theb-space resum-
mation formalism at collider energies.

It was shown@6# that forb!1/LQCD, theW̃(b,Q,xA ,xB)
is directly related to the singular parts of the Drell-YanQT

distribution asQT→0. More precisely, theW̃(b,Q,xA ,xB)
includes all singular terms like d2(QW T) and
@ lnm(Q2/QT

2)/QT
2#reg with m>0. The terms that are less sing

lar asQT→0 are included in theY term in Eq.~1!. The QCD
resummation of the large logarithms in the CSS formalism
achieved by solving the evolution equation for theW̃i j @6#,

]

] ln Q2
W̃i j ~b,Q,xA ,xB!

5@K„bm,as~m!…1G„Q/m,as~m!…#W̃i j ~b,Q,xA ,xB!,

~5!

and corresponding renormalization group equations for
kernelsK andG:

]

] ln m2
K„bm,as~m!…52

1

2
gK„as~m!…, ~6!

]

] ln m2
G„Q/m,as~m!…5

1

2
gK„as~m!…. ~7!

The anomalous dimensionsgK„as(m)…5(n51gK
(n)
„as(m)/

p…

n in Eqs.~6! and~7! are perturbatively calculable@6#. The
renormalization group equations forK andG in Eqs.~6! and
~7! ensure the correct renormalization scale depende
d/d ln m2@W̃(b,Q,xA ,xB)#50. The solution given in Eq.~3!
corresponds to solving the evolution equation in Eq.~5! from
ln(c2/b2) to ln(Q2), and solving the renormalization grou
equations in Eqs.~6! and ~7! from ln(c2/b2) to ln(m2) and
from ln(Q2) to ln(m2), respectively.

Integrating Eq.~6! over ln(m2) from ln(c2/b2) to ln(m2),
and Eq.~7! from ln(Q2) to ln(m2), one derives

K„bm,as~m!…1G„Q/m,as~m!…

52E
c2/b2

Q2 dm̄2

m̄2
A„as~m̄ !…2B„as~Q!…, ~8!

whereA is a function ofgK„as(m̄)… andK„c,as(m̄)… while B
depends on bothK„c,as(Q)… and G„1,as(Q)…. The func-
tions A andB do not have large logarithms and have pert
bative expansions A5(n51A(n)(as /p)n and B
5(n51B(n)(as /p)n, respectively. The first two coefficient
in the perturbative expansions are known@6,9#:
11401
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A(1)5CF ,

A(2)5
CF

2 FNS 67

18
2

p2

6 D2
10

9
TRnf G ,

B(1)52
3

2
CF ,

B(2)5S CF

2 D 2Fp22
3

4
212z~3!G1

CF

2
NF11

18
p22

193

24

13z~3!G1
CF

2
TRnfF17

6
2

2

9
p2G , ~9!

where N53 for SU~3! color, CF5(N221)/2N54/3, TR
51/2, andnF is the number of active quark flavors. Th
functions A and B given in Eq. ~9! are derived from the
general expressions in Ref.@6# with the following choices for
the renormalization constants:C15c52e2gE and C251,
wheregE'0.577 is Euler’s constant.

Substituting Eq.~8! into Eq. ~5!, and integrating over
ln(Q2) from ln(c2/b2) to ln(Q2), one obtainsW̃i j given in Eq.
~3! with

S~b,Q!5E
c2/b2

Q2 dm̄2

m̄2 F lnS Q2

m̄2D A„as~m̄ !…1B„as~m̄ !…G .

~10!

In Eq. ~3!, all large logarithms from ln(c2/b2) to ln(Q2) in
W̃i j (b,Q,xA ,xB) are completely resummed into the exp
nential factor exp@2S(b,Q)#, leaving theW̃i j (b, c/b ,xA ,xB)
with only one momentum scale 1/b. TheW̃i j (b, c/b ,xA ,xB)
in Eq. ~3! is then perturbatively calculable when the mome
tum scale 1/b is large enough, and is given by@6,12#

W̃i j S b,
c

b
,xA ,xBD5 f i /AS xA ,m5

c

bD f j /BS xB ,m5
c

bD .

~11!

The functionsf i /A and f j /B are the modified parton distribu
tions @6,12#,

f i /A~xA ,m!5(
a
E

xA

1 dj

j
Ci /aS xA

j
,m Dfa/A~j,m! ~12!

where(a runs over all parton flavors. In Eq.~12!, fa/A(j,m)
is the normal parton distribution for finding a parton of flav
a in hadron A, and Ci /a5(n50Ci /a

(n)(as /p)n are perturba-
tively calculable coefficient functions for finding a partoni
from a partona. The first two coefficients ofCi /a are avail-
able @6,9#:

Ci / j
(0)~z,m5c/b!5d i j d~z21!,

Ci /g
(0)~z,m5c/b!50,
1-3
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Ci / j
(1)~z,m5c/b!5d i j

CF

2 F ~12z!

1S p2

2
24D d~12z!G ,

Ci /g
(1)~z,m5c/b!5TRz~12z! ~13!

where i and j represent quark or antiquark flavors andg
represents a gluon. The coefficient functions given in
~13! are derived from the general functional forms in Ref.@6#
by setting the renormalization constants and the factoriza
scale asC15c, C251, andm5c/b.

Thes i j →V(Q) in Eq. ~2! is the lowest order cross sectio
for a pair of quark and antiquark to annihilate into a vec
boson (V5g* , W6, or Z). For V5g* , we have

s i j →g* ~Q!5d j ī ei
2S 4p2aEM

2

3S D 1

N

1

Q2
~14!

whereei is the quark fractional charge andN53 for SU~3!
color. Thes i j →V(Q) for V5W6 or Z can be found in Refs
@6,12#.

In the CSS resummation formalism, theY term in Eq.~1!
represents a small correction to theQT distribution when
QT!Q. But it dominates theQT distributions whenQT
;Q. The Y term has a perturbative expansion,Y
5(n51Y(n)(as(m)/p)n, and the coefficientsY(n) have the
following factorized form@6#:

Y(n)~QT ,Q,xA ,xB ;m!

5(
a,b

E
xA

1 djA

jA
fa/A~jA ,m!E

xB

1 djB

jB
fb/B~jB ,m!

3S 4p2aEM
2

9Q2S
D Rab→V

(n) ~QT ,Q,xA /jA ,xB /jB ;m!,

~15!

where(a,b run over all possible parton flavors andm repre-
sents both the factorization and renormalization scale.
Rab→V

(n) in Eq. ~15! are perturbatively calculable and have t
same normalization as those introduced in Ref.@6#. The lead-
ing order termsRab→g*

(1) are available and are given by Eq
~2.9!–~2.12! in Ref. @6#. ForW6 andZ production, one need
to change the fractional quark chargeei

2 in the Rab→g*
(1) by

corresponding weak coupling constants@6#.
Since theY term does not have large logarithms and

perturbatively calculable, the predictive power of the C
formalism relies on our ability to predict theW̃ term in Eq.
~1!. Because the leading power perturbative QCD calcu
tions and the normal parton distributions in Eq.~12! are only
valid for m.m0;1 –2 GeV, the perturbatively calculate
b-space distributionW̃(b,Q,xA ,xB) in Eq. ~1! is reliable
only if the momentum scale 1/b.m0. On the other hand, the
Fourier transform in Eq.~1! requires ab-space distribution
W̃(b,Q,xA ,xB) for bP@0,̀ ). Therefore, the predictive
11401
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power of theb-space resummation formalism is limited b
our inability to calculate the nonperturbativeb-space distri-
bution at largeb @1,14#.

However, the b-space resummation formalism has
remarkable feature that the resummed exponential fa
exp@2S(b,Q)# suppresses theb integral whenb is larger than
1/Q. Therefore, whenQ@m0, it is possible that the Fourie
transform in Eq.~1! is dominated by a region ofb much
smaller than 1/m0, and the calculatedQT distributions are
insensitive to the nonperturbative information at largeb. In
fact, using the saddle point method, it was shown@4,6# that
for a large enoughQ, the QCD perturbation theory is valid
even atQT50, and the Fourier transform in Eq.~1! is domi-
nated by an impact parameter of order

bSP5
1

LQCD
S LQCD

Q D l

~16!

where l516/(4922nf)'0.41 for quark flavorsnf55.
From Eq. ~16!, the momentum scale corresponding to t
saddle point, 1/bSP, can be well within the perturbative re
gion if the value ofQ is large enough. Therefore, the predi
tive power of theb-space resummation formalism is direct
related to the numerical value of the vector boson’s invari
massQ @4,6#.

For W6 and Z production, we haveQ;MW or MZ and
the corresponding momentum scale from Eq.~16!, 1/bSP
'10LQCD;2 GeV, which is at the borderline of the predic
tive power of perturbative QCD calculations without intr
ducing the power corrections. In the rest of this section,
show that the next-to-leading order corrections to the fu
tion S(b,Q) reduce the numerical value of thebSP. Further-
more, we show that the numerical value for the saddle po
has a strong dependence on the collision energyAS, and the
AS dependence can either improve or reduce the predic
power of theb-space resummation formalism.

