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Using the operator product expansion we show thatQli#/p?) correction to the perturbative expressions
for the gluon propagator and the strong coupling constant resulting from lattice simulations in the Landau
gauge are due to a nonvanishing vacuum expectation value of the opafakgr. This is done using the
recently published Wilson coefficients of the identity operator computed to third order, and the subdominant
Wilson coefficient computed in this paper to the leading logarithm. As a test of the applicability of OPE we
compare thgA*A ) estimated from the gluon propagator and the one from the coupling constant in the
flavorless case. Both agree within the statistical uncertajiA,)=1.64(15) GeV. Simultaneously we fit
Ams=233(28) MeV, in perfect agreement with previous lattice estimates. When the leading coefficients are
only expanded to two loops, the two estimates of the condensate differ drastically. As a consequence we insist
that the OPE can be applied in predicting physical quantities only if the Wilson coefficients are computed to a
high enough perturbative order.

DOI: 10.1103/PhysRevD.63.114003 PACS nunfiber12.38.Aw, 11.15.Ha, 12.38.Cy, 12.38.Gc

I. INTRODUCTION indeed an{A?) condensate in the Landau gauge and that it is

When computing an operator product in a fixed gauge, theot small.
operator product expansid®PE contains in general con-  To that aim we will use heavily the OPE. We need to be
tributions from local gauge-dependent operators, eveRure that the OPE really works in this situation and have to
though they should not emerge in the gauge-invariant sectofavent some way of verifying this point. A success of this
For example, in Ref[1], a detailed analysis clearly shows check would achieve several goals. First it would give strong
that operators such a&®=A A contribute to the QCD support to the conjecture that the OPE is really working in
propagator OPE through a nonzero expectation value in gis situation, i.e., that we do not encounter a strange situa-
non-gauge-invariant  “vacuum.” A’ is the unique tion where the OPE would have failed like the one discussed
dimension-2 operator allowed to have a vacuum expectatiof the preceding paragraph abo(&+*G,,,). Second it
value (VEV) and is thus the dominant nonperturbative con-would confirm that we go far enough in the perturbative
tributor, leading to~ 1/p? corrections to the perturbative re- expansiorfthe expansion in 1/Ig?)] to be able to say some-
sult. thing sensible about the power expansion1/p?). Third it

These expected-1/p? have at first sight nothing to do would confirm that we really are measurif@?). Such
with the possible presence ofpf/terms ingauge-invariant  checks have of course many consequences which will be
guantities such as Wilson loop&]: since no local gauge- further discussed in the Conclusions.
invariant gluonic operator of dimension less than 4 exists, it From a practicallnumerica) point of view, 1p? terms
is expected from the OPE that the dominant power correctioprovide a specially convenient way to test the OPE since
should be=1/p*, originating from the local and gauge- they remain visible at much larger energies than thg® 1/
invariantG**G,,, . Of course the operatd? in the Landau  gnes which would result from the gauge invari@t’G,,,
gauge can be viewed, by simply averaging it over the gaug@nd as already mentioned, their OPE analysis is rather simple

_orbit,_as a gauge-invariant nonlocal operator. But then, dealand unambiguous becausg is the only dimension-two op-
ing with nonlocal operators, we lose the standard OPE powesator to contribute.

counting rule relating the power behavior of a Wilson coef-
ficient to the dimension of the corresponding operator: ther%O
is no reason for this nonlocal operator to yielgp? £ontri-

butions in a gauge-invariant observable. It has been strong|

A recent study ofaMOM(p), the Landau gauge coupling

nstant, regularized on a lattice showed unequivocally the

?{esence of p? power corrections still visible at energies
10 GeV for which OPE contributions of the gluon con-

densatéA2), were natural candidaté4]. In this term all the

> 2 . ing (ARt Honperturbative input is contained {M?) while the OPE

gauge condition s equivalent fo asserting thatis at an Wilson coefficients can be computed in perturbation. In view

