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Testing the Landau gauge operator product expansion on the lattice with aŠA2
‹ condensate
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Using the operator product expansion we show that theO(1/p2) correction to the perturbative expressions
for the gluon propagator and the strong coupling constant resulting from lattice simulations in the Landau
gauge are due to a nonvanishing vacuum expectation value of the operatorAmAm . This is done using the
recently published Wilson coefficients of the identity operator computed to third order, and the subdominant
Wilson coefficient computed in this paper to the leading logarithm. As a test of the applicability of OPE we
compare thê AmAm& estimated from the gluon propagator and the one from the coupling constant in the
flavorless case. Both agree within the statistical uncertaintyA^AmAm&.1.64(15) GeV. Simultaneously we fit
LMS5233(28) MeV, in perfect agreement with previous lattice estimates. When the leading coefficients are
only expanded to two loops, the two estimates of the condensate differ drastically. As a consequence we insist
that the OPE can be applied in predicting physical quantities only if the Wilson coefficients are computed to a
high enough perturbative order.

DOI: 10.1103/PhysRevD.63.114003 PACS number~s!: 12.38.Aw, 11.15.Ha, 12.38.Cy, 12.38.Gc
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I. INTRODUCTION
When computing an operator product in a fixed gauge,

operator product expansion~OPE! contains in general con
tributions from local gauge-dependent operators, e
though they should not emerge in the gauge-invariant sec
For example, in Ref.@1#, a detailed analysis clearly show
that operators such asA25AmAm contribute to the QCD
propagator OPE through a nonzero expectation value
non-gauge-invariant ‘‘vacuum.’’ A2 is the unique
dimension-2 operator allowed to have a vacuum expecta
value ~VEV! and is thus the dominant nonperturbative co
tributor, leading to;1/p2 corrections to the perturbative re
sult.

These expected;1/p2 have at first sight nothing to do
with the possible presence of 1/p2 terms ingauge-invariant
quantities such as Wilson loops@2#: since no local gauge
invariant gluonic operator of dimension less than 4 exists
is expected from the OPE that the dominant power correc
should be}1/p4, originating from the local and gauge
invariantGmnGmn . Of course the operatorA2 in the Landau
gauge can be viewed, by simply averaging it over the ga
orbit, as a gauge-invariant nonlocal operator. But then, d
ing with nonlocal operators, we lose the standard OPE po
counting rule relating the power behavior of a Wilson co
ficient to the dimension of the corresponding operator: th
is no reason for this nonlocal operator to yield 1/p2 contri-
butions in a gauge-invariant observable. It has been stro
stressed in Ref.@3# that, working in the Landau gauge, theA2

operator plays a special role since imposing the Lan
gauge condition is equivalent to asserting thatA2 is at an
extremum or a saddle point on its gauge orbit. Practically,
a lattice, one fixes the Landau gauge by searching for a m
mum ofA2 on the orbit. We are not able to elaborate furth
on the issue of what relation might exist between theex-
pected̂ A2& condensate in the Landau gauge and the poss
unexpected1/p2 terms in gauge-invariant quantities@2#. But
we are in a position to put the first step of this possible ro
on a firm ground: to provide strong evidence that there
0556-2821/2001/63~11!/114003~9!/$20.00 63 1140
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indeed an̂ A2& condensate in the Landau gauge and that i
not small.

To that aim we will use heavily the OPE. We need to
sure that the OPE really works in this situation and have
invent some way of verifying this point. A success of th
check would achieve several goals. First it would give stro
support to the conjecture that the OPE is really working
this situation, i.e., that we do not encounter a strange si
tion where the OPE would have failed like the one discus
in the preceding paragraph about^GmnGmn&. Second it
would confirm that we go far enough in the perturbati
expansion@the expansion in 1/ln(p2)# to be able to say some
thing sensible about the power expansion~in 1/p2). Third it
would confirm that we really are measuring^A2&. Such
checks have of course many consequences which will
further discussed in the Conclusions.

From a practical~numerical! point of view, 1/p2 terms
provide a specially convenient way to test the OPE sin
they remain visible at much larger energies than the 1p4

ones which would result from the gauge invariantGmnGmn,
and as already mentioned, their OPE analysis is rather sim
and unambiguous becauseA2 is the only dimension-two op-
erator to contribute.

