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Trilinear neutral gauge boson couplings in effective theories
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We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson cou-
plings ZZg, Zgg, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear
realizations of SU(2)L 3 U(1)Y gauge symmetry. In the linear scenario we find that these couplings can be
generated only by dimension-8 operators necessarily including the Higgs boson field, whereas in the nonlinear
case they are induced by dimension-6 operators. We consider the impact of these couplings on some precision
measurements such as the magnetic and electric dipole moments of fermions, as well as theZ boson rare decay
Z→nn̄g. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge
boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear
scenario where these couplings have the more promising prospects of being perceptible through high precision
experiments.
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I. INTRODUCTION

The present agreement between experimental data an
standard model~SM! suggests that the energy scaleL asso-
ciated with any new physics should be large compared w
the electroweak scalev5(A2GF)1/25246 GeV. To infer the
existence of new particles as heavy asL through their virtual
effects, effective Lagrangian~EL! techniques have been ex
tensively used to study quantities which are forbidden
highly suppressed within the SM@1–3#. Among these quan
tities, self-couplings of electroweak gauge bosons consti
a sensitive probe of nonstandard interactions@4#. Experimen-
tal bounds on possible anomalousW1W2Z(g) couplings
have reached an accuracy of the few percent level in b
hadronic and leptonic colliders@5,6#, but the situation looks
less promising for anomalousZZZ, ZZg, and Zgg cou-
plings @7#.1 Unlike W1W2Z(g) couplings, trilinear neutra
gauge boson couplings~TNGBCs! vanish when the three
bosons are real. Another interesting peculiarity of TNGB
is that they must be induced by loop effects in any renorm
izable theory since they cannot possess a renormaliz
structure. In the SM, TNGBCs are generated at the one-l
level by fermion triangles@8#, being very suppressed even
the presence of a fourth fermion family@9#. It follows that it
is convenient to carry out a model independent study
TNGBCs using the EL method to parametrize any anom
lous contribution. Within this approach, there are two we
motivated schemes to parametrize the virtual effects of ph

1Throughout this work we consider the general case of off-s
bosons, unless stated otherwise, but they will be denoted bV
rather thanV* .
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ics beyond the Fermi scale via effective operators involv
only SM fields, namely the linear and the nonlinear realiz
tions.

In the linear realization or decoupling scenario it is a
sumed that the light spectrum of particles, which fill o
multiplets of the electroweak SU(2)L 3 U(1)Y gauge group,
includes at least the physical Higgs boson of the SM. B
cause of the decoupling theorem, virtual effects of hea
physics cannot affect low energy processes dramatica
Nonetheless, any new effect, in spite of its smallness, m
have significant effects on the couplings which are absen
highly suppressed within the SM. Starting from the S
fields and assuming lepton and baryon number conserva
there is no way to construct any odd dimension opera
respecting the linearly realized SU(2)L 3 U(1)Y symmetry.
As for dimension 6, operators of this class were compreh
sively studied in@10#. It was shown that there are 84 inde
pendent dimension-6 operators.

In the case of the nonlinear realization or nondecoupl
scenario, the parametrization of new physics effects ar
when it is assumed that the Higgs bosons are very heav
do not exist at all. The scalar sector is comprised only
Goldstone bosons, which transform nonlinearly under
SU(2)L 3 U(1)Y group. It is also possible to introduce ligh
scalar fields in this parametrization, but they cannot be r
ognized as Higgs bosons since such fields do not coupl
the remaining light particles as dictated by the Higgs m
chanics@11#. Since the low energy theory is nonrenormali
able under the Dyson prescription, heavy physics does
decouple from the low energy processes. We may think
this scenario as the one in which the EL parametrizes
known physics which would not obey the Higgs mechanis
In this case, the most important operators are the ones w

ll
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induce the masses of theW andZ gauge bosons, prescribin
also the general structure of theW1W2Z(g) couplings@12#.
These operators have dimension 2 and 4.

At the lowest order, anomalousW1W2Z(g) couplings
are induced by dimension-6 operators in the decoupling
nario and by dimension-4 operators in the nonlinear sche
In contrast, TNGBCs are induced by dimension-8 opera
in the linear realization and by dimension-6 operators in
nonlinear one. In the latter case there are also so
dimension-4 operators which give rise to theZZZ coupling,
but they are proportional to the scalar part of theZ boson
(]mZm). It can be shown that such operators may be eli
nated by means of a transformation which leaves invar
theSmatrix @13#. Consequently, any anomalous contributi
to TNGBCs is expected to be more suppressed than th
inducing nonstandardW1W2Z(g) couplings. It must be
stressed, however, that any potential effect must be care
examined as it may constitute clear evidence of new phys

The structure of TNGBCs has already been studied in
context of effective theories, initially at the level of verte
functions@14#. However, in this approach the case was co
sidered where two particles are real and just one is virtua
is only recently that analysis of the off-sell vertices has be
done under the U(1)em gauge invariant framework, includin
the study of the respective EL. By invoking Bose symmet
Lorentz covariance, and electromagnetic gauge invaria
the most general structures inducing TNGBCs with three
shell neutral bosons were constructed@15#. As was shown in
@16#, the U(1)em gauge invariant framework is equivalent
the nonlinearly realized SU(2)L 3 U(1)Y invariant case.
Such an equivalence is explicit in the unitary gauge. T
choice of using either framework is only a matter of conv
nience. In particular, the nonlinear scheme is suitable
loop calculations, as the presence of Goldstone boson
lows one to quantize the theory with the aid of a renorm
izableRj gauge.

It is clear that a comprehensive study of TNGBCs m
include both linear and nonlinear schemes. To our kno
edge the former has never been studied before. One o
aims of the present paper is to present a complete list of
effective operators which induce TNGBCs at the lowest
der in both realizations of the SU(2)L 3 U(1)Y gauge sym-
metry. Not all the operators that can be constructed resp
ing the Lorentz and electroweak symmetries are indepen
since a certain class of general transformations allows on
rule out some of them without affecting theS-matrix ele-
ments@17#. In the course of our classification we found o
erators with terms containing higher derivatives which
semble the covariant structure of the equations of mot
there were also operators with terms which are proportio
to the scalar part of theZ boson (]mZm). It has been shown
in @13,18# that both types of structures can be eliminated
favor of other operators already present in the effective
grangian. Such a procedure is only valid at first order in
unknown effective parameters of the theory as any effec
Lagrangian is assumed to describe the effects of w
behaved new physics just in this approximation. Con
quently, after performing the required transformation,
equations of motions can be used to eliminate any redun
11301
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structure, expressing the respective operator in terms of o
ones. This whole procedure does not affect theS-matrix el-
ements. In order to present all the independent operators
will classify them according to the following criterion: thos
which cannot be reduced by using the equations of mo
will be referred to as irreducible; the remaining ones will
referred to as reducible.