extremum or a saddle point on its gauge orbit. Practically, Ot this, we proposed in a previous wof&] a procedure to

a lattice, one fixes the Landau gauge by searching for a mi fest the OPE based on the determination, and further com-
mum of A2 on the orbit. We are not able to elaborate further '

on the issue of what relation might exist between éxe

pected/A?) condensate in the Landau gauge and the possible __

unexpected/p? terms in gauge-invariant quantiti€g]. But aMOM(p) stands for the QCD running coupling constant nonper-
we are in a position to put the first step of this possible routdurbatively renormalized in a kinematically asymmetric point by
on a firm ground: to provide strong evidence that there idollowing the momentum subtractioprescriptions (MOM.
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parison, of the two estimates of the gluon condengaAfe Tt s Tt o8
obtained from both gluon two- and three-point Green func-
tions by means of a simultaneous matching of the lattice date
to the OPE formulas derived by following standard Shifman-
Vainshtein-Zakharo(SVZ2) techniqued6]. Thus, our OPE
matchings of lattice data provide two independent estimates
of the renormalizedA? condensate. The adequate definition K
of renormalized condensates and their “universality” when
studying different Green functions was discussed in Rf. pe
in connection with the choice of truncation orders for pertur-
bative and OPE seriesee alsd7,8]). In this preliminary
work we described the theoretical framework for this testing
procedure and we performed a first analysis of previous lat-
tice datg[9,10] but the perturbativgs function was known at
that time only up to two loops and our use of the OPE was"*
limited to a sole computation of the Wilson coefficients of £ 1. Four- and five-gluon tree-level diagrams contributing
A? at thetree level (with all their possible permutationgo the Wilson coefficients of
After this work was completed a computation of the third the gluon propagator and the three-gluon vertex. Crosses mark the
coefficient of the MOM beta functiom8, was published in  gluon legs due to the external soft gluons.
Ref. [11]. The authors of this last work conclude that their
computedB, and our “prediction” of this coefficient based Aa;_ \AD _ ab abu’ \.ad" Ay,
on OPE consistencj5] reasonably agree with each other. TARLPIALP)=(Co)uu(PILH(C1) e (PA,, (0):

-p vbp pa-p vbp

) . . : b’ , b’
Thanks to the new information concerning tBefunction . +(Cz)ivl;rbf(p):Air(o)Aw(o):+ -
and to the high accuracy of our lattice results we are now in

a particularly favorable situation to address further the ques- (1)

tions we have mentioned above. This is the task we shall _ o~
attack in the present paper, presenting a consistent calculd(A%(p1)A,(p2)A5(Ps3))
tion in the MOM scheméa symmetric kinematics chosen for

bou’ A2 ()
the vertex with the Wilson coefficients of the identity op- = (do)ie(P1,P2.P3) 1+ (d1)5) %, (p1,P2,P3): A%, (0):
erator computed at three loop8—12] and the ones oA? abu’ v o b’
computed to the leading logarithm in Sec. 1l B. In particular +(d2) yparh (P1:P2,P3): A (0)A,(0):i+ -, (2)

we will compare the check of the “universality” of the con- )
densates when expanding the leading perturbative coeff¥here only normal products of local gluon field operators
cients to three loops and when one uses only the two-loopccur andA(A) stands for the gluon field in configuration
order. (momentum spacea,b being color indices ang, v Lorentz
The theoretical setting of our use of OPE is described irPhes. The notatio() simply refers to the standar@*
Sec. II: the tree-level computation, presented previously ifProduct in momentum space. The normal product of Egs.
Ref. [5], is only sketched and most attention is paid to the(1,(2) should be defined in reference to the perturbative
obtention of the one-loop anomalous dimension of the Wjl-vacuum[s].

son coefficients. The fitting strategy is explained and th§ Olnb{ tern]ls Iig Egs(1),(2) contrﬁining at? even nu][nber of
matching test performed in Sec. lll. Finally, we discuss an ocal gluon Tields give a non-nu .VEV ecause o Lorentz
conclude in Sec. IV. invariance and of the gauge conditiB]. The coefficientg,

andd, are the purely perturbative Green functions. Assum-
ing the Wilson factorization of soft and hard gluon contribu-
tions, the relevant Wilson coefficients,d, can be obtained,

