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We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson cou-
plings ZZy, Zvyy, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear
realizations of SU(2) X U(1)y gauge symmetry. In the linear scenario we find that these couplings can be
generated only by dimension-8 operators necessarily including the Higgs boson field, whereas in the nonlinear
case they are induced by dimension-6 operators. We consider the impact of these couplings on some precision
measurements such as the magnetic and electric dipole moments of fermions, as well lassthie rare decay
Z—vvy. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge
boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear

scenario where these couplings have the more promising prospects of being perceptible through high precision
experiments.
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[. INTRODUCTION ics beyond the Fermi scale via effective operators involving
The present agreement between experimental data and tbaly SM fields, namely the linear and the nonlinear realiza-
standard modelSM) suggests that the energy scaleasso-  tions.
ciated with any new physics should be large compared with In the linear realization or decoupling scenario it is as-
the electroweak scale= (\2Gg) Y%= 246 GeV. To infer the sumed that the light spectrum of particles, which fill out
existence of new particles as heavyfashrough their virtual  multiplets of the electroweak SU(2)< U(1)y gauge group,
effects, effective LagrangiafEL) techniques have been ex- includes at least the physical Higgs boson of the SM. Be-
tensively used to study quantities which are forbidden oicause of the decoupling theorem, virtual effects of heavy
highly suppressed within the SM—3]. Among these quan- Physics cannot affect low energy processes dramatically.
tities, self-couplings of electroweak gauge bosons constitutBlonetheless, any new effect, in spite of its smallness, may
a sensitive probe of nonstandard interactipfisExperimen- ~ have significant effects on the couplings which are absent or
tal bounds on possible anomaloWg"W~Z(y) couplings hlghly suppresse_d within the SM. Starting from the SM
have reached an accuracy of the few percent level in botf|€!ds and assuming lepton and baryon number conservation,
hadronic and leptonic collide($,6], but the situation looks there IS no way o construct any odd dimension operator
less promising for anomalou&ZZ, ZZvy, and Zyy cou- respecting the_ linearly realized SU.(ZX U(1)y symmetry.
: 1 : Fypj— : . As for dimension 6, operators of this class were comprehen-
plings [7]." Unlike W™W Z(y) couplings, trilinear neutral sively studied in[10]. It was shown that there are 84 inde-
gauge boson couplingsfTNGBCs vanish when the three .

. . o endent dimension-6 operators.
bosons are real. Another interesting peculiarity of TNGBCSp I I P

is that th be induced by | ff . | In the case of the nonlinear realization or nondecoupling
Is that they must be induced by loop effects in any renormalyenario the parametrization of new physics effects arises

izable theory since they cannot possess a renormalizablgnean it is assumed that the Higgs bosons are very heavy or
structure. In the SM, TNGBCs are generated at the one-loog, ot exist at all. The scalar sector is comprised only by

level by fermion triangle$8], being very suppressed even in Go|gstone bosons, which transform nonlinearly under the
fche presence of a fourth fermion famﬂg_)]. It follows that it SU(2), X U(1), group. It is also possible to introduce light

is convenient to carry out a model independent study ofcqar fields in this parametrization, but they cannot be rec-
TNGBCs using the EL method to parametrize any anomaggnized as Higgs bosons since such fields do not couple to

lous contribution. Within this approach, there are two well-, 4 remaining light particles as dictated by the Higgs me-
motivated schemes to parametrize the virtual effects of phy%hanics[ll]. Since the low energy theory is nonrenormaliz-
able under the Dyson prescription, heavy physics does not
decouple from the low energy processes. We may think of
Throughout this work we consider the general case of off-shelthis scenario as the one in which the EL parametrizes un-
bosons, unless stated otherwise, but they will be denoted/ by known physics which would not obey the Higgs mechanism.
rather thanv*. In this case, the most important operators are the ones which
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induce the masses of tW andZ gauge bosons, prescribing structure, expressing the respective operator in terms of other
also the general structure of tkie"W~Z(y) couplings[12].  ones. This whole procedure does not affect $matrix el-
These operators have dimension 2 and 4. ements. In order to present all the independent operators, we

At the lowest order, anomaloud/"W~Z(y) couplings Wil classify them according to the following criterion: those
are induced by dimension-6 operators in the decoupling scévhich cannot be reduced by using the equations of motion
nario and by dimension-4 Operators in the nonlinear Schemé\_/i“ be referred to as irredUCible; the remaining ones will be
In contrast, TNGBCs are induced by dimension-8 operatoréeferred to as reducible.
in the linear realization and by dimension-6 operators in the After classifying the operators, our paper will be con-
non"near one. In the latter case there are also Soméerned W|th the SenSitiVity Of some pl’eCiSion experiments to
dimension-4 operators which give rise to th&Z coupling, ~New physics effects arising from TNGBCs. Although persua-
but they are proportional to the scalar part of thdoson sive t_heoreﬂcal arguments indicate that trilinear gauge boson
(9,Z*). It can be shown that such operators may be elimi-Couplings are not expected to be larger than[1%20, the
nated by means of a transformation which leaves invariankarge Hadron Collide(LHC) and the planned Next Linear
the Smatrix [13]. Consequently, any anomalous contribution Collider (NLC) are expected to constrain them at a level of
to TNGBCs is expected to be more suppressed than thodd®d *—10° [4,21]. As long as TNGBCs are concerned, the
inducing nonstandardV*W~Z(») couplings. It must be Size of their effects will be suppressed by powerswfA)*
stressed, however, that any potential effect must be carefullgnd ©/A)? in the linear and the nonlinear scenarios, respec-
examined as it may constitute clear evidence of new physicdively. We will examine whether some high precision mea-

The structure of TNGBCs has already been studied in théurements may lead to any reasonable bound on these cou-
context of effective theories, initially at the level of vertex Plings. The anomalouW" W™ y(Z) couplings have been
functions[14]. However, in this approach the case was con-constrained from a global analysis of the LEP and SLC ob-
sidered where two particles are real and just one is virtual. Iservables at th& pole[2]. To draw any inference about the
is only recently that analysis of the off-sell vertices has beersize of TNGBCs we will consider the muan-2 value, the
done under the U(1), gauge invariant framework, including known limit on the electric dipole momerEDM) of the
the study of the respective EL. By invoking Bose symmetry,electron, and the current limit on the rare dey vv'y.
Lorentz covariance, and electromagnetic gauge invariance, Our paper is organized as follows. All the lowest dimen-
the most general structures inducing TNGBCs with three off-sion operators that generate TNGBCs in the linear scheme
shell neutral bosons were construcfé8]. As was shown in are presented in Sec. Il, following the already explained clas-
[16], the U(1),, gauge invariant framework is equivalent to sification criterion. The respective Lagrangians are shown
the nonlinearly realized SU(R)x U(1)y invariant case. eXplicitly. In Sec. Ill, a similar analysis within the nonlinear
Such an equivalence is explicit in the unitary gauge. Thescenario is presented. Section. IV is devoted to examining
choice of using either framework is only a matter of conve-the constraints on the couplings out of high precision experi-
nience. In particular, the nonlinear scheme is suitable fofnents. Finally, the conclusions are presented in Sec. V.
loop calculations, as the presence of Goldstone bosons al-
lows one to quantize the theory with the aid of a renormal-
izableR; gauge.