Since there is no preferred transverse direction,W̃ in Eq.
~1! is a function ofb5ubW u, and the Fourier transform can b
written as

1

~2p!2E d2beiQW T•bWW̃~b,Q,xA ,xB!

5
1

2pE0

`

dbbJ0~QTb!e2S(b,Q)

3(
i j

s i j →V~Q!W̃i j S b,
c

b
,xA ,xBD , ~17!

whereJ0(z) with z5QTb is the Bessel function. In deriving
Eq. ~17!, we used Eqs.~2! and ~3!. ThebSP in Eq. ~16! was
derived by solving

d

db
ln~be2S(b,Q)!b5bSP

50 ~18!
1-4



al
r-

f

d
e
f
f

o

s,
he
-

ri-
f

i

in

le

em

ly

s

-
in
rst

e a

g-
tur-

d
e

in
g.
e

om

t

ROLE OF THE NONPERTURBATIVE INPUT IN QCD . . . PHYSICAL REVIEW D63 114011
with only A(1) for the functionS(b,Q). Solving Eq.~18! for
the saddle point relies on the assumption that theb depen-
dence inW̃i j (b,c/b,xA ,xB) is smooth aroundbSP.

However, we find from Eq.~11! that theb dependence in
W̃i j (b,c/b,xA ,xB) is strongly connected to the numeric
values ofxA and xB , and can be very important for dete
mining the saddle point ifxA andxB are very small or very
large @8#. Taking into account the fullb dependence o
W̃i j (b,c/b,xA ,xB), the saddle point for theb integration in
Eq. ~17! at QT50 is determined by solving the following
equation:

d

db
ln~be2S(b,Q)!b5b0

1
d

db
lnF(

i j
s i j →V~Q!W̃i j S b,

c

b
,xA ,xBD G

b5b0

50.

~19!

If the W̃i j (b,c/b,xA ,xB) has a weakb dependence aroun
b0, the second term in Eq.~19! can be neglected, and th
b0'bSP. From Eq. ~11!, the b dependence o
W̃i j (b,c/b,xA ,xB) is directly proportional to the evolution o
the modified parton distributions:

d

db
lnF(

i j
s i j →V~Q!W̃i j S b,

c

b
,xA ,xBD G

}2
1

b F d

d ln m
f i /A~xA ,m! or

d

d ln m
f j /B~xB ,m!G ,

~20!

wherem5c/b. Since the coefficient functionsC in Eq. ~13!
do not have ab dependence at these orders, the evolution
the modified parton distributions in Eq.~20! is directly pro-
portional to the evolution of normal parton distribution
(d/d lnm)fi/A(j,m). Because of the steep falling feature of t
normal parton distributions whenj increases, the convolu
tion over j in Eq. ~12! is dominated by the value ofj
;xA . Therefore, the evolution of the modified parton dist
butions in Eq.~20! is directly proportional to the evolution o
normal parton distributions, (d/d ln m)fi/A(j,m) at j;xA .
From the Dokshitzer-Gribov-Lipatov-Altarelli-Paria
~DGLAP! equation, it is known that (d/d ln m)f(x,m) is posi-
tive ~or negative! for x,x0;0.1 ~or x.x0), and the evolu-
tion is very steep whenx is far away fromx0. Therefore, the
second term in Eq.~19! should be very important whenxA
andxB are much smaller than thex0.

Since Eq.~18! has a saddle point solution, the first term
Eq. ~19! is a decreasing function ofb, and it vanishes atb
5bSP. Because of the minus sign in Eq.~20! and the fact
that the number of smallx partons increases when the sca
m increases, we expect the second term in Eq.~19! to be
negative whenxA andxB are smaller than the typicalx0, and
to reduce the numerical value of the saddle point. As a d
onstration, let Q56 GeV and AS51.8 TeV. Using
CTEQ4M parton distributions and LQCD(nf55)
11401
f
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50.202 GeV @15#, one derives from Eq.~16! that bSP
'1.2 GeV21, and might conclude that the perturbative
resummedQT distribution at the given values ofQ andAS is
not reliable. However, as shown in Fig. 1~a!, the integrand of
the b integration in Eq.~17! has a nice saddle point atb0
'0.38 GeV21, which is within the perturbative region. Thi
is due to the fact thatxA;xB;0.003 are very small. The
second terms in Eq.~19! is negative and it reduces the nu
merical value of the saddle point, which is clearly shown
Fig. 1~b!. The solid line and dashed line represent the fi
and the second term in Eq.~19!, respectively. Although the
solid line in Fig. 1~b! never crosses zero forb,1 GeV21,
which is consistent with the fact thatbSP;1.2 GeV21, the
dashed line is negative and it cancels the solid line to giv
nice saddle point atb5b0;0.38 GeV21.

Similar to Fig. 1, we plot the integrand of theb integra-
tion in Eq. ~17! for Z production at Tevatron and the LHC
energies in Figs. 2 and 3, respectively. In plotting both fi
ures, we used CTEQ4M parton distributions and the per
batively calculated functionsA, B, and C to the next-to-
leading order, which are listed in Eqs.~9! and~13!. From Eq.
~16!, we estimatebSP'0.4 GeV21 for Q5MZ . As shown
in Fig. 2~b!, the solid line vanishes atb'0.27 GeV21,
which indicates that the inclusion ofA(2), B(1), and B(2)

reduces the numerical value of the saddle point,bSP. The
dashed line in Fig. 2~b!, which corresponds to the secon
term in Eq.~19!, further reduces the numerical value of th
saddle point tob0'0.24 GeV21. At the LHC energy,xA
andxB are much smaller. We then expect the second term
Eq. ~19! to be more important, which is clearly shown in Fi
3~b!. The dashed line in Fig. 3~b! has a much larger absolut
value in comparison with that in Fig. 2~b!. Consequently, the
numerical value of the saddle point is further reduced fr
b0'0.24 GeV21 at AS51.8 TeV to b0'0.13 GeV21 at

FIG. 1. ~a! Integrand of theb integration in Eq.~17! at QT50
andQ56 GeV as a function ofb with an arbitrary normalization a
Tevatron energy;~b! the first ~solid line! and second~dashed line!
terms in Eq.~19! as a function ofb at the sameQ andAS.
1-5
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AS514 TeV, where the perturbative QCD calculatio
should be reliable. In addition, the narrow width of theb
distribution shown in Fig. 3~a! ensures that theb integration
is dominated byb;b0. In conclusion, even atQT50, the
perturbative QCD basedb-space resummation formalism
valid as long as the collision energyAS is large enough.

When QT.0, the Bessel functionJ0(z5QTb) further
suppresses the largeb region of theb integration. Because

FIG. 2. ~a! Integrand of theb integration in Eq.~17! at QT50
and Q5MZ as a function ofb with an arbitrary normalization a
Tevatron energy (AS51.8 TeV); ~b! the first ~solid line! and sec-
ond ~dashed line! terms in Eq.~19! as a function ofb at the sameQ
andAS.

FIG. 3. ~a! Integrand of theb integration in Eq.~17! at QT50
andQ5MZ as a function ofb with an arbitrary normalization at the
LHC energy (AS514 TeV); ~b! the first ~solid line! and second
~dashed line! terms in Eq.~19! as a function ofb at the sameQ and
AS.
11401
the argument of the Bessel function is proportional toQT ,
the largeb region is more suppressed ifQT is larger. That is,
the largerQT is, the better theb-space resummation forma
ism is expected to work. However, it has been known@1# that
theb-space resummedQT distribution from Eq.~1! becomes
unphysical or even negative whenQT is large. For example
a matching between the resummed and fixed-order calc
tions has to take place atQT;50 GeV for W6 production
when these two predictions cross over@14#. We will address
this puzzle in Sec. IV.

In the rest of this section, we investigate the predict
power of theb-space resummation formalism for the Dre
Yan production at fixed target energies (AS<40 GeV).
Most data at the fixed target energies haveQP(5,12) GeV
andQT at a few GeV or less. From Eq.~16!, we find thatbSP
is of order 1 GeV21 or larger. Because of the low collisio
energy, the typical values ofxA andxB are larger than thex0.
Therefore, the second term in Eq.~19! should be positive,
which increases the numerical value of the saddle point.
an illustration, instead ofAS51.8 TeV, we replot all quan-
tities in Fig. 1 atAS527.4 GeV in Fig. 4, which is the
collision energy for Fermilab experiment E288@16#. As ex-
pected, the dashed line is now positive and the saddle p
is no longer in the perturbative region. In conclusion, at fix
target energies, the perturbatively calculatedb-space distri-
bution derived from the CSS resummation formalism is n
sufficient to predict the Drell-YanQT distributions atQT
50. A nonperturbative extrapolation to the largeb region is
necessary.