A recent study ofas
MOM̃(p), the Landau gauge couplin

constant,1 regularized on a lattice showed unequivocally t
presence of 1/p2 power corrections still visible at energie
;10 GeV for which OPE contributions of the gluon co
densatêA2&, were natural candidates@4#. In this term all the
nonperturbative input is contained in̂A2& while the OPE
Wilson coefficients can be computed in perturbation. In vi
of this, we proposed in a previous work@5# a procedure to
test the OPE based on the determination, and further c

1as
MOM̃(p) stands for the QCD running coupling constant nonp

turbatively renormalized in a kinematically asymmetric point

following the momentum subtractionprescriptions (MOM̃).
©2001 The American Physical Society03-1
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parison, of the two estimates of the gluon condensate^A2&
obtained from both gluon two- and three-point Green fu
tions by means of a simultaneous matching of the lattice d
to the OPE formulas derived by following standard Shifma
Vainshtein-Zakharov~SVZ! techniques@6#. Thus, our OPE
matchings of lattice data provide two independent estima
of the renormalizedA2 condensate. The adequate definiti
of renormalized condensates and their ‘‘universality’’ wh
studying different Green functions was discussed in Ref.@5#
in connection with the choice of truncation orders for pert
bative and OPE series~see also@7,8#!. In this preliminary
work we described the theoretical framework for this test
procedure and we performed a first analysis of previous
tice data@9,10# but the perturbativeb function was known at
that time only up to two loops and our use of the OPE w
limited to a sole computation of the Wilson coefficients
A2 at thetree level.

After this work was completed a computation of the th
coefficient of the MOM beta functionb2 was published in
Ref. @11#. The authors of this last work conclude that the
computedb2 and our ‘‘prediction’’ of this coefficient based
on OPE consistency@5# reasonably agree with each othe
Thanks to the new information concerning theb function
and to the high accuracy of our lattice results we are now
a particularly favorable situation to address further the qu
tions we have mentioned above. This is the task we s
attack in the present paper, presenting a consistent calc
tion in the MOM scheme~a symmetric kinematics chosen fo
the vertex! with the Wilson coefficients of the identity op
erator computed at three loops@9–12# and the ones ofA2

computed to the leading logarithm in Sec. II B. In particu
we will compare the check of the ‘‘universality’’ of the con
densates when expanding the leading perturbative co
cients to three loops and when one uses only the two-l
order.

The theoretical setting of our use of OPE is described
Sec. II: the tree-level computation, presented previously
Ref. @5#, is only sketched and most attention is paid to t
obtention of the one-loop anomalous dimension of the W
son coefficients. The fitting strategy is explained and
matching test performed in Sec. III. Finally, we discuss a
conclude in Sec. IV.

II. OPE FOR THE GLUON PROPAGATOR AND as„p…

In the present section we shall expand the three-p
Green function, and henceaS(p), as well as the gluon propa
gator, in the OPE approach up to the 1/p2 order. Both glu-
onic two- and three-point Green functions are renormali
according to the MOM scheme. Let us start with a remin
of the computation of the tree-level Wilson coefficients@5#.

A. Tree-level Wilson coefficients

In the pure Yangs-Mills QCD, without quarks, the OP
yields
11400
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T„Ãm
a ~2p!Ãn

b~p!…5~c0!mn
ab~p!11~c1!mna8

abm8~p!:Am8
a8 ~0!:

1~c2!mna8b8
abm8n8~p!:Am8

a8 ~0!An8
b8~0!:1•••,

~1!

T„Ãm
a ~p1!Ãn

b~p2!Ãr
c~p3!…

5~d0!mnr
abc~p1 ,p2 ,p3!11~d1!mnra8

abcm8~p1 ,p2 ,p3!:Am8
a8 ~0!:

1~d2!mnra8b8
abcm8n8~p1 ,p2 ,p3!:Am8

a8 ~0!An8
b8~0!:1•••, ~2!

where only normal products of local gluon field operato
occur andA(Ã) stands for the gluon field in configuratio
~momentum! space,a,b being color indices andm,n Lorentz
ones. The notationT() simply refers to the standardT*
product in momentum space. The normal product of E
~1!,~2! should be defined in reference to the perturbat
vacuum@5#.

