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We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs
calculated from chiral perturbation theorwRT) allowing the inclusion of explicit resonance fields. The
method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are
then matched with the one log@PT results. A very good description of experimental data is accomplished for
the vector form factors up tgs<1.2 GeV beyond which multiparticle states play a non-negligible role. For
the P-wave 7 phase shifts the agreement with data stands even highery{g<@.5 GeV. We also consider
the isospin breaking effects due to thep mixing as a perturbation to the previous results. In addition the low
and resonance energy regions are discussed in detail and for the former a comparison with one and two loop
xPT is made showing a remarkable coincidence with the two P results.
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[. INTRODUCTION standard VMD picture, when taking into account results
from largeN. and QCD high-energy constraints.

The study of the pion vector form factor is an interesting  Other nonperturbative approaches that match with the one
problem mainly because pions are the lightest hadrons andop yPT vector pion form factor are given in Ref8—11].
hence they are common products in many experiments s Refs.[12,13 the matching is given up to the two loop
that a good description of the pion electromagnetic form facSuU(2)x SU(2) xPT pion vector form factor first calculated
tor is often required. Many of the studies of this problemnumerically in Ref[13] and then analytically in Ref.14].
deal with some kind of modified vector meson dominancewhile the work of Ref[13] is only interested in assessing
(VMD) [1] when taking into account the effects of unitarity the relevance of higher order loops at low energies, the
and final state interactions. This was done a long time ago o ks of Refs[9—12] make predictions at higher energies,
Ref.[2] and it was found that these effects show up not only,thaygh all of them take into account only elastic unitarity.
as a modification of the barp propagator but also as a Referencd ], similar to Ref.[13], makes use of an Onmse

change i|_1 it; bare couplings. cher more phenome.nomgic%presentatidn[lS] but allowing for the explicit presence of
parametrizations are the ones in R¢gsd], which basically the p resonancg8]. In Ref.[11] the pion vector form factor

account for the dressing of the basepropagator and allow . . . . .
one to add more resonances and parameters in order to fit the studied by solving the Bethe-Salpeter equation making

data up to high energies, hiding in this way extra effects agome assumptl_ons on the off shell extrapolation of the am-
the presence of multiparticle channels, e.gz, 4o, etc. plitudes and using only the 7 channel. On the other hand,

These latter kinds of expressions are the ones commonl';r/‘ Refs.[10,12[0,1] and[0,2] Padeapprpxmapts frgm the
used in many experimental papers in order to fit their dataPT results are usedsee also the discussions in Refs.
and determine the resonance content. [13,16 with respect to the former referenge$inally in
It is well known that the low-energy effective theory of Refs.[17,18 an Omne parametrization, assuming elastic
QCD s chiral perturbation theoryxPT) [5—7]. Although unitarity, is implemented using directly the experimerital
this is a systematic way to express the QCD Green functiong 1+ P-wave wm phase shifts.
in terms of a power momentum expansion, unfortunately, it N our work the isospin limit is taken but we shall also
is valid only for low energies. Hence, if one is interested in€Stimate the effect of the isospin violatiagp mixing in the -
higher energies nonperturbative schemes are unavoidabl@ion vector form factor. This contribution manifests itself in
Nevertheless, one should demand that, when used at lof/Very narrow energy range to the right of the peak ofthe
energies, these nonperturbative methods reproduce the loWass distribution in accordance with the mass and small
energy constraints of QCD given by théT expansion. width of thew (see Fig. 7. Other works in which this effect
The approach described in Secs. Il and 11l reproduces thBas already been discussed are Rigfdl9,20. On the other
one loopyPT pion and kaon vector form factofg] and, as hand, yvhen comparing our results f_or the vector pion form
we show below, it is also appropriate to study higher enerfactor in thep region with the experimental data, we shall
gies by satisfying unitarity in coupled channels and incorpo-
rating explicit resonance field§]. In Ref.[8] it is discussed
how, at lowest order in the chiral expansion, resonances with Ajthough in the end some of the analytical properties of the form
spin=<1 couple with pseudoscalars( K, ) and with elec-  factor are lost since only the real part of the exponent of the expo-
troweak currents. It is also shown how to connect with thenential is kept.
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. sls . s& ) . and we will work explicitly in terms of thes and ¢ mesons.
e p M v 7 In this way we will be able to distinguish between the dif-
VAV . YAV N ferent physical masses of theand ¢ resonances. Note that
) O~ b o~ ) AN aH at the order considered in R¢8] vector singlet resonances

w4 do not couple to photons or pseudoscalars.
FIG. 1. Diagrams considered for calculating the tree level form  The resulting tree level vector form factors for theé 7,
factors,_ Eqgs(2). From left to right:(a) yPT lowest order(b) Octet K"K~ andK°K® systems are
Sand singletS; scalar resonance exchanges coupled to the vacuum.
(c) Wave function renormalization from the exchange of scalar
resonances, and) exchange of vector resonangesw, ande¢. (a)
is calculated from Ref.7] and the rest from Ref8].

