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We present the new coherent exclusive exponentid@EEX), the older exclusive exponentiatidREX),
and the semianalytical inclusive exponentiatigfEX) for the processe e —ff+ ny, where f
=u,7,d,u,s,c,b, which are valid for center-of-mass energies from tHepton threshold to 1 TeV, that is, for
CERN LEP1, LEP2, the SLC, future linear colliders, and, = factories, etc. The approaches are based on
Yennie-Frautschi-Suura exponentiation. In CEEX, the effects due to photon emission from initial beams and
outgoing fermions are calculated in QED up to second order, including all interference effects. Electroweak
corrections are included to first order, at the amplitude level. Beams can be polarized longitudinally and
transversely, and all spin correlations are incorporated in an exact manner. The EEX is more primitive, lacks
initial-final interferences, but it is valuable for testing the newer CEEX. The IEX provides us with a set of
sophisticated semianalytical formulas for the total cross section and selected inclusive distributions, which are
mainly used for cross-checks of the Monte Carlo results. We analyze numerical resultZ getie 189 GeV
and 500 GeV for simple kinematical cutsomparisons with inclusive exponentiatjceand for realistic experi-
mental cuts. The physical precision and technical precision are determined for the total cross section and for
the charge asymmetry.
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| INTRODUCTION cise theoretical predictions f@ e*—ff+ny at the above
ambitious precision level without Monte Carlo event genera-

At the end of the CERNe"e™ collider LEP2 operation, tors. It is therefore mandatory to formulate perturbative stan-
the total cross section for the procasfse*eff_jL ny will dard model(SM) calculations in a way that facilitates their
have to be calculated with the precision 0.2—1 %, dependingse Within a Monte Carlo event generator.
on the event selection. The arbitrary differential distributions ~ Let us stress that the Monte Carlo method is for us noth-
also have to be calculated with the corresponding precisiof?d more (or less than the numerical integration over the
In future linear collidergLCs) the precision requirement can Lore.ntz invariant phase—space. It is therefore an exercise in
be even more demanding. This is especially true for the high@PPlied mathematics. In the present work we shall not, how-
luminosity linear colliders, such as in the case of the DESYSVE! e_Iaborat_e on the methodg of the Monte Carlo phase-
TeV Energy Superconducting Linear AcceleratBESLA). space integration and construction of thg Monte (_Zarlo event
The above new requirements necessitate the development %gcveﬁg%rt'gggﬂlg gslaengtagt]zié?alt?gc]’ i\évmcrlr;cﬂe;ce[l?ne:trti?(e
z]geg;;;ﬁuclzggnﬂ ::Vn\:zvég?é;g dthl\jo(rgl'saDC(;(z;;%C)“g?; andelement of the present paper is implemented. All numerical

. ~_results presented here are calculated using the version 4.13 of
grams. The present work is a part of the effort made in thlsmC

direction. _ , In the present work we concentrate on the definition and
The main limiting factor preventing us from getting more ~ynstruction of the matrix element for the processe™

precise theoretical predictions for teee” —ff+ny pro-  _ £ ithin the standard model. We shall especially address
cess is higher-order QED radiative correctithee QED part  the problem of the higher-order QED corrections. This work
of the electroweak standard mogdh order to achieve the s 5 continuation of two recent papd3].

0.2% precision tag, the virtual corrections have to be calcu-
lated up to two or three loops and the multiple bremsstrah-
lung up to two or three hard photons, integrating exactly the
multiphoton phase-space for the arbitrary event selection In the K Monte Carlo and in this paper, we use two
(phase-space limits types of matrix element, with two types of exponentiation:
For any realistic kinematical cuts, one cannot get the preexclusive exponentiation, nicknamed EEX, and coherent ex-

A. Two types of QED matrix elements and exponentiations
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clusive exponentiation, referred to as CEEX. Both are The spin effects are difficult to add already @{«?),
termed “exclusive” as opposed to “inclusive,” see also the because one is forced to calculate radiative corrections to
discussion in[4]. Exclusivity means that the procedure of spin density matrices, not an easy task.

exponentiation, that is summing up the infrafé®) real and The squaring of the sums of spin amplitudes from groups
virtual contribution, within the standard perturbative schemeof Feynman diagrams leads to many interference terms,
of quantum field theory, is done at the level of the fully which in the exponentiation procedure are handled analyti-
differential (multiphoton cross section or, even better, at the cally and individually. The interference terms can therefore
level of the scattering matrix elemegpin amplitudes be-  be dealt with efficiently in EEX only for simple processes
fore any phase-space integration over photon momenta idominated by a small number of Feynman diagrams and only

done up to first order.

The other “inclusive” exponentiation is aad hocproce- CEEX is formulated in terms of spin amplitudes, and this
dure of summing up IR correctiorefter phase-space inte- is also the source of some advantages and disadvantages.
gration over photon momentthat is, for inclusive distribu- The differential distributions are calculated out of spin

tions. In spite of its weak theoretical basis the inclusiveamplitudes numerically—spin amplitudes are generally
exponentiation is very commonly done routinely in all semi-simpler/smaller objects, especially beyo@ia™).

analytical approaches such as that in IRef. In Sec. V A we Since an analytical representation for the differential dis-
shall come back to inclusive exponentiation and show how tdfibutions is not available, the semianalytical integration over
justify it theoretically. the phase-space is practically impossible.

The two exclusive exponentiations EEX and CEEX are 1€ spin effects are added relatively easily, during nu-
well suited for the fully exclusive Monte Carlo event genera_merlcal evaluation of the differential distributions calculated

tors in which the four momenta of all final-state particles are®!! of the spin amplitudes. The addition of the higher-order

available. Historically EEX was formulated for the first time corrections does not make the treatment of spin polarization

) o . . more difficult.
Ipnro?/:];j' [\gr;?(;nthﬁa?'gif;i draiglalgg”rr}lSltR)foalllrg?/vsr:/;;/_ The inclusion of all kinds of interference effeqamong

. . + . which are real photon emissions, many Feynman diagrams,
closely the Yennie-Frautschi-SuufgFS) exponentiation of P y ey 9

. . ) etc) comes almost for free—it is done numerically in the
the_clgssmal Ref.8]. The extension of EEX to the f|r_1al-state process of summing and squaring the various contributions
radiation (FSR was done shortly thereaft¢®], but it was

) to the spin amplitudes.

actually never fully published. The computer prograrss, As we see, CEEX has many advantages over EEX, so
in which EEX for FSR was implemented, was incorporatedwhy do we keep EEX? There are important reasons.

in KORALZ [10] and some numerical results were published Generally, CEEX is a relatively new invention; the older

in [9], without actually giving the details of the QED matrix 504 more primitive but well-established EEX is a useful ref-
element. The present work gives in fact the first full accountyrance for numerical tests of CEEX.

of the EEX matrix element for ISR and FSR for the process  ggx is petter suited for semianalytical integration over

e e’ —ff+ny,f#e. Thisis to be contrasted with the situ- the phase-space, and can be tested with these semianalytical
ation for small-angle Bhabha scatteriithe well-known  results.

LE!3 or SLAC Linear CoIIi_de(SLC) luminosity procesk for _ In the presentCK MC the O(a®) leading logarithmic
which the EEX-type matrix element was fully documented incorrections are available for EEX and are not yet available
Refs.[11-13. for CEEX.

