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Pion and kaon vector form factors
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We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs
calculated from chiral perturbation theory (xPT) allowing the inclusion of explicit resonance fields. The
method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are
then matched with the one loopxPT results. A very good description of experimental data is accomplished for
the vector form factors up toAs<1.2 GeV beyond which multiparticle states play a non-negligible role. For
theP-wavepp phase shifts the agreement with data stands even higher up toAs<1.5 GeV. We also consider
the isospin breaking effects due to thev-r mixing as a perturbation to the previous results. In addition the low
and resonance energy regions are discussed in detail and for the former a comparison with one and two loop
xPT is made showing a remarkable coincidence with the two loopxPT results.
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I. INTRODUCTION

The study of the pion vector form factor is an interesti
problem mainly because pions are the lightest hadrons
hence they are common products in many experiments
that a good description of the pion electromagnetic form f
tor is often required. Many of the studies of this proble
deal with some kind of modified vector meson dominan
~VMD ! @1# when taking into account the effects of unitari
and final state interactions. This was done a long time ag
Ref. @2# and it was found that these effects show up not o
as a modification of the barer propagator but also as
change in its bare couplings. Other more phenomenolog
parametrizations are the ones in Refs.@3,4#, which basically
account for the dressing of the barer propagator and allow
one to add more resonances and parameters in order to fi
data up to high energies, hiding in this way extra effects
the presence of multiparticle channels, e.g., 4p, vp, etc.
These latter kinds of expressions are the ones comm
used in many experimental papers in order to fit their d
and determine the resonance content.

It is well known that the low-energy effective theory o
QCD is chiral perturbation theory (xPT) @5–7#. Although
this is a systematic way to express the QCD Green funct
in terms of a power momentum expansion, unfortunately
is valid only for low energies. Hence, if one is interested
higher energies nonperturbative schemes are unavoid
Nevertheless, one should demand that, when used at
energies, these nonperturbative methods reproduce the
energy constraints of QCD given by thexPT expansion.

The approach described in Secs. II and III reproduces
one loopxPT pion and kaon vector form factors@7# and, as
we show below, it is also appropriate to study higher en
gies by satisfying unitarity in coupled channels and incor
rating explicit resonance fields@8#. In Ref. @8# it is discussed
how, at lowest order in the chiral expansion, resonances
spin<1 couple with pseudoscalars (p, K, h) and with elec-
troweak currents. It is also shown how to connect with
0556-2821/2001/63~11!/114009~12!/$20.00 63 1140
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standard VMD picture, when taking into account resu
from largeNc and QCD high-energy constraints.

Other nonperturbative approaches that match with the
loop xPT vector pion form factor are given in Refs.@9–11#.
In Refs. @12,13# the matching is given up to the two loo
SU(2)3SU(2) xPT pion vector form factor first calculate
numerically in Ref.@13# and then analytically in Ref.@14#.
While the work of Ref.@13# is only interested in assessin
the relevance of higher order loops at low energies,
works of Refs.@9–12# make predictions at higher energie
although all of them take into account only elastic unitari
Reference@9#, similar to Ref.@13#, makes use of an Omne`s
representation1 @15# but allowing for the explicit presence o
the r resonance@8#. In Ref. @11# the pion vector form factor
is studied by solving the Bethe-Salpeter equation mak
some assumptions on the off shell extrapolation of the a
plitudes and using only thepp channel. On the other hand
in Refs.@10,12# @0,1# and @0,2# Padéapproximants from the
xPT results are used~see also the discussions in Ref
@13,16# with respect to the former references!. Finally in
Refs. @17,18# an Omne`s parametrization, assuming elast
unitarity, is implemented using directly the experimentaI
51, P-wavepp phase shifts.

In our work the isospin limit is taken but we shall als
estimate the effect of the isospin violatingv-r mixing in the
pion vector form factor. This contribution manifests itself
a very narrow energy range to the right of the peak of thr
mass distribution in accordance with the mass and sm
width of thev ~see Fig. 7!. Other works in which this effect
has already been discussed are Refs.@4,19,20#. On the other
hand, when comparing our results for the vector pion fo
factor in ther region with the experimental data, we sha

1Although in the end some of the analytical properties of the fo
factor are lost since only the real part of the exponent of the ex
nential is kept.
©2001 The American Physical Society09-1
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also take data fromt decays@21# in which only theI 51 part
of the vector pion form factor contributes. Finally, in Re
@22# the isospin breaking effects in the pion form factors
the low-energy regime are studied at next-to-leading orde
SU(2)3SU(2) xPT.

II. TREE LEVEL

We will evaluate the tree level vector form factors a
scattering amplitudes making use of the lowest orderxPT
Lagrangian@7# plus the chiral resonance Lagrangians@8#.
These tree level amplitudes will be leading in largeNc ,
while nonleading contributions in this counting will be ge
erated through the unitarization process to be discusse
the next section.

In the case of the vectorpp and KK̄ form factors we
have to evaluate the diagrams depicted in Fig. 1. The co
butions from the diagram of Fig. 1~b! and the ones from the
wave function renormalization, Fig. 1~c!, cancel each othe
due to charge conservation. A similar set of diagrams
been considered in Ref.@24# in order to study the coupled
Kp, Kh, and Kh8 scalar form factors@25#. In the former
reference, although restricted to the study of the associ
S-wave I 51/2 meson-mesonT matrix, the requirement tha
the form factors vanish ats→` is used to reduce the numbe
of free parameters.