FyGy s
f2 M?-s

p

Frn(s)=1+

also take data fromr decayq21] in which only thel =1 part
of the vector pion form factor contributes. Finally, in Ref. gt e (5)=1+ FvGy
KTK™

111211

S +- + =
[22] the isospin breaking effects in the pion form factors for 2f2 Mi_s 3 Mi—s 3 Mi_s
the low-energy regime are studied at next-to-leading order in
SU(2)xSU(2) xPT. o FLGy 1 +1 1 ) S l
koko(S) = 2578 — =5 3112 32 ’
Il. TREE LEVEL 2f Mi—s 3Mi-s 3Mi-s

()

We will evaluate the tree level vector form factors and
scattering amplitudes making use of the lowest orgeif ~ whereF,, measures the strength of the photon-vector reso-
Lagrangian[7] plus the chiral resonance Lagrangidr&. nance vertexGy the same but for the pseudoscalar-vector
These tree level amplitudes will be leading in larie, resonance ones, arsds the usual Mandelstam variable. Fi-
while nonleading contributions in this counting will be gen- nally, M,, M,,, andM , refer to the bare masses of the
erated through the unitarization process to be discussed i, and ¢ resonances andis the pion decay constantf, in
the next section. the chiral limit[7].

In the case of the vectorrm+ and KK form factors we One can proceed analogously for the evaluation of the
have to evaluate the diagrams depicted in Fig. 1. The contrii€e level scattering amplitudes between the former states. In
butions from the diagram of Fig.() and the ones from the Ref. [26] similar tree level amplitudes were already calcu-
wave function renormalization, Fig(d), cancel each other lated in the same way for studying the elastier and K=
due to charge conservation. A similar set of diagrams hascattering. In addition, in Ref24] theK » andK 5" channels
been considered in Ref24] in order to study the coupled Were also included to study them scattering up to 2 GeV.
K, K%, andK#%' scalar form factorg25]. In the former The corresponding generic set of diagrams is indicated in
reference, although restricted to the study of the associatddd. 2. However, out of these diagrams we are not going to
Swave | = 1/2 meson-mesoif matrix, the requirement that consider explicitly here those corresponding to the exchange
the form factors vanish & is used to reduce the number Of resonances in the crossed channels, Fig. Zhe reason
of free parameters. is twofold: (1) they are not necessary to match with the one

On the other hand, we will assume ideal mixing betweer00p xPT results for thesU(3) vector form factor$7] since

the wg and w, resonances, so that theand ¢ are given by  they give rise to higher orders2) because of VMD one
expects a good description of the scattering amplitudes in the

5 1 physical region when including thechannel exchange of
w1+ —wg, the vector resonances together with unitarity. With respect to
\/E \/§ the second point one has to take into account that in the

w=—F=
chiral Lagrangian$7,8] the standard picture of VMI23] is
1 5 only accomplished when considering the lowest orgBim
b= —w,— —wg (1)  contribution together with the explicit resonance fields
J3 J6 [27,9]. Furthermore, when making a dispersive analysis of
N P ~ S Sl e ~ e ~ ya ; » N e 7 ’
XK ¥ |
// \\ // \\ //SHSI\\ // \\ y ~
a) b) ©) d) T e O

FIG. 2. Diagrams considered for calculating the tree level amplitudes(8qgsa) xPT lowest order(b) Wave function renormalization
from the exchange of scalar resonances. Tadpolelike diagram with the exchange of scalar resonances coupled to the vadyum.
Exchange of vector resonancesw, and ¢, in thes channel.(e) Crossed exchange of vector and scalar resonaf@es. calculated from
Ref.[7] and the rest from Ref8].
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the vector form factors, only the scattering amplitudes in thesrder yPT Lagrangian[7] plus the exchange of the reso-

physical region are involvetsee the next section nances[8], as in Egs.(3). In Refs.[29,3( the method is
The resultingP-wave partial wave amplitudes are extended to include unphysical cuts as calculated in one loop
5 5 xPT with and without baryons, respectively. For a review on
T 2Pz, 26y s these techniques, see RE31].
(S)ata=mta== 3 f2 2 M2—s!|’ We work in the isospin limit. Our isospin states are
p
) =1,
T(s) _ PPk 2Gy s
ata KTK—— y
REE-TE 2 M2-s

| )= §|7T+’7T_—7T_7T+>,
T(S)7T+7T7,KOE0: _T(S)W+777,K+K77

_ 1 _
2pg|. Gf s G{ s IKK)= —|K*K~—KKD),
o] ETC VT L V2
P o
=0,
G_\Z, s
fz M?ﬁ_s, AL e 0D
|KK>=E|K K~ +KOKO). (4)

T(s)koko,kok0o= Tk+k—,k+k—(S),
Note the extra factor 12 in the normalization of the