Only terms in Eqs.~1!,~2! containing an even number o
local gluon fields give a non-null VEV because of Loren
invariance and of the gauge condition@5#. The coefficientsc0
andd0 are the purely perturbative Green functions. Assu
ing the Wilson factorization of soft and hard gluon contrib
tions, the relevant Wilson coefficientsc2 ,d2 can be obtained,
in perturbation, by computing the diagrams in Fig. 1 whi
represent the matrix elements of operators on the left-h
side~LHS! of Eqs.~1!,~2! between soft gluons, indicated b
crosses. Using also the tree-level expression for the ma
element, between the same two soft gluons, of the local
erators on the RHS of Eqs.~1!,~2! we obtainc2 and d2 by
matching both sides.

Thus, in the appropriate Euclidean metrics for match
to lattice nonperturbative results, we can write

k2G(2)~k2!5ZMOM~k2!5Zn loops
MOM ~k2!1

3g2^A2&

4~Nc
221!

1

k2
,

FIG. 1. Four- and five-gluon tree-level diagrams contributi
~with all their possible permutations! to the Wilson coefficients of
the gluon propagator and the three-gluon vertex. Crosses mark
gluon legs due to the external soft gluons.
3-2
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k6G(3)~k2,k2,k2!5k6Gpert
(3) ~k2,k2,k2!1

9g3^A2&

4~Nc
221!

1

k2
, ~3!

where the scalar form factorsG(2),G(3) are defined as fol-
lows from the Green functions:

G(2)~p2!5
dab

Nc
221

1

3 S dmn2
pmpn

p2 D ^Ãm
a ~2p!Ãn

b~p!&,

G(3)~k2,k2,k2!5
1

18k2

f abc

Nc~Nc
221!

^Ãm
a ~p1!Ãn

b~p2!Ãr
c~p3!&

3F ~Ttree!m1m2m3

1
~p12p2!r~p22p3!m~p32p1!n

2k2 G . ~4!

For the kinematic configurationp1
25p2

25p3
25k2 the three-

gluon tree-level tensor is defined as

~Ttree!m
18m

28m3
5@dm

18m
28
~p12p2!m

38
1cycl. perm.#

3 )
i 51,3

S dm
i8m i

2
pim

i8
pim i

pi
2 D . ~5!

In Eqs.~3!–~5! we have dealt with bare quantities, dependi
only on the cutoffa21 and on the momentumk. We have
omitted to explicitate the dependence on the cutoff in or
to simplify the notation. Using Eqs.~3! these Green func
tions can be conveniently renormalized by MOM prescr
tions: the renormalized two-point Green function is tak
equal to 1/k2 for k25m2:

k2GR
(2)~k2,m2![

k2G(2)~k2!

m2G(2)~m2!
5c0S k2

m2
,a~m!D

1c2S k2

m2
,a~m!D

3
uA2uR,m

4~Nc
221!

1

k2
. ~6!

The c0 Wilson coefficient can be written as

c0S k2

m2
,a~m!D 5

Zn loops
MOM ~k2!

ZMOM~m2!
5c0„1,a~m!…

Zn loops
MOM ~k2!

Zn loops
MOM ~m2!

,

~7!

and verifies consequently the perturbative evolution eq
tions of ZMOM,
11400
r

-

a-

d ln c0S k2

m2
,a~m!D

d ln k2
52S g0

a~k!

4p
1g1S a~k!

4p D 2

1g2S a~k!

4p D 3

1••• D , ~8!

where g1 and g2 depend on the perturbative scheme
which the strong coupling constanta(k) is defined. The
boundary condition to solve Eq.~8! comes from the nonper
turbative normalization ofk2GR

(2)(k2,m2) to 1 atk25m2, and
it results thatc0„1,a(m)…511O(1/m2).

Let us recall that in the MOM prescription, the three-po
Green function is renormalized by GR

(3)(k2,m2)
[G(3)(k2,k2,k2)@ZMOM(m)#23/2, and the MOM coupling
constant follows from

gR~k2!5
G(3)~k2,k2,k2!

@G(2)~k2!#3
@ZMOM~k2!#3/25k6GR

(3)~k2,m2!

3@k2GR
(2)~k2,m2!#23/2. ~9!