CEEX is a new version of the exclusive exponentiation, Summarizing, we see that it makes sense to keep EEX as
generally more efficient for calculations beyond first order,a backup solution, even if we already rely on CEEX as a
facilitating inclusion of full spin polarization, narrow reso- default and leading solution.
nances, and any kind of interferences. lIts first version, lim-
ited to first order_, was_presented in RE3). In the present B. Notation, terminology
work we extend it ta(still incompletg second order. ] ) ] ] )

Let us characterize briefly the main features of EEX and Itis usefu[ to introduce ce_rtaln notations and terminology
CEEX. EEX is formulated in terms of spin summed or aver-already at this stage. In particular, the most common pertur-
aged differential distributions: this is the source of some adPative calculationno exponentiationis “order-by-order.”
vantages and disadvantages that may be summarized as fI?is means that all of the terms beyond a certain order are
lOWS. set to zero. In Fig. 1, it means that we end at a certain

The differential distributions in practice are given analyti- FoW—at O(a?) we include the first three rows. Exponentia-
cally in terms of Mandelstam variables and scattering angledion blurs this picture because a certain class of terms is
they are therefore easily inspected by looking and the corsUmmed up to infinite order and the meaning of ttreorder
rectness of certain important limits, such as the leading&XPonentiation is that we truncate @(a") the infrared fi-
logarithmic and soft limits, is quickly recognized. nite components, the so-call@ds. On the other hand, in the

The analytical representation of the differential distribu-leading-logarithmidLL) approximation the focus is on sum-
tions allows for analytical phase-space integration and develning up first the contributions like"L" and later those like
opment of the semianalytical formulas, which are useful fora"L""?1, that is in Fig. 1 we sum up columnwise, neglecting
cross-checking with the MC results. terms far away from the first column, which represents the
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FIG. 1. QED perturbative leading and subleading corrections. FIG. 2. The kinematics of the process with multiple photon
The rows represent the corrections in consecutive perturbative oemission from the initial- and final-state fermions in the annihila-
ders; the first row is the Born contribution. The first column repre-tion process.
sents the leading-logarithmidt.L) approximation and the second
column the next-to-leading\LL ) approximation. In the figure, the USed in Sec. VI, where numerical results from #i& MC
terms selected for théa) second- andb) third-order pragmatic are presented. The most important task presented in Sec. VI
expansions are limited by an additional line. Heres In(s/m?) for is, however, the determination of the physical and technical
the respective fermion mass; . precisions for the total cross section and charge asymmetry

at theZ peak, LEP2, and 500 GeV. In particular we discuss
so-called LL approximation. Taking the actual value ofthe contribution from the initial-final state interferenggl),
alw~1/400 and of the big logarithrh =In(s/m?)~10, we  which is included in our new CEEX matrix elemefiE| is
discover quickly that in Fig. 1 the limiting line following the neglected in EEX In the last section we summarize our
numerical importance of the terms is neither row-wise nomwork. In the Appendix we define the Weyl-spinor techniques
columnwise but diagonalwise. This is why we shall often useused in the construction of the CEEX multiphoton spin am-
the O(a") prag, ' =1,2,3 approximation, depicted also in Fig. plitudes.
1, wherein we uséexponentiated or npthe O(«') calcula-
tion in which we use incomplete subleading terms, in the Il. AMPLITUDES FOR EXCLUSIVE EXPONENTIATION
sense of the LL approximation. Note that for the LL approxi-
mation we shall never use the strict collindaero pt) ap-
proximation. The LL approximation will be done at the level

As was already indicated, the role of the EEX matrix
element described in this section is to provide a testing en-

of the differential distributiongor spin amplitudeswithout vironment for the new, more sophisticated matrix element of

forcing pr=0 on the photons. Just to give the reader a rough"® CEEX cIas§, which will be dff'fed in the next section.
idea, the precision level of order 0.5-1% corresponds to the The kinematics of the processe” —ff+nvy is depicted
O(aY) prag, 0.1-0.5% to thed(a?),.aq, and going below N Fig. 2. In the case of the EEX matrix element presented
0.05% will require theD(a®) prag. The above is true for the Nere, we neglect the initial-final state interference. Conse-
exponentiated calculation. The lack of exponentiation make§uently, we are allowed in the following to distinguish be-
the calculation less precise by a factor of 2—5. The purdWeen photons emitted from the initial-state fermions and
nonlogarithmic terms of thé(«?) are negligible € 10~5) those emitted from the final-state fermions. The four-
for any foreseeable practical application. momentum

n’

n
C. Outline X=py+ pz—E kJZQ1+QZ+E ki 1
The outline of the paper is the following. In Sec. Il we =1 =1

describe in detail the SM/QED matrix element for the exclu-qf the s-channel virtual bosoi + y is then well defined. Let
sive exponentiation based on the Yennie-Frautschi-Suurgs denote the rest frame Xfas XMS(the X zero momentum
work of Ref.[8], that is, for the type of matrix element system.
defined for the first time in Ref6]. In Sec. Il we describe

the new second-order matrix element with coherent exclu-

sive exponentiation, which is the default matrix element in

A. Master formula

KK MC. Its first-order variant was given i8], and is also Denoting the Lorentz-invariant phase-space by
defined here for the sake of completeness. In Sec. Ill we n 4 n
elaborate on how we combine the electroweak corrections of : Pj

; . o d"Lips(P;p1,P2, ... P =11 — 6@ P— e
Refs. [5,14] with the QED corrections within EEX and IpS(P3P1.P2 Pn) 11;[1 p]Q ,2 Pi
CEEX. In Sec. IV we discuss the differences between EEX 2

and CEEX. In Sec. V we integrate analytically over the o
phase-space for the EEX matrix element in the case of verwe define, for the process (p;)+e" (p,)— f(q.)+f(dy)
simple kinematical cuts. The resulting analytical results are+ny(k;)+n’y(k{), the O(«") total cross section:
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00 o) 1 1 ) ' ,
ofb= 2 X n—,n—,lf d™ " 2Lips(py+ P23 G,z Ky - - ke kL k)PPl 1=0,1,23, ®
=0 =0 . !

in terms of the fully differential multiphoton distribution

p(ErI)EX(plvp21qlaQZakl cKnoKg k)

n’

=exfd Ye(€2;p1,P2) + Yi(QE ?Q1YQ2)]]1;[1 él(kj)6(9| ;kj)IH Se(k)O(Qe k)1 BY(X,p1,p2,01,02)

=1

+§”: BY(X.p1.p2.01.02 k) +§: BIXP1P2, G102 k) BY)(X,p1,P2,01,02.K; k)
=1 Si(kj) =1 Se(ki) n=j>k=1 Si(Kj)Si(ky)
S E&?F(x,pl,pz,ql,qz,k(,k;)+E “E'Egﬁ’F(x,pl,pz,ql,qz,kj,k,’)
n'=i=m=1 Se(k)Se(kpy) == Si(kj)Se(k/)

E(srl)n(xaplvpzym,%,kj Kic,Kp)
== Sk Sk Sik) '

4

Let us explain the notation and physics content in the abovgon @(Q,k)=1—0(Q,k). We require, as usual, tha},
expression. The YFS soft factors for real photons emittegyng Qr be small enoughthey can be chosen arbitrarily

from the initial- and final-state fermions read smal) for the total cross section, as defined in E4), and
any other physically meaningful observable not to depend on

= 2 @ [ P1 P2 |? how we choose them; in other words, we require fhat be
Si(kj) = _Qeﬁ kip:  kipa) dummy parameters in the calculation. If we neglect the

initial-final state interference, then we may choo8g
9 #Qr. Let us define, with the kK°<E_, condition in the
”SF(klf):_in(i_ i) , (5) center-of-mass system of the incomieg beams and)
am?\kiar  kiqgp with K°<E/,, in the center of mass of the outgoing fermions
. ) ff. The two domains differ because the Lorentz frames in
where the electric charges of the electron and fernfiare  \yhich they are defined are different. The above choice is the
Qe and Q¢. The Y function in the exponential YFS form gagjest for the Monte Carlo generation, but in the later dis-

factor is defined as in Ref6]: cussion we shall describe in detail how we implement the
_ Q,=QF option in our Monte Carlo calculation. The actual
Y:(Q,p,p) YFS form factors for the above choices are well known
~ — — [6-8:
=2QfaB(Q,p,p) +2QfaRB(p,p)
i 2
1 d3k p p 2 ) _ Emin , & 1 =
= 2o —— ) —_—— = Y(QluplapZ)_7 In +_7 +Q_ — 5t
o g k—o“’m’k)(kp b . 2o, 47wl 273
d* i [2p—k 2p—k |\’ B 1 wl 1 a2
+2QfaR | — 3( = - Y(Qp: — e ln—=min - 22 -0
_ il #(F;01,92) = y¢In +7 Y+ Qf + =
ke (2m)°\ kp—k= 2kp—k V20,0, 4 m\ 2 3
(6) )
The above form factor is IR finite and depends explicitly onwhere
the soft-photon domain§) =, ,Q ¢, which include (sur-
round the IR divergence poink=0. We define® (Q;k) _ = , | 2p1p2 1
=1 forke Q and®(Q;k)=0 fork £ Q. Contributions from Y= 7e=2Qe ”_2_me Btk
the real photons insid& are summed to infinite order and
combined with the analogous virtual contributions, forming al 2
the exponential YFS form factor. In the Monte Carlo calcu- nyZsz_( In qlgz _1> ®)
lation we generate photorst () characterized by the func- ™ f
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B. Pure virtual corrections The reader who is not familiar with exponentiation may