It is clear that a comprehensive study of TNGBCs must This section focuses on the itemization of all the lowest
include both linear and nonlinear schemes. To our knowldimension operators that generate at least one of the cou-
edge the former has never been studied before. One of th@ingsZZZ, ZZy, or Zyvy within the linear realization of the
aims of the present paper is to present a complete list of th8U(2), X U(1)y electroweak group. To construct a basis of
effective operators which induce TNGBCs at the lowest or-independent operators with a given dimension, we must con-
der in both realizations of the SU(2X U(1)y gauge sym- sider some aspects concerning the independence oSthe
metry. Not all the operators that can be constructed respeciratrix under a wide class of transformations which leave it
ing the Lorentz and electroweak symmetries are independeirivariant[17]. For instance, it was shown [i.8] that some
since a certain class of general transformations allows one toperators, which consist of a piece containing higher deriva-
rule out some of them without affecting tf&matrix ele-  tives, can be eliminated in favor of others by using a specific
ments[17]. In the course of our classification we found op- transformation, leaving unchanged tBenatrix elements at
erators with terms containing higher derivatives which re-any order of perturbation theory. Another situation arises
semble the covariant structure of the equations of motionwhen an operator is proportional to the scalar part ofZzhe
there were also operators with terms which are proportionaboson. While the latter kind of structures give vanishing con-
to the scalar part of th& boson ¢,Z*). It has been shown tributions when the&Z boson is on mass shell or is virtual but
in [13,18 that both types of structures can be eliminated incouples to light fermions, the situation is not the same in the
favor of other operators already present in the effective Lacase of the top quark. In this respect, this kind of operator
grangian. Such a procedure is only valid at first order in thecan also be eliminated by transformation which does not
unknown effective parameters of the theory as any effectivalter theSmatrix elementg13]. It must be noted that both
Lagrangian is assumed to describe the effects of welltransformations are equivalent to applying the equations of
behaved new physics just in this approximation. Consemotion. Beside these considerations, we have made a sys-
quently, after performing the required transformation, thetematic use of integration by parts to rule out any operator
equations of motions can be used to eliminate any redundamnélated to others through a surface term. Consequently, we

Il. DECOUPLING SCENARIO
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will catalog the operators inducing TNGBCs as reducible omwith either aZ boson or a photon has been amputated, for
irreducible. instance when the equations of motion are used to replace

Any SU(2). X U(1)y invariant involving only bosonic the termd,B*” with the respective current. Therefore, the
fields can be constructed out of the covariant structBrgs irreducible operators deserve a more careful study than the
szgglv\/'w, ®, andD,®, where the covariant deriva- reducible ones. We will present thus the Lagrangians and
tive is defined asD ,=d,—igW,—ig’'B,, and® is the vertex functions in the irreducible case, whereas in the re-
Higgs doublet. Using these basic structures, we can build thducible one we will list only the respective operators and the
following SU(2), X U(1)y invariant and Lorentz covariant Lagrangian prescribing the off-shell electromagnetic proper-
structures of dimension 2—5: ties of theZ boson. In the next section we will enumerate the

operators of dimension 8 that generate TNGBCs.
B, ®'®,o'D,® o'W, o, B, B", T{W, W],
A. Irreducible operators

t T
(DD, +D,DL)P, W, DD @ We begin by classifying the operators which cannot be

eliminated using the equations of motion. We will categorize

Note that another set of SU(2X U(1)y invariant and Lor- ﬁtpem according &P symmetry.

entz covariant structures can be generated by operating wi
the ordinary derivative on these expressions. Any nonrenor-
malizable bosonic operator can be built by choosing the ap-
propriate combinations of these structures to form Lorentz The operators we are interested in have the f6haf O, ,
scalars. The ordinary derivative can act on the last expresvhere O; is any of the SU(2) X U(1)y invariant expres-
sions in several ways, but the contraction4B,, and sions shown in Eq(1). Given these operators it is immediate
(®'D,®), being proportional to the scalar part of tde to construct the new ones{0;)0;, which also belong to
boson, are special because in both cases we can use the eqiig irreducible group, but they are not independent at all
tions of motion to eliminate the resulting operator. since they are related to the original operators through a sur-
Let us now discuss the general Lorentz structure of TNGface term. Bearing this in mind, we obtain the following four
BCs. The lowest dimension operators which can be asindependenCP-odd operators of dimension 8:
sembled out of the basic structures have dimensift0f It

1. CP-odd operators

is easy to see that no dimension-6 operator induces TNG- Owwa =i 29N ®'D, @) TTWA'W,,]+H.c, (2
BCs, which unavoidably leads one to consider dimension-8 . N

operators. In principle, the combination which can give rise Owp =i (®'W,,D,®)s*B*"+H.c., ©)
to TNGBCs may involve the 4-vectoss, andZ,, , together o v

with the antisymmetric tensors,,,=d,A,—d,A, andZ,,, Owge=1(P'W,,D,\®)d*B*"+H.c., 4
=d,2,—d,Z,. 0Owing to U(1),,gauge symmetry, the elec- )

tror%agnetic field can only appear Ag through the respec- Ogg1=i (®'D,®)B, ,d"B*"+H.c. (5)

tive covariant derivative, which operates on charged fields . )
only. Therefore, the photon must appear in any term throughoticé  that  the — operator Ogg,  contains three
the tensor field® . As a result of the antisymmetry of the SUY(2) X U(1)y invariant structures which can be con-
F,,andZ,, tensors, it is not possible to generate TNGBCstraCt_ed with the ordinary derivative in three different ways,
using only these structures: it would be necessary to have $2ding o thf same number of operators. One of them,
our disposal three antisymmetric tensors. There follows th&@amelyia*(®'D,®)B, B, is irreducible, but can be ex-
absence of the/yy vertex in this gauge invariant scheme, Pressed by means of 'ntegfatlTon by pe;rts in termogk,