WhenQT.0, the Bessel functionJ0(z5QTb) suppresses
the largeb region of theb integration, and improves the
predictive power of theb-space resummation formalism a
the fixed target energies. In Fig. 5, we plot the integrand

FIG. 4. ~a! Integrand of theb integration in Eq.~17! at QT50
andQ56 GeV as a function ofb with an arbitrary normalization a
E288 energy (AS527.4 GeV);~b! the first~solid line! and second
~dashed line! terms in Eq.~19! as a function ofb at the sameQ and
AS.
1-6
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the b integration in Eq.~17! at QT51 GeV ~solid line! and
QT52 GeV ~dashed line! for Q56 GeV and AS
527.4 GeV. As shown in Fig. 5, the saddle point for t
b-integration moves to the smallerb region asQT increases.
Since the saddle points of both curves in Fig. 5 are within
perturbative region, one might expect theb-space resumma
tion formalism to provide a good description of theQT dis-
tributions at these energies. However, as a result of the
cillatory nature of the Bessel function, the precise value
theb integration depends on the detailed cancellations in
largeb region. Therefore, the predictive power of theb-space
resummation formalism at the fixed target energies is
limited by our knowledge of the nonperturbative informati
at largeb. More discussions are given in Sec. IV.

III. EXTRAPOLATION TO THE LARGE b REGION

In this section, we quantitatively analyze the role of t
nonperturbative input at largeb in the b-space resummation
formalism. We first briefly review the extrapolation define
in Eq. ~4! and its status in comparison with the existing da
Then, by adding possible power corrections to the renorm
ization group equations in Eqs.~6! and~7!, we derive a new
functional form for extrapolating the perturbatively r
summedW̃(b,Q,xA ,xB) to the largeb region. This new
functional form clearly separates the perturbative predict
at small b from the nonperturbative physics in the largeb
region.

A. Extrapolation proposed by Collins, Soper, and Sterman

As discussed in last section, the perturbatively resumm
W̃(b,Q,xA ,xB) in Eq. ~2! is only reliable for the smallb
region. An extrapolation of the perturbatively calculat
W̃(b,Q,xA ,xB) to the largeb region is necessary in order t
complete the Fourier transform in Eq.~1!. In Ref. @6#, CSS
proposed the following extrapolation:

FIG. 5. Integrand of theb integration in Eq. ~17! at QT

51 GeV ~solid line! andQT52 GeV ~dashed line! as a function
of b with an arbitrary normalization. TheQ andAS are the same as
those in Fig. 4~a!.
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W̃CSS~b,Q,xA ,xB![(
i j

s i j →V~Q!W̃i j ~b* ,Q,xA ,xB!

3Fi j
NP~b,Q,xA ,xB!, ~21!

whereb* was defined following Eq.~4!, and the perturba-
tively calculatedW̃i j (b,Q,xA ,xB) are given in Eq.~3!. The
nonperturbative input distributionsFi j

NP have the following
functional form@6#:

Fi j
NP~b,Q,xA ,xB!5exp@2 ln~Q2/Q0

2!g1~b!2gi /A~xA ,b!

2gj /B~xB ,b!# ~22!

where the ln(Q2) dependence is a derived result. The fun
tions g1(b), gi /A(xA ,b), and gj /B(xB ,b) are nonperturba-
tive, and should go to zero asb→0. The predictive power of
the CSS formalism relies on the derivedQ2 dependence and
the universality of theFi j

NP . Since the low energy Drell-Yan
data are sensitive to the largeb region, in principle, one can
use the lowQ2 data to fix the parameters of the nonpertu
bative Fi j

NP and predict theQT distributions ofW6 and Z
production at highQ2.

Davis, Webber, and Stirling~DWS! introduced the fol-
lowing form for the nonperturbative distributionFi j

NP @9#:

FDWS
NP ~b,Q,xA ,xB!5exp$2b2@g11g2ln~Q/2Q0!#%,

~23!

whereQ052 GeV51/bmax, andg1 andg2 are flavor inde-
pendent fitting parameters. Without the flavor dependen
the extrapolated CSS formalism defined in Eq.~21! reduces
to that in Eq. ~4!. With g150.15 GeV2 and g2
50.4 GeV2, DWS found@9# that the CSSb-space resum-
mation formalism gives a reasonable description of
Drell-Yan data from Fermilab experiment E288 atAS
527.4 GeV @16# as well as CERN Intersecting Storag
Rings ~ISR! experiment R209 atAS562 GeV @17#.

In order to incorporate possible ln(t) dependence witht
5Q2/S5xAxB , Ladinsky and Yuan~LY ! proposed a modi-
fied functional form forFi j

NP @11#:

FLY
NP~b,Q,xA ,xB!5exp$2b2@g11g2ln~Q/2Q0!#

2bg1g3 ln~100xAxB!%. ~24!

An extra parameterg3 was introduced in the LY parametri
zation of the nonperturbativeFi j

NP . Similar to the DWS pa-
rametrization, no flavor dependence was introduced into
nonperturbative distribution. Withg150.1120.03

10.04 GeV2, g2

50.5820.2
10.1 GeV2, and g3520.1520.1

10.1 GeV21, LY were
able to fit the R209 Drell-Yan data as well as CDF data onW
and Z production from Fermilab. More recently, Landry
Brock, Ladinsky, and Yuan~LBLY ! performed a much more
extensive global fit to the low energy Drell-Yan data as w
as high energyW and Z data by using both DWS and LY
parametrizations@13#. In order to fit both the low energy
Drell-Yan and the colliderW andZ data, LBLY found that it
is necessary to introduce a large overall normalization un
tainty in order to include the low energy Drell-Yan data~in
1-7
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particular, E288 data! into the global fit @13#. LBLY also
emphasized that the collider data onZ production are very
useful in determining the value of fitting parameterg2. They
concluded@13# that both DWS and LY parametrizations wit
updated parameters result in good global fits, but give m
surable differences inQT distributions ofZ production at the
Fermilab Tevatron.

Based on our discussions in last section, theQT distribu-
tions of Z production at collider energies should not be ve
sensitive to the nonperturbative physics from the largeb re-
gion. Any significant dependence on the fitting paramet
for Z production would cast a doubt on the predictive pow
of the b-space resummation formalism. To understand
fitting parameter dependence of theZ production, we intro-
duce the following ratio:

RW~b,Q,xA ,xB![
W̃CSS~b,Q,xA ,xB!

W̃~b,Q,xA ,xB!

5
W̃~b* ,Q,xA ,xB!

W̃~b,Q,xA ,xB!
FNP~b,Q,xA ,xB!,

~25!

where W̃(b,Q,xA ,xB) is the perturbatively calculate
b-space distribution given in Eq.~2!. In deriving the second
line in Eq. ~25!, we used the fact that both DWS and L
parametrizations of theFNP are independent of the parto
flavors. Using CTEQ4M parton distributions, we plot in Fi
6~a! the ratioW̃(b* ,Q,xA ,xB)/W̃(b,Q,xA ,xB) as a function
of b at Q5MZ andAS51.8 TeV. In Fig. 6~b!, we plot the
nonperturbative distributionFNP(b,Q,xA ,xB) as a function

FIG. 6. ~a! ratio W̃(b* ,Q,xA ,xB)/W̃(b,Q,xA ,xB) as a function
of b; ~b! FNP(b,Q,xA ,xB) as a function ofb; ~c! Ratio RW defined
in Eq. ~25! as a function ofb. All plots have Q5MZ and AS
51.8 TeV.
11401
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of b with both DWS parameters~dashed line! and LY pa-
rameters ~solid line!. In Fig. 6~c!, we plot the ratio
RW(b,Q,xA ,xB) defined in Eq.~25!, which is effectively
equal to a product of Fig. 6~a! and Fig. 6~b!. From Fig. 6, we
learn that the introduction of theb* significantly changes the
perturbatively calculatedb-space distribution within the per
turbative region, and in the same region, the functionFNP

can deviate from unity by as much as 50% percents for so
fitting parameters. In order to preserve the predictive pow
of the perturbative calculations, it is important to ke
W̃CSS(b,Q,xA ,xB) consistent with the perturbatively calcu
lated W̃(b,Q,xA ,xB) when b,bmax @or RW(b,Q,xA ,xB)
'1#. However, we find that a significant fitting paramet
dependence ~as much as 20%! was introduced by
W̃CSS(b,Q,xA ,xB) to theb-space distribution within the per
turbative region. The same conclusion holds if we plot t
curves at different energies or use other sets of fitting par
eters available for theFNP @12,13#.