. . . . — have an even more elementary question: Why do we have
The perturbative QED matrix element is located in the the freedom of definingd in doo™dQ(9) in the first

functions. Theg, function is “proportional” to the Born  pjace? Is this ambiguity dangerous? These questions are al-
e e’ —ff differential cross sectioda®°™(s,9)/d) and it  ready discussed in Ref&Z,11]. The answer is the following:
containg(IR-finite) corrections calculable order by order. Ac- strictly  speaking, the differential cross section

cording to our general strategy we shall calcul@g and doBo™(s,9)/dQ and BY are defined within the two-body

other8’s in the O(ai)prag, i=0,1,2. phase-space. Later on they are used, however, itt4E@nd
The O(a') 5raq €Xpressions fopy),i=0,1,2, read in the definitions ogM,i=1,2, ..., allover the phase-space
with additional soft and/or hard photons. This requires some
BY(X,p1,p2.G1,02) = (1+8)(1+ 51) kind of extrapolation o3, andda8°™(s, 9)/dQ beyond the

Born two-body phase-space. In Rdf7], this extrapolation was
XE 2 do (X2,9,), (9) done by manipulating the four-momenta and, in R&f], it
4y =12 dQ o was done as an extrapolation in the Mandelstam variables
s,t,u. Here we present another solution, which is somewhere
1 in between the previous two. What is really important, how-
31"=0, 5I(l):§ v 8=+ §7’2’ ever, is that the effect due to changing from one particular
choice of extrapolation to another is always, for the entire
1 calculation, a kind of “higher-order effect.” For instance, at
89=o{2)+ 537/3’ (10 the O(aY) changing the type of extrapolation is & a?)
effect. Of course, it is always wise to use some kind of
1 1 “smooth” extrapolation, which is able to minimize the
s©0=0, 5&1’:5 yi, 0P =M+ gyfz, higher-order effects.
Another possible question is: Why did we not write down
the second-order virtual correction factor in ashditiveway,
53 = 5@+ iﬁ (11)  such as (¥ &2+ 5+ 5(M5Y)? We have opted for the
48 factorizedform because it is generally known that the fac-
torized form is closer to reality at higher perturbative orders.
where Another important reason is that the factorized form is easier

- - - - for the semianalytical integrations over the phase-space, see
91=£(P1.01), P12= £(P1,—02), the discussion in Sec. V.

O1=2(=Pa,G)y 9p=L(—P2, =02, (12)
) ] C. One real photon with virtual corrections
with all three-vectors taken in the rest frame of the four-
momentumX, that is in the frame XMS. The contributionsg(lz) are needed directly in Eq4) and

Let us first explain why, instead of having a single the O(at),,aq version of8{?) enters indirectly as a construc-

do®/dQ(9) with a singled, we take an average over four {ion element ing,. They are constructed from the QED dis-
¥y . In fact we could adopt on®, for exampledy=2(p;  tributions with a single real-photon emission and up to one
—p,,d1—d,) where all three-momenta are taken in XMS. virtual-photon contribution. They are defined separately for
The main reason for our apparently more complicated choicéhe initial- and final-state photons:
is related to the implementation of the first- and higher-order__ _
real photon contributions in the next subsections. More pre35(X,P1,P2,01.,d2.k)) =D{)(X,p1,p2,01,02.k;)
cisely, it is well known[15,16] that the exact single-photon ~ —i-1)
ISR matrix element can be cast as a linear combination of the =Si(kp) By (X,p1,P2,0d1,02),
two doB°dQ(9,),k=1,2, distributions. The same is true (13
for the FSR[16]. (Our implementation of the LL matrix
element for two and three real photons will also involve the
Ilnear' comb|nat|on.of. this typ')e.lt is theref_ore logical and E(l'%(X,pl,pz,ql,Qz,k()ZD(l'%(xyplypz,%,%-k()
practical to use a similar solution already 8. One should
also keep in mind that in the spft Iimit, when all phqtons are _~SF(k|')Eg_1)(X,p1,Pz,Ch,CIz),
soft, then all four angle#, are identical and averaging over
them is a spurious operation anyway.
wherei=1,2. Let us first define all the ingredients for the
initial-state contribution. The single initial-state photon emis-
Lt may look as though we miss a pure/@r) term in 5|(l'2 The sion differential distribution at thé)(ar), r=1,2,3, with the

calculation showg6] that such a nonlogarithmic contribution is eventual additional, up to two-loop virtual correction, from
accidentally equal to zero. the initial- and/or final-state photon reads

113009-5



S. JADACH, B. F. L. WARD, AND Z. WAS

PHYSICAL REVIEW D63 113009

D(ﬂ)(X,Pl,pz,m,qZ,kj) Another remark on Eq(14) is in order: there are many
equivalent ways, modulo a term 6f(m?/s), of writing the
o @ 2p1p2 single-bremsstrahlung spin-summed differential distribution
e 4m2 (kip1)(kipo) We(a;.5)) [17]. Our choice follows the representation implemented in
the Monte Carlo programsFs2 [7], KORALZ [10], and
(1—- aj) dgBom ) MUSTRAAL [16], because it minimizes the machine rounding
X 2 rZZ do (X%, 91y) errors(which are quite important in view of the smallness of
’ the electron magsand it is explicitly expressed in terms of
(1-)2 dgBom the Born differential cross sections: this feature facilitates the
J 2 . . .
> _212 T (X5, 05r) introduction of electroweak corrections.
e The virtual correctiorf 1+ A" (g; ,,BJ)] is taken in the
X[1+A{D(z)](1+ 8D, (14  LL approximation[sufficient for ourO(a?) .4 approach
and it agrees with the corresponding distribution in R&8).
where In the k;— 0 limit we haveA{™(«;,3;)— 6" as expected,
. kpy . kps A A and as required for the infrared finiteness&f) . The other
aj=g o BiTp o zj=(1=-a)(1-5)), factor (1+ 5) represents the contribution from the simul-

taneous emission of the real initial and the virtual final pho-
1 1 tons. We again prefer the factorized form over an additive
Af2)=0, AN@2)=5y-7vIn(2), (15  one (1+AM+6M).
The essential ingredients for tlfe(a") final stateﬁ(’)

=¥%n(z)+ >

@7 y=AD Z

m2  (1-a)(1-b) /a b
2pip; (1-a)?+(1-b)%lb

Again the question arises as to why is the averaging puer
Uy, introduced? In the case of just one ISR hard photon the
averaging trivially disappears becaudg,=9,; our for-
mula then coincides with the exa®( «?) result, se¢15,17,

as it should. In the less trivial case of the presence of addi-
tional hard photons, there is an ambiguity in definidg
which is reflected in our “averaging” procedure; however, it
is harmless, i.e., the effect is 61(a?).