T(S)k -« xo0= p_ﬁ G_\Z/ S 2Gy s | ) 1=1 vector since in this state pions behave similar to
* 3f2 £2 Mi—s 2 Mfﬁ—s identical particles. We have also removed a glabalphase
in all the states in order to have the form factors positive
G3 s defined ins=0.
T vl (€©)) Since forl =1 we have two coupled channels, we will use
p in the following a matrix notation in which the pions are

labeled by 1 and kaons by 2 in thhe=1 case. Foi =0 we

B iting the | t ord litudes in t fothere i
y Writing the Jowes? order ampiiuices in termsTotnere 1> have only the kaon channel which we denote by 1.

a cancellation between the contributions of the wave func L)
tion renormalization terms, Fig.(2), those of the exchange Takmg Into account Eq43) and(4) we can calculate for '
of the scalar resonances coupled to the vacuum, Rig, 2 both isospin ch_annels the tree level amplitudes between defi-
and theO(p”) crossed channel scalar contributions absorbedite 77 andKK isospin states. We will collect these ampli-

in the O(p*) xPT term proportional to thés counterterm tudes, for each isospin channel, irka matrix. Thus, from
[7,8], Fig. 2e). Consistently with our approach of working Ref. [27] we have the following expression for tig matrix:

the largeN, leading contributions from Ref.7], we have _

taken the masses of the scalar singlet and octet equal and we Ti(8)=[1+K ()g'(s)] *K;(s), (5
have also made use of the relation between their couplinqlsv
deduced in Ref[8]. In this way, for instance, one has that
L,=Lg=0 consistently with phenomenolod28] and with
the fact that both are subleading counterterms in I&ge

herel is the unity matrix andy'(s) is a diagonal matrix
[27] given by the loop with two meson propagators. In di-
mensional regularization one has explicitly

O'i(S)+l

ae-1 O

1
IIl. UNITARIZATION gi(s)=—| —2+di+oi(s)lo
167

We will deduce our final expressions for the form factors
after deriving those of thd matrix. The latter will be ac- where the subindekrefers to the corresponding two meson
complished by unitarizing the tree level scattering ampli-state ando;(s)= ‘/1_4m2i/3 with m; the mass of the par-
tudes in Eqgs(3) following Ref. [27]. In this reference the tjcles in the statd. For the choiced! =0 one hasg!(s)=
most general structure of a partial wave amplitude when the_J—(S)__ with the 3(s); functions defined in Ref7] such
unphysical cuts are neglected was deduced. It was als atJ_(Icl)) "o !
1 "

shown that this structure is the one required in order to matc ) )
We now introduce the diagonal matry(s);;=pi(s) (s

with the tree level amplitudes calculated from the lowest
—4m?), with p;(s)=+/s/4—m? the modulus of the c.m.

three momentum of the stateand (x) the usual Heaviside

2 , . , . _ function. In terms of this matrix we have
A partial wave amplitude with angular momentunis defined to

be %fl_ld cos6P (cosO)T(st,u) where P (cosé) is the Legendre
polynomial ofLth degreeT(s,t,u) is the scattering amplitude, and S(s)=I1+
s, t, andu are the usual Mandelstam variables. w\/g

Q(s)Y2T\(s)Q(s)Y2 @)
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with S/(s) the S matrix fulfilling the requirement 5 B
S(s)Si(s)'=1. X1 1+Q(s) 'K (s)Q(s)g(s)
The electromagnetic meson form facteg(s), is in-
troduced as follows. The transition amplitude from a photon,
virtual or real, to a pair of mesons is written as +0(s) K (s)D(s)i Q(s)

477\/5
(v(@)|TIM(p)M'(p"))=ee,(p—p ) *Fuu:(s)  (8)
with gq2=s, e the modulus of the charge of an electron, andIn th.e last equgllty we have made use o.f the fact that the
e, the photon polarization vector. matricesQ(s), Q(s), andg(s) commute since all of them

o ; diagonal.
Unitarity of theS matrix expressed between theand the are . . ,
MM’ states, up t@)(e?), leads to the relationship Let us first note that the symmetric matkx(s), Eq. (3),

is a matrix of functions with a kinematical cut in ik(s) 15
matrix element between the threshold of channels 1 and 2

F*(s). (12)

«(S . !
Pum (SIME(S)ym = 2 Fo(S) Pal(S) P(S) B(s—4m2) becaust(s)12 is pr~0portlonal topy(s)pa(s). However, the
“ 8mys matrix Q(s) ~*K(s)Q(s) has no such kinematical cuts since
><[TL=1 (s)]* 9) the modulus of any of the three-momemtaappears always
a,MM'

squared. Note also that, althou@fs) ~* does not exist fos
where an asterisk denotes complex conjugation and thequal to its value for any of the thresholds, by continuity, the
strong amplitudes are projected in tRavave. In the follow-  product Q(s) 'K(s)Q(s) is well defined, and hence
ing we will remove the superscrift=1 with the under-  G(s)~1K(s)Q(s) is a well defined real matrix. Taking this

standing that any strong amplitude will be fhwave. into account and that
Dividing the former equation by (s) and taking the
complex conjugation of the term in the right-hand side, since Q(s)
this is a real quantity above the threshold of the system g(s)* =g(s)+i (13
[MM'), where unitarity applies, one has s
«(S T(S) .MM’ since
M Fa (9= S F291LL g5 am?)p, (5) et
a 8ms pMM’(?) ) s)
10 S
Img(s)=———+, (14
9 877\/§