B. Extrapolation with dynamical power corrections

In order to separate the perturbative prediction in
small b region from the nonperturbative physics at largeb,
we derive a new functional form to extrapolate the pertur
tively calculatedW̃(b,Q,xA ,xB) to the largeb region. Our
goal is to have an extrapolation that preserves the predic
power of perturbative calculations in the smallb region and
extends to the largeb region with as much correct physics a
we can put in.

Taking advantage of our early conclusion that heavy
son production at collider energies should not be very se
tive to the largeb region, we can improve the leading pow
perturbative QCD calculations by studying the behavior
power corrections in the region ofb space whereb is not too
much larger thanbmax. The power correction in QCD is a
very rich and difficult subject itself@18–21#. In order to de-
fine the power corrections, we have to identify a nonpert
bative momentum scale,L, which should be of orderLQCD.
For example, the nonperturbative scale can be the ta
mass@22# or matrix elements of high twist operators@18–
20#. In addition, we have to distinguish two different types
power corrections:~1! the power corrections directly to th
physical observables~such as cross sections or structu
functions! and ~2! the power corrections to the evolution o
renormalization group equations. The type-1~or direct!
power corrections are always proportional to the power
(L/Q) with the physically observed momentum scaleQ
@18–20#. Therefore, the effect of this type of power corre
tions to physical observables can be neglected when (L/Q)
→0. Similarly, the type-2~or indirect! power corrections are
proportional to the power of (L/m) with evolution or renor-
malization scalem. It is important to note that physical ob
servables are not directly proportional to the evolution
renormalization group equations; instead, they depend on
solutionsof these equations. Therefore, physical observab
carry the effect of type-2 power corrections for allm
P@Q0 ,Q# and the boundary conditions at the scaleQ0 @23#.
Even whenQ is much larger thanL, physical observables
1-8
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can still carry a large effect of the type-2 power correctio
through the evolution fromQ0 to Q @24#. In this subsection,
we concentrate on the type-2 power corrections. Beca
they contribute to the evolution or renormalization gro
equations, these power corrections should have a dynam
origin.

When b.bmax, we solve the evolution equation in Eq
~5! from ln(c2/bmax

2 ) to ln(Q2) in order to separate the leadin
power QCD calculations at smallb from the largeb region.
Because the scaleQ of the evolution equation is chosen to b
larger thanc/bmax, we can ignore the explicit 1/Q2 power
corrections to this equation.

However, the kernelK„bm,as(m)… of the evolution equa-
tion has an explicitb dependence; we need to add pow
corrections to its renormalization group equation whenb
.bmax. Similarly, we need to add power corrections to t
renormalization group equation of the kernelG„Q/m,as(m)…
when 1/m.bmax. Since we are only interested in deriving
functional form of theb dependence due to power corre
tions, we will not attempt to derive the exact coefficients
the power corrections to the renormalization group equati
by going through a detailed analysis of the mixing of lead
and high twist operators@23#. Instead, we introduce som
fitting parameters for the size of the possible power corr
tions. For including only the leading power corrections,
modify the renormalization group equations in Eqs.~6! and
~7! as follows:

]

] ln m2
K„bm,as~m!…52

1

2
gK„as~m!…2

1

m2
ḡK , ~26!

]

] ln m2
G„Q/m,as~m!…5

1

2
gK„as~m!…1

1

m2
ḡK , ~27!

whereḡK is treated as an unknown parameter here, thoug
should in principle depend onas(m) and the characteristic
size of high twist operators. In Eqs.~26! and~27!, we param-
etrize the leading power corrections in such a way that t
preserve (d/d ln m2)W̃ij(b,Q,xA ,xB)50. Since we are inter-
ested in the region ofb not too much larger thanbmax, we
neglect higher power corrections in Eqs.~26! and~27!. This
approximation is going to be tested in Sec. IV.

By integrating Eq.~26! over ln(m2) from ln(c2/b2) to
ln(m2) and Eq.~27! from ln(Q2) to ln(m2), we have

K„bm,as~m!…1G„Q/m,as~m!…

'2E
c2/bmax

2

Q2 dm̄2

m̄2
A„as~m̄ !…2B„as~Q!…

2E
c2/b2

c2/bmax
2 dm̄2

m̄2 F1

2
gK„as~m̄ !…1

1

m̄2
ḡKG

1FKS c,asS c

bD D2KS c,asS c

bmax
D D G , ~28!
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whereA andB are the same as those defined in Eq.~8!. In
deriving Eq.~28!, we neglected the power corrections for th
momentum scale betweenc2/bmax

2 andQ2, which is consis-
tent with neglecting the 1/Q2 term in the evolution equation
of theW̃i j (b,Q,xA ,xB). Substituting theK andG in Eq. ~28!
into the evolution equation in Eq.~5! and solving the evolu-
tion equation over the ln(Q2) from ln(c2/bmax

2 ) to ln(Q2), we
obtain the solution forb.bmax:

W̃i j
QZ~b,Q,xA ,xB!5W̃i j ~bmax,Q,xA ,xB!

3F̃ i j
NP~b,Q,xA ,xB ;bmax! ~29!

whereW̃i j is the leading power perturbative solution given
Eq. ~3!, and

F̃ i j
NP~b,Q,xA ,xB ;bmax!

5
W̃i j ~b,c/bmax,xA ,xB!

W̃i j ~bmax,c/bmax,xA ,xB!
expS 2 lnS Q2bmax

2

c2 D
3H g

a
@~b2!a2~bmax

2 !a#1
ḡK

c2
~b22bmax

2 !

2FKS c,asS c

bD D2KS c,asS c

bmax
D D G J D . ~30!

The nonperturbative functionF̃ i j
NP→1 asb→bmax. In deriv-

ing Eq. ~30!, we approximate them dependence of
gK„as(m)… in the small m region by 1

2 gK„as(m)…
'g(m2)2a with constant parametersg and a, and we ex-
pect a to be much less than 1. This approximation is
mimic a summation of a perturbative series in powers of
running coupling constant,„as(m)…m, with the scalem ex-
trapolated into the nonperturbative region@25#. Since
@K„c,as(c/b)…2K„c,as(c/bmax)…# in Eq. ~30! depends only
on b andbmax throughas , we can combine it with the firs
term and treat the powera and the coefficient as fitting pa
rameters. Since theb dependence ofW̃i j (b,c/bmax,xA ,xB)
depends on the evolution of parton distribution
ln@W̃ij(b,c/bmax,xA ,xB)/W̃ij(bmax,c/bmax,xA ,xB)# changes sign
when xA and xB are larger or smaller than the typicalx0.
Therefore, we can parametrize the ratio

W̃i j ~b,c/bmax,xA ,xB!

W̃i j ~bmax,c/bmax,xA ,xB!

'expH g3lnS xAxB

x0
2 D @~b2!b2~bmax

2 !b#J ~31!

with parametersg3 and b. In principle, the parametersg3
andb as well asx0 can depend on parton flavors because
the flavor dependence of parton evolutions. Since parton
tributions are near saturation at a very small moment
scale@26#, we expect bothg3 and b to be very small, and
therefore, this term can be neglected in comparison w
other terms in theF̃ i j

NP . Consequently, we can neglect th
1-9
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flavor dependence of theF̃ i j
NP . In conclusion, without losing

the characteristic features of theb dependence in Eq.~30!,
we can reparametrizeF̃ i j

NP as

F̃QZ
NP~b,Q,xA ,xB ;bmax!5expH 2 lnS Q2bmax

2

c2 D
3$g1@~b2!a2~bmax

2 !a#

1g2~b22bmax
2 !%J ~32!
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where the explicit ln(Q2bmax
2 /c2) dependence is derived from

the evolution equation in Eq.~5!. In Eq. ~32!, the b2 term
represents the leading power corrections to the renorma
tion group equations of the kernelsK andG, and the (b2)a

term is a consequence of extrapolating the leading po
part of the kernelsK andG to the small momentum scale 1/b
with all powers of running coupling constants resumm
@25#. The actual size ofg2 signals the size of dynamica
power corrections. The choices for the parametersg1 g2, and
a,1, will be discussed in Sec. IV.

We summarize this subsection by writing down our d
rived extrapolation@8#:
W̃QZ~b,Q,xA ,xB!5H W̃~b,Q,xA ,xB!, b<bmax,

W̃~bmax,Q,xA ,xB!F̃QZ
NP~b,Q,xA ,xB ;bmax!, b.bmax,

~33!
he

on

e

r-
r as

tive

in-
ct
en-

en
he

ish-
o-
with W̃(b,Q,xA ,xB) given in Eq.~2!, and the functionF̃QZ
NP

specified in Eq.~32!. Since the evolution equation in Eq.~5!
and the renormalization group equations in Eqs.~6! and ~7!
do not include any power corrections, the solution of the
equations,W̃(b,Q,xA ,xB) in Eq. ~33!, is valid only for b
,bc with bc;0.75 GeV21, which was estimated by settin
ln(1/bc

2);bc
2 . Therefore, the numerical value ofbmax in Eq.