Il. OPE FOR THE GLUON PROPAGATOR AND - a:5(p) in perturbation, by computing the diagrams in Fig. 1 which

In the present section we shall expand the three-poin&‘?presem the matrix elements of operators on the left-hand
Green function, and heneey(p), as well as the gluon propa- side (LHS) of Egs.(1),(2) between soft gluons, indicated by

gator, in the OPE approach up to the@Zbrder. Both glu- 0{ossest. tls:ng alst?] the tree;\l;zvel ?txplr ession ]f%r] thle mlatrlx
onic two- and three-point Green functions are renormalizetﬂere“rtm;"n ’ n(?[hwelgrlys efsgmsel) (2(; jvo gbltJOizS, 0 ndz ot;:a op-
according to the MOM scheme. Let us start with a reminder?ngtgh?ng botﬁ sides of EGsL), € obtainc, andd, by

of the computation of the tree-level Wilson coefficieff$ Thus, in the appropriate Euclidean metrics for matching
to lattice nonperturbative results, we can write

A. Tree-level Wilson coefficients

3g%(A?%) 1
In the pure Yangs-Mills QCD, without quarks, the OPE  k*G(2)(k?)=ZMOM(k?) =z} DM (k%) + YA

yields 4(N2—1) k2’
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9g%(A%) 1

kSG®)(k? k2 k?) =k G (K2 k2 k?) + ———— —,
( ) ert( ) 4(N§_ 1) k2

3

where the scalar form factoig(?,G®) are defined as fol-
lows from the Green functions:

5ab 1 p pV
2)(p=—2 = PuplFv a b
G*(p%) N2_13(5 (Ao(—PAYP)),
abc ~b _
GO(K* K k)= — 8e m( L(PDA(P2)AL(P3))

(Ttree) MMMz

N (P1=P2)"(P2—P3)“(P3— pl)”l. 7

2k?

For the kinematic conﬂguratlopl p2 p3 k? the three-

gluon tree-level tensor is defined as

(Ttree),uip,é,u.3= [ 6}’«1Mé(p1_ p

pl,ui'pi,ui
<[] ( Y, ) (5)
i=13 ' o

Z)Mé-f' cycl. perm]

In Egs.(3)—(5) we have dealt with bare quantities, depending

only on the cutoffa~! and on the momenturk. We have

PHYSICAL REVIEW B3 114003

k2
dl —,
nco(lu2 a(p) ( a(k)+ (a(k))z
dink? % T

a(k)\3
JRG e

where vy, and y, depend on the perturbative scheme in
which the strong coupling constant(k) is defined. The
boundary condition to solve E¢8) comes from the nonper-
turbative normalization d?G?)(k?, u?) to 1 atk?= u?, and

it results thatco(1,a(u))=1+0(1/u?).

Let us recall that in the MOM prescription, the three-point
Green function is renormalized by G®)(k?,u?)
=GO)(k? k?,k?)[ZMOM()]17%2 and the MOM coupling
constant follows from

+ ..)' (8)

GB)(K? k? k)
CRTSTE
X[K2GE(K?

gr(k® [ZMOM(K) 2=k GRI(K?, p?)

2)] 3/2 (9)

Analogously to Eq.(6) we define the renormalized three-
point Green function

2

k
k66&3>(k2,u2>=d0(—2,a(m
o

k2 A? 1
el P L 19

+d AT Rp
2 4(N2-1) K2’

omitted to explicitate the dependence on the cutoff in order

to simplify the notation. Using Eqg¥3) these Green func-
tions can be conveniently renormalized by MOM prescrip-
tions: the renormalized two-point Green function is taken,.

equal to 1K? for k?= u?

k?G@)(k?) k2
K2GE(K2, u?)=——5—-=Co| —.a(n)
PGP
k2
+Ca| —a(um)
|A2|R,,u 1
PRI ©
4(Ng—1) k
The ¢y Wilson coefficient can be written as
S Z3Soopd K?) ZxSoopd K?)
o | BT S
:“2 ZMOM( 2) rl\{l(ljo'\gps( (7)

where thed, Wilson coefficient verifies the perturbative evo-
lution equations ok®G$)(k?, 1?) and the boundary condi-
tion do(1,a(x))=gr(x?) + O(1/u?) is immediate from Egs.
(9),(10).