On the other hand, we will assume ideal mixing betwe
thev8 andv1 resonances, so that thev andf are given by

v5
2

A6
v11

1

A3
v8 ,

f5
1

A3
v12

2

A6
v8 ~1!

FIG. 1. Diagrams considered for calculating the tree level fo
factors, Eqs.~2!. From left to right:~a! xPT lowest order.~b! Octet
Sand singletS1 scalar resonance exchanges coupled to the vacu
~c! Wave function renormalization from the exchange of sca
resonances, and~d! exchange of vector resonancesr, v, andf. ~a!
is calculated from Ref.@7# and the rest from Ref.@8#.
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r
in

in

ri-

s

ed

n

and we will work explicitly in terms of thev andf mesons.
In this way we will be able to distinguish between the d
ferent physical masses of thev andf resonances. Note tha
at the order considered in Ref.@8# vector singlet resonance
v1 do not couple to photons or pseudoscalars.

The resulting tree level vector form factors for thep1p2,
K1K2, andK0K̄0 systems are

Fpp
t ~s!511

FVGV

f 2

s

M r
22s

FK1K2
t

~s!511
FVGV

2 f 2
sF 1

M r
22s

1
1

3

1

Mv
2 2s

1
2

3

1

Mf
2 2s

G ,

FK0K̄0
t

~s!5
FVGV

2 f 2
sF2

1

M r
22s

1
1

3

1

Mv
2 2s

1
2

3

1

Mf
2 2s

G ,

~2!

whereFV measures the strength of the photon-vector re
nance vertex,GV the same but for the pseudoscalar-vec
resonance ones, ands is the usual Mandelstam variable. F
nally, M r , Mv , andMf refer to the bare masses of ther,
v, andf resonances andf is the pion decay constantf p in
the chiral limit @7#.

One can proceed analogously for the evaluation of
tree level scattering amplitudes between the former state
Ref. @26# similar tree level amplitudes were already calc
lated in the same way for studying the elasticpp and Kp
scattering. In addition, in Ref.@24# theKh andKh8 channels
were also included to study theKp scattering up to 2 GeV.
The corresponding generic set of diagrams is indicated
Fig. 2. However, out of these diagrams we are not going
consider explicitly here those corresponding to the excha
of resonances in the crossed channels, Fig. 2~e!. The reason
is twofold: ~1! they are not necessary to match with the o
loop xPT results for theSU(3) vector form factors@7# since
they give rise to higher orders;~2! because of VMD one
expects a good description of the scattering amplitudes in
physical region when including thes-channel exchange o
the vector resonances together with unitarity. With respec
the second point one has to take into account that in
chiral Lagrangians@7,8# the standard picture of VMD@23# is
only accomplished when considering the lowest orderxPT
contribution together with the explicit resonance fiel
@27,9#. Furthermore, when making a dispersive analysis

m.
r

m.

FIG. 2. Diagrams considered for calculating the tree level amplitudes, Eqs.~3!. ~a! xPT lowest order.~b! Wave function renormalization

from the exchange of scalar resonances.~c! Tadpolelike diagram with the exchange of scalar resonances coupled to the vacuu~d!
Exchange of vector resonancesr, v, andf, in thes channel.~e! Crossed exchange of vector and scalar resonances.~a! is calculated from
Ref. @7# and the rest from Ref.@8#.
9-2
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PION AND KAON VECTOR FORM FACTORS PHYSICAL REVIEW D63 114009
the vector form factors, only the scattering amplitudes in
physical region are involved~see the next section!.

The resultingP-wave2 partial wave amplitudes are

T~s!p1p2,p1p25
2

3

pp
2

f 2 F11
2GV

2

f 2

s

M r
22s

G ,

T~s!p1p2,K1K25
pppK

3 f 2 F11
2GV

2

f 2

s

M r
22s

G ,

T~s!p1p2,K0K̄052T~s!p1p2,K1K2,

T~s!K1K2,K1K25
2

3

pK
2

f 2 F11
GV

2

2 f 2

s

M r
22s

1
GV

2

2 f 2

s

Mv
2 2s

1
GV

2

f 2

s

Mf
2 2s

G ,

T~s!K0K̄0,K0K̄05TK1K2,K1K2~s!,

T~s!K1K2,K0K̄05
pK

2

3 f 2 F11
GV

2

f 2

s

Mv
2 2s

1
2GV

2

f 2

s

Mf
2 2s

2
GV

2

f 2

s

M r
22s

G . ~3!

By writing the lowest order amplitudes in terms off, there is
a cancellation between the contributions of the wave fu
tion renormalization terms, Fig. 2~b!, those of the exchang
of the scalar resonances coupled to the vacuum, Fig. 2~c!,
and theO(p4) crossed channel scalar contributions absor
in the O(p4) xPT term proportional to theL5 counterterm
@7,8#, Fig. 2~e!. Consistently with our approach of workin
the largeNc leading contributions from Ref.@7#, we have
taken the masses of the scalar singlet and octet equal an
have also made use of the relation between their coupl
deduced in Ref.@8#. In this way, for instance, one has th
L45L650 consistently with phenomenology@28# and with
the fact that both are subleading counterterms in largeNc .