Analogously to Eq.~6! we define the renormalized three
point Green function

k6GR
(3)~k2,m2!5d0S k2

m2
,a~m!D

1d2S k2

m2
,a~m!D ^A2&R,m

4~Nc
221!

1

k2
, ~10!

where thed0 Wilson coefficient verifies the perturbative evo
lution equations ofk6GR

(3)(k2,m2) and the boundary condi
tion d0„1,a(m)…5gR(m2)1O(1/m2) is immediate from Eqs.
~9!,~10!.

In the MOM scheme, the gluon condensate^A2&R,m is
renormalized atm2 by a standard condition through divisio
by a renormalization constantZA2.

Thec2 andd2 Wilson coefficients at the tree level are@5#

c2„1,a~m!…53 g2,

d2„1,a~m!…59 g3. ~11!

Since the three-point Green function naturally defines
MOM scheme coupling constant@see below Eq.~9!#, we will
perform all the coming calculations in the symmetric MO
scheme where

g0513/2, g15216.9,g2.1332.3. ~12!

In Eq. ~8!, a(k) is of course taken to be the purely pertu
bative running coupling constant,gR,pert

2 (k2)/(4p), obtained
by integrating the beta function in the MOM scheme:
3-3
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d

d ln k
a~k!5b„a~k!…52S b0

2p
a2~k!1

b1

4p2
a3~k!

1
b2

~4p!3
a4~k!1••• D , ~13!

where@11#

b0511, b1551, b2.3088. ~14!

B. Wilson coefficient at leading logarithms

The purpose is now to compute to leading logarithms
subleading Wilson coefficients in Eqs.~6!,~10!. To this goal,
following @13# it will be useful to consider the following
matrix element:

^gt
auÃr

r ~k!Ãs
s ~2k!ugn

b&R,m

5d rsS drs2
krks

k2 D
3F c2S k2

m2
,a~m!D

k4

^gt
auAR

2 ugn
b&m

4~NC
2 21!

1•••
G , ~15!

where the external gluons carry soft momenta. This ellip
refers to terms with powers of 1/k different from 4 ~i.e.,
corresponding to higher dimension operators or to iden
operator2!. From Eq.~15! we get

4

3
k4

^gt
auÃr

r ~k!Ãs
s ~2k!ugn

b&

ugt
auA2ugn

bu
d rsS drs2

krks

k2 D
5Z3~m2!ZA2

21
~m2!c2S k2

m2
,a~m!D 1•••

[Ẑ21~m2!c2S k2

m2
,a~m!D 1•••, ~16!

whereÃR5Z3
21/2Ã and AR

25ZA2
21A2, while Ẑ[Z3

21ZA2 is a
useful notation denoting the divergent factor of the mat
element coming from proper vertex corrections. If one ta
the logarithmic derivatives with respect tom on both sides of
Eq. ~16!, the following differential equation is obtained:

H 22g„a~m!…A212g„a~m!…1
]

] ln m

1b„a~m!…
]

]a J c2S k2

m2
,a~m!D 50. ~17!

2It should be remembered that other terms, such as]mAm , with
the same dimension ofA2, do not survive.
11400
e

s

y

s

An analogous differential equation describing the behav
of the three-point Wilson coefficient on the renormalizati
momentumm can be obtained similarly:

H 22g„a~m!…A213g„a~m!…1
]

] ln m

1b„a~m!…
]

]a J d2S k2

m2
,a~m!D 50. ~18!

Here we have defined

gA25
d

d ln m2
ln ZA2 ~19!

andg„a(m)… is the gluon propagator anomalous dimensio
Reexpressing these evolution equations in terms of

ĝ„a~m!…5
d

d ln m2
ln Ẑ~m2!, ~20!

we obtain

H 22ĝ„a~m!…1
]

] ln m
1b„a~m!…

]

]a J c2S k2

m2
,a~m!D 50

~21!

and

H 22ĝ„a~m!…1g„a~m!…1
]

] ln m

1b„a~m!…
]

]a J d2S k2

m2
,a~m!D 50. ~22!

The leading logarithmic solution for both Eqs.~21!,~22! can
be written as

c2S k2

m2
,a~m!D 5c2„1,a~k!…S a~k!

a~m! D
2ĝ0 /b0

,

d2S k2

m2
,a~m!D 5d2„1,a~k!…S a~k!

a~m!D (g022ĝ0)/2b0

,

~23!

whereĝ0 is defined in analogy withg0:

ĝ„a~m!…52ĝ0

a~k!