In the MOM scheme the gluon condensg®?)g , is
renormalized a? by a standard condition through division
by a renormalization constaityz.

Thec, andd, Wilson coefficients at the tree level drg]

02(1!a’(/~")): 3 92!
do(La(p))=9¢° (11)
Since the three-point Green function naturally defines the
MOM scheme coupling constafgee below Eq(9)], we will

perform all the coming calculations in the symmetric MOM
scheme where
vo=13/2, y,=-16.9,,=1332.3. (12

In Eq. (8), a(k) is of course taken to be the purely pertur-

and verifies consequently the perturbative evolution equabative running coupling constargR per(kz)/(47-r) obtained

tions of ZMOM,

by integrating the beta function in the MOM scheme:

114003-3



Ph. BOUCAUDet al. PHYSICAL REVIEW D 63 114003

d B B An analogous differential equation describing the behavior
ma(k)z/}(a(k))z —(z—oaz(k)+ —12a3(k) of the three-point Wilson coefficient on the renormalization
n & Am momentumy can be obtained similarly:
B
a*(k)+--- ], 13 _
ame (19 2wt 3y(a( )+
where[11] P K2
+ — 1 dy| —, =0. 18
By=11, B,=51, B,~3088. (14 ﬂ(“(“))aa] 2(M2 a(u) (18)

B. Wilson coefficient at leading logarithms Here we have defined

The purpose is now to compute to leading logarithms the d
subleading Wilson coefficients in Eq®),(10). To this goal, Ya2= m'n Zp2 (19
following [13] it will be useful to consider the following K
matrix element:

(PR (KA -k,

and y(a(u)) is the gluon propagator anomalous dimension.
Reexpressing these evolution equations in terms of

k k y(a(w))= InZ(u?), (20)
:5rs(5 __r U) 4 (M) dIn,u2 (M)
po k2
we obtain
[
Co| =5, a(u a p2[ b . P k2
o e TAGARG g 2 e gt Batu) (el —atu) | =0
k 4(Ng—1) M (21)
where the external gluons carry soft momenta. This eIIipsegnd
refers to terms with powers of K/different from 4 (i.e.,
corresponding to higher dimension operators or to identity
operatof). From Eq.(15) we get [ —2¥(a(p))+ y(a(,u))+(9 iz
4 LSRR (—K)lgy) gs( s kpkg) 5 2
3 |971A% g3 SS +,8(a(ﬂ~))a—]dz —a(p)|=0. (22
@ iz
2
:zg(MZ)z;}(MZ)CZ k_,a(,u) 4o The leading logarithmic solution for both Eq21),(22) can
% be written as
A k? k2 (k) ~¥0!Bo
=Z"Y ey = alp) |+, (16) Col — =c,(1,a(k (—a )
MZ 2 Mzia(/"(‘) 2( ,a( )) a(,u) ’
whereAg=2Z; Y?A and A2=Z,; A%, while Z=Z7;Z, is a 5 (vo—20)/280
) : . . k a(k)
useful notation denoting the divergent factor of the matrix do| —,a(w) | =dy(1,x(k)) ,
element coming from proper vertex corrections. If one takes u? a(p)

the logarithmic derivatives with respect goon both sides of (23

Eq. (16), the following differential equation is obtained: -
where vy, is defined in analogy withy,:

~ a(k)

—2y(a 2+ 2y(a -
{ (et 2y(a(p)+ Zm0 Ha(u)=—og—+ (24)

2
+,8(a(,u))i Cz(k—z.a(,u) =0. (170  The prefactorscy(l,a(k)) and da(1,a(k)) have. to be
da s matched at the tree level to E@.1). The only solutions are

of the form

1+0

2t should be remembered that other terms, sucl gs, , with co(1,a(k))=3 gé( k?)
the same dimension @2, do not survive.