After classifying the operators, our paper will be co
cerned with the sensitivity of some precision experiments
new physics effects arising from TNGBCs. Although persu
sive theoretical arguments indicate that trilinear gauge bo
couplings are not expected to be larger than 1%@19,20#, the
Large Hadron Collider~LHC! and the planned Next Linea
Collider ~NLC! are expected to constrain them at a level
1024–1026 @4,21#. As long as TNGBCs are concerned, th
size of their effects will be suppressed by powers of (v/L)4

and (v/L)2 in the linear and the nonlinear scenarios, resp
tively. We will examine whether some high precision me
surements may lead to any reasonable bound on these
plings. The anomalousW1W2g(Z) couplings have been
constrained from a global analysis of the LEP and SLC
servables at theZ pole @2#. To draw any inference about th
size of TNGBCs we will consider the muong22 value, the
known limit on the electric dipole moment~EDM! of the
electron, and the current limit on the rare decayZ→nn̄g.

Our paper is organized as follows. All the lowest dime
sion operators that generate TNGBCs in the linear sche
are presented in Sec. II, following the already explained c
sification criterion. The respective Lagrangians are sho
explicitly. In Sec. III, a similar analysis within the nonlinea
scenario is presented. Section. IV is devoted to examin
the constraints on the couplings out of high precision exp
ments. Finally, the conclusions are presented in Sec. V.

II. DECOUPLING SCENARIO

This section focuses on the itemization of all the lowe
dimension operators that generate at least one of the
plingsZZZ, ZZg, or Zgg within the linear realization of the
SU(2)L 3 U(1)Y electroweak group. To construct a basis
independent operators with a given dimension, we must c
sider some aspects concerning the independence of tS
matrix under a wide class of transformations which leave
invariant @17#. For instance, it was shown in@18# that some
operators, which consist of a piece containing higher deri
tives, can be eliminated in favor of others by using a spec
transformation, leaving unchanged theS-matrix elements at
any order of perturbation theory. Another situation aris
when an operator is proportional to the scalar part of thZ
boson. While the latter kind of structures give vanishing co
tributions when theZ boson is on mass shell or is virtual bu
couples to light fermions, the situation is not the same in
case of the top quark. In this respect, this kind of opera
can also be eliminated by transformation which does
alter theS-matrix elements@13#. It must be noted that both
transformations are equivalent to applying the equations
motion. Beside these considerations, we have made a
tematic use of integration by parts to rule out any opera
related to others through a surface term. Consequently,
4-2
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will catalog the operators inducing TNGBCs as reducible
irreducible.

Any SU(2)L 3 U(1)Y invariant involving only bosonic
fields can be constructed out of the covariant structuresBmn ,
Wmn5 1

2 s iWmn
i , F, andDmF, where the covariant deriva

tive is defined asDm5]m2 igWm2 ig8Bm , and F is the
Higgs doublet. Using these basic structures, we can build
following SU(2)L 3 U(1)Y invariant and Lorentz covarian
structures of dimension 2–5:

Bmn , F†F, F†DmF, F†WmnF, BmnBlr, Tr@WmnWlr#,

F†~DmDn1DnDm!F, F†WmnDlF. ~1!

Note that another set of SU(2)L 3 U(1)Y invariant and Lor-
entz covariant structures can be generated by operating
the ordinary derivative on these expressions. Any nonren
malizable bosonic operator can be built by choosing the
propriate combinations of these structures to form Lore
scalars. The ordinary derivative can act on the last exp
sions in several ways, but the contractions]mBmn and
]m(F†DmF), being proportional to the scalar part of theZ
boson, are special because in both cases we can use the
tions of motion to eliminate the resulting operator.

Let us now discuss the general Lorentz structure of TN
BCs. The lowest dimension operators which can be
sembled out of the basic structures have dimension 6@10#. It
is easy to see that no dimension-6 operator induces T
BCs, which unavoidably leads one to consider dimensio
operators. In principle, the combination which can give r
to TNGBCs may involve the 4-vectorsAm andZm , together
with the antisymmetric tensorsFmn5]mAn2]nAm and Zmn

5]mZn2]nZm . Owing to U(1)em gauge symmetry, the elec
tromagnetic field can only appear asAm through the respec
tive covariant derivative, which operates on charged fie
only. Therefore, the photon must appear in any term thro
the tensor fieldFmn . As a result of the antisymmetry of th
Fmn andZmn tensors, it is not possible to generate TNGB
using only these structures: it would be necessary to hav
our disposal three antisymmetric tensors. There follows
absence of theggg vertex in this gauge invariant scheme

To construct theZZZ, ZZg, andZgg vertices, we must
use at least aZ boson in theZm form, which is allowed
because this field couples to neutral fields. The 4-vectorZm
is contained in the covariant derivative, which in the boso
sector operates only on the Higgs doublet. As a conseque
the Higgs mechanism plays a special role in this type
couplings. In particular, the Higgs presence increases the
mension at which the operators can be generated in com
son to the nonlinear case, where this field is absent. ThZ
boson may appear through the combinationsZlrZmn ,
ZlZmn , ZmZn , and Zm . The building blocks necessary t
construct these couplings areF†DmF, F†(DmDn

1DnDm)F, and F†WmnDlF, which, after spontaneou
symmetry breaking~SSB!, induce the structuresZm , ZmZn ,
and Zmn(Fmn)Zl , respectively. The irreducible operato
may contribute to any process through the specific struc
of TNGBCs, while the reducible ones may contribute to
via contact diagrams in which an internal line associa
11301
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with either aZ boson or a photon has been amputated,
instance when the equations of motion are used to rep
the term]mBmn with the respective current. Therefore, th
irreducible operators deserve a more careful study than
reducible ones. We will present thus the Lagrangians
vertex functions in the irreducible case, whereas in the
ducible one we will list only the respective operators and
Lagrangian prescribing the off-shell electromagnetic prop
ties of theZ boson. In the next section we will enumerate t
operators of dimension 8 that generate TNGBCs.

A. Irreducible operators

We begin by classifying the operators which cannot
eliminated using the equations of motion. We will categor
them according toCP symmetry.

1. CP-odd operators

The operators we are interested in have the formOi]
rOj ,

where Oi is any of the SU(2)L 3 U(1)Y invariant expres-
sions shown in Eq.~1!. Given these operators it is immedia
to construct the new ones (]rOi)Oj , which also belong to
the irreducible group, but they are not independent at
since they are related to the original operators through a
face term. Bearing this in mind, we obtain the following fo
independentCP-odd operators of dimension 8:

OWW15 i 2]l~F†DmF!Tr@WmnWln#1H.c., ~2!

OWB15 i ~F†WmnDlF!]lBmn1H.c., ~3!

OWB25 i ~F†WmnDlF!]mBln1H.c., ~4!