4p
1••• . ~24!

The prefactorsc2„1,a(k)… and d2„1,a(k)… have to be
matched at the tree level to Eq.~11!. The only solutions are
of the form

c2„1,a~k!…53 gR
2~k2!F11OS 1

log~k/LQCD! D G ,

3-4
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d2„1,a~k!…59 gR
3~k2!F11OS 1

log~k/LQCD! D G .
~25!

TheO„1/log(k/LQCD)… terms are clearly of the same order
the next-to-leading contributions to the anomalous dim
sion which are systematically omitted in this paper.

Of course, these solutions of Eqs.~21!,~22! define the
dependence of the Wilson coefficients not only on the ren
malization momentum,m, but simultaneously on the mo
mentum scalek2. This is a straightforward consequence
standard dimensional arguments: the only dimension
quantities are the ratiok2/m2 and a. Then, as soon as on
knows perturbativelyĝ„a(m)…, g„a(m)…, andb„a(m)…, the
leading logarithmic behavior onk is available.

As already mentioned, the gluon propagator anomal
dimension and the beta function are known up to three lo
in the MOM scheme and up to three and four loops, resp
tively, in the MOM̃ scheme. The anomalous dimension
theA2 operator is obviously less stimulating for perturbati
QCD community. We have done this calculation to one lo
~see the Appendix!, obtaining

ĝ„a~m!…52ĝ0

a~m!

4p
1•••52

3NC

4

a~m!

4p
1•••

~26!

and

gA2„a~m!…5
d

d ln m2
ln ZA252

35NC

12

a~m!

4p
1••• .

~27!

C. Gluon propagator with leading logarithms for the
condensate coefficient

Let us now specify our approach to lattice results. Us
the definitions in Eqs.~3! and ~6! we will match our lattice
results to

ZLatt
MOM~k2,a!

ZLatt
MOM~m2,a!

5k2GR
(2)~k2,m2!1O~a2!, ~28!

where the adequate control of lattice artifacts3 reduces the
UV discretization errors to an acceptable level. From Eq.~6!,

k2GR
(2)~k2,m2!5c0S k2

m2
,a~m!D

3S 11

c2S k2

m2
,a~m!D

c0S k2

m2
,a~m!D

^A2&R,m

4~Nc
221!

1

k2D ,

~29!

3See Ref.@10#, where we discuss at length the artifacts of t
lattice gluon propagator evaluation.
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where we explicitly factorize the Wilson coefficient of th
identity operator which, as was previously indicated,
known to three loops. Nevertheless, for consistency, all
termsinside the parentheseson the RHS of Eq.~29! will be
developed only to leading order, includingc0„k

2/m2,a(m)…:

c0,LOS k2

m2
,a~m!D 5S a~k!

a~m!D g0 /b0

. ~30!

Terms of the order ofO„1/(k2m2)… have been neglected, a
well as, of course, those ofO(1/k4) coming from higher
dimension operators. One free parameter, i.e., a boun
condition, has to be fitted from lattice data. It can be eith
a(m) or theL parameter, i.e., the position of the perturb
tive Landau pole. We choose the latter. We writec0,1 loop in
terms of the MOM coupling constant4 and theL parameter
in Eq. ~30! in the MOM scheme,5

L[LMOM.3.334LMS. ~31!

We finally obtain

ZLatt
MOM~k2,a!5ZLatt

MOM~m2,a!c0S k2

m2
,a~m!D

3F11R(2)S ln
k

L D (g01ĝ0)/b021
1

k2G , ~32!

where

R(2)5
6p2

b0~Nc
221!

S ln
m

L D 2(g01ĝ0)/b0

^A2&R,m . ~33!

D. Running coupling constant

By taking the OPE expansions in Eqs.~10! and ~6!, Eq.
~9! can be written as

gR~k2!5gR,pert~k2!5 11
^A2&R,m

4~Nc
221!

1

k2

3S d2S k2

m2
,a~m!D

Fd0S k2

m2
,a~m!D G 2

3

2

c2S k2

m2
,a~m!D

c0S k2

m2
,a~m!D D 6 ,

~34!