~33! should not be larger thanbc in order to be consisten
with the approximation used to deriveW̃(b,Q,xA ,xB).

C. Corrections from the parton intrinsic transverse momentum

In Eq. ~32!, all b dependence inFQZ
NP is dynamical in

nature from the way we solve the evolution and renormali
tion group equations. We show in this subsection that th
could be corrections from theQ-independent intrinsicb de-
pendence to theb-space distributionW̃QZ(b,Q,xA ,xB) in
Eq. ~33!.

For an arbitrary functionF(b), we introduce

Wi j ~b,Q,xA ,xB![F~b!W̃i j ~b,Q,xA ,xB!, ~34!

and find that bothWi j (b,Q,xA ,xB) andW̃i j (b,Q,xA ,xB) can
be solutions of the same evolution equation in Eq.~5!. In
principle, the functionF(b) can also have a dependence
parton flavorsi and j. If we use theWi j (b,Q,xA ,xB) instead
of W̃i j (b,Q,xA ,xB) as our solution for the QCD resumme
b-space distribution in Eq.~2!, the functionF(b) should be
very close to 1 whenb is small (,bmax). Otherwise, its
inclusion will not be consistent with the leading power QC
calculation because the dominant physics in the smallb re-
gion has been included in the perturbatively calcula
W̃i j (b,Q,xA ,xB). But whenb is larger thanbmax, neither
the evolution equation nor the renormalization group eq
e

-
re

d

-

tions have any constraints on the functional form of t
F(b), as long as it is not a function ofQ.

Physically, however, we do not have an arbitrary functi
F(b). The inclusion of any functionF(b) should have a
correct physics origin. In the above derivation of th

W̃i j (b,Q,xA ,xB), we added the missing physics~power cor-
rections! to the QCD resummation formalism whenb
.bmax. However, we did not include the effect of the pa
tons intrinsic transverse momentum, which should appea

a part ofW̃i j (b,c/b,xA ,xB) — the boundary condition for
evolution equation. Whenb is small, the factorized formula

for theW̃i j (b,c/b,xA ,xB) in Eq. ~11! should be reliable. But
when b is larger thanbmax or 1/b is of the order of the
partons intrinsic transverse momentum, the perturba
QCD factorized formula requires a so-called ‘‘QT smearing’’
to be consistent with experimental data@27#. A Gaussian-like
smearing function is often used and does a good job in
terpreting the data@27#. In b space, we can include the effe
due to the partons nonvanishing intrinsic transverse mom
tum by choosing

F~b!5exp~2ḡ2b2!, ~35!

with a constantḡ2, which should be of orderLQCD
2 . Let

ḡ25LQCD
2 ; we estimateF(b)>0.99 forb,bmax, which has

literally no effect on the perturbative regime. However, wh
b@bmax, theF(b) is expected to have a sizable effect on t
low energy Drell-Yan data.

To include the corrections due to the partons nonvan
ing intrinsic transverse momentum, we modify our extrap
lation in Eq.~33! as follows:
1-10
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W̃QZ~b,Q,xA ,xB!5H W̃~b,Q,xA ,xB!, b<bmax,

W̃~bmax,Q,xA ,xB!FQZ
NP~b,Q,xA ,xB ;bmax!, b.bmax,

~36!

where the perturbatively calculatedW̃(b,Q,xA ,xB) is the same as that in Eq.~33!. The modified nonperturbative functionFQZ
NP

in Eq. ~36! is given by

FQZ
NP~b,Q,xA ,xB ;bmax!5expH 2 lnS Q2bmax

2

c2 D $g1@~b2!a2~bmax
2 !a#1g2~b22bmax

2 !%2ḡ2~b22bmax
2 !J . ~37!
s

n
-

d

e

e
e

th

io

.

no
in

rm

am

e

e

ed
r

ger

are

ed
r-

s
the
e-

er

,
re
ve

es

the
e
ct

h

-
d

r
en
Although the terms withg2 and ḡ2 have the sameb depen-
dence, they have different physics origins. The term withḡ2
represents the effect of the partons nonvanishing intrin
transverse momentum. The term withg2 comes from the
dynamical power corrections, and has an explicit depende
on Q. In deriving Eq.~36!, we neglected the intrinsic trans
verse momentum corrections exp(2ḡ2b

2) to W̃ in the pertur-
bative region, which is consistent with keeping only the lea
ing power QCD calculations in this region.

Our extrapolation defined in Eq.~36! clearly separates th
calculable perturbative region from the largeb nonperturba-
tive region. In addition, allb dependence in Eq.~37! has its
their own physics origins. The (b2)a dependence mimics th
summation of the perturbatively calculable leading pow
contributions to the kernelsK and G to all orders in the
running coupling constantas(m) with the scalem running
into the nonperturbative region@25#. Theb2 dependence is a
direct consequence of dynamical power corrections to
renormalization group equations of the kernelsK andG. We
did not include power corrections to the evolution equat
because of our choice ofbmax. We believe that whenQ2 is
much larger thanc2/bmax

2 , our extrapolation defined in Eq
~36! should give a good description of theb dependence in
the region not too much larger thanbmax, which is most
relevant to heavy boson production. Uncertainties for
including higher power corrections can be tested by study
the sensitivities on the parametersg2 andbmax @8#.

D. Extrapolation to low Q2

When we apply our extrapolation defined in Eqs.~36! and
~37! to the low Q2 Drell-Yan data, we might need a few
modifications. As discussed in Sec. II, the Fourier transfo
from b space toQT space is sensitive to the largeb region
whenQ2 andAS are both small. Therefore, theQT distribu-
tions at low energies are much more sensitive to the par
etersg2 andbmax or even higher power corrections.

For deriving our extrapolation, we systematically dropp
the power corrections of momentum scale between 1/bmax

2

and Q2. WhenQ2 is small, the leading power perturbativ
QCD calculations receive relatively larger 1/Q2 corrections,
in particular, type-2 power corrections. For example, a 1/Q2

term in the evolution equation in Eq.~5! results in a type-2
power correction to the perturbatively calculat
W̃(b,Q,xA ,xB) in Eq. ~36!. The size of the type-2 powe
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corrections resummed fromL2/Q2 to L2/(1/bmax
2 ) is pro-

portional to the numerical value ofbmax
2 L2, whereL2 is the

characteristic scale of the power corrections. For a lar
bmax, the perturbatively calculatedW̃(b,Q,xA ,xB) receives
a larger power correction.

On the other hand, the leading power contributions
resummed from ln(1/bmax

2 ) to ln(Q2), and are proportional to
the numerical value of ln(Q2). When Q2;MZ

2 at collider
energies, the ln(Q2) is much larger than thebmax

2 L2, and the
power corrections to the perturbatively calculat
W̃(b,Q,xA ,xB) can be neglected. However, at the fixed ta
get energies, bothQ2 and the leading power contribution
are much smaller. Therefore, the power corrections to
perturbatively calculated leading power contributions b
come relatively more important at fixed target energies.

Therefore, in order to reduce the relative size of the pow
corrections in the perturbative~or smallb) region, we need
to reduce the numerical value ofbmax. On the other hand
we prefer to keep thebmax as large as possible to have mo
contributions from the perturbative region in order to ha
more prediction than parameter fitting. Thebmax
50.5 GeV21 was proposed in Ref.@6#. For our numerical
results in Sec. IV, we will test the sensitivities on the choic
of bmax.

The ln(Q2bmax
2 /c2) dependence in ourFQZ

NP is a direct con-
sequence of dropping the type-2 power corrections to
evolution equation in Eq.~5!. Therefore, in order to preserv
the ln(Q2bmax

2 /c2) dependence in our extrapolation, we expe
to require a smallerbmax for a better description of the low
energy Drell-Yan data.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we numerically compare theQT distribu-
tions derived from theb-space resummation formalism wit
experimental data fromW andZ production at collider ener-
gies to the low energy Drell-Yan processes.

A. Numerical accuracy

One of the potential drawbacks of theb-space resumma
tion formalism is the difficulty of matching the resumme
and fixed-order predictions to theQT distributions at large
QT @1#. It was generally believed@1# that theb-space re-
summedQT distribution from Eq.~1! becomes unphysical o
negative whenQT is large. For example, a matching betwe
1-11
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the resummed and fixed-order calculations has to take p
at QT;50 GeV for W production when these two predic
tions cross over@14#. On the other hand, as we discussed
Sec. II, we expect the predictions derived from theb-space
resummation formalism in Eq.~1! to work better whenQT is
larger because~1! the b integral is dominated by the smalle
b region and~2! the perturbatively calculatedY term is larger
than the resummedW̃ term. We find that this puzzle wa
mainly caused by a lack of numerical accuracy of the Bes
function used to perform the Fourier transform in Eq.~17!.
As we show below, theQT distributions derived from the
b-space resummation formalism are smoothly consis
with data for all transverse momenta up toQ.