To construct thezZZ, ZZy, andZyy vertices, we must and the reducible operata(®'D ,®)(5"By,)B*", which

use at least & boson in thez, form, which is allowed will be considered later.
because this field couples to neutral fields. The 4-veZjpr

is contained in the covariant derivative, which in the bosonic
sector operates only on the Higgs doublet. As a consequence, After decomposing the operators in terms of the mass
the Higgs mechanism plays a special role in this type ofigenstate fields, we are left with several Lorentz structures
couplings. In particular, the Higgs presence increases the deéorresponding to TNGBCs, though not all of them are inde-
mension at which the operators can be generated in comparpendent: some structures are identical, which is manifest af-
son to the nonlinear case, where this field is absent.Z'he ter a subtle manipulation of their Lorentz indices, whereas
boson may appear through the combinatiodg,Z,,,, other ones are related through a surface term. Consequently,
2\2,,, Z,Z,, andZ, . The building blocks necessary to theZZZ, ZZy, andZyy couplings can be described by the
construct these couplings areCDTD#CI), @T(DMD, following independent Lorentz structures:

+Db,D,)®, and d)TWWDx(D, which, after spontaneous CPodd 777 77

symmetry breakingSSB), induce the structures,,, Z,Z,, Lo 595 =112,\2,,,0° 2" +1(5Z,,, 2" 0, 2", (6)

and Z,,(F,,)Z,, respectively. The irreducible operators

may contribute to any process through the specific structure £ F590={{7z#F, "2, +{572,Z,,,0"F*"

of TNGBCs, while the reducible ones may contribute to it - N

via contact diagrams in which an internal line associated +i372\F 002", )

2. CP-odd structure of the ZZZZZ vy, and Zyy couplings
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®

wherelL is a subscript standing for the linear scheme. The

coefficients V" in turn depend on the other ones

=(mZ/A)4aJ-, with «; the constant factor accompanying

each effective operator in Eq&)—(5). We thus have

fIY=1(

©)

€wwl EWBLs - - - )-

Detailed expressions of each factigf’" as well as the re-

spective vertex functions are available to the interestedhe coefficientsy;

reader in[22].

3. CP-even operators

Operators of this kind can be obtained from B&-odd

PHYSICAL REVIEW D363 113014

CP- 2ZyE 27y
ﬁl_-zgl;en:guy':uvzwaxzﬂ"' ngyzuuF”(?xZM

+9757Z, FHZ,+ 92 FR9 2,

+gf§yZ”Z’”&Ml~:M, (18
LER G2 P g, 2,
ALY a9

VYV are related to the coefficients associ-

ated with theC P-odd operator§10)—(16) and obey a rela-
tion similar to Eq.(9), with the appropriate substitutions.
Details regarding these coefficients as well as the respective
vertex functions can be found [22].

ones by replacing each strength tensor with its respective

dual, namely\TVW=(1/2)eW}\pW”P, and a similar expres-
sion forEW. There is a couple of independe@tP-even
operators associated with each one of @R-odd operators

B. Reducible operators

The operators belonging to the reducible class are propor-
tional to the SU(2) X U(1)y invariantsa"(CDTDMCD) and

X . . T
Owwt, Owea, and Ogg;. Note that in these operators both ¢ Buy- While the operators with the terat(¢'D , ) are
W tensors are contracted via only one of their indices, leadProPortional to the scalar part of theboson, those propor-

ing to two independent combinations of the dual tensor. Orjional to thed“B,,, have the peculiarity that they generate

the other hand, IOy the W and B tensors appear con-

the Lorentz structures required to define the off-shell electro-

tracted by both indices. Since the two possible combination§'@gnetic properties of th& boson, namely the transition

of dual tensors are equivalent, just dd®-even operator can
be constructed fron®y,g;. In this way, there are seven in-
dependentC P-even operators:

Ofp1 =129 DD, @) T WH*W, ] +H.c., (10)
Oviwa =120N®'D @) TITW#*W, ]+ H.c., (12)
Owp=i(®'W,,D,®)#B*"+H.c., (12)
Ofigo=i(®W,,D,®)d*B " +H.c., (13)
Owg=i(®'W,,D,®)s*B+H.c., (14)
Opp1=i(®'D,®)B, ,#B*"+H.c., (15
Ogg=i(®'D,®)B,,d"B*"+H.c. (16)

We can make the ordinary derivative operate on the remain-

ing SU(2) X U(1)y invariant terms out of which the previ-

ous operators are constructed. The resulting operators are

magnetic(electrig dipole and quadrupole moments. All of
these operators can be reduced to others by using the equa-
tions of motion. To define these structures, it will be neces-
sary to include some operators of dimension 10, but as they
can always be expressed in terms of other operators we will
content ourselves with listing them. We will also present the
Lagrangian prescribing the off-shell electromagnetic proper-
ties of theZ boson. The operators will be classified according

to these properties.

1. Operators that generate the off-shell electromagnetic
properties of the Z boson

These operators are proportional to the SY(R)U(1)y
invariant9*B being given by

pv
Owgs=1(®'W#'D ,®)#*B, ,+H.c., (20)
Oggz=i(®'D,®)B*"3*B, ,+H.c., (21
Ofigz=1(®"WH'D ,®)#*B, ,+H.c., (22)
Ogps=i(®'D,®)B*"3"B, ,+H.c. (23

also of the irreducible kind, but they are not independent To define the off-shell electromagnetic properties ofZhe

since, as explained in the P-odd case, all of them are re-
lated to the first ones through a surface term.