4MOM̃, for instance, or whatever renormalization scheme co
be used alternatively. Our preference for the MOM scheme
been explained above.

5See, for instance, Ref.@14#.
3-5
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FIG. 2. Comparison of the
two-loop fit to the ratio of the
renormalization constants atk and
at 10 GeV and toas(k) with the
lattice data for 2.5,k,10 GeV.
The dotted line shows the pertur
bative part.
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gR,pert~k2![d0S k2

m2
,a~m!D Fc0S k2

m2
,a~m!D G23/2

. ~35!

Applying the results given by Eqs.~23!,~32!–~35!, aMOM

5gR
2/(4p) verifies

aMOM~k!5apert~k!S 11R(3)S ln
k

L D (g01ĝ0)/b021
1

k2D ,

~36!

where

R(3)5
18p2

b0~Nc
221!

S ln
m

L D 2(g01ĝ0)/b0

^A2&R,m . ~37!

Again, we do not retainO„1/(k2m2),1/k4
… terms.

III. FITTING THE DATA TO OUR ANSA ¨ TZE

We shall follow in this section the OPE testing approa
proposed in Ref.@5#: trying a consistent description of lattic
data for two- and three-gluon Green functions from Re
@4,9,10#. We are, however, in a much better position than
@5#. In the latter work, only two-loop information was avai
able for the beta function andd0 while the subdominant Wil-
son coefficientsc2 and d2 were computed only at the tre
level. This had the practical inconvenience of preventin
simultaneous fit of bothLMS and ^A2&: the LMS parameter
had to be taken from outside our matching procedure. N
the new input for the three-loop MOM beta function andc0
coefficient @11# enables us to perform a self-consistent t
by combining the matching of the gluon propagator and
as

MOM to formulas in Eqs.~32!,~33!,~36!,~37!, where the
three quantities,LMS and gluon condensates from bo
Green functions, are taken to be fitted on the same foot
Of course, the test consists in checking the equality of
two gluon condensates obtained from those two differ
Green functions.

In the case of the gluon propagator, the fac
c0„1,a(m)…ZLatt

MOM(m2,a), which carries all the logarithmic
11400
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r

dependence on the lattice spacing, appears as an addit
parameter to be fitted. As we explained in Ref.@5#, a large
fitting window is an important ‘‘ace’’ to restrict the poten-
tially dangerous confusion between Wilson coefficients
different powers. To combine data over such a large ene
window we need to match the lattice results obtained w
different lattice spacings and the last factor carrying latt
spacing dependence should be independently fitted for e
one. On the contrary, the running coupling constant sho
be regularization independent and the matching of data
corresponding to different lattice spacing can be impo
without tuning any additional parameter~this is by itself a
positive test of the goodness of the procedure used to b
our data set!. As a matter of fact, this is why the matching o
the latter to perturbative formulas is much more constrain
than that of the former in order to estimateLMS, as dis-
cussed in Refs.@4,9,10#. The details of the lattice simula
tions, of the procedures used to obtain an artifact-safe d
set, or of the definition of regularization-independent obje
permitting lattice regularized data to be matched to c
tinuum quantities in any scheme can be found in those
erences. We will now present the results of the fitting str
egy just described.

A. Two-loop fit

We first perform the combined fit for the two- and thre
gluon Green functions at the two-loop level for the leadi
Wilson coefficients. In Fig. 2, we plot lattice data and t
curves given by Eqs.~32!,~33!,~36!,~37! with the following
best-fit parameter:

propagator: A^A2&R,m

51.64~17! GeV, aMOM: A^A2&R,m

53.1~3! GeV,

$A^A2&R,m%alpha

$A^A2&R,m%prop

51.86~4!, LMS5172~15! MeV, ~38!

with a x2/NDF.1.1 for the combined fit.
3-6
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FIG. 3. Same as Fig. 2 at the three loop level.
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B. Three-loops fit

The present perturbative knowledge allows a three-lo
level fit for leading Wilson coefficients. Analogously to th
previous paragraph, we plot in Fig. 3 the lattice data a
curves given by Eqs.~32!,~33!,~36!,~37!, ZR,pert

MOM and apert

taken at three loops, with the following best-fit paramete

propagator: A^A2&R,m

51.55~17! GeV, aMOM: A^A2&R,m

51.9~3! GeV,

$A^A2&R,m%alpha

$A^A2&R,m%prop

51.21~18!, LMS5233~28! MeV, ~39!