III. UNITARIZATION

We will deduce our final expressions for the form facto
after deriving those of theT matrix. The latter will be ac-
complished by unitarizing the tree level scattering amp
tudes in Eqs.~3! following Ref. @27#. In this reference the
most general structure of a partial wave amplitude when
unphysical cuts are neglected was deduced. It was
shown that this structure is the one required in order to ma
with the tree level amplitudes calculated from the low

2A partial wave amplitude with angular momentumL is defined to
be 1

2 *21
1 d cosuPL(cosu)T(s,t,u) where PL(cosu) is the Legendre

polynomial ofLth degree,T(s,t,u) is the scattering amplitude, an
s, t, andu are the usual Mandelstam variables.
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order xPT Lagrangian@7# plus the exchange of the reso
nances@8#, as in Eqs.~3!. In Refs. @29,30# the method is
extended to include unphysical cuts as calculated in one l
xPT with and without baryons, respectively. For a review
these techniques, see Ref.@31#.

We work in the isospin limit. Our isospin states are

I 51,

upp&5
1

2
up1p22p2p1&,

uKK̄&5
1

A2
uK1K22K0K̄0&,

I 50,

uKK̄&5
1

A2
uK1K21K0K̄0&. ~4!

Note the extra factor 1/A2 in the normalization of the
upp& I 51 vector since in this state pions behave similar
identical particles. We have also removed a globaleip phase
in all the states in order to have the form factors posit
defined ins50.

Since forI 51 we have two coupled channels, we will us
in the following a matrix notation in which the pions ar
labeled by 1 and kaons by 2 in theI 51 case. ForI 50 we
have only the kaon channel which we denote by 1.

Taking into account Eqs.~3! and~4! we can calculate for
both isospin channels the tree level amplitudes between d
nite pp andKK̄ isospin states. We will collect these amp
tudes, for each isospin channel, in aKI matrix. Thus, from
Ref. @27# we have the following expression for theTI matrix:

TI~s!5@ I 1KI~s!gI~s!#21KI~s!, ~5!

where I is the unity matrix andgI(s) is a diagonal matrix
@27# given by the loop with two meson propagators. In d
mensional regularization one has explicitly

gi
I~s!5

1

16p2 F221di
I1s i~s!log

s i~s!11

s i~s!21G , ~6!

where the subindexi refers to the corresponding two meso
state ands i(s)5A124mi

2/s with mi the mass of the par
ticles in the statei. For the choicedi

I50 one hasgi
I(s)5

2 J̄(s) i i with the J̄(s) i i functions defined in Ref.@7# such
that J̄(0)i i 50.

We now introduce the diagonal matrixQ(s) i i 5pi(s)u(s
24mi

2), with pi(s)5As/42mi
2 the modulus of the c.m

three momentum of the statei andu(x) the usual Heaviside
function. In terms of this matrix we have

SI~s!5I 1
i

4pAs
Q~s!1/2TI~s!Q~s!1/2 ~7!
9-3
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with SI(s) the S matrix fulfilling the requirement
SI(s)SI(s)†5I .

The electromagnetic meson form factorFMM8(s), is in-
troduced as follows. The transition amplitude from a phot
virtual or real, to a pair of mesons is written as

^g~q!uTuM ~p!M 8~p8!&5eem~p2p8!mFMM8~s! ~8!

with q25s, e the modulus of the charge of an electron, a
em the photon polarization vector.

Unitarity of theSmatrix expressed between theg and the
MM 8 states, up toO(e2), leads to the relationship

pMM8~s!Im F~s!MM85(
a

Fa~s!
pa~s!

8pAs
pa~s!u~s24ma

2 !

3@Ta,MM8
L51

~s!#* ~9!

where an asterisk denotes complex conjugation and
strong amplitudes are projected in theP wave. In the follow-
ing we will remove the superscriptL51 with the under-
standing that any strong amplitude will be inP wave.

Dividing the former equation bypMM8(s) and taking the
complex conjugation of the term in the right-hand side, sin
this is a real quantity above the threshold of the syst
uMM 8&, where unitarity applies, one has

Im FMM8~s!5(
a

Fa* ~s!
pa~s!

8pAs
u~s24ma

2 !pa~s!
T~s!a,MM8

pMM8~s!
.

~10!

Taking into account that theT(s)ab is a symmetric matrix
with respect indexesa and b because of time reversal in
variance, introducing also the diagonal matrixQ̃(s) i j
5pi(s)d i j and the one column matrixF(s) i5Fi(s), we can
write Eq. ~10! in matrix notation as

Im F~s!5Q̃~s!21T~s!
Q~s!

8pAs
Q̃~s!F* ~s!. ~11!

If we further substitute in the previous equation ImF(s) by
@F(s)2F* (s)#/(2i ) and T(s) by its expression in Eq.~5!,
one finds

F~s!5H I 1Q̃~s!21@ I 1K~s!g~s!#21

3K~s!i
Q~s!

4pAs
Q̃~s!J F* ~s!

5Q̃~s!21@ I 1K~s!g~s!#21H @ I 1K~s!g~s!#Q̃~s!

1K~s!i
Q~s!

4pAs
Q̃~s!J F* ~s!

5Q̃~s!21@ I 1K~s!g~s!#21Q̃~s!
11400
,

e

e

3H I 1Q̃~s!21K~s!Q̃~s!g~s!