4. CP-even structure of the ZZZZZy, and Zyvy couplings

After a careful analysis of the Lorentz structure induced

by the CP-even operators, we find that t#&zZ, ZZy, and

Zyvy couplings are characterized, respectively, by two, five,

and three independent Lorentz structures

LERee=9tt%2,2,,0" 2" +9{5°2,2,,,0"Z"", (17)

boson, it is necessary to include the following operators of
dimension 10:

Owe=i(®"WHD,d)d,5"3"B,,+H.c., (24)
Opp=i(®'D,®)B*"3,0"9"B,,+H.C., (25)
Ofe=1(®"WH'D,®)d,5 B, +H.c., (26)
03 =i(®'D,®)B#"3,5 9B, +H.c. (27)
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We have excluded any redundant operator, such as the ones IIl. NONDECOUPLING SCENARIO

related ~through ~a surface ~term. The operatGlog In the situation where the new physics effects do not de-

—dT o Av ; ;
®(D,D,+D,D,)®d"s,B™, which does not contribute couple from low energy physics, the relevant

to the electromagnetic properties of t@eboson, can be SU(2), X U(1)y invariant structures are the same as in the
eliminated by using the equations of motion. The Lorentz
near case, with the Higgs doublet being replaced by the

structures defining the off-shell electromagnetic properties okollowin unitary matrix:
theZ boson can be conveniently parametrized by the follow- 9 y '

ing Lagrangian 2ig ¢
U= ex;{ , (35
z ZF P2y,
Ezzy:_e (th'u’V‘i‘ hSF’uV)Z# 2 X
mz where theg¢' scalars would become Goldstone bosons. The

covariant derivative in the nonlinear realization of the
SU(2)L>< U(1)y group is defined a®,U=4,U+igW U
—ig’'UB,, with the Abelian fleld deflned asB

- d,0,0°Z,,
+ (3R + hgFmy) Zh =2 :n4 ’ 1 (29)
= (03/2)B The basic structures out of which TNGBCs can

VA

where the transition moments are given by be constructed are the SU(2ZXU(1l)y invariants
T{s*U'D, U], mu'(D,D,+D,D,)U], and
2 o Tr[UTW DXU] which in mass unlts have dimension 1, 2,
Hz=— \/—mz mz(h —h3), (299 and 3. L|ke their linear counterparts, these invariants are es-

sential to construct any TNGBCs because they induce the
/10 Lorentz structure¥,, Z,Z,, and2,Z,,,(F,,). Since these
QS=-— 2y1Ce , (29b) structures have a Iower dimension than their analogous struc-
z L tures in the linear case, it is not only possible to construct
dimension-6 operators inducing TNGBCs but a larger num-

z

e 2 ber of independent operators. As we will show below, there
dy=— —(h§—h}), (299  are some operators of dimension 4 which induce ZiZ&Z
\/—mz coupling, though not th&Zy andZvy+y ones. Nevertheless,
such operators are proportional to the scalar part ofZhe
m 2\10e . boson and belong to the reducible group. We will use the
z= ™ 2 3 (299 same criterion as in the linear case to classify all of the
mZ . . . .
independent operators. We will refrain from any technical

details already explained while discussing the linear scenario

with d;) the off-shell magneti€electrig dipole moment
#z (d2) gnetice 0 dip if it is not relevant for the present discussion.

and Q7(Q3) the magnetidelectrio quadrupole moment of
the Z boson. The coefficients? are defined if22]. _
A. Irreducible operators
2. Operators proportional to the scalar part of the Z boson These operators are proportional to the SY(2)U(1)y
These operators are characterized by the SUf)(1)y  invariant structures TU3UTD_MU] and TfU'W,,D,U].
invariantd,(®TD*®). There are thre€ P-odd operators of We will classify them according t€ P symmetry.
this type:
1. CP-odd operators
Owwe=120\(®TD @) TITW,,, WA+ H.c., (30) The dimension-6 operators resembling those of the linear
scenario are the following:

Oggz=10\(®'D*®)B,,,B*"+H.c, (31
. A
Ope=i®'(D,D,+D,D,)®3*(®'D"®)+H.c. S AT 00D, UTTIWA'W, ]+ H.c.,
(32 36
The last operator generates only th&Z coupling, which
can be expressed by integration by parts as a coupling pro- )\WBl
portional to the scalar part of th& boson. As forC P-even Lyg=i—— TrU'W,,D,UJ#B*"+H.c., 37
operators, there are only a pair of this kind:
Owip=120,(®'D ®)Tr[W,,,W*"]+H.c., (33 A
Wiz =120\( JTIW ., W] 33 Lwg=1 —22TUW,,,D,U]##B " +H.c., (39)
Osgzzi&A(CDTDxd))BM;B“VJr H.c. (34
A
T 03U D, U]B,,d* B "+ H.c., (39)

linear combination of those given above.
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where we are using the symbal, introduced in the linear " 2 Yy
case, to denote the new physics scale. As the structure NG = o] FG0 (46)
Tr[a3UTD#U] has dimension 1, we can construct three new ‘

independent operators of dimension 6 which have nQynereas the remaining ones together with the respective ver-
dimension-8 counterpart in the linear realization. They argex functions can be found if22]. Unless stated otherwise,

given by we will denote by, rather thany; the coefficient associated
with each operator in the nonlinear scenario.
_. Moo 3yt syt “
ﬁDD—|FTr[U u'D,U]UT{o”U'D, U] 3. CP-even operators

3t There are eight operators of this kind. Seven of them can
XTro®U'D,U]+H.c., (40 pe easily obtained from their linear counterparts whereas a
new one is obtained from th€ P-odd operatoiLpg; When

AbB1 3t - s the tensoB,,, is replaced by its dual. Th€ P-odd operator
Lpp1= A2 Tro°U'D,U]o\Tr{o°U D, U] B* which is equivalent toCpg, is not independent as it gener-
ates TNGBCs with a Lorentz structure already induced by
+H.c., (41)  the operators resembling those of the linear case. In this way,

the independent P-even operators are

A
Logs= XSZTr[a3UTDMU]ﬂyTr[a3UTD>\U](9}‘BW

- \G _
Liown =21 %aﬁr[ﬁu D, UITWA"W, ,]+H.c.,
+H.c. (42 (47)

Note that in the linear scheme the operators corresponding to 7
Lpp have dimension 12, whereas those related g, and

Lpgo are of dimension 10. These operators have the pecu- (48)
liarity that they induce TNGBCs exclusively; i.e., there are

i _
win =2 %am[ o2UTD, UITIWA W, , ]+ H.c.,

no interactions containing a charg@élboson, which can be ~ w1 _

seen by noting that the structure[#fU'D,U] is propor- Lwig=i—— TrUW,,,D,U]#"B*"+H.c., (49
tional to theZ, boson in the unitary gauge. While the first A

one of these operators induces only th&Z coupling, the

remaining ones generate both tA&Z andZZy couplings. - AB2

P~ — T\, v
There is noZy+y coupling arising from these kind of opera- Liyg2=1 A2 TTU'W,,DU]#"B " +H.c., (50

tors, which implies that the Lorentz structure of it is the same
in both the linear and the nonlinear realizations of the elec-

~ Awie -~

troweak group, at least at the lowest order. Lwin=I e Tr[UTWMVD}\U](gMB)\ +H.c., (51)