with x2/NDF.1.2. Combining the results obtained fro
aMOM and from the propagator in the standard way gives
final resultA^A2&R,m51.64(15) GeV. The renormalizatio
scalem is taken to be 10 GeV in both combined fits at t
two- and three-loop levels. However, we have checked t
varyingm over the fitting window where we can legitimate
neglect terms ofO„1/(m2k2)… in Eq. ~37!, the ratios of con-
densates in Eqs.~38!,~39! remain essentially unmodified. I
fact, thatR(2) in Eq. ~32! does not depend onm has been
explicitly tested over the fitting window@the same is obvious
for R(3) in Eq. ~36! where nothing depends onm#.

IV. DISCUSSION AND CONCLUSIONS

The gluon condensatêA2& has been computed from th
deviations of both the lattice nonperturbative evaluation
the MOM aS and the gluon propagator from their know
perturbative behavior. We have described these nonpertu
tive deviations using the OPE and fitting the condensate
match both sides. The use of the self-consistent fitting st
egy described in the preceding section leads simultaneo
to a predictionLMS and to two independent estimates
^A2&.

The fit using the two-loop perturbative expressions
11400
p

d

:

r

t,

f

a-
to
t-
ly

r

both the MOMaS and the gluon propagator clearly fails:a
clear disagreement between the two independent estimat
A^A2& is found. The ratio of both estimates is 1.86(4) fro
Eqs.~38!. This confirms the preliminary analysis in Ref.@5#,
where only tree-level Wilson coefficients were computed.
this preliminary work, a self-consistent three-loop analy
was not possible because the MOM beta function was
known up to three loops. Nevertheless, we tried to fit
third coefficient of the beta function,b2 to reach good agree
ment between the two estimates ofuA2u, theLMS parameter
being taken from previous works to be the same for b
two- and tree-point Green function matchings. Our estim
b257400(1500) was about twice larger than the resultb2
53088 in @11#. Still this fit went in the right direction,
whence the authors of@11# expected their result to lead to
fair fit to lattice data.

This expectation turns out to be correct.
First, the ratio of the two estimates ofA^A2& is equal to

1.21(18),i.e., compatible with 1, provided the leading W
son coefficients are consistently expanded at the three-
level and the subleading coefficients of^A2& are computed to
the leading logarithms. Second, in the same joint fit,LMS is
estimated to be233(28) MeV, in amazing agreement wit
previous estimates ofLMS appearing in the literature~see,
for instance,@10,15#!. Thus, the present analysis ends
with a twofold success and we can conclude that the O
leads to a good description of the deviations of the runn
coupling constant and of the gluon propagator from th
perturbative behavior in terms of perturbatively available c
efficients multiplying one phenomenological condensate:
sole non vanishing nonperturbative contribution up to
order 1/p2, namely, the gluon condensate^A2&.

However, for this OPE description to be consistent, it
unambiguously demonstrated that the leading coeffic
must be taken to three loops; on the contrary there is a c
failure at two loops, even though our analysis has been
formed at an unusually large energy scale, up to 10 GeV.
was discussed in the preliminary study, such a disagreem
indicates that we are, in this case, in the situation descri
in @8#, i.e., that the perturbative order is too low to give
3-7
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acceptable precision in the estimate of the power correcti
Taking into account power corrections does not make se
unless the leading contribution is computed perturbatively
a sufficient accuracy. In simple mathematical language
makes no sense to consider the 1/p2 corrections when one
does not consider the 1/ln(p2) corrections to a sufficient or
der. The OPE is often used with the leading coefficients o
known to two loops~sometimes to one loop!. We believe in
view of our results that these attempts should be recon
ered with care.