1Q̃~s!21K~s!Q̃~s!i
Q~s!

4pAs
J F* ~s!. ~12!

In the last equality we have made use of the fact that
matricesQ(s), Q̃(s), andg(s) commute since all of them
are diagonal.

Let us first note that the symmetric matrixK(s), Eq. ~3!,
is a matrix of functions with a kinematical cut in itsK(s)12
matrix element between the threshold of channels 1 an
becauseK(s)12 is proportional top1(s)p2(s). However, the
matrix Q̃(s)21K(s)Q̃(s) has no such kinematical cuts sinc
the modulus of any of the three-momentapa appears always
squared. Note also that, althoughQ̃(s)21 does not exist fors
equal to its value for any of the thresholds, by continuity, t
product Q̃(s)21K(s)Q̃(s) is well defined, and hence
Q̃(s)21K(s)Q̃(s) is a well defined real matrix. Taking thi
into account and that

g~s!* 5g~s!1 i
Q~s!

4pAs
~13!

since

Im g~s!52
Q~s!

8pAs
, ~14!

we can write Eq.~12! as

F~s!5@ I 1Q̃~s!21K~s!Q̃~s!g~s!#21

3@ I 1Q̃~s!21K~s!Q̃~s!g* ~s!#F* ~s!. ~15!

Multiplying both sides of the former equation by@ I

1Q̃(s)21K(s)Q̃(s)g(s)# we arrive at the interesting resul

@ I 1Q̃~s!21K~s!Q̃~s!g~s!#F~s!

5@ I 1Q̃~s!21K~s!Q̃~s!g* ~s!#F* ~s!. ~16!

This implies that the matrix @ I 1Q̃(s)21K(s)
3Q̃(s)g(s)#F(s) has no cuts at all, since the right-hand c
or unitarity cut, the only one present ing(s) or F(s), has
been removed. Note that, as it is well known, a form facto
an analytic function ofs except for the presence of the righ
hand cut from threshold up to infinity. It can also have po
on the reals axis below threshold, corresponding to bou
states, and poles in the complex plane in the unphysical R
mann sheets corresponding to resonances. On the other
as discussed above in contrast toK(s), Q̃(s)21K(s)Q̃(s) is
a function free of physical or kinematical cuts. From Eq.~16!
we write now
9-4
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F~s!5@ I 1Q̃~s!21K~s!Q̃~s!g~s!#21R~s!

5Q̃~s!21@ I 1K~s!g~s!#21Q̃~s!R~s! ~17!

with R(s) a function free of any cut. Note also that th
matrix D(s)[I 1K(s)g(s) was already introduced in Eq
~5! in relation with the purely strongT matrix.

As told above, the considered largeNc leading contribu-
tions are given in Eqs.~2!. In fact in this limit D(s)5I
1O(Nc

21) and hence we have

F~s!5R~s!Nc leading5Ft~s!, ~18!

whereFt(s) is the tree level form factor. As a result we ca
write
e

he

he
uc
h

11400
R~s!5Ft~s!1dR~s! ~19!

with dR(s) subleading in largeNc and free of any cut. Since
the pole singularities present in the form factor correspond
tree level resonances@already present inFt(s)] or dynami-
cally generated resonances from theD(s) matrix, see Eqs.
~17! and ~5!, thedR(s) matrix should then be simply a ma
trix made up of polynomials.3

Hence, we can rewrite Eq.~17! as

F~s!5@ I 1Q̃~s!21K~s!Q̃~s!g~s!#21@Ft~s!1dR~s!#.
~20!

We can further reduce Eq.~20! for the two channel case
Indeed, given the structure of theK matrix of Eq. ~3! for I

51 andpp andKK̄ channels we find
F~s!5
1

det@D~s!# S 11p2~s!2b~s!g2
1~s! 2A2p2~s!2b~s!g2

1~s!

2A2p1~s!2b~s!g1
1~s! 112p1~s!2b~s!g1

1~s! D @Ft~s!1dR~s!# ~21!
an-

sily

hat
tor
d
-

e

ors
with b given by

b~s!5
1

3 f 2 S 11
2GV

2

f 2

s

M r
22s

D ~22!

and det@D(s)#5112p1(s)2b(s)g1
1(s)1p2(s)2b(s)g2

1(s).
For I 50, with only one channel, Eq.~20! is simple enough.
In the explicit formula of Eq.~21! we can see that there ar
indeed no kinematical cuts associated to thep1p2 factors of
the matrixK, as argued above.

The unitarity method we have introduced is similar to t
one discussed in Ref.@32# in order to solve the
Muskhelishvili-Omne`s problem@15#. The differences arise
from the fact that we have showed how to deal with t
kinematical singularities associated with the prod
pi Im F(s) i Eq. ~9!, and also because we have allowed t
presence of pole singularities both inD(s), due toK(s), and
t
e

in F̃(s). However, they appear in such a way that they c
cel each other and the results are finite. In Ref.@32# the
connection between Eq.~20! and an Omne`s representation
for the elastic case is also discussed. This relation is ea
seen since in the elastic caseD21(s) has the phase of the
strong scattering amplitude, Eq.~5!, and only has the right-
hand cut. There is, however, a subtle point which is t
D21(s) has zeros fors equal to the bare masses of the vec
resonances introduced inK(s) and they have to be remove
in order to make an Omne`s representation. This is accom
plished automatically in Eq.~20! due to the explicit presenc
of the bare resonance poles inFt(s).