1
log(k/A gcp) )

114003-4
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where we explicitly factorize the Wilson coefficient of the
. identity operator which, as was previously indicated, is
(25) known to three loops. Nevertheless, for consistency, all the
termsinside the parenthesem the RHS of Eq(29) will be

The O(1/log/ Aqcp)) terms are clearly of the same order asdeveloped only to leading order, includieg(k?/ u?,a(uw)):
the next-to-leading contributions to the anomalous dimen-

do(1a(k)=9g3(k»)|[1+0O

1
log(k/ Agcp) )

sion which are systematically omitted in this paper. K2 a(k) Yo!Bo
Of course, these solutions of Eq&1),(22) define the Coro| 5 a(u) |=|—— (30)
dependence of the Wilson coefficients not only on the renor- 2 a(um)

malization momentumu, but simultaneously on the mo-

mentum scalé?. This is a straightforward consequence of Terms of the order 0D(1/(k*.%)) have been neglected, as

standard dimensional arguments: the only dimensionles¢ell as, of course, those @d(1/k*) coming from higher

quantities are the ratitg[z/,l,L2 and «. Then, as soon as one dimension operators. One free parameter, i.e., a boundary

knows perturbatively(a(u)), y(a(w)), andB(a(w)), the  condition, has to be fitted from lattice data. It can be either

leading logarithmic behavior okis available. a(un) or the A parameter, i.e., the position of the perturba-
As already mentioned, the gluon propagator anomalou§ve Landau pole. We choose the latter. We wiig jo0pin

dimension and the beta function are known up to three loopterms of the MOM coupling constahand theA parameter

in the MOM scheme and up to three and four loops, respedn Eq. (30) in the MOM schemé,

tively, in the MOM scheme. The anomalous dimension of
the A? operator is obviously less stimulating for perturbative
QCD community. We have done this calculation to one Ioopwe finally obtain
(see the Appendix obtaining y

A=AMOM=3 334\ MS, (31)

- ~ a(w) 3Nc a(u) k2
y(a(u))=—17o . T T 4. ZVM(k2,a) =2V (m2,a)cg ;,a(,u)
(26) .
(Y0t 70)/Bo—1
and x| 1+R® InK) pelk (32
d 35N a(u)
yaxla())= din ,uzanAz_ 12 4w T where
27 .
672 m = (Yot v0)/Bo )
C. Gluon propagator with leading logarithms for the Rm:m( ”X) (AR (33
condensate coefficient Bo(Ng

Let us now specify our approach to lattice results. Using
the definitions in Eqs(3) and (6) we will match our lattice
results to By taking the OPE expansions in Eq40) and (6), Eq.

(9) can be written as

D. Running coupling constant

Z/M(K?,a)

=K*GR(K*p?)+0(@%), (29
ZLMa?tM(MZva) R )
. . N 2 <A >R,M 1
where the adequate control of lattice artifiateduces the Ir(K) =0r per(K){ 1+———— =
UV discretization errors to an acceptable level. From &j. 4(Nz—1) k
2
KGR (K2, u?)=co| —,al(n) 2 2
u? k k
da| —,a(u) 3 &2 —5a(p)
)73
k? X ——
Co| — alu) k? 2 k? ’
w2 (A)ry 1 do| —.a(k) Co| —5.a(p)
X 1+ 5 =S| M 7
k? 4(NZ—1) k
Co| — a(m) (34)
)73
(29)

“MOM, for instance, or whatever renormalization scheme could
be used alternatively. Our preference for the MOM scheme has
3See Ref[10], where we discuss at length the artifacts of the been explained above.
lattice gluon propagator evaluation. SSee, for instance, Reff14].
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alpha MOM at 2 loops

.50

.40

.30

.20

FIG. 2. Comparison of the
two-loop fit to the ratio of the
renormalization constants ktand
at 10 GeV and taxg(k) with the
lattice data for 2.5:k<<10 GeV.
The dotted line shows the pertur-
bative part.