It is necessary and interesting to check the soft limit. In
the presence of many additional photoms>(1), if we take
the soft limitk;— 0, keeping the momenta of the other pho-
tons constant, theft,, are in general all different. However,

We(a,b)=

in Eq. (14) the sums ovedo®°™dQ combine into a simple where
average over all four angles, as in Ef); in fact the single
photon distribution reduces to
m=
DX, p1,P2,01.02.K) ~ S (k) B5- (X, py1,P2,01.02)
and therefor )(X P1,P2,d1,02.K;) is IR finite as re- 7=
=

quwed The above argument shows that the extrapolations for

,80 and,Bl have to be of the same type. If we had opted for
another extrapolation in Eq14), for example without aver-

=1,2, is the single final-state photon-emission matrix ele-
2In?(2), ment, with up to one-loop virtual initial- or final-state photon
corrections:

D{2(X,p1,P2.,01,02.K)

led 2410, ~a
Qf 4m? (ki a1)(k{ay) Wil &)

(1_A77|)2 do_Born
2 dQ (Xzaﬁrl)

2 r=1,2
(l £|) 2 O_BOI'I'] X2 13
2 ) dQ ( ’ I’2)
X[1+A0 N (z))(1+ 6 Y), (16)
I‘I 4z :kf% o
0’ a1 gtg
{ R .
Trptg z=(1—n)(1-¢) (17)

1 1
aging, with a single anglé,,— 9, then the extrapolation A9 =0, AM(z)= Syt In(z).

in Eq. (9) would need to be changed appropriately.
Another interesting limit is the collinear limit. If all of the
(possibly hargl photons are collinear to the initial or final

fermions, then all of the angle8,,,s,r=1,2, are identical Wi(a,b)=1-

and equal to the familiar LL effective scattering angle for the
hard process in the “reduced frame” XMS. This will facili-

mZ  (1-a)(1—b) (a b
2010, (1-a)>+(1-b)?lb " a

tate the introduction of the higher-order LL corrections in theAny discussion on the ISR distribution of E(l4) also ap-
following. plies to the above FSR distribution.
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D. Two real photons with virtual corrections

The contributiong8%?), B2, andB%2! are related to the
emission of real photons, two initial, two final, and one ini-

tial and one final, respectively. They are genuigr?) ob-

jects because they appear in this order for the first time. For
the same reason they do not include any virtual contribu-

tions. They are defined formally in the usual way:
E(2r|)|(xap1,p2:Q1:Q2,kj Ki)
=D(2r,),(X,p1,p2,ql,q2,kj Ki)
_él(kj)ﬁ(lrl_
= Si(k B

D(X,p1,P2, 01,02, k)
1r|71)(xyplap2,Q1:Q2:kj)

Si(k)Si(k) S P(X.p1.P2.01.0), =23,
(18
E(zrlglz(x’plapz'%:%:kf Kn)
=DS2e(X,p1.P2. 01,02,k Ky
_SF(k ),3 (X P1,P2,01,02,Kp)
—Se (ki) BYF V(X,p1,P2.01,02.K))
—ép(k{)"ép(k(n)ﬁg‘z’(x,pl,pz,ql.qz). r=23,
(19
|
2p1p; o

PHYSICAL REVIEW D 63 113009

X,P1,P2,01,92.Kj . K/)
D(Z)F(X!plrpZ-QLQZakj k)

_Sl(k )B (X P1,P2,d1,02.K{)

=Sk BY P (X,p1,P2.01,02, k)

_él(kj)SF(k|')Bor_2)(X,p1:p21Q1-Q2)a r=2,3.
(20

The new objects in the above expressions are the differ-
ential distributionsD{3), D2, andD$?! for double brems-
strahlung. They are not taken directly from Feynman dia-
grams but they areonstructedin such a way that if one
photon is hard and one is soft, then the single bremsstrahlung
expressions of Eq$14) and(16) are recovered, if both pho-
tons are hard and collinear, then the proper LL limit, which
we know from the double or triple convolution of the
Altarelli-Parisi kernels, is also recovered. The resulting ex-
pressions are rather compact and the LL limit is manifest,
which is not necessarily true for the exact double-
bremsstrahlung spin amplitudesee next section The
method is similar to that of Ref§7,12]. In the case of ISR,
we shall also include the one-loop virtual corrections read
from the triple convolution of the Altarelli-Parisi kernels, see
Ref.[12].

Our construction in the case of the double real ISR reads
as follows:

2p1p2

D&)X, p1,P2, 01,02, K1 ko) = Qe

[ (v1—vI[1+A D(z,23)](1+ 8L Y)

Born

BranB 3 S

XZ(Q'Z!al’:Bl) E;

where
o 2(1 - 21{2 S ﬁl N 32
1—1_&2, an 1_&1- B1 1_132: B3 1—,@1'
(22
vi=ait+Bi, z=(1 ai)(l_ﬁ|)y
zi=(1-a—a)(1-Bi—By),

4m? (k1p1)(K1p2) 4r? (kzpl)(kzpz)

Born

a0 —=(X? ﬂlr)“‘Xz(ﬁzﬂlaﬁl)z
=

We(ay,B1)We(ay,B2)

Born

(X?,91,)

Xala;as,By) 2
r=1,2

(X2, 92) [+ O(vo—v)[1+ Al (25,259 (14 65 Y)

| =

Born

Q (X2 192!’)

Xz(u;a,b)f%(1—U)2[(1—a)2+(1—b)2],

© 1 1 1
AP=0, AP z)= 57~ g ¥InG)~ 5 ¥In(z).

The variablesy; , 3; for theith photon are defined as in Eq.
(14).

In order to understand our construction, let us examine
how the LL collinear limit is realized in the exact single-
bremsstrahlung matrix element of E@L4). If the photon
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carrying the fractiorx, of the beam energy is collinear, let us follows a different beam. Finally, let us reproduce the limit
say, with p;, then a;~x, B;~0, all four angles are the in which one photon, let us say the first, is hard and the
sameds,— 9* and we immediately recover the correct LL other, the second, is soft,= a,+ B,—0. In this case it is
formula logical to split the above double-bremsstrahlung angular-
dependent AP factor into two pieces

-~ ."/"/_1 ~ 21 ~ N2 SN2
X2(a11a2132)_§(1_a’1) E[(l_az) +(1=62)°],

Born
T3P % g (920 S A
1 o8O Xa(Briag, B5) =5 (1= B)*5 (1= ap)*+(1- B))%],
=51+ (1= (9%).

and associate each one with the correspondia§®dQ,
It is therefore natural to employ for the double emission thefollowing Eq. (14). The order in the cascade does not matter.
angular-dependenAltarelli-Parisi (AP) factors of the kind We simply symmetrize over the two orderings in the
cascade—it is essentially a Bose-Einstein symmetrization.
The above construction clearly provides the correct limit

D &) (ky ko) —S(k,) D{P(k,) for v,=const and),—0. As a
30 is finite i
The above formula is too simple, however, to reproduce corconsequences;i”(X,py,pz,ds,0z.K1,k;) is finite in the

rectly the result of the double convolution of the AP kernels!iMit of one or both photon momenta tending to zero.
in the case when both photons are collinear with the same_ 1 N€ construction of Eq(21) will be inadequate if both

1 R A 1 - -
S1=a)%+ (1= B3 [(1—an)?+(1- )],

fermion photons are hard and at least one has high transverse mo-
mentum. It reflects the fact that we do not control fully in
1 51 5 dgBom . EEX the second-order next-to-leading logarithnLL ),
S[1+(1=x)" )5 A+ {1 [ /(1= x) ]} )~ 5~ (97), O(a?L), contributions. However, we have known for a long

time that a construction of the type of EQ1) agrees rather
where x,=x,/(1—x,) reflects the loss of energy in the well with the exact double-bremsstrahlung matrix element
emission cascade due to the emissionkef In order to ~ calculated using spinor techniques, §28]. When both pho-

match the above cascade limit, we construct a better angulatons have high transverse momenta, there is only about 20%
dependent AP factor as disagreement between the approximate and exact résults

tegrated over the double-photon phase-spakieis result is
1 e A o0l ~ o . confirmed in the present work by the numerical comparisons
S[(1=a)™+ (1= L) I5[(1-ap) ™+ (1= B2)%]. of EEX and CEEX, where the double-bremsstrahlung matrix
element is exact.
The above fulfills both types of the LL collinear limit, when  The double final-state bremsstrahlung distribution is
two photons are collinear with a single beam or each of thendefined/constructed in an analogous way:

291p> a 2q1p>
! ! 2 i !
(k101)(k1p2) 4m (k201) (k3p2)

o - - ~ ~
D(sz)F(Xupl-pz-QLQZuki aké):Q?m Wf(ﬂlvgl)wf(VZ-gz)[ O(v;—vy)

X

dO_Born Born
Xo( M55, 03) 20— (X2, 00) + xa( L1515, 8h) 2 —— (X2, 05,)
=12 dQ 1, dQ

r=1,

O_Born Born
+0(vy—v1)| xal ﬂz;ﬂi-fi)r;,z o) (Xza’ﬂlr)+X2(§2?Ui,éi)r;l‘z o) (Xz,ﬂzr)”
x[1+A{Y(z)], (23
|
where The definition of the “primed” Sudakov variables is done
here in a way different from that in the ISR case, because the
Ui , 72 , & {2 fermion momentay, , get affected by photon emission. The

r_
£ 1+¢,° virtual corrections are absent because we restrict the FSR to

(249 O(a?)... The above expression is tagged witk 2,3 for

TTrg, P Irg TTeg
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O(a"); however, we implement the FSR essentially only6«?), and the only correction i¥(«?) is the ISR one-loop
correction.