The degree of the polynomials present indR(s) can be
restricted when considering the behavior of the form fact
in the limit s→`. In fact from Eqs.~2!, ~3!, and ~20! we
have the following limits:
I 51:

F1~`!5

12
FVGV

f 2
1dR1

1~`!1g2
1~`!

s

12f 2 S 12
2GV

2

f 2 D @dR1
1~`!2A2dR2

1~`!#

11
s

6 f 2 S 12
2GV

2

f 2 D H g1
1~`!1

1

2
g2

1~`!J
,

3It should be understood in the former sentence that subleading corrections in 1/Nc to the couplings and masses of the resonances@not
coming in our formalism by theD(s) function#, have to be reabsorbed in a renormalization ofFt(s), Eq. ~2!.
9-5
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F2~`!5

12
FVGV

f 2
1A2dR2

1~`!1g1
1~`!

s

6 f 2 S 12
2GV

2

f 2 D @A2dR2
1~`!2dR1

1~`!#

A21
A2s

6 f 2 S 12
2GV

2

f 2 D H g1
1~`!1

1

2
g2

1~`!J
.

I 50:

F1~`!5

12
FVGV

f 2
1A2dR1

0~`!

A21
A2s

4 f 2 S 12
2GV

2

f 2 D g1
0~`!

, ~23!
in
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wheregi
I(`) is a quantity logarithmically divergent withs

→`, see Eq.~6!. We denote bydRi
I(`) the value of the

vector element ofdR(s) with isospin I and channeli for s
→`. Clearly, this value diverges assn(I ; i ) with n(I ; i ) the
degree of the polynomialdRi

I(`).
From perturbative QCD@33#, it is known that the vector

pion form factor goes at most as a constant fors→`. Al-
though experimentally, and also from the quark count
rules, it is very likely that it vanishes fors→`. Experimen-
tally, we haveFV5154 MeV from the observed decay ra
G(r0→e1e2) @8# and GV553 MeV from a study of the
pion electromagnetic radii after taking into account corr
tions from chiral loops at next to leading order@7#. With
these values, we see from Eqs.~23! for the I 50 case, that
dR1

0(s) can have, at most, degree 1 since otherwise the f
factor would be divergent~we are assuming here that th
high-energy limit of the kaon form factors is the same as
aforementioned one of the pion vector form factor!. Analo-
gously for I 51, we see that the differencedR1

1(s)
2A2dR2

1(s) can be at most a constant, while, independen
dRi

1(s) can have degree one. If we further require that
vector form factors vanish fors→`, both for the pion and
kaon ones, thendRi

I(s) are constants and

dR1
15A2dR2

1 . ~24!

In the following we will assume that this is the case.4 Note
that sincedRi

1(s) are at leastO(p2) quantities, these con
stants must be proportional to the square of the pseudos
massesmp

2 , mK
2 . Then we will finally have

F~s!5@ I 1Q̃~s!21K~s!Q̃~s!g~s!#21@Ft~s!1a I #,
~25!

wherea I is just a constant forI 50 and forI 51, taking into
account Eq.~24!, a1 can be written as

4We refer the reader to Refs.@34,8# which stress the importance o
keeping the short distance QCD constraints in order to guara
the independence of the results under spin-1 field redefinitions
11400
g

-

m

e

,
e

lar

S a18

a18/A2
D ~26!

with a18 a constant.
Matching with one loopxPT. In order to fix the values o

the constantsdi
I of gi

I(s) and a I of Eq. ~25! we match our
results with those ofxPT up to one loop@7#. The form fac-
tors from @7#, together with Eq.~4! for the definition of the
isospin states, are

Fpp
I 515112Hpp1HKK ,

FKK̄
I 51

5
1

A2
~112Hpp1HKK!, ~27!

FKK̄
I 50

5
1

A2
~113HKK!

with the functionHii (s) given by

Hii ~s!5
2s

3 f 2
L9

r ~m!1
s

192p2f 2 S 2s i~s!2

2s i
3~s!log

s i~s!11

s i~s!21
2

1

3
1 log

m2

mi
2D . ~28!

In order to make the matching with the one loopxPT
form factors, we will take into account the fact that for eval
ating the contribution of the octet of vector resonances to
O(p4) xPT counterterms, for instance toL9

r (m), the masses
of these resonances have to be taken in the chiral limit@8#.
We will denote this mass in the following byMV'M r @8#.
As noted in Ref.@8# the L9

r (m) is saturated by the meso
vector resonance exchanges at a scalem around the mass o
the r, such that

ee
9-6
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2L9~m'M r
physical!5

FVGV

MV
2

; ~29!

we will also make use of this result in the following.
Let us consider first theI 51 case. Expanding our result

Eq. ~25!, up to one loop in thexPT counting, we have

Fpp
I 51~s!511a181

FVGVs

MV
2 f 2

1
s

96p2f 2 H 2sp~s!22sp~s!2d1
1

2sp~s!3log
sp~s!11

sp~s!21J 1
s

192p2f 2 H 2sK~s!2

2sK~s!2d2
12sK~s!3 log

sK~s!11

sK~s!21J ~30!

while the one loopxPT result is

Fpp
I 51~s!511

2L9
r ~m!s

f 2
1

s

96p2f 2 H 2sp~s!2

2sp~s!3 log
sp~s!11

sp~s!21
2

1

3
2 log

mp
2

m2J
1

s

192p2f 2 H 2sK~s!22sK~s!3 log
sK~s!11

sK~s!21

2
1

3
2 log

mK
2

m2J . ~31!