Taking into account that th&(s),s is a symmetric matrix
with respect indexes and 8 because of time reversal in-

variance, introducing also the diagonal matr@(s)ij

=pi(s) 6;; and the one column matri(s);=F;(s), we can ~ ~ .
write Eq. (10) in matrix notation as F(s)=[1+Q(s) "K(s)Q(s)g(s)]

X[1+Q(s) K(s)Q(s)g* (8)]F*(s). (15

we can write Eq(12) as

Q(s) ~
Q(s)F*(s). 11 . _ _
877\/5 Multiplying both sides of the former equation byl

+0Q(s) K (s)Q(s)g(s)] we arrive at the interesting result

IME(s)=0Q(s)"T(s)

If we further substitute in the previous equation fis) by
[F(s)—F*(s)]/(2i) andT(s) by its expression in Eq5), -~ ~
one finds [1+Q(s)K(s)Q(s)g(s)IF(s)

=[1+Q(s) 'K(s)Q(s)g* (s)IF*(s).  (16)
F(s)=[ 1+Q(s) '[I+K(s)g(s)]
This implies that the matrix [I+Q(s) *K(s)
Q(s) - ] x Q(s)g(s)]JF(s) has no cuts at all, since the right-hand cut
XK(s)i Q(s) [ F*(s) or unitarity cut, the only one present g(s) or F(s), has
4mls been removed. Note that, as it is well known, a form factor is

an analytic function o6 except for the presence of the right-
=Q(s) I+ K(S)g(s)]ll [1+K(s)g(s)]Q(s) hand cut from t_hreshold up to infinity. It can also have poles

on the reals axis below threshold, corresponding to bound

states, and poles in the complex plane in the unphysical Rie-

FK(S)i (s) B(s) L F*(s) mann sheets corresponding to resonances. On the other hand,
4rs as discussed above in contrast¢s), Q(s) *K(s)Q(s) is
_ _ a function free of physical or kinematical cuts. From ELf)
=Q(s) '[1+K(s)g(s)]"*Q(s) we write now
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F(s)=[1+Q(s) *K(s)Q(s)g(s)] *R(s) R(s)=F'(s)+ 6R(s) (19

—3(s)"1+K -19(s)R 1 with 5R(s)_ sublef'i_ding in IargeixlC and free of any cut. Since
Q9T (S)9(9)] "QSIR(s) (7 the pole singularities present in the form factor correspond to
with R(s) a function free of any cut. Note also that the tree level resonancdslready present iff'(s)] or dynami-
matrix D(s)=1+K(s)g(s) was already introduced in Eq. cally generated resonances from th¢s) matrix, see Egs.

(5) in relation with the purely strond@ matrix. (17) and(5), the 6R(s) matrix should then be simply a ma-
As told above, the considered lart leading contribu-  trix made up of polynomials.
tions are given in Eqgs(2). In fact in this limit D(s)=| Hence, we can rewrite E417) as
+O(N; ") and hence we have F(8)=[1+Q(s) *K(5)Q(s)g(s)] *[F'(s)+ 6R(5)].
(20)
F(s)= R(S)NC leading— Ft(s)a (18

We can further reduce Eq20) for the two channel case.
whereF(s) is the tree level form factor. As a result we can Indeed, given the structure of te matrix of Eq.(3) for |

write =1 and77 andKK channels we find
|
1+ p2(s)2B(5)ga(S)  —\2pa(s)2B(S)g5(s)
F(9)= GerD(9)]| —V2pu(9)2B(s)0k(s)  1+2py(9)2B(s)gk(s) |[F(9)+IR(s)] 2

with B given by in F(s). However, they appear in such a way that they can-
1 ZG\Z, s cel each other and the results are finite. In R&R] the
B(s)= |1+ — — (22)  connection between Eq20) and an Omne representation
3f 2 M;—s for the elastic case is also discussed. This relation is easily
and deftD(s)]=1+2p(s)?B(s)g1(s)+ p2(s)?B(s)g3(s). seen since in the elastic caBe !(s) has the phase of the
For =0, with only one channel, Eq20) is simple enough. strong scattering amplitude, E¢p), and only has the right-
In the explicit formula of Eq(21) we can see that there are hand cut. There is, however, a subtle point which is that
indeed no kinematical cuts associated to php, factors of D~ (s) has zeros fos equal to the bare masses of the vector
the matrixK, as argued above. resonances introduced K(s) and they have to be removed
The unitarity method we have introduced is similar to thein order to make an Omserepresentation. This is accom-
one discussed in Ref[32] in order to solve the plished automatically in Eq20) due to the explicit presence
Muskhelishvili-Omns problem[15]. The differences arise of the bare resonance polesFiys).
from the fact that we have showed how to deal with the The degree of the polynomials presentdR(s) can be
kinematical singularities associated with the productrestricted when considering the behavior of the form factors
p; ImF(s); Eqg. (9), and also because we have allowed thein the limit s—. In fact from Egs.(2), (3), and (20) we
presence of pole singularities bothlx(s), due toK(s), and  have the following limits:

I=1:
F\G s 2G?
1- ¥2V+6Ri(w>+g%<w>@(1—f—zv [8R(s) — 28R ()]
F (OO): ’
! s 262\, 1,
1+@ 1_f_2 91(%)+ 592(%)

31t should be understood in the former sentence that subleading correctiors,itolthe couplings and masses of the resonafices
coming in our formalism by th®(s) function], have to be reabsorbed in a renormalizatiorF(s), Eq. (2).
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F\G s 2G3
1- ?2 V+ﬁ5Ré<m>+gi<w>ﬁ( 1- TJ)[@R%(oo)—éRi(oc)]
Fa(e)=
J2s 2G2 1
V2+ o 1- w7 (gi(oo)Jr 59%(“’)}
[=0:
FyG
1- sz Y V26RY()
Fi(o)= , 23
et
|
Wheregi'(oo) is a quantity logarithmically divergent with aj
—x, see EQ.(6). We denote bysR!(=) the value of the e (26)
vector element oBR(s) with isospinl and channel for s “
—o. Clearly, this value diverges a&(*" with n(l;i) the L
degree of the polynomiadR! (). with @ a constant. _
From perturbative QCI)33], it is known that the vector Matching W:th on? loopyPT. In order to fix the values of
pion form factor goes at most as a constantdes=. Al-  the constantsi; of g;(s) and ¢, of Eq. (25 we match our

though experimentally, and also from the quark counting€Sults with those ofPT up to one loop7]. The form fac-
rules, it is very likely that it vanishes far— . Experimen- tors from[7], together with Eq(4) for the definition of the
tally, we haveF, =154 MeV from the observed decay rate !SOSPIn states, are

I'(p°—e*e”) [8] and Gy=53 MeV from a study of the

pion electromagnetic radii after taking into account correc- FIol=142H, 4+ H,

tions from chiral loops at next to leading ordgf]. With

these values, we see from Eq23) for the =0 case, that

5R‘1)(s) can have, at most, degree 1 since otherwise the form o, 1

factor would be divergentwe are assuming here that the Fe = =(1+2H .+ Hgy), (27)

high-energy limit of the kaon form factors is the same as the V2

aforementioned one of the pion vector form fagtagknalo-
gously for I=1, we see that the difference?R}(s)

— \26R}(s) can be at most a constant, while, independently, F:(T(—O: i(1+ 3Hyk)
5Ri1(s) can have degree one. If we further require that the V2
vector form factors vanish fos— o0, both for the pion and _ . _
kaon ones, the@R!(s) are constants and with the functionH;;(s) given by
SRI=\26RL. (24)
s
— 2
In the following we will assume that this is the cdshlote Hii(s)= FLB("’“H 192722 ( 20i(s)
that since&Ril(s) are at leastO(p?) quantities, these con-
stants must be proportional to the square of the pseudoscalar . oi(s)+1 1 u?
2 2 a6 R _
massesn-, mg . Then we will finally have o3 (S)l()gm 3 +Iogm—i2 . (28
F(s)=[1+Q(s) K(8)Q(s)g(8)] '[F'(s) + ], N
(25) In order to make the matching with the one logPT

form factors, we will take into account the fact that for evalu-
whereaq, is just a constant for=0 and forl =1, taking into  ating the contribution of the octet of vector resonances to the
account Eq(24), @, can be written as O(p* xPT counterterms, for instance tg(u), the masses

of these resonances have to be taken in the chiral [i8it

We will denote this mass in the following byiy,~M, [8].

“We refer the reader to Refi84,8] which stress the importance of As noted in Ref[8] the Lg(u«) is saturated by the meson

keeping the short distance QCD constraints in order to guaranteéector resonance exchanges at a sgakround the mass of
the independence of the results under spin-1 field redefinitions. the p, such that
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¥e “ T
2L o %Mphysicabzﬂ; (29) K] ; i
ot p M\z, g 160 |- b)
we will also make use of this result in the following. 140 [
Let us consider first the=1 case. Expanding our results, i
Eq. (25), up to one loop in the¢PT counting, we have 120 |
_ FvGVs S 100 L
F'w_wl(s)21+a’+—+—[2(rw(8)2—a,,(s)2d1 i
YoM2E2 0 96mf2 !
80 —
B 3 o.(s)+1 S ) -
7n(9) Iogaw(S)—l 192722 20(s) -05 ®
40 —
211 3 O'K(S)+1
—ok(s)°d3—ok(s)’ log——— 30
K( ) 2 K( ) gO_K(S)_l ( ) ol
while the one loopyPT result is T A
-5 0 1000 2000 500 750 1000 1250 1500
W(Mev) W(MeV)
1 . 2lg(w)s s ) )
Far(S)=1+ f2 + 96722 o (S) FIG. 3. Wis defined as/s for s>0 and as— \/—s for s<0. (a)
a+ @~ vector form factor. Experimental data from Rpf] collect-
o (s)+1 1 m2 ing data from Ref[38] for positives also. For negative Ref.[39].
—o(5)3log——————_ _ |og—= (b) mm P-wave phase shifts. Triangles from Rg40] and circles
()" log 173 9—
0.(S)— w from Ref.[41].
s ox(s)+1 2 2 2
+—— !9 2_ 3log——— m m:. mg 1
192772f2[ 7K(8)" = ax(s) Fo(s-1 dizz—Kz |09—2+§|09—:+§),
mK_mﬂ' M M
1 m2
T30 ey aie 22 [ 16g™ 4 Log™ ) (34)
5= og— + zlog— + .
mg—mZ\ T p? 2 7?2