2. CP-odd structure of the ZZZZZ vy, and Zyy couplings.

After decomposing the nonlineaf P-odd operators in ~_ . ABB1 31t B oApur
terms of the physical fields, we have found that &z Lop1=l A2 To"U D, UIB,,a" B+ H.C., (52)
coupling can be described by five independent Lorentz struc-
tures, and so is théZy vertex. On the other hand, tieyy o=
coupling becomes changed, as compared to its counterpartin 7.z, =i BBlTr[USU TDMU]BM(;A“BWJF H.c., (53)
the linear case, in its coefficients but not in its Lorentz struc- A?
ture. We thus have

CP-odd _ ,CP-odd, ¢77Z 2227 A y R 3yt 3yt ABHY
LNe999 =L+ 18t52,02 02 + 1152 ,,0\Z , " 2" Lpg1=1 A2 Tr{o°U'D,U]3,Tr{o°U'D,U]3"B

2727 A v
TINGZud 2002, (“43) +H.c. (54)

CP-odd _ » CP-odd zZ v

‘CNL-gZy_ L-Zgy + fNLZZﬂﬁxZua)\FM 4. CP-even structure of the ZZZZZ vy, and Zy+y couplings
+f§fgz“ayzxakpm (44) As far as their Lorentz structure is concerned, both the
Z7Z7 and theZZy couplings differ from their analogues in

£ CP-odd_ » CP-odd 45 the linear realization as they now receive a contribution aris-

NL-Zyy™ ~L-Zyy > ( )

ing from the operatoLpg,, that is

with the respective coefficients obtained from those of the CPeven. CP-even 777 S
linear scenario through the relation LNizzz=L 227 T ONGBLuANL,0"ZH". (55)
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LN = LG5+ ONBZu00Z, 0 F . (56) NG _
7 7 g LE =i —=TU"W*'D,U]9,5#B,,+H.c, (64)
o : A4 . ’
On the other hand, th&yy vertex coincides with the one of
its linear counterpart. As for the coefficierag)\, they are 8

given in terms of the linear ones by means of a relation /;%
similar to Eq.(46). Once again, detailed expressions of these
coefficients as well as the respective vertex functions ar

\g -
B=i%Tr[crsUTD)\U]B“"a#a"a"BpV—i-H.c. (65)

%‘hey induce the off-shell electromagnetic properties ofZzhe

presented if22].

B. Reducible operators

boson through the Lagrangian given in Sec. Il. The coeffi-
cients hi ; and h3, are obtained from those of the linear
scenario after multiplying the latter byA(m,)? and

We can classify the reducible operators in those contrib{A/mz)*, respectively.

uting to the off-shell electromagnetic properties of thbo-

son and those which are proportional to the scalar part of the

Z boson.

1. Operators that generate the off-shell electromagnetic
properties of the Z boson

These operators are proportional to the SY(R)U(1)y

invariantd,B#" and are obtained from their linear counter-
part by replacing®'D,,® with Tr{a*U'D,U]. This give
rise to dimension-6 and dimension-8 operators. The ones of

dimension 6 are given by

Aw

Lowgs=i A?Tr[UTW“VDMU]a)‘BMﬂLH.c., (57)
—i )\BBS T MLV AN
Leps=I e T{U'D,U]B**3"B,,+H.c., (58)
N3 ~
Lips=i e TU'W#*D,U]#"B,,+H.c., (59
- )\EB3 3t RV AN
BBS_IFTI‘[U U DMU]B J B)\V+H.C. (60)

Just as in the linear realization, there is anotld?-odd
dimension-6 operator given by

2. Operators that are proportional to the scalar part
of the Z boson

These operators are proportional to the SY(R)U(1)y
invariantaﬂTr[a3UTDf‘U]. As previously mentioned, there
are a pair of dimension fou€ P-odd operators which gener-
ate just theZZZ vertex. They are given by

L1=iNTre*U™D, U T ¢*U'D U4, T 03U D U]
+H.c., (66)

L£3=ix,Te*U'D"U]o*Tr{U"(D,D,+D,D,)U]+ |?éc7.)

The linear counterpart of the operatﬁl‘l" has dimension
10, while the one associated withj has dimension 8, as
described in Sec. Il. The remaining operators have dimen-
sion 6, and are obtained from those given in the linear case
by the replacement sb'D ,® by T{s*U'D,U]. There are
four operators of this type: one pair 6fP-odd ones as well
as one pair ofZP-even ones:

A
Lop=2 Z\V\zmahTr[USUTD"U]Tr[WWWW]ﬂLH.c.,
(68)
_')\BBZ T\ wv
Loge=i =5 ATIU'DNUIB,, B +He, (69)

A ~
Lip=2l %am[ aPUTDMUITHW,, WA+ H.c.,

_}\DB T ) \v
Lpg= A2 Tr[U (DMD,,+ D,,D#)U]z? J,B"", (61 (70
. . . ~ i )\BEZ i Ruv
which, however, does not contribute to the electromagnetic £eB2=1 2 HTr{U'D*U]B,,B*"+H.c. (71

properties of theZ boson. The operators of dimension 8,

necessary to an adequate definition of the electric and ma%—/ CONSTRAINTS FROM PRECISION MEASUREMENTS

netic transition dipole and quadrupole moments, are
8 i )\3VBT T v X
EWB:IF Mmu'w#*D,Ul4,d"9"B,,+H.c., (62

)\8
£85=i %Tr[a3uTD)\U]B“VéMﬁ)‘&’JBpV—i— H.c., (63

Once a complete treatment of the effective operators in-
ducing TNGBCs has been presented within both the linear
and the nonlinear realizations of the SU(2J U(1)y gauge
symmetry, our major concern lies in how to get bounds on
the respective coefficients of these operators from current
phenomenology. In this respect, considerable work exists in
the literature where bounds on anomalous trilinear gauge bo-
son coupling®V* W™ y have been analyzed. To this purpose,

113014-7



LARIOS, PiEREZ, TAVARES-VELASCO, AND TOSCANO PHYSICAL REVIEW 63 113014

measurements on some observables have been extensively
used, such as the magnetic and electric dipole moments of

elementary fermions and thé—bb branching fraction, as
well as the processes e —WWandW* — Wy [4]. As for
TNGBCs, bounds on these couplings have been obtained
through the processes e” —Zy(Z) and qq—Zy(Z), al-
though such studies involve only those operators in which ;
two gauge bosons are on-shell. To obtain bounds on our f f
operators, we will follow a similar approach as that in pre-
vious works. We will also consider the rare decay: vvy,
which is affected at the tree level by TNGBCs through the