The matching forKK̄ form factor in I 51 does not give
any new condition since this form factor, at the one lo
chiral level, is simply 1/A2 of thepp one, both in our ap-
proach and inxPT @7#. Note that this happens independen
of the value of the constanta18 , because of Eq.~26!.

In the following we will take

a1850 ~32!

in order to constrain further our approach. This can be d
since, as we show below, we can match our results with
loop xPT by choosing appropriate values ford1

1 andd2
1. On

the other hand, as we will see in the next section, a very n
description of the pion form factor and of thepp P-wave
phase shifts, see Fig. 3, is given without including this ex
degree of freedom. In addition, we will discuss below t
sensitivity of our results under changes ofa18Þ0.

By matching Eqs.~30! and ~31! with a1850, taking also
into account Eq.~29!, one finds the condition

sp~s!2d1
11

sK~s!2

2
d2

15
1

2
1 log

mp
2

m2
1

1

2
log

mK
2

m2
. ~33!

Identifying the terms independent ofs and linear in 1/s, we
finally have
11400
e
e

e

a

d1
15

mK
2

mK
2 2mp

2 S log
mp

2

m2
1

1

2
log

mK
2

m2
1

1

2D ,

d2
15

22mp
2

mK
2 2mp

2 S log
mp

2

m2
1

1

2
log

mK
2

m2
1

1

2D . ~34!

Next we do the matching in theI 50 sector. Our chiral
one loop expression for this form factor is

A2FKK̄
I 50

511A2a01
FVGVs

MV
2 f 2

1
s

64p2f 2 H 2sK~s!2

2d1
0sK~s!22sK~s!3 log

sK~s!11

sK~s!21J . ~35!

The xPT one is

A2FKK̄
I 50

511
2s

f 2
L9

r ~m!1
s

64p2f 2 H 2sK~s!2

2sK~s!3 log
sK~s!11

sK~s!21
2

1

3
2 log

mK
2

m2J .

~36!

By matching Eqs.~35! and~36!, taking also into account Eq
~29!, we obtain the condition

A2a02
ssK~s!2d1

0

64p2f 2
52

s

64p2f 2 S 1

3
1 log

mK
2

m2 D . ~37!

FIG. 3. W is defined asAs for s.0 and as2A2s for s,0. ~a!
p1p2 vector form factor. Experimental data from Ref.@4# collect-
ing data from Ref.@38# for positives also. For negatives Ref. @39#.
~b! pp P-wave phase shifts. Triangles from Ref.@40# and circles
from Ref. @41#.
9-7
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Identifying the terms independent ofs and those linear ins,

d1
05

1

3
1 log

mK
2

m2
,

a052
mK

2

16A2p2f 2 S 1

3
1 log

mK
2

m2 D , ~38!

we see indeed thata0 is subleading inNc since f 2;Nc and
mK

2 ;1 in this counting. Numerically we find it to be of th
order of 0.1 form5M r , consistent with the largeNc count-
ing.

IV. RESULTS

Once we have fixed the constantsdi
I anda I by Eqs.~32!,

~34!, and ~38!, our final expression, Eq.~25!, for the vector
form factors only depends on the bare masses of ther, f,
andv resonances and on the couplingsGV andFV and onf.
The couplingsFV andGV are fixed, as explained in Sec. II
from their experimental values 154 and 53 MeV, resp
tively. The value for the parameterf is taken from the second
entry of Ref. @7#, where it is derived by working out the
relation of the ratiof p / f with the isoscalarūu1d̄d radius of
the pion. The resulting central value isf 587.4 MeV. No-
tice that this estimate is done for the value off in the limit
mu5md50 andmsÞ0 and there is some controversy abo
the possible deviations with respect this value when con
ering theSU(3) case@35,36#. The bare masses can be fixe
in terms of FV , GV , and f by the requirements that th
moduli of thepp I 51 andKK̄ I 50 P-wave amplitudes
have a maximum forAs5M r

physical5770 MeV and forAs
5Mf

physical51019.413 MeV, respectively. We obtain th
values M r5829.8 MeV andMf51026.581 MeV, where
the number of decimals correspond to the experimental
cision in which the physical masses are given@37#.

For the mass of thev we take directly 782 MeV since
there are no experimental data in the region of thev and its
contributions to other physical regions do not depend
such fine details since thev is very narrow. Finally, note tha
our physical results do not depend on the regularization s
m since any change in the scale is reabsorbed by the co
sponding change in the constantsdi

I(m). However, since we
have made use of Eq.~29!, we have to consider a value form
around the mass of ther meson, where vector meson sat
ration of theLi

r(m) coefficients works@8#. In the following
we will fix m5M r .