The matching folKK form factor inl=1 does not give o )
any new condition since this form factor, at the one loop Next we do the matching in the=0 sector. Our chiral
chiral level, is simply {2 of the == one, both in our ap- ©ne loop expression for this form factor is
proach and inyPT [7]. Note that this happens independently

of the value of the constant; , because of E(26). SE' 014 Dt FvGys S 5 2
i ; = — S
In the following we will take V2R V2aq M2§2  64m2f2 7x(S)
ay;=0 (32) ok(s)+1
! —dEUK(S)Z—UK(S)3|Ogm . (35)
in order to constrain further our approach. This can be done
since, as we show below, we can match our results with onghe yPT one is
loop xPT by choosing appropriate values td)} and dé. On
the other hand, as we will see in the next section, a very nice —o 2s | 5
description of the pion form factor and of ther P-wave V2F =1+ ELQ(MH‘ 6422 20¢(9)
phase shifts, see Fig. 3, is given without including this extra ™

s+1 1 m
sensitivity of our results under changesf+ 0. —ok(s)® IogL)_l —3” Iog—z
By matching Eqs(30) and (31) with a;=0, taking also 7k(S)

degree of freedom. In addition, we will discuss below the 2]
o
into account Eq(29), one finds the condition

(36)
- or(s)? , 1 m2 1 m2 By matching Eqgs(35) and(36), taking also into account Eq.
04(8)°d;+ ——dy=5+log— + Slog— . (33  (29), we obtain the condition
M M
L . . . soi(s)?d® s (1 m2
Identifying the terms independent sfand linear in 14, we 2qn— N 1o ~tlog—|. @37
finally have Va0 64m2f2 64?2\ 3 02 (
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Identifying the terms independent sfand those linear iis,  ence of more massive resonancgs, o', ¢’ ... . These
2 states can be in principle taken into account by our formal-
d‘l’zlﬂog%, ism just by adding more resonance to E@. and (3). (2)
3 2 More seriously and less trivial is taking into account the
5 5 effect due to multiparticle states, e.gzdwm, ... . Infact,
_ My 1 Mk since in our model the widths of the resonances are derived
o=~ 16\/§w2f2<§+|og?)' (38) dynamically in terms of the included channels we cannot

mimic the effect of such multiparticle states as done in other
we see indeed that, is subleading i\, sincef?~N, and  studies in which the widths of the resonances are fitted, that
m2~1 in this counting. Numerically we find it to be of the IS, incorporated by hand. This is currently done when using

order of 0.1 foru=M,, consistent with the larghi, count- parametrizations of the type found in Ref8,4]. In fact, in
ing. the present case we have found that the effect of other chan-

nels cannot be neglected for energies higher th&n
V. RESULTS =1.2 GeV, for which we do not give a fair reproduction of
all the structures present in the data. We have checked that
Once we have fixed the constansand«, by Egs.(32),  the inclusion of higher mass resonances such’@mproves
(34), and(38), our final expression, Eq25), for the vector the agreement with the data but there are clear signs that
form factors only depends on the bare masses ofpthé, other elements are still missing.
andw resonances and on the couplings andF,, and onf. In Fig. 4a) one clearly sees the peaks ¢f p, and
The couplingsFy, andG,, are fixed, as explained in Sec. lll, resonances, the latter on the top @f The w peak corre-
from their experimental values 154 and 53 MeV, respecsponds to that of a zero width resonance since it appears
tively. The value for the parametérs taken from the second below theKK threshold and the B state is not included. In
entry of Ref.[7], where it is derived by working out the Figs. 5a), 5(b) we compare for low energies our results for
relation of the ratidf . /f with the isoscalauu+dd radius of  the pion and charged kaons vector form factors with the re-
the pion. The resulting central value fis=87.4 MeV. No- sults obtained inyPT for the pion vector form factor, up to
tice that this estimate is done for the valuefah the limit ~ one[7] and two loopg13,14], and with the one loogPT[7]
m,=my=0 andm,#0 and there is some controversy aboutcharged kaon vector form factor. In the figures the aforemen-
the possible deviations with respect this value when considtioned matching, guaranteed by construction, is clearly seen,
ering theSU(3) casd35,36. The bare masses can be fixed and the resummation accomplished by E2p) provides the
in terms of Fy, Gy, andf by the requirements that the right corrections to thg/PT results also for low energies. In
moduli of themm 1=1 andKK I=0 P-wave amplitudes fact, we see a much better agreement of our result with the
have a maximum for\/gzMghysicaI: 770 MeV and forys two loop yPT pion vector form factor than with the one loop