The distribution for one photon from the initial-state and one photon from the final-stétd}, r=1,2, we construct as
follows:

2p1p; 210>
DYL(X, P1,P2,d1,02.K; K/) = Qe4 2m We( ]!ﬁJ)Qf4ﬂ_ m Wi(71,¢))

(1-a))? (1—7)* do®m (1-a))? (1-7)* do®m

2 > an XtwT T > —aq X501
(1—[@])2 (1— A77I)2 dogBom (1_Bj)2 (1_Z|)2 doBomn
B 2 ao X5t 5 —aq X592
X[1+A{ Dz ][+ AL Y(zy)], 25

where the variableg;,3; 7, and the other components are defined as in Eg8.and(16). The above construction is in
fact the easiest, because two photons cannot be emitted in a cascade from one line and we fully exploit the four scattering
angles in the Born differential cross sections. It is trivial to check that all soft and collinear limits are correct.

E. Three real photons

The differential distribution for three real ISR photons is essentially obtained by the triple convolution of the AP kernel, for
each beam separately; the two results are combined with the help of an additional convolution. This exercise was done for the
collinear subgenerator cfHLumI [12] and we exploit these results here. Even though the collinear limit is of primary
importance, we have to be very careful, in the construction of the fully differential triple-photon distribution, to preserve all
soft limits: when all three photons are soft, when two of them are soft, and when only one of them is soft. In these limits the
three-photon differential distribution has to reproduce smoothly the previously defined Born, single-, and double-
bremsstrahlung distributions times the appropriate soft fe@tddtherwise we may have a problem with the IR finiteness of

E(33II)I(X1pi1qj1k11k21k3):D1(3:I%I)l(vai!qjikl!k21k3) Sl(kl)lBZII(X pl!qj 1k21k3) Sl(kZ)BZII(X plvqjiklka)
_Sl(kS)BZII(X pi.d; Ky, ko) — Sl(kl)sl(kz) B (X pi.d;.Ks) — Sl(ks)sl(kl) 1 (X Pi.q;.K2)
=S(ky)S (ka) B (X, ;.05 . k1) = Si(k) Si(k2) S (ka) B(X,py 1)) (26)

It is therefore not completely straightforward to turn the strictly collinear expression for the three real-photon distributions of
Ref.[12] into the fully differential(finite-py) triple-photon distribution that we need. As in the case of the double real ISR, the
guiding principle is thati) the hardest photon decides which of the angles is use&f™dQ (X2, 9,,) and(ii) we have to
perform Bose symmetrization, that is, to sum over all orderings in a cascade emission of several photons from one beam. For
three real photons there are no virtual corrections.

Our construction in the case of the triple real ISR reads as follows:

2p1p;

2 (kipy)(Kips) We(a,8))

Dsln(X plvpzyQ1aQ2ak1:kzak3)— H Qe47_r

Bom

Xi0(v1—v2)0(vy—v3)

xa(aq;ab,Bh, a4, B3) 212 (X2, 91,)

Born

+x3<231;&§,232,a3,ﬁ§>_212 (X? ﬂzr)}
+remaining five permutations o¢1,2,3)] , (27)

where
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1 ) ) ) cally. There is no contradiction in the above statement. In
Xx3(U1;82,02,83,03)= g (1—u1)7(1-a,)"+ (1=by) ] order to avoid any confusion on this point, we shall provide
a new detailed proof of the IR cancellations in the CEEX
X[(1—ag)®+(1—Dby)?], scheme in one of the following subsections.
“n_ ‘3‘3 ~n_ ,@3 A. Master formula
ay=——F=—=, PB3=———=— o . .
l-aj—ay 1—/31—,32(28) Defining the Lorentz-invariant phase-space as

In most cases, such an approach should be sufficient; f dLips,(P;p1,P2, - - - ,Pn)
however, in some special cases with two hard photons ex-
plicitly tagged, it may not be so. We have programmed and n n d°p
run special test§unpublishedl relying on ISR amplitudes :J (277)45< P—> pi)H ——— (29
with up to three hard photori&0], constructed with methods =1 /i=1(2m)°2p;
similar to those in Ref[21], in order to get additional con-
fidence in the approximate real emission distributions prewe write the CEEX total cross section for the process
sented in this section.

“(pa)te’ f(pe)+ F(Pg) + y(Ky) + y(Kp) + - - -
Ill. AMPLITUDES FOR COHERENT EXCLUSIVE & (Pa) e (Po) = (P) +1(Pa) + v(ke) + v(ko)
EXPONENTIATION +y(k,), Nn=01,2... (30)

The coherent exclusive exponentiation was introduced for . _ . .
the first time in Ref.[3]. It is deeply rooted in the YFS With polarized beams and decays of unstable final fermions
exponentiatior{8]. It applies in particular to processes with SENSitive to fermion spin polarizations, following RE3], as
narrow resonances, where it is related also to the works dPllows:
Grecoet al. [22,23. The exponentiation procedure, that is a
reorganization of the QED perturbative series such that the 1

IR divergences are summed up to infinite order, is done at U(r):ﬂux(s) nZO

the spin-amplitude level for both real and virtual IR singu-

larities. This is to be contrasted with traditional YFS expo- )

nentiation, on which our EEX is based, where isolating the XJ d Lipsy+2(Pat PoiPc:PdKi, - - - Kn)

real IR divergences is done for squared spin-summed spin

amplitudes, that is, for differential distributions and spin den- X p&LexPa.Po.Pe.Pa Ki, - - . Kn), (31

sity matrices?

Our calculations of the spin amplitudes for fermion-pair\yhere, in the CMScenter of massflux(s) =2s+O(m2),
production in electron-positron scattering is done with the
help of the powerful Weyl spindiw'S) techniques. There are

(r)
several variants of the WS technigues. We have opted for the pceexPa:Po.Pc.Pd KKz, - .. Kn)
method of Kleiss and StirlingkS) [24,25, which we found 1 .
the best suited for our CEEX. In Ref2] the KS spinor :meXF{Y(Q;pa, P 10(Q)

technique for massless and massive fermions was reviewed

and appended with the rules for controlling their complex 3 A .
phases or, equivalently, the fermion rest fraadi three D > eheho, o) ¢
axes in which the fermion spin is quantized—this is a criti- oi==1y \==1 1LImM=0 ata TbTb

cal point if we want to control fully the spin density matrix Kok .
of the fermions. We call the global positioning of sgBPS ><§m(r)( pkikz o kn) Sm(r)( PKiK2 kn)
frame this fermion rest frame and the rule for finding it we "\Noio, oy Noo,  Op

call the GPS rule. For the sake of completeness, we include
the definitions of the KS spinors, photon polarization vec- Xow
tors, and our GPS rules in the Appendix.

o e o s o s v Rend assuming th dominaton of tscharre exchanges,
; ) y SP P ' . including resonances, we define the complete set of spin am-
cancellations in CEEX occur for the integrated cross sections

, > : ;
(probabilities, as usual; in practice they are realizasmeri- Fi“tUdeS for the emission oft photons, INO(a")ceex, T
=0,1,2, as follows:

o, (32

n

2The realization of EEX for spin density matrices is an obvious o pkl. . kn = > I s9po p-x
. . - . n 5[i] ﬁO 1N

generalization of the EEX/YFS exponentiation which, however, Aoy oy pell Fini=1 A

was never fully implemented in practice. (33
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of the fact that luckily all high-energy experiments are com-

pk, Kk n o D pletely blind to photon-spin polarizations.
mgl)( ”): > T s 3(1)( ;x)
AL 2T 0\ N7