OBB15 i ~F†DmF!Bln]lBmn1H.c. ~5!

Notice that the operator OBB1 contains three
SU(2)L 3 U(1)Y invariant structures which can be con
tracted with the ordinary derivative in three different way
leading to the same number of operators. One of th
namely i ]l(F†DmF)BlnBmn, is irreducible, but can be ex
pressed by means of integration by parts in terms ofOBB1
and the reducible operatori (F†DmF)(]lBln)Bmn, which
will be considered later.

2. CP-odd structure of the ZZZ, ZZg, and Zgg couplings

After decomposing the operators in terms of the m
eigenstate fields, we are left with several Lorentz structu
corresponding to TNGBCs, though not all of them are ind
pendent: some structures are identical, which is manifest
ter a subtle manipulation of their Lorentz indices, where
other ones are related through a surface term. Conseque
the ZZZ, ZZg, andZgg couplings can be described by th
following independent Lorentz structures:

L L-ZZZ
CP-odd5 f L1

ZZZZlZmn]lZmn1 f L2
ZZZZmnZln]lZm, ~6!

L L-ZZg
CP-odd5 f L1

ZZgZmnFln]lZm1 f L2
ZZgZlZmn]lFmn

1 f L3
ZZgZlFmn]lZmn, ~7!
4-3
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L L-Zgg
CP-odd5 f L1

ZggFmnFln]lZm1 f L2
ZggZlFmn]lFmn, ~8!

whereL is a subscript standing for the linear scheme. T
coefficients f Li

VVV in turn depend on the other onese j

5(mZ /L)4a j , with a j the constant factor accompanyin
each effective operator in Eqs.~2!–~5!. We thus have

f Li
VVV5 f ~eWW1 ,eWB1 , . . . !. ~9!

Detailed expressions of each factorf Li
VVV as well as the re-

spective vertex functions are available to the interes
reader in@22#.

3. CP-even operators

Operators of this kind can be obtained from theCP-odd
ones by replacing each strength tensor with its respec
dual, namelyW̃mn5(1/2)emnlrWlr, and a similar expres
sion for B̃mn . There is a couple of independentCP-even
operators associated with each one of theCP-odd operators
OWW1 , OWB2, andOBB1. Note that in these operators bo
W tensors are contracted via only one of their indices, le
ing to two independent combinations of the dual tensor.
the other hand, inOWB1 the W and B tensors appear con
tracted by both indices. Since the two possible combinati
of dual tensors are equivalent, just oneCP-even operator can
be constructed fromOWB1. In this way, there are seven in
dependentCP-even operators:

OW̃W15 i2]l~F†DmF!Tr@W̃mnWln#1H.c., ~10!

OWW1̃ 5 i2]l~F†DmF!Tr@WmnW̃ln#1H.c., ~11!

OWB̃15 i ~F†WmnDlF!]lB̃mn1H.c., ~12!

OW̃B25 i ~F†W̃mnDlF!]mBln1H.c., ~13!

OWB̃25 i ~F†WmnDlF!]mB̃ln1H.c., ~14!

OB̃B15 i ~F†DmF!B̃ln]lBmn1H.c., ~15!

OBB̃15 i ~F†DmF!Bln]lB̃mn1H.c. ~16!

We can make the ordinary derivative operate on the rem
ing SU(2)L 3 U(1)Y invariant terms out of which the previ
ous operators are constructed. The resulting operators
also of the irreducible kind, but they are not independ
since, as explained in theCP-odd case, all of them are re
lated to the first ones through a surface term.

4. CP-even structure of the ZZZ, ZZg, and Zgg couplings

After a careful analysis of the Lorentz structure induc
by theCP-even operators, we find that theZZZ, ZZg, and
Zgg couplings are characterized, respectively, by two, fi
and three independent Lorentz structures

L L-ZZZ
CP-even5gL1

ZZZZlZmn]lZ̃mn1gL2
ZZZZlZmn]mZ̃ln, ~17!
11301
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L L-ZZg
CP-even5gL1

ZZgF̃mnZln]lZm1gL2
ZZgZ̃mnFln]lZm

1gL3
ZZgZ̃lnFmn]lZm1gL4

ZZgZlFmn]mZ̃ln

1gL5
ZZgZlZmn]mF̃ln , ~18!

L L-Zgg
CP-even5gL1

Zgg]lZmF̃mnFln1gL2
Zgg]lZmF̃lnFmn

1gL3
ZggZlFmn]mF̃ln. ~19!

The coefficientsgLi
VVV are related to the coefficients assoc

ated with theCP-odd operators~10!–~16! and obey a rela-
tion similar to Eq. ~9!, with the appropriate substitutions
Details regarding these coefficients as well as the respec
vertex functions can be found in@22#.

B. Reducible operators

The operators belonging to the reducible class are pro
tional to the SU(2)L 3 U(1)Y invariants]m(F†DmF) and
]mBmn . While the operators with the term]m(F†DmF) are
proportional to the scalar part of theZ boson, those propor
tional to the]mBmn have the peculiarity that they genera
the Lorentz structures required to define the off-shell elec
magnetic properties of theZ boson, namely the transition
magnetic~electric! dipole and quadrupole moments. All o
these operators can be reduced to others by using the e
tions of motion. To define these structures, it will be nec
sary to include some operators of dimension 10, but as t
can always be expressed in terms of other operators we
content ourselves with listing them. We will also present t
Lagrangian prescribing the off-shell electromagnetic prop
ties of theZ boson. The operators will be classified accordi
to these properties.

1. Operators that generate the off-shell electromagnetic
properties of the Z boson

These operators are proportional to the SU(2)L 3 U(1)Y
invariant]mBmn , being given by

OWB35 i ~F†WmnDmF!]lBln1H.c., ~20!

OBB35 i ~F†DmF!Bmn]lBln1H.c., ~21!

OW̃B35 i ~F†W̃mnDmF!]lBln1H.c., ~22!

OB̃B35 i ~F†DmF!B̃mn]lBln1H.c. ~23!

To define the off-shell electromagnetic properties of theZ
boson, it is necessary to include the following operators
dimension 10:

O WB
10 5 i ~F†WmnDlF!]m]l]rBrn1H.c., ~24!

O BB
10 5 i ~F†DlF!Bmn]m]l]rBrn1H.c., ~25!

O W̃B
10

5 i ~F†W̃mnDlF!]m]l]rBrn1H.c., ~26!