As for us, we were in a particularly favorable situation
analyze the problem thoroughly. We have rather accu
results. The dimension-2 power correction clearly shows
clearly and can be fully consistently attributed to anAmAm

condensate in the Landau gauge in full agreement with
theoretical expectations. Since we are working in the Lan
gauge, we produce~and use later on! bare gauge field con-
figurations which minimizeAmAm with respect to the gaug
group. This has the interesting consequence that the qu
ties we measure are invariant under infinitesimal gauge tr
formations in the vicinity of the Landau gauge. Still the lin
between what we call thêA2& and thê Amin

2 & defined in@3#
should be better clarified, which implies a better understa
ing of the renormalization procedure.6 Taking such a direct
link for granted, we can estimate from Eqs.~39! the tachy-
onic gluon mass defined in Ref.@3# to be7 ;0.8 GeV. Using
instead the notion of critical massM crit

2 , introduced in Ref.
@16#, which is the scale at which the nonperturbative cond
sate contributes 10% of the total, we estimate it for the glu
propagator to be;2.6 GeV. Both these scales express
rather large contribution from theA2 condensate.
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APPENDIX: ONE-LOOP ANOMALOUS DIMENSION
OF A2

The task of computing the one-loop anomalous dimens
of the matrix element̂A2& ~that of the local operator itself is

6It is a pleasure to acknowledge discussions with V. I. Zakha
on this topic.

7We recall that all scale-dependent quantities are evaluatedm
510 GeV.
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directly obtained from the former as explained in Sec.!
requires only to isolate the UV divergent part of the d
grams in Fig. 4. We follow dimensional regularization pr
scriptions to write

@Ga#ab
mn~q,2q!

5S gmn2
qmqn

q2 D dabS 1

« H 3Nc

ab

4p
1O~ab

2!J 1••• D ,

@Gb#ab
mn~q,2q!

5S gmn2
qmqn

q2 D dabS 1

« H 2
9

2
NC

ab

4p
1O~ab

2!J 1••• D ,

~A1!

where ana(b)-like diagram in Fig. 2 with amputated exte
nal gluon legs is denoted byGa(b) and wheree[22d/2. The
particular kinematics we choose~see Fig. 4!, where the in-
coming momentum flow is nonvanishing, eliminates au
matically the IR divergences and makes the UV analy
easier. We require the final result for amputated diagram
be transverse to the external momenta, but this is mere
convention to be also applied to the tree-level term. Furth
more, had we considered two different incoming momen
the tensors in Eq.~A1! would have acquired a more compl
cated form.

This kind of IR regularization, by imposing a non-nu
incoming momentum flow to the local operator, leads
course to UV poles results equivalent to those obtained fr
any other one. We have tested this by considering a
incoming momentum flow and both introducing a certa
cutoff to regularize IR divergences and separating IR a
UV poles obtained by dimensional regularization.

If we collect the tree-level results and those from Eq
~A1!, we can write

^gm
a uA2ugn

b&52S gmn2
qmqn

q2 D dab

3S 11
1

« H 3NC

4

ab

4p
1O~ab

2!J 1••• D , ~A2!

where the matrix element on the LHS of Eq.~A2! is defined
for explicitly cut external gluons. Combinatorics gives

v

FIG. 4. The graphs involved in the computation of the anom
lous dimension ofA2. The cross hatched blobs indicate the inserti
of the A2 operator; the dots are ordinary QCD vertices.
3-8
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multiplicity factor of 2 fora-like diagram, 1 forb-like, which
have been taken into account in the last result.

We should now renormalize the matrix element defined
Eq. ~A2!. Our aim being to determine its anomalous dime
sion computation to only one-loop, the simple minimal su
traction sum~MS! prescription of simply dropping awa
from bare quantities the poles for«→0 can be applied. Dis-
crepancies between such a prescription and MOM or
other one appear only beyond one loop. Then we will ha

ẐMS511
1

« S 3NC

4

ab

4p
1O~ab

2! D
511

1

« S 3NC

4

aMS~m!

4p
1O@„aMS~m!…2# D . ~A3!

From Eq.~A3!, the anomalous dimension can be written
~see, for instance,@12#!
l,

s

V
B

l.

11400
n
-
-

y
e

s

ĝMS
„aMS~m!…5

d

d ln m2
ln ẐMS

52
3NC

4

aMS~m!

4p
1O„@aMS~m!#2

…. ~A4!

Thus we obtain, in the MOM scheme,

ĝ„a~m!…52
3NC

4

a~m!

4p
1O„@a~m!#2

…. ~A5!

From this we deduce finally, including the gluon anomalo
dimension,

gA2„a~m!…52
35NC

12

a~m!

4p
1O„@a~m!#2

…. ~A6!
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