Ao, o,

pefl Fn =l 2. IR regulators and the YFS form factor
) pk; Here we introduce and explain our notation for the IR
n ﬂl{g,j} )\U.:Xﬁ integration limits for the real photons in Eq81) and(32)
+J_:1 Tﬁj , (34 andin the following sections. In general, the fac®() in

il Eq. (31) defines the IR integration limits for all real photons.
More precisely for a single photof) is the domain sur-
rounding the IR divergence poikt=0, which is in factex-

'S n _ p cludedfrom the MC phase-space. In CEEX there is no real
Dﬁﬁz)( )— ( Xp) distinction between ISR and FSR photons, &h therefore
necessarily the same for all photons. We define a character-
istic function ® (€),k) of the IR domainQ) as®(Q,k)=1

Ao, o,

n 23(1?)9 }( Pk, ;Xw) for ke ) and® (£2,k)=0 fork & Q). The characteristic func-
n Y\ No tion for the part of the phase—spaim_aludedin the MC inte-
i=1 53’11} gration for a single real photon i®(Q,k)=1—-0(Q,k).
The analogous characteristic function &l real photons is,
~(2) ( pkik x ) of course, the following product:
Z{WJWI} )\0’~0'|' (2
" i
1=i<<n sWilglon) ' _ no_
(1 o )=]] 6(0.k. (36)
(35) i=1

In the following subsections we shall explain all of the basicin the present calculation corresponding to #& Monte

notations, then in the next section we shall discuss in detaitarlo program we opt fof) defined traditionally with the
the IR structure in CEEX, effectively deriving all of the photon-energy cut conditiok?<E .

above formulas. A(a") we have to provide the functions  The YFS form factof8] for Q defined with the condition
B ,k=0,1,...r, from the Feynman diagrams, which are k°<Ey, reads

IR finite by constructiorf8]. Their actual precise definitions
will be given in the following. We shall define/calculate

. —_ N2 2
them explicitly up tOO(aZ). Y(Q1 Pas ... vpd)_QeYﬂ(pa 1pb)+ QfYQ(pc -pd)

+QcQ:Ya(Pa,Pc) +QeQtYa(Py,Pg)

1. Spin notation

In order to shorten our many formulas, we use a compact —QeQrYa(Pa,Pd) — QeQtYa(Ph,Pc),
collective notation:
37
p _ PaPbPcPd wher
APV VS ere
for fermion four-momentap,,A=a,b,c,d (i.e., p1=pa, Yo(p,q)=2aB(Q,p,q)+2aRB(p,q)

P2=Pp, 91=Pc, d2=PpPg) and helicities 5 ,A=a,b,c,d.

Fork=1,2,3,0 are the Pauli matrices and ,= &) , is the _ 2a—f i(Q'k)<£— i) 2

unit matrix. The components) %, wherej,k=1,2,3, are gr*] K° "lkp kg

the components of the conventional spin-polarization vectors 4 i )
of thee™ ande™, respectively, defined in the so-called GPS +2a9%f ﬂ ! / 2p—k 29—k )
fermion rest framegsee the Appendix and Rdf2] for the k? (2m)3\ 2kp—k? 2kq—k?
exact definition of these framedVe defines3=1 in a non- 39)

standard wayf(i.e., pa-£a=Me,A=a,b). The polarimeter

vectorsh¢ are similarly defined in the appropriate GPS rest;g given analytically in terms of logarithms and Spence func-

frames of the final unstable fermionspd-hc=m:,C  tions. As we see, the above YFS form factor includes terms
=c,d). Note that, in generah: may depend in a nontrivial due to the initial-final state interference. The above form-
way on the momenta of all decay products, see Re{26—  factor will be derived in the following. The additional con-
28] for more details. We did not introduce polarimeter vec-tribution to the YFS form-factor due to the narr@vreso-
tors for the bremsstrahlung photons, i.e., we take advantaggnce will be discussed in detail separately.
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3. Partitions ands factors

The coherentsum is taken over the sép}={l,F}" of all 2" partitions—the single partitiop is defined as a vector

(@1,@2, LR

{oy={(,1,1, ... D, (F,1,1, ...

The s-channel four-momentum in theuossibly resonant
s-channel propagator X,=p,+ pb—EpF,ki .

The soft (eikona) amplitude factorss? ,w=1,F, are
complex numbers, and they are defined as follows:

sff=sll(k)=—eQ, ‘;(lf pia) eer"é';:;:b),
Jsfif|?=— eZ;g g ( kf);a - k?sb)z (39)

sfh=sP(k) = +eQy b"(zii:") -eQ b”;t: F’J':d) :
ff2= - TQ(p—p— %) (40
by (k,p)= f%—f 3K Pskp (4D

D)L (HLE L

#n) Wherep;=1 for an ISR photon ang=F for an FSR photon, see the analogous construction in Refs.
[22,23. The set of all partitions is explicitly the following:

DL (F R oD, (FFEF, .0 F))

plitudes. Using the Feynman rules and our basic massive
spinors with the definite GPS helicities of the Appendix, the

Born spin amplitudes fdrthe e~ (p.)e* (py)— f(Pe) f(pa)
process are given by

%( p_x) :%( papbpcpd_x) :%[ pbpaH pcpd}(x)

\’ NaAph oAy Noha)| Nehg
=Bipacd (X)
= ieZBZ , ITE"(X)(Gg ) iba)(GF ) eqHe
=7

= Blbagiea (X,
B:zﬂ [balf ca (X)
(Gg,,u)[ba]zv—(pba)\b)GgMU(pay)\a),
(G Dicai=U(Pe . No)GF ,v(Pd.Ag). 43

GB,u 7,u 2+ w)\g)?’e'

see also the Appendix for more details. As indicated above,

the moduli squared of the CEEX soft factors coincide up to a
normalization constant with the corresponding EEX real-

photon soft factorS(k;).

4. Born

The simplest IR-finite3 function B{*) is just the Born
spin amplitude times a certain kinematical facteee the
next subsection

p 2
)\;X)

;3(0) -
B ( ’ ) ® (pc+pd)2.

The Born spin amplitud&(; X) is a basic building block in

(42

1
Gng,,fmA; G, @y =5 (1+Nys),
g"

HE"(X)= :
. X2—MZ+iTgX¥Mg

whereg®' are the usual chiral\=+1,—1=R,L) coupling
constants of the vector bosd@= v,Z to the fermionf in
units of the elementary charge If not specified otherwise,
the “hook functiofi Hg is trivial: H,=H;=1. It will be
used to introduce special effects into Born spin amplitudes,
such as running coupling constants or an additional form
factor due to a narrow resonance.

the construction of all of our spin amplitudes, so let us define Spinor products are reorganized with the help of the

it at this point. The many equivalent notations fBrwill be

Chisholm identity, see EqA1l) in the Appendix, which

introduced for flexibility, in view of its role as a basic build- applies assuming that the electron spinors are massless, and
ing block in the calculation of the multi-bremsstrahlung am-the inner product of Eq(A8):

Sy, aplON G >\ TronaTagng T O, O, fo AU

%Fba][cd](x) =2ie?

3For the moment we requirk+e.

X2—M3+iTgX?/Mg

, (44)
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where and it disappears in the “in-space” situatiqm,+ pp=p.
. +pg. In other words, this factor does not affect the soft
Tan, = U(Pc A U(Pa,ha) =S(Pe,Me A, Pa,ONa), limit; it really matters if at least one hard FSR photon is

present. It is not related to narrow resonances, but rather to
the LL structure of the higher orders. Nevertheless, the above
factor is useful, because it is already implicitly present in the
photon emission matrix element &) and at all higher
orders, as can be seen in the LL approximation. It is there-
— fore natural to include it at the early stage, already in the

T),\b)\d:U_(pbr)\b)U(pdr)\d)

=S(Pp,0,—Ap,Pg,— Mg, —Ng),

U x, = U(PcAe)v (Po, = Ap) = S(Pe,Me A, Py, ONp), O(a®) exponentiation. If we do not include it at ti@(a?),
then it will be included order by order anyway. However, in
U, M:U( Par—Na)v(Pd,Nq) such a case, the convergence of perturbative expansion will
2 deteriorate. As we shall see below, the introduction of the
=S(Pa,0,—Na,Pg,— Mg, —Ag)- (450  above factor will slightly complicate the higher-order expo-

nentiation and construction of triefunctions, but the gain is
Note that the use of the Chisholm identity is a technicalworth the effort. Furthermore, the above factor also has al-
detail, which should not obscure the generality of our apways been present in the “crude distribution” in our YFS-
proach. What we need in practiCGjBynumerical method of type Monte Carlo generatorS, see for instance Rﬂt SO

evaluation of the Born spin amplitudes defined in E4B),  that its presence also improves the variance of the MC
and the Chisholm identity is just one possibility. weight, especially for0(a®) ceex.