As a result of the oscillatory nature of the Bessel functio
a high numerical accuracy of theJ0(z) with z5QTb in Eq.
~17! is necessary for ensuring an accurate cancellation in
largez region for a reliableb integration. Becausez is pro-
portional to QT , the number of oscillations of the Bess
function strongly depends on the value ofQT for the same
range ofb. For example, whenbP(0,2) GeV21, J0(QTb)
crosses zero 0, 6, and 63 times forQT51, 10, and 100 GeV,
respectively. It is clear that numerical accuracy of the Bes
function is extremely important for the largeQT region. We
noticed that most work published in the literature used so
kind of asymptotic form to approximate the Bessel functi
whenz5QTb is large. We find that the use of an asympto
form for the Bessel function is a major source of the unc
tainties observed for the largeQT region. Instead of using an
asymptotic form, we use the following integral form for th
Bessel function:

J0~z!5
1

pE0

p

cos@zsin~u!#du. ~38!

The great advantage of using an integral form is that we
control the numerical accuracy of the Bessel function by
proving the accuracy of the integration in Eq.~38!. One can
test the numerical accuracy of the Fourier transform in
~17! by using functions whose Fourier transform can be c
ried out analytically. In view of the nonperturbativeb depen-
dence in the largeb region, we used two function
exp(2sb) and exp(2b2/s2) to test the numerical accuracy o
the b integration in Eq.~17!. Theb integration for these two
functions can be carried out analytically. Having an analy
cal solution inQT space, we can study the convergence a
numerical accuracy of the Fourier transform at differentQT
by varying the parameters of these two functions. We find
that by using the integral form of the Bessel function, t
numerical integration overb defined in Eq.~17! is very ac-
curate for a wide range ofs and QT , and the accuracy is
only limited by the precision of variables used in a compu
programming language.

B. QT distributions of W and Z production

In this subsection, we compare the predictions of
b-space resummation formalism with Fermilab data onW
andZ production, and quantitatively demonstrate the exc
lent predictive power of theb-space resummation formalism
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at collider energies@8#. We show that theb-space resummed
QT distributions are very insensitive to the parameters in
nonperturbativeFQZ

NP .
Since we are not interested in a detailed fitting to the d

in this paper, we did not perform any simulation on fina
state cuts to improve the theory curves in the following plo
In all plots, CTEQ4M parton distributions are used, and
theY term in Eq.~1!, we use1

2 AQ21QT
2 for the factorization

and renormalization scalem in Eq. ~15!. For W and Z pro-
duction, a fixed range of the rapidity was integrated an
narrow width approximation was used forQ2 integration
@28#.

We test the sensitivities on the parameters inFQZ
NP by first

settingg250 andḡ250 ~no ‘‘power’’ corrections!. We then
fix g1 and a in Eq. ~37! by requiring the first and secon
order derivatives of theW̃ to be continuous atb5bmax
50.5 GeV21, and plot our predictions~solid lines! to the
QT distributions ofZ andW production at Tevatron in Figs
7 and 8, respectively. In Fig 7, we plot theds/dQT of e1e2

pairs as a function ofQT atAS51.8 TeV. The data are from
the CDF Collaboration@29#. Theory curves (Z only! are
from Eq. ~1! with W̃ given in Eq.~36!. The same as in Ref
@29#, an overall normalization 1.09 was used. In Fig. 8, w
plot ds/dQT for W production with the samebmax andg2.
The data forW production are from the D0 Collaboratio
@30#. For the theory curves, we integrate the rapidity of theW
particle from23 to 13 and set the overall normalization t
be 1. From Figs. 7 and 8, it is clear that the QCD predictio

FIG. 7. Comparison between theb-space resummedQT distri-
bution and CDF data@29#. The inset shows theQT,20 GeV re-
gion.

FIG. 8. Comparison between theb-space resummedQT distri-
bution and D0 data@30#. The inset shows theQT,20 GeV region.
1-12
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ROLE OF THE NONPERTURBATIVE INPUT IN QCD . . . PHYSICAL REVIEW D63 114011
from theb-space resummation formalism are consistent w
the data for allQT,Q.

We notice that the theory curves in Figs. 7 and 8
slightly below the data at largeQT . We believe that it is
because we have only the leading order contribution to thY
term in Eq.~1!. At largeQT , theY term dominates. Similar
to the fixed-order perturbative calculations, the next-
leading order contribution will enhance the theoretical p
dictions@31#. In addition, the inclusion of the virtual photo
channel and its interference with theZ channel should shift
the peak of the theory curve to a slightly largerQT value and
make the theory curves closer to the data@12,29#.

We now test the theory curves’ sensitivities on the para
eters ofFQZ

NP . Since Q is fixed to the mass of the vecto

boson and the terms withg2 and ḡ2 have the sameb depen-
dence, we can simplify the following discussion by rewritin
FQZ

NP in Eq. ~37! for W andZ production as follows@8#:

FWZ
NP~b,Q,xA ,xB ;bmax!

5exp$2g1@~b2!a2~bmax
2 !a#2g2~b22bmax

2 !%.

~39!

We let g2 in Eq. ~39! be a fitting parameter for any give
value ofbmax and fix g1 anda by the derivatives. Although
the fitting prefersg2;0.8 GeV2, the QT distributions are
extremely insensitive to the choices ofbmax and g2. The
total x2 are very stable forbmaxP(0.25,0.8) GeV21 and
g2P(0,1.6) GeV2. In Figs. 7 and 8, we also plot the theo
curves ~dashed lines! with g250.8 GeV2 ~the best fitting
value!. Non-vanishingg2 gives a small improvement to th
QT distributions at smallQT . We then vary the value ofa in
Eq. ~39! by requiring only the first order derivative to b
continuous atb5bmax, and find equally good theoretica
predictions, except very mild oscillations in the curves
very largeQT due to the Fourier transform of a less smooth
b-space distribution. It is well known that whenQT is larger,
any small kink in theb-space distributions transforms int
oscillations in theQT distributions due to more rapid osci
lations from the Bessel functionJ0(QTb). The observed in-
sensitivity onbmax, g2, and a is a clear evidence that th
b-space resummation formalism is not sensitive to the po
corrections at collider energies. That is, at collider energie
direct extrapolation of the leading power contributions to
largeb region@the (b2)a term# represents the most relevantb
dependence at largeb.

To further test the sensitivities on the nonperturbat
FNP, we introduce a cutoffbc to the b-integration in Eq.
~17!,

w~bc ,QT![
1

2pE0

bc
dbbJ0~QTb!W̃QZ~b,Q,xA ,xB!,

~40!

and define the ratio

R~bc ,QT![
w~bc ,QT!

w~bc5`,QT!
. ~41!
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Because of the oscillatory nature of the Bessel function,
expect the ratioR(bc ,QT) to oscillate around 1 and eventu
ally converge to 1 asbc increases. In Fig. 9, we plot the rati
R(bc ,QT) as a function ofbc for Z production at different
values ofQT . In plotting the theory curves in Fig. 9, we se
AS51.8 TeV, bmax50.5 GeV21, andg250.8 GeV2. For
QT50, 5, 10, and 20 GeV, as shown in Fig. 9, th
R(bc ,QT) quickly reaches 1 atbc;1/QT as bc increases.
Even atQT50, R(bc ,QT) is close to 1 within a few percen
at bc;2 GeV21. It tells us that the physics of theQT dis-
tribution is dominated by the perturbative~or small b) re-
gion. However, as a result of the oscillatory nature of t
Bessel function, theb integral for the Fourier transform in
Eq. ~1! converges roughly at a common value ofbc
;2 GeV21, which is larger thanbmax. That is, the nonper-
turbative extrapolation to the largeb region is necessary to
ensure the correct cancellations in the largeb region. The
small dependence on the parametersg2 andbmax shows that
our extrapolation defined in Eq.~37! catches most of the
physics in this region, and higher power corrections are
important.

In addition, we show the quantitativeg2 dependence of
the b-space resummedQT distributions by introducing the
following ratio:

Rs~QT ,g2![
ds~g2!

dQ2dydQT
2 Y ds~g2b

!

dQ2dydQT
2

, ~42!

where ds/dQ2dydQT
2 is defined in Eq. ~1!, and g2b

50.8 GeV2 is the best fit value forg2. In Fig. 10, we plot
the ratioRs(QT ,g2) in Eq. ~42! as a function ofQT for Z
production at the Tevatron energy. The solid line cor
sponds tog252g2b

, while the dashed line has theg2

5 1
2 g2b

. For almost allQT,Q, the deviation of theb-space

FIG. 9. RatioR(bc ,QT) in Eq. ~41! as a function ofbc for Z
production at Tevatron energy:QT50 GeV ~solid line!, QT

55 GeV ~dashed line! in the top plot;QT510 GeV ~solid line!,
QT520 GeV ~dashed line! in the bottom plot.
1-13
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JIANWEI QIU AND XIAOFEI ZHANG PHYSICAL REVIEW D 63 114011
resummedQT distributions at the Tevatron energy is le
than 2% when we changeg2 from half to twice the best fitg2
value. The small irregularity forQT.50 GeV is due to the
fact that the calculated cross section has about half of a
cent numerical uncertainty in this region, which is of t
same order as the deviation. We find that the deviation at
LHC energy is much less than 1%. That is, the Fourier tra
form from b space toQT space is completely determined b
the perturbatively calculatedb-space distribution plus our ex
trapolation, which is totally fixed by the continuity atb
5bmax. Therefore, we conclude that theb-space resummed
QT distributions for vector boson production at collider e
ergies have excellent predictive power.