O B̃B
10

5 i ~F†DlF!B̃mn]m]l]rBrn1H.c. ~27!
4-4
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We have excluded any redundant operator, such as the
related through a surface term. The operatorODB
5F†(DmDn1DnDm)F]m]lBln, which does not contribute
to the electromagnetic properties of theZ boson, can be
eliminated by using the equations of motion. The Lore
structures defining the off-shell electromagnetic propertie
theZ boson can be conveniently parametrized by the follo
ing Lagrangian

LZZg52eF ~h1
ZFmn1h3

ZF̃mn!Zm

]lZln

mZ
2

1~h2
ZFmn1h4

ZF̃mn!Zl
]m]l]rZrn

mZ
4 G , ~28!

where the transition moments are given by

mZ52
e

A2mZ

Eg
2

mZ
2 ~h1

Z2h2
Z!, ~29a!

QZ
e52

2A10e

mZ
2

h1
Z , ~29b!

dZ52
e

A2mZ

Eg
2

mZ
2 ~h3

Z2h4
Z!, ~29c!

QZ
m52

2A10e

mZ
2

h3
Z , ~29d!

with mZ (dZ) the off-shell magnetic~electric! dipole moment
and QZ

m(QZ
e) the magnetic~electric! quadrupole moment o

the Z boson. The coefficientshi
Z are defined in@22#.

2. Operators proportional to the scalar part of the Z boson

These operators are characterized by the SU(2)L 3 U(1)Y
invariant]m(F†DmF). There are threeCP-odd operators of
this type:

OWW25 i2]l~F†DlF!Tr@WmnWmn#1H.c., ~30!

OBB25 i ]l~F†DlF!BmnBmn1H.c., ~31!

ODF5 iF†~DmDn1DnDm!F]m~F†DnF!1H.c.
~32!

The last operator generates only theZZZ coupling, which
can be expressed by integration by parts as a coupling
portional to the scalar part of theZ boson. As forCP-even
operators, there are only a pair of this kind:

OWW̃25 i2]l~F†DlF!Tr@WmnW̃mn#1H.c., ~33!

OBB̃25 i ]l~F†DlF!BmnB̃mn1H.c. ~34!

We disregarded any operator which can be expressed
linear combination of those given above.
11301
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III. NONDECOUPLING SCENARIO

In the situation where the new physics effects do not
couple from low energy physics, the releva
SU(2)L 3 U(1)Y invariant structures are the same as in t
linear case, with the Higgs doublet being replaced by
following unitary matrix:

U5expF2is if i

v G , ~35!

where thef i scalars would become Goldstone bosons. T
covariant derivative in the nonlinear realization of th
SU(2)L3 U(1)Y group is defined asDmU5]mU1 igWmU
2 ig8UBm , with the Abelian field defined asBm
5(s3/2)Bm . The basic structures out of which TNGBCs ca
be constructed are the SU(2)L 3 U(1)Y invariants
Tr@s3U†DmU#, Tr@U†(DmDn1DnDm)U#, and
Tr@U†WmnDlU#, which in mass units have dimension 1,
and 3. Like their linear counterparts, these invariants are
sential to construct any TNGBCs because they induce
Lorentz structuresZm , ZmZn , andZlZmn(Fmn). Since these
structures have a lower dimension than their analogous st
tures in the linear case, it is not only possible to constr
dimension-6 operators inducing TNGBCs but a larger nu
ber of independent operators. As we will show below, th
are some operators of dimension 4 which induce theZZZ
coupling, though not theZZg andZgg ones. Nevertheless
such operators are proportional to the scalar part of thZ
boson and belong to the reducible group. We will use
same criterion as in the linear case to classify all of
independent operators. We will refrain from any technic
details already explained while discussing the linear scen
if it is not relevant for the present discussion.

A. Irreducible operators

These operators are proportional to the SU(2)L 3 U(1)Y
invariant structures Tr@s3U†DmU# and Tr@U†WmnDlU#.
We will classify them according toCP symmetry.

1. CP-odd operators

The dimension-6 operators resembling those of the lin
scenario are the following:

LWW152i
lWW1

L2
]lTr@s3U†DmU#Tr@WmnWln#1H.c.,

~36!

LWB15 i
lWB1

L2
Tr@U†WmnDlU#]lBmn1H.c., ~37!

LWB25 i
lWB2

L2
Tr@U†WmnDlU#]mBln1H.c., ~38!

LBB15 i
lBB1

L2
Tr@s3U†DmU#Bln]lBmn1H.c., ~39!
4-5
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where we are using the symbolL, introduced in the linear
case, to denote the new physics scale. As the struc
Tr@s3U†DmU# has dimension 1, we can construct three n
independent operators of dimension 6 which have
dimension-8 counterpart in the linear realization. They
given by

LDD5 i
lDD

L2
Tr@s3U†DmU#hTr@s3U†DnU#]m

3Tr@s3U†DmU#1H.c., ~40!

LDB15
lDB1

L2
Tr@s3U†DmU#]lTr@s3U†DnU#]lBmn

1H.c., ~41!

LDB25
lDB2

L2
Tr@s3U†DmU#]nTr@s3U†DlU#]lBmn

1H.c. ~42!

Note that in the linear scheme the operators correspondin
LDD have dimension 12, whereas those related toLDB1 and
LDB2 are of dimension 10. These operators have the pe
liarity that they induce TNGBCs exclusively; i.e., there a
no interactions containing a chargedW boson, which can be
seen by noting that the structure Tr@s3U†DmU# is propor-
tional to theZm boson in the unitary gauge. While the fir
one of these operators induces only theZZZ coupling, the
remaining ones generate both theZZZ and ZZg couplings.
There is noZgg coupling arising from these kind of opera
tors, which implies that the Lorentz structure of it is the sa
in both the linear and the nonlinear realizations of the el
troweak group, at least at the lowest order.

2. CP-odd structure of the ZZZ, ZZg, and Zgg couplings.

After decomposing the nonlinearCP-odd operators in
terms of the physical fields, we have found that theZZZ
coupling can be described by five independent Lorentz st
tures, and so is theZZg vertex. On the other hand, theZgg
coupling becomes changed, as compared to its counterpa
the linear case, in its coefficients but not in its Lorentz str
ture. We thus have

L NL-ZZZ
CP-odd5L L-ZZZ

CP-odd1 f NL3
ZZZZmhZn]mZn1 f NL4

ZZZZm]lZn]lZmn

1 f NL5
ZZZZm]nZl]lZmn, ~43!

L NL-ZZg
CP-odd5L L-ZZg

CP-odd1 f NL4
ZZgZm]lZn]lFmn

1 f NL5
ZZgZm]nZl]lFmn, ~44!

L NL-Zgg
CP-odd5L L-Zgg

CP-odd , ~45!

with the respective coefficients obtained from those of
linear scenario through the relation
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VVV5S L

mZ
D 2

f Li
VVV , ~46!

whereas the remaining ones together with the respective
tex functions can be found in@22#. Unless stated otherwise
we will denote byl i rather thana i the coefficient associate
with each operator in the nonlinear scenario.