5. Off-space extrapolation

. . . B. IR struct in CEEX
In Eq. (31) the Born spin amplitudes are obviously used stuciure in

for the p; which do not necessarily obefe four-momentum Let us discuss in detail the origin of th@(«a')cgex ex-
conservatiorp,+ p,=p.+ Pg. In the exclusive exponentia- Pressions of Eqg31) and(32) and the mechanism of the IR
tion, this is natural and necessary because, in the presence@tncellations. Our real starting point is the infinite-order per-
the bremsstrah|ung photonsl the relatidi= Pat Pb=DPc turbative eXpreSSion for the total cross section given by the
+py Mmay not hold. In Eq(31) only the fermion momenta standard quantum-mechanical expression of the type “ma-
enter as an argument of the Born spin amplitudes. The phdtix element squared modulus times phase-space’

ton momenta play only an indirect role; they disturb the fer- >

mion momenta through energy and momentum conservation % .

(this is sometimes ref?arred toggs a “recoil effegtThe natu- o )‘20 mj d7a(PatPo;PePa Ky, - - - kn)

ral questions are: Is this acceptable? Is this dangerous? Can

this be avoided? The clear answer is as follows: It is an 1 D
unavoidable and natural feature of the exclusive exponentia- 40, 7 oq=*
tion that certain scattering matrix elements, originally de-

fined within n-body phase-space, are in fact used in the . . . .
phase-space with more particles. Let us cabfftspace ex- wheredr, is the respectivay+2f Lorentz-invariant phase-

trapolation, analogously to off-shell extrapolatidrt surely ~ SPace, and\, are the corresponding spin amplitudes. To
makes sense, and in principle it is not dangerous, provided gimplify the discussion we take the unpolarized case, without
is done with a little bit of care. narrow resonances.

A technical remark is in order: In the actual calculations
of the multiphoton spin amplitudes, the fermion momenta 1. IR virtual factorization to infinite order

in Eq. (44) may be replaced, and occasionally will be re-  According to the YFS fundamental factorization theorem
placed, by the momentuinof one of the photons. This will ' [g] all virtual IR corrections can be relocated into an expo-

be due to purely technical reasofspecific to the method of - nential form factot order by order and in infinite order
calculating multiphoton spin amplitudedn such a case, the

spinor into whichk enters as an argument is always under- =) =)
stood to be massless. My =exd aBy(pa,Pp,Pe.Pa) ML~ (47)

2
, (46

( pk1k2"'kn)
n

No105- - -0

6. Pseudoflux factor As the convergence of the perturbative series is questionable,

One demonstration of the “off-space extrapolation” is the above equation is in practice treated as a symbolic rep-
the presence of the auxiliary factoﬁj/(chr pg)?. In the resentation of the order-by-order relation, which reads at
framework of CEEX, its presence is not really mandatoryO(a"),

“4In the off-shell case, particles do not obg$=m?; here we also %In the LL approximation it is, of course, the doubly-logarithmic
modify the dimension of the phase-space. Sudakov form factor.
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" (aBy)! In the above we assume that IR singularities are regularized
MO=3 T=nr [+nl (n<r), (48)  with a finite photon masgn,, that enters into all of th®,’s
=0 —1):

and implicitly into thes factors (and into the real photon

. . ] phase-space integrals, see the following discugsion
where the indeX is the number of loops i, "™ . The

above identity is quite powerful because ]38 “" are not 2. IR real factorization to infinite order
only free of thevirtual IR divergences, they are also univer-

;ﬂ.p}28¥o?fnghghsoignne m ee\(;?]:ay-lgzg{%;zfiyscgggg:n%ﬁ- and it is well worth elaborating on this point, because here
(1) N . . the CEEX method differs in essential details from the origi-
nentiNt;” is the same n the fifth order an_d, Ie.t us say, in thenal YFS method 8]. We use again the results of the basic
.Secof‘d order,l where 'tf appelars for trf\e"flrst .t|me. The abovSnalysis of the real IR singularities of R¢8], the essential
identity can also be reformulated as follows: difference being that we do not square the amplitudes
immediately—it is done numerically at a later stage. The
r-n validity of the whole basic analysis of the IR cancellations in
mD="> opll+n Ref.[8] remains, however, useful because it is done in terms
1=0 of the currents

The next step is the isolation of threal IR singularities

={exf — aBy(Pa,Po.Pc.P)IM P ogary, (49)

: 2pf
where M (") has to be calculated from the Feynman dia- if(k= 2p; K’ f=a,b,c,d. (53
grams in at leaStO(a'). The above steps are exactly the
same as irf8]. The above currents are simply related to edactors:
_The YFS form factorB, for e (p.)+e" (pp)— f(pc)
*1(po) +ny reads s (k)= consi Qe(ja=ib) - €,(B),
aB4(Pa.Pb.PcPy) st (k) =consk Q¢(jo—jq) - €,(B)- (54)
4 .
:f 5 d L( . ! 3191 (K) = Ie(K)|?, (500 Itis important to remember that the whole structure of the
ke—mi+ie (27) real IR divergences is entirely controlled by the squares of

the currents|j(k)|2, for j=ja—jp, OF j=jc—]q4, iNdepen-
dently of whether we prefer to work with the amplitudes

Ji=eQe[Ja(k) = Jp(k)], or their squares, because only the squéyée)|? are IR di-
vergent and the other contractions do not mafes was
A A A 2pk+ k# already stressed in Reff8]). Similarly, if we express spin
Jr=eQ[Jc(k)—Jy(K)], JHK)= . amplitudes in terms of factors, only the squareﬁs(k)|2 are
k+2k-prtie IR divergent and not the interference terms such as

. — o R{s(k)(-- )"
Using the identity £iZJi)?= —2i-1ZiZ(J; = JW)?, valid Having the above in mind, we may proceed using the
for £2,=0, whereZ, is the charge or minus charge of the g5 of Ref.[8] and we see that for instance the most

particle in the init_ial or final state, res_pectivel)_/, we may CaStIR-divergent part ofM, is proportional to the products of
(see Ref[8]) B4 into a sum of the simpler dipole compo- . taciors

nents

5 ) pkiks- - <Ky ~ [P K K K
B4(Pa:Po:Pc:Pa) = QeBa(Pa,Py) + QfB2(Pc . Pb) Tl Noryory- - - oy B\ X S (K1)5,(K2) - -5 (Kn).

+QeQ1Ba(Pa.Pe) + QeQ:Ba(Pp . P) (59

—QQ:By(Pa.Py) — QeQBo(Pp,Pe), where the function3, is no longer IR divergent, and we
51 assumed for the moment the absence of any narrow reso-
(52) nances, using the sum of the ISR and FSRctors’

i s5,(K) =5 (k) +sl (k). (56)

B ) f d*k
20Pi,Pj)= .
P k?—m’+ie (2m)° , . .
A A However, there are also nonleading IR singularities. Sup-
X[J(pi,K)—JI(p; k)12 (52 pressing inessential spin indices, the whole real-IR structure
is revealed in the following decompositi®8]:

5The use ofm{*™ at O(a"*™), m>0, will yield the same
result, which is another way of stating the universality property.  ‘In the nonresonant case we may ¥etp,+py,, for example.