=MP¥e 1019.413 MeV, respectively. We obtain the result. . . y
valuesM —=829.8 MeV andM .—1026.581 MeV. where In Table | we give the calculated electromagnetic radii of
P ) ¢ ' ’ the pions, charged, and neutral kaons and compare them with

::?Seionnumbﬁaigaciﬁglrgﬁ;igglrﬁsazzgi t;r éhgeifexﬁ%.enmental preone loopxPT [7] and with e>2<per.imer?t. We haye not shown
For the mass of thes we take directly 782 MeV since the two loopyPT vglue fqr(r,,) since Its experimental value

there are no experimental data in the region of¢hand its [48] is takgn as an inputin _orQer to f|x_a counterte{ﬂ_ﬁ]. In. .

rBef. [14] it is argued that this is a sensible assumption within

such fine details since the is very narrow. Finally, note that &N accuracy around a 10% in the valugof)j . Our results

our physical results do not depend on the regularization scalf®" Pions and charged kaons are compatible with e

w« since any change in the scale is reabsorbed by the corréesults and ex_penment within errors. For the case of negtral

sponding change in the constadﬁ,u). However, since we kaons, assuming as we have, the same uncertainties as in the

have made use of E(R9), we have to consider a value for xPT results, we are also compatible with experiment. It is

around the mass of the meson, where vector meson Sa,[u_also interesting to compare our values for the electromag-
ration of theL!(u) coefficients workg8]. In the following netic radii with a low-energy theorem due to SifBil]. This
we will fix =M theorem states that

o

As can be seen in Figs. 3, 4, and 5, we can describe in a - 1 + 0 "
very precise way the vegtor pion and kaon form factors from L(Ms~ m)?]= S[Fu(s)+ FU (9)1+Fy (5)=F57(s),
negative values 0§ up to about 1.44 Ge¥ The P-wave (39
7 phase shifts are also very well reproduced even for en-
ergies higher than those for the form factors, Fig. 3 is diswherem, is the mass of the strange quark,is the average
played until /s=1.5 GeV. Note that the curves present in between the masses of the up and down quarks,féﬁds
those figures do not result from a fit making use of our ap-one piece of the vectdf s form factor[7]. In the previous
proach since the parameters have been fixed in advance. Fuelation the contribution of heavy quarks have been ne-
thermore, the qualitative behavior of the data for the formglected and we follow the notation of R¢#]. Numerically
factors is reproduced even for very high energies. For valueat O(p*) in xyPT [7] one has, for the same combination of
of \/s higher than 1.2 GeV new effects appeds the pres- electromagnetic radii as in the right-hand side of E20),
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Cov v v by v v by oL . . 1 5= 500 600 700 800 900 1000 1010 1020 1030 1040
500 1000 1500 2000 1000 1200 1400 W(MeV) W(MeV)
W(MeV) W(MeV)
. . FIG. 5. W is defined asys for s>0 and as—+/—s for s<0.
FIG. 4. Wis defined as/s for s>0 and as— v/~ s for s<0. (a) s/s

From left to right and top to botton{a) Vector pion form factor.
The dashed-dotted line represents one Iqéf¥ Ref.[7] and the
dashed one the two loogPT result Ref.[14]. (b) K*K~ form
factor. The meaning of the lines is the same as before. Data are
from Ref.[46], white circles, and the star points are from HéfZ].
0.00+0.05 fnf. At O(p®) the result is [52] 0.021 (c) Vector pion form factor in thep region without taking into
+0.003 fnf. From the values shown in Table I, taking from account they-w mixing effect. Data fromr decayg21]. (d) K*K~
experiment the electromagnetic radiugr?){"=0.36  form factor. Data from Ref[42].

+0.02 fn? [37], as also done iN(p*) xPT, we have

—0.07+0.05 _fm?. The experimental value, from Refs. a), can hardly be distinguished from the =0 case in
[47,49,50,37, is —0.02+0.05 fn?.

In Figs. Hc), 5(d) the resonance regions for tipeand ¢ tEe :‘eg|or1f\/§<1.z GeV.. A it rt1o thﬁww phasel Shlﬁs, and
mesons are shown in detail. In the case of the pion fornjl® form factors data gives that t M best values aje
factor in thep region, we have compared our results with the ~ 9-0012 andv,=830.23 MeV, leading to results that are
experimental data of Ref21] since in+ decays only the indistinguishable from the ones obtained by settirig=0.
=1 part of the pion form factors plays a role and we are Finally, in our approach we have taken into account
working in the isospin limit. As can be seen the reproductionand KK coupled channels for the=1 P wave. The effect
of data is very good in both cases. of coupled channels is more important for kaons, particularly

As announced before, we have also studied the deperfor the neutral ones, than for pions. This can be expected
dence of the results on the subleading consignivhich has  since when we decouple the kaons from the pions ghe
been set to zero in E¢32). Notice that the matching tpPT  resonance appears in the kaon vector form factors as a zero
gives new values for thd! parameters in terms of those of width resonance and this is a very bad approximation, par-
a; and also one has to recalculate the bare mass of the ticularly, if we are interested around the rather brgadn-
resonance. The new results, obtained with reasonable valuesgy region. On the other hand, around the peak offlike

K*K~ vector form factor. Experimental data: black circlgs?],
white circles[43], and star§44]. (b) o(e*e”—K°KP) in nb. Data
from Ref.[45].