ZZy vertex. Since its SM contribution is insignificafl,  anomalous magnetic moment value. To obtain bounds on the
this process might offer an invaluable mode to unravel any qetficients of theCP conserving operators, the full contri-
latent new physics effect. bution to the anomalous magnetic moment of the muon was
computed 25]. To this end, the strategy which has proved to
A. Decoupling scenario be the most suitable for estimating the size of loops involv-
We will start by examining the situation in the decoupling ing an effe.ctive vertex- ?S thaF C,)f dimensiongl@ularization,
scheme of the EL. Before performing any explicit calcula-t9€ther with the modified minimal subtractioM§) renor-
tion, it is worth estimating on a general basis the size of théh@lization scheme. According to this approach and retaining
TNGBCs. In this respect, it was pointed out that persuasiv@lY the leading logarithmic dependence on the new physics
theoretical arguments indicate that one loop generate§Cal€A, it was found th&f the contribution from dimension-6
anomalous trilinear gauge boson couplings are unlikely ex@Perators inducing the/" Wy vertex is given by
pected to be above the 1% leJ&3]. Indeed, the fact that m \2
TNGBCs are induced at the one loop level suggests that they sa,= ,70(_“) O(log A2/m\2/‘V) @, (72
are of order ¢/4m)? in a wide class of models. It has also A
been conjectured that even in theories with underlying stron . .
dynamicsj, trilinear gauge couplings are not expeci/edgto havgé"he.re oIS @ factor dependent on the partl_Cl_JIar graph, ar_ld
a sizable enhancement. In the SM, &éy(Z) couplings are a, is directly re_lated to the_ operatqr coefﬁuep;ci Numeri-
severely constrained even in the presence of a fourth fermioﬁa"y’ one obtains from this equatiofba,,|/10 °=a (1

: ; +log A)/A?, with A in TeV. If the accepted lowest value of
family and are thus out of the range of detectabiliy15]. ; : -
Regarding the bounds arising from phenomenologica TeV for the new physics scalk is taken, we are left with

grounds, we would like to begin by examining in a qualita- he unpromising result that the operator coefficient should be

tive way whether the current measurements on the magnetf&f orI(J:[ie_rO$1) tl;) haV((ej atgy chapce tOf b;fmgbdgtectefd. BdUt this
and electric dipole moments of elementary fermions can giv esu 2'3 ar beyon € eslimate @i, being ol order
any useful bounds on TNGBCs g/4m)<. Indeed, only the direct contribution is expected to
The effective operators presented so far not only inducd'V® & measur.able cor)tr|but|0n .tq the magneth moment of
TNGBCs but also anomalou&/*W~y couplings. An ex- the muon. In view of this result, it is natural to think that we

haustive analysis of phenomenological constraints would reShould not expect a better situation for TNGBCs since they

quire one to compute every contribution to the observc'slbltg.re ge_neragted by higher order opedraéorsr.] %Vetk;oge that
under study, including the ones coming from all of the lowerdimension-8 operators are suppressed by the faotok ),

dimension operators inducing vertices which also affect thavith ’)2246 Ge_V the vacuum expectation _value,. with re-
process. For the sake of simplicity, a crude estimate can bj ectto d_|menS|on—6 operators. A rough estimate is obtained
obtained if just some operators are considered at a time. I W€ m‘%'“p'y Eq. (72) by the suppression factor a_nd evalu-
the specific case of the magnetic moment of leptons, whic/it€ again ail =1 TeV. We obtain the discouraging result
receives contributions fror P-even operators exclusively, thate. should be of orde©(100), which is very unlikely to

a profuse work has been devoted to study comprehensivefccur. to allow any TNGBCs to be experimentally detected.
the contributions from the lowest order effective operators>y Way Of illustration, we have explicitly computed the con-
respecting the SU(2)x U(1)y gauge invariance, linearly tibution to the muon anomalous magnetic moment which is
and nonlinearly realized, which induce nonstandard anoma2Ptained by introducing in the one loop dlagramzof.F|g. 1the
lous couplings. In this respect, there are one loop generatekifective ZZy vertex associated with the faCtgfly in Eq.
operators of dimension 6 which indut&" W~y couplings, (18). After isolating the divergent part, the application of the
but not TNGBCs. These operators contribute to the magneti¥!S scheme gives

moment of leptons via their insertion in the loop diagram

FIG. 1. Contribution from TNGBCs to the anomalous magnetic
moment of fermions in the effective Lagrangian approach.

depicted in Fig. 124]. Second, some dimension-6 operators Ll_tw(433v_1)g my 2 m, 2 | A 2+ 3|~
directly induce the magnetic moment term at the tree level, = 256772 A A |09 my, MY
though they are generated at the one loop level. Finally, the (73)

redefinition of the gauge fields, necessary to an adequate
definition of the quadratic part of the theory, also affects thewith
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v limit on the magnetic moment of theneutrino[27]. For the
purpose of the present analysis, the search for energetic
single-photon events in the data collected by the L3 Collabo-

y . ration may be translated into bounds on TNGBC. In order to

reduce backgrounds, the L3 collaboration required the pho-

ton energy to be greater than one-half #iee™ beam en-
ergy. A limit was obtained on the branching ratio far

— vy of 1 partin a 16 when the photon energy is above 30

GeV [27]. To calculate the decay width, we will follow

closely the notation of9]. Expressing the invariant ampli-

tude M in terms of the scaled variables= 2k,p; /m3 and
y=2k.p,/m32, the Z(k,)—A(ky) v(p1)v(p,) decay width

is given by

z* v

=l

mgz
256w

o 1 1-x _
'Z—vvy)= f dxf dy| M|2. (75
FIG. 2. Feynman diagrams contributing to the deZayvvy in 0 0

the effective Lagrangian approach. We have not imposed any energy cutoff since it is better to

~ estimate the TNGBC bounds in a conservative way. From
€.1=2C,(agwit agg1) + Syl afpat 2awe). (74 Egs.(7) and(18) one obtains