25 5.0

with the identification

-3/
. (39

2
_!()
ut

k2
gR,per(kz)EdO( CO(E!“(M)

Applying the results given by Eq<23),(32)—(35), amom
=g2/(4) verifies

K (vo+ v0) Bo—1 1
_ G3) |n— —
amom(K) = aped k)| 1+R InA) kz) ,
(36)
where
1872 w ~(v0+70)/Bo
T
Bo(NZ—1) 1A .

Again, we do not retait®(1/(k?x?),1k*) terms.

lll. FITTING THE DATA TO OUR ANSA TZE

dependence on the lattice spacing, appears as an additional
parameter to be fitted. As we explained in Ré&l], a large
fitting window is an important 4ce’ to restrict the poten-
tially dangerous confusion between Wilson coefficients for
different powers. To combine data over such a large energy
window we need to match the lattice results obtained with
different lattice spacings and the last factor carrying lattice
spacing dependence should be independently fitted for each
one. On the contrary, the running coupling constant should
be regularization independent and the matching of data sets
corresponding to different lattice spacing can be imposed
without tuning any additional parametéhis is by itself a
positive test of the goodness of the procedure used to build
our data set As a matter of fact, this is why the matching of
the latter to perturbative formulas is much more constraining
than that of the former in order to estimatg;s, as dis-
cussed in Refs[4,9,10. The details of the lattice simula-
tions, of the procedures used to obtain an artifact-safe data
set, or of the definition of regularization-independent objects
permitting lattice regularized data to be matched to con-
tinuum quantities in any scheme can be found in those ref-
erences. We will now present the results of the fitting strat-

We shall follow in this section the OPE testing approachegy just described.
proposed in Ref5]: trying a consistent description of lattice
data for two- and three-gluon Green functions from Refs.

[4,9,10. We are, however, in a much better position than in

[5]. In the latter work, only two-loop information was avail-

A. Two-loop fit
We first perform the combined fit for the two- and three-

able for the beta function arath while the subdominant Wil-  gluon Green functions at the two-loop level for the leading

son coefficientsc, and d, were computed only at the tree wilson coefficients. In Fig. 2, we plot lattice data and the

level. This had the practical inconvenience of preventing a&urves given by Eqs(32),(33),(36),(37) with the following

simultaneous fit of bot\M* and (A?): the AMS parameter  pest-fit parameter:

had to be taken from outside our matching procedure. Now

the new input for the three-loop MOM beta function acyd propagator: \/<A7>R,#
=1.6417) GeV,

coefficient[11] enables us to perform a self-consistent test MOM.
=3.13) GeV,

\ <A2>R,M

by combining the matching of the gluon propagator and of @

a¥M to formulas in Eqgs.(32),(33),(36),(37), where the
three quantities,Aps and gluon condensates from both
Green functions, are taken to be fitted on the same footing.
Of course, the test consists in checking the equality of the \/<A2>Fw}a,pha
two gluon condensates obtained from those two differen \/W} =1.8d4), Ams=17215 MeV,
Green functions. R.ufprop

In the case of the gluon propagator, the factor
co(La(w))ZMOM(u?,a), which carries all the logarithmic with a y%/Npg=1.1 for the combined fit.

(39
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L L propagateur at 3 loops alpha MOM at 3 loops
Z (Wa)Z (u=10,a) QL)

L L L LI AL " B L L B BN L B |

.50

15

14
40
13
.30
12

20
1.1

.10

2.5 5.0 75 10. " 2.5 5.0 7.5 10. "

FIG. 3. Same as Fig. 2 at the three loop level.