C. Drell-Yan QT distributions at low energies

As discussed in Sec. II, the Drell-YanQT distributions at
fixed target energies are much more sensitive to the non
turbative input at largeb. The predictive power of the
b-space resummation formalism may be limited. To expl
the predictive power of theb-space resummedQT distribu-
tions for the low energy Drell-Yan process, we compare
low energy Drell-Yan data with the predictions from the CS
b-space resummation formalism plus the extrapolation
fined in Eq.~36!. We use a subset of available data to fix t
parameters in the nonperturbativeFQZ

NP , and then, we com-
pare the predictions calculated by using these parame
with the rest of the data.

When QT<4 GeV, the Bessel function does not ha
any oscillation in the perturbative region (b,bmax). A less
smooth connection of theW̃(b,Q,xA ,xB) at b5bmax does
not produce any apparent oscillation for theQT distribution
in this region. Therefore, we do not have to require the
rivative of W̃QZ(b,Q,xA ,xB) in Eq. ~36! to be continuous a
b5bmax. In this subsection, we treatg1 , g2 , ḡ2, anda in
the FQZ

NP as fitting parameters. In order to maximize the p
dictive power of theb-space resummedQT distributions, we
try to fit the data with the least number of parameters, a
then add more parameters to see the improvements. By g

FIG. 10. Ratio Rs(QT ,g2) in Eq. ~42! at Q5MZ and AS
51.8 TeV as a function ofQT : g252g2b

~solid line! and g2

5(1/2)g2b
~dashed line!.
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through this fitting procedure, we can learn the importance
each parameter and the corresponding physics.

We choose the following Fermilab data to fit the para
eters in theFQZ

NP : QP(5,6) GeV andQP(7,8) GeV from
E288 @16#, and QP(7,8) GeV andQP(10.5,11.5) GeV
from E605@32#. We have a cut on the transverse momentu
QT<1.4 GeV, which is the same as that used in Ref.@13#.
Since theg2 dependence is very small at collider energie
we try to fit these Drell-Yan data with two parameters,g1
anda, plus two overall normalizations for two experiment
Using theFQZ

NP in Eq. ~37! andbmax50.5 GeV21, we obtain
a convergent fit with a totalx2578 for 28 data points. The
corresponding numerical values of the fitting parameters,g1 ,
a, and two overall normalization constants for these t
experiments are given in Table I. The largex2 clearly indi-
cates that power corrections~or terms proportional tob2 in
the FQZ

NP) are very important for understanding the low e
ergy data.

We now include theb2 dependence of theFQZ
NP into the fit.

In order to use a minimum number of fitting parameters,
first combine bothg2 and ḡ2 terms and define

g2 lnS Q2bmax
2

c2 D 1ḡ2[g. ~43!

We approximate theg as a constant fitting parameter. Wit
three fitting parameters,g1 , a, andg, plus two overall nor-
malizations for two experiments, we fit the same 28 d
points for bmax50.5 GeV21. We obtain a much better fi
with a totalx2532, and the corresponding fitting paramete
are given in Table I. Usingbmax50.5 GeV21 and the nu-
merical values of the fitting parameters in Table I, we fi
that theb2 term in FQZ

NP is less than the (b2)a term for b as
large as b;2.4 GeV21 (;2.0 GeV21 for bmax
50.3 GeV21). It indicates that although the power corre
tions ~the b2 dependence! are important, the extrapolatio
from the leading power contributions@the (b2)a dependence
in theFQZ

NP# is crucial for understanding the low energy da
As we discussed in Sec. III D, we can test the size

power corrections to the perturbative region (b,bmax) by
studying thebmax dependence. We find that the fitting p
rametera is extremely stable when we change thebmax, and
it prefers a numerical value arounda;0.15. This can be
understood as follows. The parametera was introduced in
Sec. III B to approximate them2 dependence when we ex

TABLE I. Nonperturbative parameters in theFQZ
NP obtained by

fitting 28 data points on Drell-YanQT distributions at the fixed
target energies.

bmax

~GeV21! x2 a
g1

~GeVa!
g

~GeV2! NE288 NE605

0.5 78 0.65 0.4 0 0.85 0.9
0.5 32 0.15 1.14 0.19 0.88 0.93
0.4 27 0.15 1.06 0.23 0.93 0.98
0.3 24 0.15 0.92 0.28 0.97 1.00
1-14
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ROLE OF THE NONPERTURBATIVE INPUT IN QCD . . . PHYSICAL REVIEW D63 114011
trapolate the leading power contributions toS(b,Q) into the
smallm2 region@25#. Therefore, the parametera should only
depend on the effective anomalous dimensions@resummed to
all orders in the running coupling constant,as(m)#, and
should not be sensitive to the numerical value of thebmax.
We then fixa50.15 and re-fit those 28 data points with tw
parameters,g1 and g, plus two overall normalization con
stants.

We find a smooth reduction of the totalx2 when we de-
crease thebmax to as low as 0.3 GeV21. Forbmax50.5, 0.4,
and 0.3, we obtain convergent fits with the totalx2532, 27,
and 24, respectively. The corresponding fitting parame
are listed in Table I. Although the totalx2 is still very stable
when we further reducebmax, we stop at bmax
50.3 GeV21 because it is difficult to distinguish the pertu
bative prediction from the parameter fitting whenbmax is too
small. We confirm from the fitting results listed in Table
that the (b2)a term in our extrapolation is very important an
it dominates the transition region between the perturba
calculation and the nonperturbative extrapolation. We le
that the overall normalizations, which are needed to fit
different experimental data sets, have a strong depend
on thebmax. As shown in Table I, the overall normalization
are driven to unity asbmax decreases. That is, if we reduc
the relative size of the power corrections in the perturba
region (b,bmax) by a reduction ofbmax, both data sets use
in the fit are in an excellent agreement with each other.

In order to show the quantitative size of the power c
rections~the b2 term in theFQZ

NP) at low energy, we replot

Fig. 10 at Q56 GeV andAS527.4 GeV in Fig. 11. In
plotting Fig. 11, we use the ratioRs(QT ,g2) defined in Eq.
~42! with the g2 dependence replaced by theg dependence
defined in Eq.~43!. The g2b

in Eq. ~42! is replaced by the

best fit valuegb . We choosebmax50.3 GeV21 and the cor-
responding fitting parameters:a, g1, andg given in Table I.
The best fit valuegb50.28 GeV2. In Fig. 11, the solid line
corresponds tog52gb while the dashed line hasg5 1

2 gb .
For QT from 0 to 2 GeV, theb2 dependence can change t
b-space resummedQT distributions by as much as 80% whe
the parameterg changes from half to twice of the best fi

FIG. 11. Same as that in Fig. 10 atQ56 GeV and E288 col-
lision energy.
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value. In contrast to the 2% deviation at collider energies
shown in Fig. 10, the large variation shown in Fig. 11 furth
confirms that the power corrections are very important
describing the Drell-Yan data at the fixed target energ
@33#.

To explore the predictive power of theb-space resummed
QT distributions at fixed target energies, we compare
resummedQT distributions with existing Drell-Yan data in
Figs. 12, 13, and 14. All theory curves in these figures
calculated with our extrapolation defined in Eq.~36! and
bmax50.3 GeV21. The nonperturbative extrapolation to th
largeb region:FQZ

NP is defined in Eq.~37! with theg2 andḡ2

terms combined as in Eq.~43!. We fix the parametera to be
0.15, and use the fitted valuesg150.92 GeVa and g
50.28 GeV2 from Table I. Although we only used 28 dat
points withQT<1.4 GeV in our fits for determining the two
parameters,g1 andg, we plot both theory curves and data fo
a much enlarged phase space in Figs. 12, 13, and 14. We
data withQT as large as 2 GeV at different values ofQ in
order to explore the predictive power of the theoretical c
culations. In Fig. 12, we compare the theoretical calculatio

FIG. 12. Comparison between theb-space resummedQT distri-
bution and Fermilab E288 data@16#. The overall normalization for
the theory curves:NE28850.97.