TABLE I. Electromagnetic radii forr* 7, KK, andk °K°. In the table are given our results, the ones
from yPT at next-to-leading order Rdf7] and some experimental data. The uncertainty in our values has to
be considered of the same size as the ongHRfl, that is, around:0.04 fnt.

e.m. radii (fnf) Our results One looyPT Experiment
(r37 0.44 0.44+ 0.04 0.439+ 0.030[50]
(rz)s+ 0.34 0.38*+ 0.03 0.34*+ 0.05[47]
0.28 = 0.07[46]
(rz){jo —-0.10 —0.04 = 0.03 —0.054 = 0.026[49]
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FIG. 6. Feynman diagram corresponding to phe mixing con- 12 -

tribution to the pion form factor.

effect of the pions is small, of the order of a few percent, and

the kaon vector form factor is dominated by tK& elastic L
channel strongly coupled to th¢. However, as we move 08 I
again to higher energies, where the form factors have
dropped substantially, the pion channels become again im- os |
portant. i
Isospin violation p-w mixing The incorporation of iso-
spin violation effects, due to the mass differences fromuthe

04

. . . . oo b b b b b e L b
andd quarks and electromagnetic corrections, is readily pos-  eo0 &0 700 750 800 g50 800 950 1000

sible, up to some extent, within the present formalism. As an W(Mev)
example, consider the Okubo-Zweig-lizok@Zl) violating
process¢p— 7" o~ studied in Ref[53] within a chiral uni- FIG. 7. Solid line: pion vector form factor taking into account

tary approach. It was noted there that thes 7" 7~ decay the p-o mixing; dashed linel=1 vector form factor in the iso-
requires a direcb-w mixing which makes this process quali- Spin limit. Data: black circles frore”e” — " 7~ reactiond4,38];
tatively different to the¢— 7 7. This p-w mixing has  White circles: data fromr decays[21].

been studied in the context of chiral Lagrangians, together

with the largeN. expansion, in Refi54] with the result With a value for@pm of —4500 MeV? from Eq. (41),

which is also consistent with empirical determinations
1~ [55,56, we get the form factor shown in Fig. 7 which repro-
iﬁ%i§®pwp,?wa)’uy (40 duces the experimental data fairly well at the peak of the
pion form factor. It is worth mentioning that this effect of
with isospin violation is not observed in the data frandecay
since this process is only sensitive to thel current(see
Fig. 5).
e’FZ
3

G)pw:—(mio—mi+)+(mio—mi+)+ (41)

V. CONCLUSIONS

Given the smallness of the contribution fropaw mixing
one can add to the result for the pion form factor evaluated \We have developed an appropriate method to take into
before the contribution from the mechanism of Fig. 6. account the final state interaction corrections to the tree level

The contribution of Fig. 6 is straightforward and has beemgmplitudes of Refs7,8] with explicit resonance fields. The
evaluated previously in Ref20]. With the yw and pmm  strong tree level scattering amplitudes from R§Ts8] were
couplings from Ref{8] and thep-w coupling of Eq.(40) we  ypitarized in coupled channels following the scheme devel-
obtain oped in Ref[27]. These amplitudes were then implemented
in order to derive the final state corrections to the tree level
vector form factors, Eqg2). As a result a very good descrip-

o1t FVGVS ! tion of data is accomplished fofs<1.2 GeV. For higher
3 2 s— Mi+i \/§Fw(s) energies multiparticle channels are no longer negligible and
also new resonances appear, although our results still give
< 1 o (42) the trend of the experimental data.
s— M§+i \/grp(s) pe Our expressions reproduce tgeT expansion of the pion

and kaon vector form factors up to one Idafl. The resum-
Since this correction is only visible around thepeak we  mation of our scheme leads, in the low-energy region where
take forI',(s), I',(s) the constant values of the Particle xPT is expected to holfisee Fig. %], to a much better
Data GroupPDG) [37] (using instead an energy dependenceagreement with the two loogPT pion vector form factor
width of the p meson does not introduce any appreciablethan with the one loop one. However, at the same time, we
effects. are able to provide a very good description at higher ener-
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gies, including the resonance regions where stangdd@  the case of the kaons there are no scattering data available,
could not be applied, Figs.(® and 5d). Furthermore, our but they would be highly desirable as a further test of the
calculated electromagnetic radius of the, K*, andK®,  chiral unitary approach followed here.

Table I, are in agreement with experiment, assuming the
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