After numerical evaluation, we find that the actual bound on 1 ~
any «; is looser than the rough estimate. We thus see that it |M|2=3—2[(x2+y2) (1-x—y)—4xyl(a®+a?), (76)
seems there are few hopes that a reasonable bound on
CP-even TNGBCs could be obtained from precision mea-
surements on the magnetic moment of the muon. Although
we have analyzed only one vertex, the same result is ex- ~ ~ ~ ~ ~ ~ ~
pected for the remaining ones. In fact, the Lorentz structure a=a =an e agtagtas. (77
which parametrizes TNGB(.:S doe; not differ essentially inAs natural, there is no interference betwe@® violating
each casg22]. The most optimum situation is the one where . . . ~
all of the contributions add up coherently, though there is ngnd CP conserving couplzmgs.Z;I'he coefficients; (a;),
compelling reason to expect that. are related to the factorf§?” (gf??), whwth. in turn.depend
A similar analysis can be done for ti@P-odd operators N theCP-odd (CP-even operator coefficients, via the re-
which contribute to the electric dipole moment of fermions. lation
In this case a strong bound, from precision measurements on 2
the electric dipole moment of the neutron, exists on o :(ﬂ> §22y (783
dimension-6 operators inducing anomalods W~y cou- H cw | M7
plings [26]. The respective operator coefficients are con-
strained to lie below the IG level. Since ouiCP-odd op- ~ gmz
erators, which also induce anomalows" W~y couplings, aLi=
are of dimension 8 in the decoupling scenario, we could not
expect to get a better bound for their coefficients. Once moreifter integration of Eq(75) we have
a rough estimate would be obtained by dividing the bound on
dimension-6 operators by the suppression factdn\()?. BR(Z—vry)=2.912x10 5(af+a?). (79
Now let us focus on the rarg boson decayZ— vvy,
which has been studied within both the SM realm and the ELTaking the valueA=1 TeV and considering the L3 bound
approacH3,9]. It was shown that the SM contribution turns on the respective branching fraction, we obtain again the
out to be negligible small, with a branching ratio of order result that the size of thZy coupling should be beyond
10 1°[9]. In the EL approach, this process arises at the treany reasonable expectation to become perceptible through
level, as depicted in Fig. 2. In addition it has also the advanthe processZ— vvy. Stated in other words, we may not
tage of receiving contributions from TNGBCs only through expect moderate bounds from this process. The reason for
the ZZy vertex. Although there are also lower dimensionsuch a discouraging result is the natural suppression of
effective operators contributing t@— vvy through the dimension-8 operators. Our viewpoint would be more pessi-
Feynman diagrams of Figs. 2b and [&], we will not in-  mistic if we consider that in this calculation only those con-
clude those contributions in here since they are not associributions arising from effective operators inducing thy
ated with TNGBCs. Furthermore, we are only interested incoupling have been included. However, there is no compel-
estimating the best possible bound on TNGBCs. ling reason to disregard any other new physics contributions,
The measurement of energetic single photons at LEP arisuch as the ones coming from the Feynman diagrams shown
ing from the decayZ— vvy has been used to put a direct in the Figs. 2a and 2[8]. In view of our results, it is con-

CYEC(L:CYL1+C(L2_CYL3, (773)

CTiad (780)
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ceivable to state that any TNGBCs associated with underlywidely studied in the literature. Equatioi79) and the L3

ing physics respecting linearly the SU(2x U(1)y symme- limit for the respective branching ratio give the bound

try would not be measurable through the processe§5NL|<1_8>< 10 1 if ay, =0. This is a more promising re-

investigated in this work. However, we cannot discard thesy|t than that previously found in the linear scenario. In fact,

case in which a certain TNGBC is given by a sum of loopsthere exists a direct relation between the bound just obtained

whose contributions add up coherently to give a large valueyithin the nonlinear scenario and the ones presented else-
where under the parametrization derived[ 4. It will be

B. Nondecoupling scenario shown below that ay =2g%h%/(c,s,) and ay.

We now turn to analyze the situation in the nonlinear=29°h3¢/(c,Sy) correspond to the low energy limit of the
scenario, where TNGBCs are generated by dimension-6 ogorm factorsh? used extensively to study tH&Zy vertex in
erators. Therefore, we might expect a better situation thathe case in which on& boson and the photon are on shell
that in the decoupling scenario. We will see that the discust29]. Our bound translates thus into
sion for the linear scenario can be easily translated to com-
prise the nonlinear case. To begin with, in the nonlinear sce- |h3 <0.38, (82
nario theCP-evenZZy vertex is parametrized by one extra _ ) )

Lorentz structure in addition to the respective ones appearinjy h1=0, which agrees with previous bound80]. Of
in the decoupling case. The results given in E§®) and  course, the same result applieshfy whenh%;=0. In this
(74) for the linear scenario can be directly used if we con-analysis, we have considered that the SM contribution to the

sider the substitution rulég ;— (A/my)Zey.; anda;—\, . rare decayZ— vvvy is negligible, which is a good approxi-

The leading term obtained by including in the loop graph ofmation since it was found that the branching ratio is of order
Fig. 1 theZZy vertex associated with the coefficiayft? in 10 1°[9]. We have also neglected the contributions coming
Eq. (56) is thus from the operators which give rise to the effective vertices

shown in Figs. t) and Zc). This is the most optimum sce-
nario indeed. It is likely that any TNGBC may be screened
ENLLs by any other sources of new physics arising from lower di-
mension operators. Therefore, a more comprehensive analy-
(80) sis must be done to disentangle any new physics contributing
to the processes™e” (qq)—Zy [29].

2 3
_|.__

NL1__
da, = 2

ty(4si—1)g ( m )2
" 256m2

M
1%

v
log m—z

where we have employed the conservative value v. Nu-

merically one obtainsa),"*= —0.767x 10 Jey;. On the
other hand, the more recent data collected through the BNL
E281 experiment together with the SM predictions put a ) ] ]
bound on any new physics contribution #, of 1.12 TNGBCs were stu.dled for the first time long ago, al-
X 10 9%< Sa,<7.56% 109 at 95% C.L.[28]. As a conse- though only one particle was allowed to be off shell].

quence, probinga" at the + 10~ level provides a sensi- Following that approach, it became customary to parametrize
K any new physics effects inducing TNGBCs by certain struc-

tures derived out of U(L), gauge invariance and Lorentz
covariance, as well as Bose symmetry, which corresponds to
the so-called U(1y, framework[21]. The coefficients of
such Lorentz structures are taken to be form factors which
Etually comprise all our ignorance of the underlying dynam-
¢s inducing TNGBCs. In general, these form factors depend
on the squared momenta of the participating particles, but
such a dependence is unknown since it is to be prescribed by
up to now unknown physics. Then it is necessary to make
some assumptions to describe the form factor behavior. In
particular, much work has been done to constrain the low
energy values of the form factors through production in
(814 e"e” andqq collisions at LEP, the Tevatron, and the future
LHC [21].
~ ~ ~ ~ ~ ~ ~ ~ The above formalism is to be contrasted with the ap-
a=ay = anL1~ an2~ ans T anat anst 2 agge- proach followed in this work, which in turn is well suited for
studying new physics effects in a model independent way,
(81b and no form factors nor extra assumptions on the unknown
_ physics are required, but all our ignorance of the new physics
The new coefficientsyy ; and ay ; are obtained, with the lies in dimensionlesgor dimensionful coefficients associ-
adequate subscript substitutions, via the relatiof@éa and  ated with each effective operator, which in turn only depend
(78b), which also hold for the nonlinear scenario. We will on the new physics energy scale. Another peculiarity of the
only concentrate in th€ P-conserving term, which has been EL formalism is that we are allowed to know what operators

C. Connection with results derived within the U(1)em
formalism

tivity to ey, Of aboutO(1) at most, which translates into a
loose bound for the operator coefficients This situation is
not better than the result obtained 26] for the dimension-4
operators inducingV* W~y couplings within the nonlinear
scheme. Moreover, as there are other sources of new physi
which can affect the anomalous magnetic moment, it is har
to think that any TNGBC could be competitive in this pro-
cess, even in the nonlinear scenario.