3. CP-even operators

There are eight operators of this kind. Seven of them
be easily obtained from their linear counterparts wherea
new one is obtained from theCP-odd operatorLDB1 when
the tensorBmn is replaced by its dual. TheCP-odd operator
which is equivalent toLDB2 is not independent as it gene
ates TNGBCs with a Lorentz structure already induced
the operators resembling those of the linear case. In this w
the independentCP-even operators are

L̃W̃W152i
lW̃W1

L2
]lTr@s3U†DmU#Tr@W̃mnWln#1H.c.,

~47!

L̃WW̃152i
lWW̃1

L2
]lTr@s3U†DmU#Tr@WmnW̃ln#1H.c.,

~48!

L̃WB̃15 i
lWB̃1

L2
Tr@U†WmnDlU#]lB̃mn1H.c., ~49!

L̃W̃B25 i
lW̃B2

L2
Tr@U†W̃mnDlU#]mBln1H.c., ~50!

L̃WB̃25 i
lWB̃2

L2
Tr@U†WmnDlU#]mB̃ln1H.c., ~51!

L̃B̃B15 i
l B̃B1

L2
Tr@s3U†DmU#B̃ln]lBmn1H.c., ~52!

L̃BB̃15 i
lBB̃1

L2
Tr@s3U†DmU#Bln]lB̃mn1H.c., ~53!

L̃DB̃15 i
lDB̃1

L2
Tr@s3U†DmU#]lTr@s3U†DnU#]lB̃mn

1H.c. ~54!

4. CP-even structure of the ZZZ, ZZg, and Zgg couplings

As far as their Lorentz structure is concerned, both
ZZZ and theZZg couplings differ from their analogues i
the linear realization as they now receive a contribution a
ing from the operatorL̃DB̃1, that is

L NL-ZZZ
CP-even5L L-ZZZ

CP-even1gNL3
ZZZZm]lZn]lZ̃mn. ~55!
4-6
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L NL-ZZg
CP-even5L L-ZZg

CP-even1gNL6
ZZgZm]lZn]lF̃mn. ~56!

On the other hand, theZgg vertex coincides with the one o
its linear counterpart. As for the coefficientsgNLi

VVV , they are
given in terms of the linear ones by means of a relat
similar to Eq.~46!. Once again, detailed expressions of the
coefficients as well as the respective vertex functions
presented in@22#.

B. Reducible operators

We can classify the reducible operators in those cont
uting to the off-shell electromagnetic properties of theZ bo-
son and those which are proportional to the scalar part of
Z boson.

1. Operators that generate the off-shell electromagnetic
properties of the Z boson

These operators are proportional to the SU(2)L 3 U(1)Y
invariant ]mBmn and are obtained from their linear counte
part by replacingF†DmF with Tr@s3U†DmU#. This give
rise to dimension-6 and dimension-8 operators. The one
dimension 6 are given by

LWB35 i
lWB3

L2
Tr@U†WmnDmU#]lBln1H.c., ~57!

LBB35 i
lBB3

L2
Tr@U†DmU#Bmn]lBln1H.c., ~58!

LW̃B35 i
lW̃B3

L2
Tr@U†W̃mnDmU#]lBln1H.c., ~59!

LB̃B35 i
l B̃B3

L2
Tr@s3U†DmU#B̃mn]lBln1H.c. ~60!

Just as in the linear realization, there is anotherCP-odd
dimension-6 operator given by

LDB5
lDB

L2
Tr@U†~DmDn1DnDm!U#]m]lBln, ~61!

which, however, does not contribute to the electromagn
properties of theZ boson. The operators of dimension
necessary to an adequate definition of the electric and m
netic transition dipole and quadrupole moments, are

L WB
8 5 i

lWB
8

L4
Tr@U†WmnDlU#]m]l]rBrn1H.c., ~62!

L BB
8 5 i

lBB
8

L4
Tr@s3U†DlU#Bmn]m]l]rBrn1H.c., ~63!
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L W̃B
8

5 i
lW̃B

8

L4
Tr@U†W̃mnDlU#]m]l]rBrn1H.c., ~64!

L B̃B
8

5 i
l B̃B

8

L4
Tr@s3U†DlU#B̃mn]m]l]rBrn1H.c. ~65!

They induce the off-shell electromagnetic properties of thZ
boson through the Lagrangian given in Sec. II. The coe
cients h1,3

Z and h2,4
Z are obtained from those of the linea

scenario after multiplying the latter by (L/mZ)2 and
(L/mZ)4, respectively.

2. Operators that are proportional to the scalar part
of the Z boson

These operators are proportional to the SU(2)L 3 U(1)Y
invariant ]mTr@s3U†DmU#. As previously mentioned, ther
are a pair of dimension fourCP-odd operators which gener
ate just theZZZ vertex. They are given by

L 1
45 il1Tr@s3U†DnU#Tr@s3U†DnU#]mTr@s3U†DmU#

1H.c., ~66!

L 2
45 il2Tr@s3U†DnU#]mTr@U†~DmDn1DnDm!U#1H.c.

~67!

The linear counterpart of the operatorL 1
4 has dimension

10, while the one associated withL 2
4 has dimension 8, as

described in Sec. II. The remaining operators have dim
sion 6, and are obtained from those given in the linear c
by the replacement ofF†DmF by Tr@s3U†DmU#. There are
four operators of this type: one pair ofCP-odd ones as well
as one pair ofCP-even ones:

LWW252i
lWW2

L2
]lTr@s3U†DlU#Tr@WmnWmn#1H.c.,

~68!

LBB25 i
lBB2

L2
]lTr@U†DlU#BmnBmn1H.c., ~69!

LWW̃252i
lW̃W2

L2
]lTr@s3U†DlU#Tr@WmnW̃mn#1H.c.,

~70!

LBB̃25 i
lBB̃2

L2
]lTr@U†DlU#BmnB̃mn1H.c. ~71!

IV. CONSTRAINTS FROM PRECISION MEASUREMENTS

Once a complete treatment of the effective operators
ducing TNGBCs has been presented within both the lin
and the nonlinear realizations of the SU(2)L 3 U(1)Y gauge
symmetry, our major concern lies in how to get bounds
the respective coefficients of these operators from cur
phenomenology. In this respect, considerable work exist
the literature where bounds on anomalous trilinear gauge
son couplingsW1W2g have been analyzed. To this purpos
4-7
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LARIOS, PÉREZ, TAVARES-VELASCO, AND TOSCANO PHYSICAL REVIEW D63 113014
measurements on some observables have been exten
used, such as the magnetic and electric dipole moment
elementary fermions and theZ→b̄b branching fraction, as
well as the processese1e2→WWandW* →Wg @4#. As for
TNGBCs, bounds on these couplings have been obta
through the processese1e2→Zg(Z) and qq̄→Zg(Z), al-
though such studies involve only those operators in wh
two gauge bosons are on-shell. To obtain bounds on
operators, we will follow a similar approach as that in pr
vious works. We will also consider the rare decayZ→nn̄g,
which is affected at the tree level by TNGBCs through t
ZZg vertex. Since its SM contribution is insignificant@9#,
this process might offer an invaluable mode to unravel a
latent new physics effect.