B. Three-loops fit both the MOMag and the gluon propagator clearly faiks:

The present perturbative knowledge allows a three-loos'€&r disagreement between the two independent estimates of
level fit for leading Wilson coefficients. Analogously to the V(A% is found The ratio of both estimates is 1.86(4) from
previous paragraph, we plot in Fig. 3 the lattice data andEds.(38). This confirms the preliminary analysis in RE3J,
curves given by Eqs(32),(33),(36),(37), ZMM and Aper where only tree-level Wilson coefficients were computed. In

R, per

taken at three loops, with the following best-fit parameters: this preliminary work, a self-consistent three-loop analysis
was not possible because the MOM beta function was not

propagator: (A%g , known up to three loops. Nevertheless, we tried to fit the
third coefficient of the beta functiom, to reach good agree-
=1.5517) GeV, "M (A%, ment between the two estimates|8f|, the Ays parameter
~1.93) GeV being taken from previous works to be the same for both
' ’ two- and tree-point Green function matchings. Our estimate
5 B>,=7400(1500) was about twice larger than the reglt
{V(A >R,u}alpha:1 21(18), Ams=23328) MeV (39) =3088 in [11]. Still this fit went in the right direction,
(VAR borop TS ’ whence the authors ¢1.1] expected their result to lead to a

fair fit to lattice data.
with x?/Npg=1.2. Combining the results obtained from  This expectation turns out to be correct.
MM and from the propagator in the standard way gives our First, the ratio of the two estimates Q/m is equal to
final result \/<A2>R,#=1.64(15) GeV. The renormalization 1.21(18),i.e., compatible with 1, provided the leading Wil-
scaleu is taken to be 10 GeV in both combined fits at theson coefficients are consistently expanded at the three-loop
two- and three-loop levels. However, we have checked thatgvel and the subleading coefficients(6f) are computed to
varying u over the fitting window where we can legitimately the leading logarithms. Second, in the same jointAigs is
neglect terms oD (1/(x?k?)) in Eq. (37), the ratios of con- estimated to b&33(28) MeV, in amazing agreement with
densates in Eq$398),(39) remain essentially unmodified. In previous estimates olyg appearing in the literaturésee,
fact, thatR® in Eq. (32) does not depend op has been for instance,[10,15). Thus, the present analysis ends up
explicitly tested over the fitting windoyithe same is obvious with a twofold success and we can conclude that the OPE

for R® in Eq. (36) where nothing depends qu]. leads to a good description of the deviations of the running
coupling constant and of the gluon propagator from their
IV. DISCUSSION AND CONCLUSIONS perturbative behavior in terms of perturbatively available co-

efficients multiplying one phenomenological condensate: the
The gluon condensatgA?) has been computed from the sole non vanishing nonperturbative contribution up to the
deviations of both the lattice nonperturbative evaluation oforder 1%, namely, the gluon condensata?).
the MOM ag and the gluon propagator from their known  However, for this OPE description to be consistent, it is
perturbative behavior. We have described these nonperturbanambiguously demonstrated that the leading coefficient
tive deviations using the OPE and fitting the condensate toust be taken to three loops; on the contrary there is a clear
match both sides. The use of the self-consistent fitting stratfailure at two loops, even though our analysis has been per-
egy described in the preceding section leads simultaneousfprmed at an unusually large energy scale, up to 10 GeV. As
to a predictionAys and to two independent estimates of was discussed in the preliminary study, such a disagreement
(A?). indicates that we are, in this case, in the situation described
The fit using the two-loop perturbative expressions forin [8], i.e., that the perturbative order is too low to give an
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acceptable precision in the estimate of the power corrections @ ®
Taking into account power corrections does not make sense
unless the leading contribution is computed perturbatively to
a sufficient accuracy. In simple mathematical language, it
makes no sense to consider th@2ltorrections when one
does not consider the 1/lpf) corrections to a sufficient or- ¢
der. The OPE is often used with the leading coefficients only a
known to two loopgsometimes to one logpWe believe in
view of our results that these attempts should be reconsid-
ered with care. atk