As can be seen in Figs. 3, 4, and 5, we can describe
very precise way the vector pion and kaon form factors fr
negative values ofs up to about 1.44 GeV2. The P-wave
pp phase shifts are also very well reproduced even for
ergies higher than those for the form factors, Fig. 3 is d
played untilAs51.5 GeV. Note that the curves present
those figures do not result from a fit making use of our
proach since the parameters have been fixed in advance.
thermore, the qualitative behavior of the data for the fo
factors is reproduced even for very high energies. For va
of As higher than 1.2 GeV new effects appear:~1! the pres-
11400
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ence of more massive resonances,r8, v8, f8 . . . . These
states can be in principle taken into account by our form
ism just by adding more resonance to Eqs.~2! and ~3!. ~2!
More seriously and less trivial is taking into account t
effect due to multiparticle states, e.g., 4p, vp, . . . . In fact,
since in our model the widths of the resonances are der
dynamically in terms of the included channels we can
mimic the effect of such multiparticle states as done in ot
studies in which the widths of the resonances are fitted,
is, incorporated by hand. This is currently done when us
parametrizations of the type found in Refs.@3,4#. In fact, in
the present case we have found that the effect of other c
nels cannot be neglected for energies higher thanAs
*1.2 GeV, for which we do not give a fair reproduction
all the structures present in the data. We have checked
the inclusion of higher mass resonances such asr8 improves
the agreement with the data but there are clear signs
other elements are still missing.

In Fig. 4~a! one clearly sees the peaks off, r, and v
resonances, the latter on the top ofr. The v peak corre-
sponds to that of a zero width resonance since it app
below theKK̄ threshold and the 3p state is not included. In
Figs. 5~a!, 5~b! we compare for low energies our results f
the pion and charged kaons vector form factors with the
sults obtained inxPT for the pion vector form factor, up to
one@7# and two loops@13,14#, and with the one loopxPT @7#
charged kaon vector form factor. In the figures the aforem
tioned matching, guaranteed by construction, is clearly se
and the resummation accomplished by Eq.~25! provides the
right corrections to thexPT results also for low energies. I
fact, we see a much better agreement of our result with
two loopxPT pion vector form factor than with the one loo
result.

In Table I we give the calculated electromagnetic radii
the pions, charged, and neutral kaons and compare them
one loopxPT @7# and with experiment. We have not show
the two loopxPT value for̂ r p

2 & since its experimental value
@48# is taken as an input in order to fix a counterterm@13#. In
Ref. @14# it is argued that this is a sensible assumption with
an accuracy around a 10% in the value of^r 2&V

p . Our results
for pions and charged kaons are compatible with thexPT
results and experiment within errors. For the case of neu
kaons, assuming as we have, the same uncertainties as
xPT results, we are also compatible with experiment. It
also interesting to compare our values for the electrom
netic radii with a low-energy theorem due to Sirlin@51#. This
theorem states that

O@~ms2m̂!2#5
1

2
@FV

p~s!1FV
K1

~s!#1FV
K0

~s!2 f 1
Kp~s!,

~39!

wherems is the mass of the strange quark,m̂ is the average
between the masses of the up and down quarks, andf 1

Kp is
one piece of the vectorKp form factor @7#. In the previous
relation the contribution of heavy quarks have been
glected and we follow the notation of Ref.@7#. Numerically
at O(p4) in xPT @7# one has, for the same combination
electromagnetic radii as in the right-hand side of Eq.~39!,
9-8
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0.0060.05 fm2. At O(p6) the result is @52# 0.021
60.003 fm2. From the values shown in Table I, taking fro
experiment the electromagnetic radiuŝr 2&V

Kp50.36
60.02 fm2 @37#, as also done inO(p4) xPT, we have
20.0760.05 fm2. The experimental value, from Refs
@47,49,50,37#, is 20.0260.05 fm2.

In Figs. 5~c!, 5~d! the resonance regions for ther andf
mesons are shown in detail. In the case of the pion fo
factor in ther region, we have compared our results with t
experimental data of Ref.@21# since int decays only theI
51 part of the pion form factors plays a role and we a
working in the isospin limit. As can be seen the reproduct
of data is very good in both cases.

As announced before, we have also studied the dep
dence of the results on the subleading constanta18 which has
been set to zero in Eq.~32!. Notice that the matching toxPT
gives new values for thedI

1 parameters in terms of those o
a18 and also one has to recalculate the bare mass of thr
resonance. The new results, obtained with reasonable va

FIG. 4. W is defined asAs for s.0 and as2A2s for s,0. ~a!
K1K2 vector form factor. Experimental data: black circles@42#,

white circles@43#, and stars@44#. ~b! s(e1e2→K0K̄0) in nb. Data
from Ref. @45#.
11400
n

n-

es

of a18 , can hardly be distinguished from thea1850 case in
the regionAs,1.2 GeV. A fit to thepp phase shifts and
the form factors data gives that the best values area185

20.0012 andM r5830.23 MeV, leading to results that ar
indistinguishable from the ones obtained by settinga1850.