A. Decoupling scenario

We will start by examining the situation in the decouplin
scheme of the EL. Before performing any explicit calcu
tion, it is worth estimating on a general basis the size of
TNGBCs. In this respect, it was pointed out that persuas
theoretical arguments indicate that one loop genera
anomalous trilinear gauge boson couplings are unlikely
pected to be above the 1% level@23#. Indeed, the fact tha
TNGBCs are induced at the one loop level suggests that
are of order (g/4p)2 in a wide class of models. It has als
been conjectured that even in theories with underlying str
dynamics, trilinear gauge couplings are not expected to h
a sizable enhancement. In the SM, theZZg(Z) couplings are
severely constrained even in the presence of a fourth ferm
family and are thus out of the range of detectability@9,15#.
Regarding the bounds arising from phenomenolog
grounds, we would like to begin by examining in a qualit
tive way whether the current measurements on the magn
and electric dipole moments of elementary fermions can g
any useful bounds on TNGBCs.

The effective operators presented so far not only ind
TNGBCs but also anomalousW1W2g couplings. An ex-
haustive analysis of phenomenological constraints would
quire one to compute every contribution to the observa
under study, including the ones coming from all of the low
dimension operators inducing vertices which also affect
process. For the sake of simplicity, a crude estimate can
obtained if just some operators are considered at a time
the specific case of the magnetic moment of leptons, wh
receives contributions fromCP-even operators exclusively
a profuse work has been devoted to study comprehensi
the contributions from the lowest order effective operat
respecting the SU(2)L 3 U(1)Y gauge invariance, linearly
and nonlinearly realized, which induce nonstandard ano
lous couplings. In this respect, there are one loop gener
operators of dimension 6 which induceW1W2g couplings,
but not TNGBCs. These operators contribute to the magn
moment of leptons via their insertion in the loop diagra
depicted in Fig. 1@24#. Second, some dimension-6 operato
directly induce the magnetic moment term at the tree le
though they are generated at the one loop level. Finally,
redefinition of the gauge fields, necessary to an adeq
definition of the quadratic part of the theory, also affects
11301
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anomalous magnetic moment value. To obtain bounds on
coefficients of theCP conserving operators, the full contr
bution to the anomalous magnetic moment of the muon w
computed@25#. To this end, the strategy which has proved
be the most suitable for estimating the size of loops invo
ing an effective vertex is that of dimensional regularizatio
together with the modified minimal subtraction (MS) renor-
malization scheme. According to this approach and retain
only the leading logarithmic dependence on the new phy
scaleL, it was found that the contribution from dimension
operators inducing theW1W2g vertex is given by

dam5 h0S mm

L D 2

O~ logL2/mW
2 ! aL , ~72!

whereh0 is a factor dependent on the particular graph, a
aL is directly related to the operator coefficients. Nume
cally, one obtains from this equationudamu/10295aL(1
1 logL)/L2, with L in TeV. If the accepted lowest value o
1 TeV for the new physics scaleL is taken, we are left with
the unpromising result that the operator coefficient should
of orderO(1) to have any chance of being detected. But t
result is far beyond the estimate ofaL being of order
(g/4p)2. Indeed, only the direct contribution is expected
give a measurable contribution to the magnetic momen
the muon. In view of this result, it is natural to think that w
should not expect a better situation for TNGBCs since th
are generated by higher order operators. We note
dimension-8 operators are suppressed by the factor (v/L)2,
with v5246 GeV the vacuum expectation value, with r
spect to dimension-6 operators. A rough estimate is obtai
if we multiply Eq. ~72! by the suppression factor and eval
ate again atL51 TeV. We obtain the discouraging resu
thataL should be of orderO(100), which is very unlikely to
occur, to allow any TNGBCs to be experimentally detect
By way of illustration, we have explicitly computed the co
tribution to the muon anomalous magnetic moment which
obtained by introducing in the one loop diagram of Fig. 1 t
effectiveZZg vertex associated with the factorgL1

ZZg in Eq.
~18!. After isolating the divergent part, the application of th
MS scheme gives

dam
L15

tw~4sw
2 21!g

256p2 S mZ

L D 2S mm

L D 2F logS L

mZ
D 2

1
3

4G ẽL1 ,

~73!

with

FIG. 1. Contribution from TNGBCs to the anomalous magne
moment of fermions in the effective Lagrangian approach.
4-8
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ẽL152cw~aW̃W11a B̃B1!1sw~aW̃B212aWB̃1!. ~74!

After numerical evaluation, we find that the actual bound
any ã i is looser than the rough estimate. We thus see th
seems there are few hopes that a reasonable boun
CP-even TNGBCs could be obtained from precision me
surements on the magnetic moment of the muon. Altho
we have analyzed only one vertex, the same result is
pected for the remaining ones. In fact, the Lorentz struct
which parametrizes TNGBCs does not differ essentially
each case@22#. The most optimum situation is the one whe
all of the contributions add up coherently, though there is
compelling reason to expect that.

A similar analysis can be done for theCP-odd operators
which contribute to the electric dipole moment of fermion
In this case a strong bound, from precision measurement
the electric dipole moment of the neutron, exists
dimension-6 operators inducing anomalousW1W2g cou-
plings @26#. The respective operator coefficients are co
strained to lie below the 1023 level. Since ourCP-odd op-
erators, which also induce anomalousW1W2g couplings,
are of dimension 8 in the decoupling scenario, we could
expect to get a better bound for their coefficients. Once m
a rough estimate would be obtained by dividing the bound
dimension-6 operators by the suppression factor (v/L)2.

Now let us focus on the rareZ boson decayZ→nn̄g,
which has been studied within both the SM realm and the
approach@3,9#. It was shown that the SM contribution turn
out to be negligible small, with a branching ratio of ord
10210 @9#. In the EL approach, this process arises at the
level, as depicted in Fig. 2. In addition it has also the adv
tage of receiving contributions from TNGBCs only throug
the ZZg vertex. Although there are also lower dimensi
effective operators contributing toZ→nn̄g through the
Feynman diagrams of Figs. 2b and 2c@3#, we will not in-
clude those contributions in here since they are not ass
ated with TNGBCs. Furthermore, we are only interested
estimating the best possible bound on TNGBCs.