As for us, we were in a particularly favorable situation to
analyze the problem thoroughly. We have rather accurate FIG. 4. The graphs involved in the computation of the anoma-
results. The dimension-2 power correction C|ear|y shows uﬂpus dirT;enSion 0A2. The cross hatched blobs |ndlcate the insertion
clearly and can be fully consistently attributed to ApA»  ©f the A= operator; the dots are ordinary QCD vertices.

condensate in the Landau gauge in full agreement with thgjrectly obtained from the former as explained in Seg. II

theoretical expectations. Since we are working in the '—a”daPequires only to isolate the UV divergent part of the dia-
gauge, we producgand use later gnbare gauge field con-  grams in Fig. 4. We follow dimensional regularization pre-
figurations which minimizeA*A , with respect to the gauge scriptions to write
group. This has the interesting consequence that the quanti-
ties we measure are invariant under infinitesimal gauge tran$! al4s(d, —)
formations in the vicinity of the Landau gauge. Still the link (

= gl“’_

between what we ca!l_th(aAZ) and the{Azmm> defined in[3] a"q” 5ab(1[ 3Ncﬂ +O(aﬁ)] 4.
should be better clarified, which implies a better understand- q° € ™
ing of the renormalization procedutélaking such a direct

link for granted, we can estimate from Eq89) the tachy- [I'blan(d,—a)

onic gluon mass defined in R¢B8] to be ~0.8 GeV. Using ey

instead the notion of critical madd?,, introduced in Ref. ( wr_ 370 )5 (E[ - gN ﬂJro(az) +...

[16], which is the scale at which the nonperturbative conden- g2 | Ple| 2 Cn b ’

sate contributes 10% of the total, we estimate it for the gluon (A1)

propagator to be~2.6 GeV. Both these scales express a

rather large contribution from th&? condensate. where ana(b)-like diagram in Fig. 2 with amputated exter-

nal gluon legs is denoted Hy, ) and wheree=2—-d/2. The
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APPENDIX: ONE-LOOP ANOMALOUS DIMENSION If we collect the tree-level results and those from EqS
OF A2 (Al), we can write
The task' of computing the one-loop anomalous o'iimen'siorz 2| A2 b>:2 9.9 b
of the matrix elementA?) (that of the local operator itselfis {919y ur™ "3
1| 3N¢ ap 5
81t is a pleasure to acknowledge discussions with V. I. Zakharov XL e| 4 4xm TOlap)p+--- ], (A2)
on this topic.
"We recall that all scale-dependent quantities are evaluatgd at where the matrix element on the LHS of E&2) is defined
=10 GeV. for explicitly cut external gluons. Combinatorics gives a
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multiplicity factor of 2 fora-like diagram, 1 fob-like, which

have been taken into account in the last result. WS(aMS(w))= 5In AL
We should now renormalize the matrix element defined in nu
Eqg. (A2). Our aim being to determine its anomalous dimen- 3N~ oMS
. ; i : o i B ca">(u) S, )
sion computation to only one-loop, the simple minimal sub =—————+0(a™S(w)1?. (A4)
traction sum(MS) prescription of simply dropping away 4 4m

from bare quantities the poles fer—0 can be applied. Dis- o
crepancies between such a prescription and MOM or anyhus we obtain, in the MOM scheme,
other one appear only beyond one loop. Then we will have

- 3Nc a(u) )
s 1/3N¢ ay 5 Ya(p)==—7= 75— +0(a(p)]). (AS5)
ZMS=1+—| ——+0(a}) ™
e\ 4 47
. 1(3Ng aMS(n) LM 12 s girr?wrgntsr;fnwe deduce finally, including the gluon anomalous
=+l 1, TOL@™(w)]]. (A3) :
From Eq.(A3), the anomalous dimension can be written as 35Nc a(u)

(see, for instancd12]) yala(p)=——5 5+ O(la(mw)]?).  (A6)
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