FIG. 13. Comparison between theb-space resummedQT distri-
bution and Fermilab E605 data@32#. The overall normalization for
the theory curves:NE60551.0.
1-15
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JIANWEI QIU AND XIAOFEI ZHANG PHYSICAL REVIEW D 63 114011
with Fermilab E288 data atAS527.4 GeV@16#. The theory
curves are multiplied by an overall normalization const
NE28850.97 as listed in Table I, which is different from wh
was found in Ref.@13#. From top to bottom in Fig. 12, the
four curves along with four data sets correspond toQ
P(5,6) GeV, (6,7) GeV, (7,8) GeV, and (8,9) GeV, r
spectively. Two of the four data sets,QP(5,6) GeV and
(7,8) GeV with QT,1.4 GeV, were used in our fitting
That is, only 14 of the 40 data points plotted in Fig. 12 we
used in the fitting. Clearly, for allQT up to 2 GeV, the
b-space resummedQT distributions are in excellent agree
ment with the data from E288. In Fig. 13, we plot the r
summedQT distributions along with Fermilab E605 da
@32#. The overall normalization constant for E605 is 1. E
actly the same values ofg1 andg are used for calculating th
theory curves in Figs. 12 and 13. In Fig. 13, from top
bottom, the four curves along with four data sets corresp
to QP(7,8) GeV, (8,9) GeV, (10.5,11.5) GeV, an
(13.5,18.0) GeV, respectively. Similar to E288 data, o
two of the four data sets, QP(7,8) GeV and
(10.5,11.5) GeV withQT,1.4 GeV, were used in our fit
ting. Although only 14 of the 40 data points in Fig. 13 we
used in the fitting, theb-space resummedQT distributions
are in a good agreement with all 40 points, except a f
points withQP(7,8) GeV. Actually, seven of the ten da
points in this set withQP(7,8) GeV were used in our fit
ting. However, because of the relatively large error ba
these data points did not have enough weight in the fitti
Nevertheless, the theory curves calculated with two fitt
parameters,g1 andg, give a very good description of the low
energy Drell-Yan data in Figs. 12 and 13. In particular, t
overall normalization constants for both experiments
very close to the unity.

As pointed out in Ref.@13#, the b-space resummedQT
distributions have to multiply a large overall normalizatio
constant in order to be consistent with the Fermilab E7
data. In Fig. 14, we plot theb-space resummedQT distribu-
tions along with the E772 data@34#. Three data sets from to
to bottom correspond toQP(5,6) GeV, (8,9) GeV, and
(11,12) GeV, respectively. The theory curves are calcula
with the same formula and parameters used to calculate

FIG. 14. Comparison between theb-space resummedQT distri-
bution and Fermilab E772 data@34#. The overall normalization for
the theory curves:NE77251.6.
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curves in Figs. 12 and 13, except a much larger overall n
malization constantNE77251.6, which is consistent with
what was found in Ref.@13#. Although none of these dat
points in Fig. 14 were used in our fitting, the theory curv
describe the data well. Without plotting another figure,
state that theb-space resummedQT distributions are also
consistent with the R209 data@17#.

In order to get a feeling on the relative size of the con
butions from the partons intrinsic transverse momentum

the dynamical power corrections, we separate theg2 and ḡ2

terms in Eq.~43!. With bmax50.3 GeV21 and a fixeda
50.15, we perform a new fit with three fitting paramete

g1 , g2, andg2̄. For the same 28 data points, we did not g
much improvement in the totalx2. This result should be
expected because~1! we already have an excellent fit with

x2/NDF;1 wheng2 and ḡ2 terms is combined, and~2! the
range ofQ values in our 28 data points are limited. Neve

theless, the fitting result indicates that theg2 term and theḡ2

term are roughly equal. That is, the effect of the parto
intrinsic transverse momentum, which isQ independent, is
as important as that of the dynamical power corrections
the fixed target energies.

From all three figures, in Figs. 12, 13, and 14, we co
clude that the CSS resummation formalism in combinat
with our derived extrapolation provides a very good descr
tion of the Drell-Yan QT distributions at the fixed targe
energies. Using only 28 data points withQT,1.4 GeV to fix
the parameters,g1 andg, our numerical results are consiste
with over 100 data points from three experiments. In parti
lar, except the E772 data, the overall normalization consta
between the theory and the data are extremely close to
unity.

To conclude this subsection, we demonstrate the con
gence and stability of the Fourier transform at the fixed t
get energies by plotting the ratioR(bc ,QT) as a function of
bc in Fig. 15. The ratioR(bc ,QT), defined in Eq.~41!, is
evaluated atQ56 GeV andAS527.4 GeV. For calculat-

ing the resummedb-space distributionW̃QZ(b,Q,xA ,xB),
we choosebmax50.3 GeV21 and the corresponding fitting
parameters listed in Table I, which are the same as th
used for plotting theory curves in Figs. 12, 13, and 14.
Fig. 15, we plot the ratioR(bc ,QT) for four different QT

values: 0, 0.5, 1.0, and 2.0 GeV. The ratioR(bc ,QT) quickly
converges to 1 atbc;3 GeV21. By comparing Fig. 9 and
Fig. 15, we conclude that the Fourier transform for t
b-space resummedQT distributions converges atbc; a few
GeV21, and therefore, higher power corrections are not v
important. On the other hand, because the Fourier transf
converges in the nonperturbative region, a reliable extra
lation from the perturbatively calculatedb-space distribution
at smallb to the nonperturbative largeb region is necessary
and crucial in order to be consistent with experimental da
From the consistency shown in Figs. 12, 13, and 14,
further conclude that the functional dependence on the
pact parameterb, introduced in ourFQZ

NP , catches the correc
physics.
1-16
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D. Conclusions

In conclusion, we have quantitatively investigated the r
of the nonperturbative input in the CSSb-space QCD resum
mation formalism for the Drell-YanQT distributions at both
collider and fixed target energies. We find that the predict
power of the CSS resummation formalism has a strong
pendence on the collision energyAS. TheAS dependence is
a consequence of the steep evolution of parton distribut
at smallx, and it significantly improves the predictive pow
of the CSS formalism at collider energies, in particular,
the LHC energy. We show that although the resummedQT
distributions are mostly determined by the perturbatively c
culatedb-space distributions at smallb, a reliable extrapola-
tion to the nonperturbative largeb region is necessary to
ensure the correct cancellations of theb integration whenb
.1/QT . By adding power corrections to the renormalizati
group equations in the CSS resummation formalism, we
rive a new functional form in Eq.~36! to extrapolate the
perturbatively resummedb-space distributions to the largeb
region. We demonstrate that at collider energies, the C
resummation formalism with our extrapolation has an exc
lent predictive power forQT distributions ofW and Z pro-

FIG. 15. RatioR(bc ,QT) as a function ofbc for Drell-Yan
production atQ56 GeV andAS527.4 GeV:QT50 GeV ~solid
line!, QT50.5 GeV ~dashed line! in the top plot; QT51 GeV
~solid line! QT52 GeV ~dashed line! in the bottom plot.
p

,
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duction for QT as large asQ. Because of the smooth re
summed QT distributions, the matching between th
resummed and fixed-order calculations at largeQT is less
ambiguous.

In this paper, we have explicitly shown that the pow
corrections are very important for the resummedQT distri-
butions at the fixed target energies. With only two para
eters:g1 andg, obtained by fitting 28 data points, the calc
lated QT distributions using the CSS formalism plus o
extrapolation are in a good agreement with all existing da
In our derived extrapolation in Eq.~36!, the resummed
b-space distributions forb,bmax do not include perturbative
power corrections, while the nonperturbative extrapolat
have both leading power contributions as well as the po
corrections. Therefore, by choosing a smallerbmax, we ef-
fectively move the power corrections to the relatively smalb
region. We find that by reducingbmax, the overall normal-
ization constants for E288 and E605 data sets are drive
the unity. This result not only shows a good consisten
between different experiments, but also tells us that
power corrections are very important for describing the l
energy Drell-Yan transverse momentum distributions.

Finally, we argue that the CSSb-space resummation for
malism should provide a reliable prediction for Higgs bos
production at LHC energy. AtAS514 TeV, we expect the
partonic subprocess,g1g→H1X, to dominate Higgs boson
production when the Higgs boson massMH;115 GeV.
From the fact thatxA;xB;0.008 are small and the gluo
distribution has a steeper evolution than the quark distri
tion at small x, we expect the AS dependence of
W̃(b,Q,xA ,xB) to move the saddle pointb0 to a value much
smaller than thebSP50.37 estimated by using Eq.~16!, and
most likely, even smaller than 0.13 shown in Fig. 3~b! for Z
production at LHC energy. Therefore, theb-space QCD re-
summation formalism should be valid for predicting theQT
distribution of the hadronic production of Higgs bosons
LHC energy.
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