The measurement of energetic single photons at LEP a
ing from the decayZ→nn̄g has been used to put a dire

FIG. 2. Feynman diagrams contributing to the decayZ→nn̄g in
the effective Lagrangian approach.
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limit on the magnetic moment of thet neutrino@27#. For the
purpose of the present analysis, the search for energ
single-photon events in the data collected by the L3 Colla
ration may be translated into bounds on TNGBC. In order
reduce backgrounds, the L3 collaboration required the p
ton energy to be greater than one-half thee1e2 beam en-
ergy. A limit was obtained on the branching ratio forZ
→nn̄g of 1 part in a 106 when the photon energy is above 3
GeV @27#. To calculate the decay width, we will follow
closely the notation of@9#. Expressing the invariant ampli
tudeM in terms of the scaled variablesx52k1p1 /mZ

2 and
y52k1p2 /mZ

2 , the Z(k2)→A(k1)n(p1) n̄(p2) decay width
is given by

G~Z→ n̄ng!5
mZ

256p3 E0

1

dxE
0

12x

dyuM̄u2. ~75!

We have not imposed any energy cutoff since it is bette
estimate the TNGBC bounds in a conservative way. Fr
Eqs.~7! and ~18! one obtains

uM̄u25
1

32
@~x21y2! ~12x2y!24x y#~a21ã2!, ~76!

a[aL5aL11aL22aL3 , ~77a!

ã[ãL5ãL12ãL22ãL31ãL41ãL5 . ~77b!

As natural, there is no interference betweenCP violating
and CP conserving couplings. The coefficientsaLi (ãLi),
are related to the factorsf Li

ZZg (gLi
ZZg), which in turn depend

on theCP-odd (CP-even! operator coefficients, via the re
lation

aLi5S g mZ
2

cw
D f Li

ZZg , ~78a!

ãLi5S g mZ
2

cw
DgLi

ZZg . ~78b!

After integration of Eq.~75! we have

BR~Z→ n̄ng!52.91231025~aL
21ãL

2!. ~79!

Taking the valueL51 TeV and considering the L3 boun
on the respective branching fraction, we obtain again
result that the size of theZZg coupling should be beyond
any reasonable expectation to become perceptible thro
the processZ→nn̄g. Stated in other words, we may no
expect moderate bounds from this process. The reason
such a discouraging result is the natural suppression
dimension-8 operators. Our viewpoint would be more pes
mistic if we consider that in this calculation only those co
tributions arising from effective operators inducing theZZg
coupling have been included. However, there is no comp
ling reason to disregard any other new physics contributio
such as the ones coming from the Feynman diagrams sh
in the Figs. 2a and 2b@3#. In view of our results, it is con-
4-9
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ceivable to state that any TNGBCs associated with unde
ing physics respecting linearly the SU(2)L 3 U(1)Y symme-
try would not be measurable through the proces
investigated in this work. However, we cannot discard
case in which a certain TNGBC is given by a sum of loo
whose contributions add up coherently to give a large va

B. Nondecoupling scenario

We now turn to analyze the situation in the nonline
scenario, where TNGBCs are generated by dimension-6
erators. Therefore, we might expect a better situation t
that in the decoupling scenario. We will see that the disc
sion for the linear scenario can be easily translated to c
prise the nonlinear case. To begin with, in the nonlinear s
nario theCP-evenZZg vertex is parametrized by one ext
Lorentz structure in addition to the respective ones appea
in the decoupling case. The results given in Eqs.~73! and
~74! for the linear scenario can be directly used if we co
sider the substitution rulesẽL1→(L/mZ)2ẽNL1 anda i→l i .
The leading term obtained by including in the loop graph
Fig. 1 theZZg vertex associated with the coefficientgNL1

ZZg in
Eq. ~56! is thus

dam
NL15

tw~4sw
2 21!g

256p2 S mm

v D 2F logS v
mZ

D 2

1
3

4G ẽNL1 ,

~80!

where we have employed the conservative valueL→v. Nu-
merically one obtainsdam

NL1520.76731029ẽNL1. On the
other hand, the more recent data collected through the B
E281 experiment together with the SM predictions pu
bound on any new physics contribution toam of 1.12
31029,dam,7.5631029 at 95% C.L.@28#. As a conse-
quence, probingdam

NL at the61029 level provides a sensi

tivity to ẽNL1 of aboutO(1) at most, which translates into
loose bound for the operator coefficientsl i . This situation is
not better than the result obtained in@25# for the dimension-4
operators inducingW1W2g couplings within the nonlinea
scheme. Moreover, as there are other sources of new ph
which can affect the anomalous magnetic moment, it is h
to think that any TNGBC could be competitive in this pr
cess, even in the nonlinear scenario.

Regarding the rare decayZ→nn̄g, after the inclusion of
all the contributions arising from theZZg vertex we have
that Eq.~76! remains valid, though Eqs.~77a! and~77b! now
read

a[aNL5aNL11aNL22aNL312 aNL41aNL5 , ~81a!

ã[ãNL5ãNL12ãNL22ãNL31ãNL41ãNL512 ãNL6 .

~81b!

The new coefficientsaNLi and ãNLi are obtained, with the
adequate subscript substitutions, via the relations~78a! and
~78b!, which also hold for the nonlinear scenario. We w
only concentrate in theCP-conserving term, which has bee
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widely studied in the literature. Equation~79! and the L3
limit for the respective branching ratio give the boun
uãNLu,1.831021 if aNL50. This is a more promising re
sult than that previously found in the linear scenario. In fa
there exists a direct relation between the bound just obta
within the nonlinear scenario and the ones presented e
where under the parametrization derived in@14#. It will be
shown below that aNL52g2h10

Z /(cwsw) and ãNL

52g2h30
Z /(cwsw) correspond to the low energy limit of th

form factorshi
Z used extensively to study theZZg vertex in

the case in which oneZ boson and the photon are on she
@29#. Our bound translates thus into

uh30
Z u,0.38, ~82!

if h10
Z 50, which agrees with previous bounds@30#. Of

course, the same result applies toh10
Z when h30

Z 50. In this
analysis, we have considered that the SM contribution to
rare decayZ→nn̄g is negligible, which is a good approxi
mation since it was found that the branching ratio is of ord
10210 @9#. We have also neglected the contributions com
from the operators which give rise to the effective vertic
shown in Figs. 2~b! and 2~c!. This is the most optimum sce
nario indeed. It is likely that any TNGBC may be screen
by any other sources of new physics arising from lower
mension operators. Therefore, a more comprehensive an
sis must be done to disentangle any new physics contribu
to the processese1e2 (qq)→Zg @29#.

C. Connection with results derived within the U„1…em

formalism

TNGBCs were studied for the first time long ago, a
though only one particle was allowed to be off shell@14#.
Following that approach, it became customary to paramet
any new physics effects inducing TNGBCs by certain str
tures derived out of U(1)em gauge invariance and Lorent
covariance, as well as Bose symmetry, which correspond
the so-called U(1)em framework @21#. The coefficients of
such Lorentz structures are taken to be form factors wh
actually comprise all our ignorance of the underlying dyna
ics inducing TNGBCs. In general, these form factors depe
on the squared momenta of the participating particles,
such a dependence is unknown since it is to be prescribe
up to now unknown physics. Then it is necessary to ma
some assumptions to describe the form factor behavior
particular, much work has been done to constrain the
energy values of the form factors throughZg production in
e1e2 andqq collisions at LEP, the Tevatron, and the futu
LHC @21#.