Finally, in our approach we have taken into accountpp

andKK̄ coupled channels for theI 51 P wave. The effect
of coupled channels is more important for kaons, particula
for the neutral ones, than for pions. This can be expec
since when we decouple the kaons from the pions thr
resonance appears in the kaon vector form factors as a
width resonance and this is a very bad approximation, p
ticularly, if we are interested around the rather broadr en-
ergy region. On the other hand, around the peak of thef the

FIG. 5. W is defined asAs for s.0 and as2A2s for s,0.
From left to right and top to bottom:~a! Vector pion form factor.
The dashed-dotted line represents one loopxPT Ref. @7# and the
dashed one the two loopxPT result Ref.@14#. ~b! K1K2 form
factor. The meaning of the lines is the same as before. Data
from Ref.@46#, white circles, and the star points are from Ref.@47#.
~c! Vector pion form factor in ther region without taking into
account ther-v mixing effect. Data fromt decays@21#. ~d! K1K2

form factor. Data from Ref.@42#.
es
s to
TABLE I. Electromagnetic radii forp1p2, K1K2, andK0K̄0. In the table are given our results, the on
from xPT at next-to-leading order Ref.@7# and some experimental data. The uncertainty in our values ha
be considered of the same size as the one inxPT, that is, around60.04 fm2.

e.m. radii (fm2) Our results One loopxPT Experiment

^r 2&V
p 0.44 0.446 0.04 0.4396 0.030@50#

^r 2&V
K1 0.34 0.386 0.03 0.346 0.05 @47#

0.28 6 0.07 @46#

^r 2&V
K0

20.10 20.04 6 0.03 20.0546 0.026@49#
9-9
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effect of the pions is small, of the order of a few percent, a
the kaon vector form factor is dominated by theKK̄ elastic
channel strongly coupled to thef. However, as we move
again to higher energies, where the form factors h
dropped substantially, the pion channels become again
portant.

Isospin violation: r-v mixing. The incorporation of iso-
spin violation effects, due to the mass differences from thu
andd quarks and electromagnetic corrections, is readily p
sible, up to some extent, within the present formalism. As
example, consider the Okubo-Zweig-Iizoka~OZI! violating
processf→p1p2 studied in Ref.@53# within a chiral uni-
tary approach. It was noted there that thev→p1p2 decay
requires a directr-v mixing which makes this process qua
tatively different to thef→p1p2. This r-v mixing has
been studied in the context of chiral Lagrangians, toget
with the largeNc expansion, in Ref.@54# with the result

iL→ i
1

2
Q̃rvrmn

0 vmn ~40!

with

Q̃rv52~mK0
2

2mK1
2

!1~mp0
2

2mp1
2

!1
e2FV

2

3
. ~41!

Given the smallness of the contribution fromr-v mixing
one can add to the result for the pion form factor evalua
before the contribution from the mechanism of Fig. 6.

The contribution of Fig. 6 is straightforward and has be
evaluated previously in Ref.@20#. With the gv and rpp
couplings from Ref.@8# and ther-v coupling of Eq.~40! we
obtain

DF52
1

3

FVGV

f 2
s

1

s2Mv
2 1 iAsGv~s!

3
1

s2M r
21 iAsGr~s!

Q̃rv . ~42!

Since this correction is only visible around ther peak we
take for Gv(s), Gr(s) the constant values of the Partic
Data Group~PDG! @37# ~using instead an energy dependen
width of the r meson does not introduce any apprecia
effects!.

FIG. 6. Feynman diagram corresponding to ther-v mixing con-
tribution to the pion form factor.
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With a value forQ̃rv of 24500 MeV2 from Eq. ~41!,
which is also consistent with empirical determinatio
@55,56#, we get the form factor shown in Fig. 7 which repr
duces the experimental data fairly well at the peak of
pion form factor. It is worth mentioning that this effect o
isospin violation is not observed in the data fromt decay
since this process is only sensitive to theI 51 current~see
Fig. 5!.

V. CONCLUSIONS

We have developed an appropriate method to take
account the final state interaction corrections to the tree le
amplitudes of Refs.@7,8# with explicit resonance fields. The
strong tree level scattering amplitudes from Refs.@7,8# were
unitarized in coupled channels following the scheme dev
oped in Ref.@27#. These amplitudes were then implement
in order to derive the final state corrections to the tree le
vector form factors, Eqs.~2!. As a result a very good descrip
tion of data is accomplished forAs&1.2 GeV. For higher
energies multiparticle channels are no longer negligible
also new resonances appear, although our results still
the trend of the experimental data.

Our expressions reproduce thexPT expansion of the pion
and kaon vector form factors up to one loop@7#. The resum-
mation of our scheme leads, in the low-energy region wh
xPT is expected to hold@see Fig. 5~a!#, to a much better
agreement with the two loopxPT pion vector form factor
than with the one loop one. However, at the same time,
are able to provide a very good description at higher en

FIG. 7. Solid line: pion vector form factor taking into accou
the r-v mixing; dashed line:I 51 vector form factor in the iso-
spin limit. Data: black circles frome1e2→p1p2 reactions@4,38#;
white circles: data fromt decays@21#.
9-10
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gies, including the resonance regions where standardxPT
could not be applied, Figs. 5~c! and 5~d!. Furthermore, our
calculated electromagnetic radius of thep1, K1, and K0,
Table I, are in agreement with experiment, assuming
same uncertainties as in thexPT results.

We have also taken into account ther-v mixing as a
main source of isospin breaking in order to compare
results with the form factor obtained frome1e2→p1p2.
The input for ther-v mixing has been taken from rece
work respecting also chiral symmetry in the same line as
rest of the Lagrangians employed here.

Finally, our method also providesP-wave scattering am
plitudes for pions and kaons in very good agreement with
experimental data on the phase shifts for the former one.
ae
,

rg

.

11400
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the case of the kaons there are no scattering data avail
but they would be highly desirable as a further test of
chiral unitary approach followed here.
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