Regarding the rare dec&— vvy, after the inclusion of
all the contributions arising from th&Zy vertex we have
that Eq.(76) remains valid, though Eq$77a and(77b) now
read

a=ay = ayiitan— a2 anat angs,
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the new physics comes from, in contrast to the form factowvertex arising from the lower dimension operators within
scheme where we only know that the form factors them-ither the linear scenario or the nonlinear ¢@a&]. After a
selves are generated at a given order in the L) &ffective  judicious manipulation and with the aid of Shouten’s iden-
Lagrangian. To establish a direct connection between thedédy, we obtain

two different formalisms is not immediate. In a previous

work both approaches were studied, within the Ygigauge ~ T'azaa(K1,Kz2,K) = (K3=m2)[g”% (Ko, Yaya~ Ka, Gaya)
invariant schemg15]. The explicit relation was also shown 77

between the form factors and the coefficients associated with +feer ealazaﬂkﬂ]’ (84)
the effective operators arising from the U{J)framework.

At this point, it is worth examining the connection betweenWwhich has an obvious relation with E(B3). Instead of giv-
our own results, when it is considered the case of only onéng explicit expressions fof“*” and g%, it is useful to
off-shell particle, and those derived from the form factorestablish the relation dif, andh%, with the coefficientse
parametrization. We will show that in the case where theand o appearing in Egs(773,(77b) in the linear scenario

form factors are given their low energy valdﬂ}%, thereisa and Eqs(819,(81b) in the nonlinear one, that is
simple relation indeed. To this end, we will consider only the

ZZy coupling, since it is the only coupling involved in the ; CwSwa
rare procesg— vvy. hloz?r (853
The most general structure for td&y vertex respecting 9
Lorentz covariance, U(1), gauge invariance and Bose sym- .
o o
metry is given by hZ,= w2 w2 L (85
P22 (kg ko k) ’
The same relation holds for these coefficients in the nonlin-
e ear scenario.
T hi(k®1g®e2—k2g*®) Finally, we would like to note some interesting points.
‘ Although theZZvy has the same Lorentz structure in both
% realizations of the SU(2)X U(1)y gauge symmetry, the
+ —2k§1(k2- k g¥2¢—k“2k3) + h§e“l“2‘”‘k“ main difference is that the operators inducing these structures
mz are of dimension 6 in the nonlinear scenario, whereas in the
2 linear case they are induced by dimension eight operators.

+Eka1&.a2auvkl K, (83  As aresult, though the bounds found for the coefficidrts
22 reer) andh3, apply in both scenarios, if they were translated into
the operator coefficients; and\;, looser bounds would be

) ) obtained in the linear scenario. Regarding the remaining
where all momenta are taken as incoming. Any term proporTNGBCs, a similar analysis following the lines sketched
tional tok“ andkfl has been omitted and the same is true forabove was done for th#ZZ and Zyy couplings. It was

those proportional td,? because it is also assumed that thefound that our results agree with those previously presented.
virtual Z boson couples to light fermions, as actually happend\nother interesting point to be noted is that, since the opera-
in the decay Z—lly. In this parametrization, the tors which induce the most general TNGBC vertices also

CP-conserving term#? , as well as theC P-violating ones induce those couplings with only one off-shell particle, any

hZ, are form factors which depend on the dynamics of thebound which has been put on the latter will be immediately

un'derlying new physics. Within the U(J,) formalism, as far applicable to the former.

as the form factorﬂf3 are concerned, they receive contribu-

tions from dimension-6 operators, whereas the drfescan V. CONCLUSIONS

be induced by dimension-8 or higher operators. Based on the | this work we have presented an analysis of trilinear

unitarity requirement, some authors have found it conveniengatral gauge boson couplinggZZ, ZZy, andZyy, under
to use the approximation/=h{/(1+s/A%)", with nanin-  the context of the effective Lagrangian approach, both in the
teger,hfy the form factor low energy value, asdhe squared [inear and the nonlinear realizations of the SU(X) U(1)y
momentum of the virtuaZ boson[29]. If the energy scald  gauge symmetry. Particular emphasis has been given to the
associated with the new physics inducing TNGBCs is largetinear scenario since the current literature lacks an analysis
than the energy scale involved in the process, i.e. the squaregong these lines. The most general case with three off-shell
momentum of the virtual particle, it is a good approximationbosons is considered. In the linear scenario these couplings
to use the low energy values of the form factors. After re-receive contributions from dimension-8 operators, whereas
placingh?—h% in Eq. (83), we are left with the expression in the nonlinear scenario they are induced by dimension six
for the ZZvy vertex which is to be compared with the one operators. Based on general considerations and actual calcu-
obtained from our results in the nonlinear scenario. lations, we conclude that, if the until now unknown physics
Considering the above assumptions, we can obtain frominderlying the SM is of a decoupling nature, it is not ex-
Egs. (7), (18), (44), and (56), the expression for th&Zy pected that TNGBCs could have a considerable impact either

Z
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through their virtual effects or via direct production. In con- would be useful a study in a model dependent way to have
trast, if new physics effects arise from a strong couplingmore evidences which could lead us to a deeper understand-
regime at higher energies which is responsible for the breaking of TNGBCs.

ing of the SU(2) X U(1)y symmetry(endowing the gauge Note added in proofAfter the submission of this paper
bosons with magsthe possibility of measuring their effects we became aware of R€81], whereCP-violating TNGBCs

still remains. The EL approach indicates that, owing to thewere studied within the minimal supersymmetric standard
suppression of the operators inducing TNGBC, it is difficult model.

that the effects arising from them may compete with those
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