The above formalism is to be contrasted with the a
proach followed in this work, which in turn is well suited fo
studying new physics effects in a model independent w
and no form factors nor extra assumptions on the unkno
physics are required, but all our ignorance of the new phys
lies in dimensionless~or dimensionful! coefficients associ-
ated with each effective operator, which in turn only depe
on the new physics energy scale. Another peculiarity of
EL formalism is that we are allowed to know what operato
4-10
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the new physics comes from, in contrast to the form fac
scheme where we only know that the form factors the
selves are generated at a given order in the U(1)em effective
Lagrangian. To establish a direct connection between th
two different formalisms is not immediate. In a previo
work both approaches were studied, within the U(1)em gauge
invariant scheme@15#. The explicit relation was also show
between the form factors and the coefficients associated
the effective operators arising from the U(1)em framework.
At this point, it is worth examining the connection betwe
our own results, when it is considered the case of only
off-shell particle, and those derived from the form fact
parametrization. We will show that in the case where
form factors are given their low energy valueshi0

Z , there is a
simple relation indeed. To this end, we will consider only t
ZZg coupling, since it is the only coupling involved in th
rare processZ→nn̄g.

The most general structure for theZZg vertex respecting
Lorentz covariance, U(1)em gauge invariance and Bose sym
metry is given by

Ga1 a2 a
ZZg ~k1 ,k2 ,k!

5
ie~k2

22mZ
2!

mZ
2 S h1

Z~ka1gaa22ka2gaa1!

1
h2

Z

mZ
2

k2
a1~k2•k ga2a2ka2k2

a!1h3
Zea1a2amkm

1
h4

Z

mZ
2

k2
a1ea2amnk1mk2nD , ~83!

where all momenta are taken as incoming. Any term prop
tional toka andk1

a1 has been omitted and the same is true

those proportional tok2
a2 because it is also assumed that t

virtual Z boson couples to light fermions, as actually happe
in the decay Z→ l l g. In this parametrization, the
CP-conserving termsh1,2

Z as well as theCP-violating ones
h3,4

Z are form factors which depend on the dynamics of
underlying new physics. Within the U(1)em formalism, as far
as the form factorsh1,3

Z are concerned, they receive contrib
tions from dimension-6 operators, whereas the onesh2,4

Z can
be induced by dimension-8 or higher operators. Based on
unitarity requirement, some authors have found it conven
to use the approximationhi

Z5hi0
Z /(11s/L2)n, with n an in-

teger,hi0
Z the form factor low energy value, ands the squared

momentum of the virtualZ boson@29#. If the energy scaleL
associated with the new physics inducing TNGBCs is lar
than the energy scale involved in the process, i.e. the squ
momentum of the virtual particle, it is a good approximati
to use the low energy values of the form factors. After
placinghi

Z→hi0
Z in Eq. ~83!, we are left with the expressio

for the ZZg vertex which is to be compared with the on
obtained from our results in the nonlinear scenario.

Considering the above assumptions, we can obtain f
Eqs. ~7!, ~18!, ~44!, and ~56!, the expression for theZZg
11301
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vertex arising from the lower dimension operators with
either the linear scenario or the nonlinear one@22#. After a
judicious manipulation and with the aid of Shouten’s ide
tity, we obtain

Ga1a2a
ZZg ~k1 ,k2 ,k!5~k2

22mZ
2!@gZZg ~ka2

ga1a2ka1
ga2a!

1 f ZZg ea1a2amkm#, ~84!

which has an obvious relation with Eq.~83!. Instead of giv-
ing explicit expressions forf ZZg and gZZg, it is useful to
establish the relation ofh10

Z and h30
Z with the coefficientsa

and ã appearing in Eqs.~77a!,~77b! in the linear scenario
and Eqs.~81a!,~81b! in the nonlinear one, that is

h10
Z 5

cw sw aL

2g2
, ~85a!

h30
Z 5

cw sw ãL

2g2
. ~85b!

The same relation holds for these coefficients in the non
ear scenario.

Finally, we would like to note some interesting point
Although theZZg has the same Lorentz structure in bo
realizations of the SU(2)L 3 U(1)Y gauge symmetry, the
main difference is that the operators inducing these struct
are of dimension 6 in the nonlinear scenario, whereas in
linear case they are induced by dimension eight operat
As a result, though the bounds found for the coefficientsh10

Z

andh30
Z apply in both scenarios, if they were translated in

the operator coefficientsa i andl i , looser bounds would be
obtained in the linear scenario. Regarding the remain
TNGBCs, a similar analysis following the lines sketch
above was done for theZZZ and Zgg couplings. It was
found that our results agree with those previously presen
Another interesting point to be noted is that, since the ope
tors which induce the most general TNGBC vertices a
induce those couplings with only one off-shell particle, a
bound which has been put on the latter will be immediat
applicable to the former.

V. CONCLUSIONS

In this work we have presented an analysis of triline
neutral gauge boson couplings,ZZZ, ZZg, andZgg, under
the context of the effective Lagrangian approach, both in
linear and the nonlinear realizations of the SU(2)L 3 U(1)Y
gauge symmetry. Particular emphasis has been given to
linear scenario since the current literature lacks an anal
along these lines. The most general case with three off-s
bosons is considered. In the linear scenario these coupl
receive contributions from dimension-8 operators, wher
in the nonlinear scenario they are induced by dimension
operators. Based on general considerations and actual c
lations, we conclude that, if the until now unknown physi
underlying the SM is of a decoupling nature, it is not e
pected that TNGBCs could have a considerable impact ei
4-11
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through their virtual effects or via direct production. In co
trast, if new physics effects arise from a strong coupl
regime at higher energies which is responsible for the bre
ing of the SU(2)L 3 U(1)Y symmetry~endowing the gauge
bosons with mass!, the possibility of measuring their effect
still remains. The EL approach indicates that, owing to
suppression of the operators inducing TNGBC, it is diffic
that the effects arising from them may compete with tho
coming from other sources of new physics induced by low
dimension operators. However, it may happen that some
tuitous fact, such as some resonant effect, could give ris
large TNGBCs in a particular model. In this context,
p

a,

c

J.

59

i,
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.
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would be useful a study in a model dependent way to h
more evidences which could lead us to a deeper underst
ing of TNGBCs.

Note added in proof. After the submission of this pape
we became aware of Ref.@31#, whereCP-violating TNGBCs
were studied within the minimal supersymmetric stand
model.
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