113009-14



COHERENT EXCLUSIVE EXPONENTIATION F®.. .. PHYSICAL REVIEW D 63 113009
n n
M) (K, ka kg, - oo kn)=Bol L s(ko)+ 2 Bkl stko+ 2 Balki ki) TI s(ks)
s=1 j=1 S#] j1>02 S#]1.)2

o2 Balkipkiky) T skt +E Br-a(Ky, - K1 Kjp, o k)s(ky)

11>12>13 FJ1.]2.]3

+ Bu(Ky Ko ks, - . k) (57)

where the functiong; are IR free and include finite-loop corrections to infinite order. Let us stress that these fuy;tiames
genuinely new object§hey were not used and even not considered in F&f.

3. Finite-order B’s
The decomposition of Eq57) also has its order-by-order representation, whic@t"), r=n+1, reads as follows:

n

MOk ko ks, k= BET stko+ 2 BEVUO T s+ 3 BE Dk, by T stk

= i1<i2 S#]1.2

+ 2 Bk kky) I sk +- -

j1<I2<is S#j1.J2.03

+E B (kg Ko Ky - kn)s(k)) + B (kg ko ks, - - K,) (58)

n n (1+|) (2+|) k (3+|) k k‘
) k) (i, ki) (i, ki ki)
—S:I;[l stk 121 s(k;) 11<Jz 5(ki1)5(kj2) +il<j2<l3 5(kjl)5(kiz)5(k13)

The new functiong3""Y(k, ks ,ks, . .. k,) contain up tol-loop corrections, and are not only completely IR finite, but are

also universal: for instance the{?)(k), which appears for the first time in the decompositiom®f(k), is functionally the
same when decomposifgis(k; ,k,) or any higher-ordetn{"*" . This feature is essential for reversing the relations of Eq.

(58), that is for the practical order-by-order calculations of B}&*" from 9" | obtained directly from the Feynman rules:
B =g, (59
BE D (ky) =i D (ky) — B s(ky),

BE D (ke ko) =9ME DKy ko) — B D (ka)s(ky) = BV (ka)s(ka) — B s(ke)s(ka),

BE D (Ky ko, ka) =MD (ky Ky, ka) = BE (kg ko) s(ks) — B (Ky ka)s(ka) — BE (Ko, ka)s(ky)

— B (ky)s(ka)s(kg) — B (ko) s(ky)s(ks) — BE D (ka)s(ky)s(ky) — B s(ky)s(ky)s(Ks), - . .
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n
BY kg, o k)= D (kg k)= 2 BT (ke Ko K - K)s(K))
i=1
_112;2 B ke, Ky 1Ky ns - Ko1K ens - Kn)s (K )s(Kg )

- > Bk k) 11 s(ks>—j§1 BE k1T s(ks>—Bé'>Sljl s(kg).

i1<l2 s#]1.02 S#]j

higher-orders’s are constructed in terms of the lower-order
ones. In practical calculations we do not go to infinite order
but we stop at somé&(«') and the above set of equations is _B(l)( ka)
truncated for3("*" by the requirement+1<r. The above
truncation is harmless from the point of view of IR cancel- p

. . . o . . (0
lations, because we omit higher-orde’s, which are IR fi- - B )(A)sol(kl)soz(kZ)a
nite. As a consequence of the above fixed-order truncation,
Eq. (57) takes the following form:

The above set of equations is a recursive rule, i.e., the (pklkz) (2)( pklkz)

where the?t amplitude is given by Eq(49). Here we re-
stored the spin indices but we still specialize to the nonreso-

MO (K Ky K K.) nant case, and oys’s do not have the partition-dependent
n (K1,K2,Kz, .o Kp ) R
A X, argument as in thgg’s of Eqgs. (31) to (35). We shall
ﬁ ol 50 2”: B (k) D(kj, ki) provide a definition for the3’s in the resonant case in Sec.
=11 s +2, —+ _
=1 ( S EO = 5(kj) i<, 5(k11)5(kj2) I C 4.
B(r)(k_ ki ki) 4. IR cancellations in CEEX
+ e At fixed-order O(a’ d bering that
- (kjl)s(ka5(kj3) ixed-order O(a')cgex, and remembering a

|expB.)|>=exp(23B,), we have obtained

N Z Bgr)(kjl,ka, R ’kjr) 60)
j1<12<"‘<jr5(kj1)5(kj2) 5(k]r) ’

1
O'(r)=n§=:0 mj d7,(P1t+P2;P3,P4,K1, - - . Kp)

where, contrary to Eq58), we now allow only forr <n; in XexH2aRBy(Pa; - - - Pu)]
such a case the sum has 1 terms instead of. 1
The above formula represents the general finite-order X7 > MO (ky Ky, .. k)2 (62)

O(a")exp Case, while for =0 only the first term survives, spin

and in ourO(«?) case there are three terms. The CEEX spin

amplitudes in our master formuEq. (31)] represent the whereM is defined in Eq(60) and we factorize out the
cases of =0,1,2. factors

Just to give an explicit example, in the recursive calcula-
tion of B's in O(a®), we would need to calculatg!, |

=0,1,2,3; 88", 1=0,1,2; B 1=0,1; andB. Inthe = > [M(ky ky kg, - . . ky)|? (63
present work, at)(a"), r=0,1,2, we shall employ the fol- — °P"

lowing set of recursive definitions, based on E@9): n
=dn(ky Ko Ks, ... ’k”)s,ﬂl s(kg)|?,

~ml P p
(0 = =
W) mora @
" B B (K, K;,)
- pky pki) - [P =3+ SR L L2
ﬂ(lm)(xal):im(llﬂ)(ml)_Bg)(x)s“l(kl)’ =0t P2 ) leﬂzﬁ(kjl)ﬁ(kiz)
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B (k. ki ki d o1
+ ° ( 2 J3) a_O'(r):E _| dTn(P;p31p4!kli B 1kn)
i<To<is 80K s (kj,)s(k; ) My =0

Bk K, k)
jr<iz=:--<j, s(kj)s(kj,), ... :5(kjr)’ '

) 1
‘ Xexp(2aRBa); 2 (MO (ke ko, - ko)[?

spin

4+t

d d3ks
X— + | ——— 2 —
In the above, the functiod,(ky,ky,Ks, . .. k) is IR finite amy{zas’%“ f (277)32k2|5(k5)| ] 0.

and we are allowed to set,—0 in it. Apart from 22RB, (65)
the IR regulatom,, still remains in alls(k;) factors and in

the lower phase-space boundary of all real photons igynere the independence am, of the sum of the one-photon

31 /910
JdkI2K". . . real and virtual integrals is due to the usual cancellation of
The above total cross section is perfectly IR finite, as cano |r divergences in the YFS scheme, shown explicitly

be checked with a little bit of effort byanalytical partial many times.
differentiatior? with respect the photon mass The integrals of Eqs(46) and (62) are perfectly imple-
. mentable in the Monte Carlo form, with the small, being

d 1 the IR regulator, using a method very similar to that in Ref.
5= - . )
am, 7 nZO n! f d7n(P3Pg.PaKe, - - kn) [7]. Traditionally, however, the lower boundary on the real
soft photons is defined using the energy cut conditi8n
>¢/s/2 in the laboratory frame. The practical advantage of
such a cut is the lower photon multiplicity in the MC simu-

J
X exp(2a9ﬁiB4)a?{2a9%B4}
7 lation, and consequently a faster computer progtdfrthe

1 o1 above energy cut on the photon energy is adopted, then the
- (r) 2 _ '
X7 %n M (Ke Ko, - K 2 521 real soft-photon integral between the lower LIFSrentz
invariant phase spag®oundary defined byn, and that de-
] fined bye can be evaluated by hand and summed up rigor-
X J d7n-1(PiP3:PaKe, - Kso1 Ksr, - Kn) ously (the only approximation isn, /me—0), as we show in
the following.
X exp(2aTBy)— f d% ke)|? 5. Explicit IR boundary for real phot
exp2a 4)(9m7 (277)32kg|5( 9l . Explici oundary for real photons

A general notation for the IR domaif} was already in-

2 troduced, see E(36). Let us now exclude th€) domain

Xll;[s |s(k)I“dn(ke Kz, .. K .o kn). (64) from the real-photon phase-spdagtegrate out analytically
Splitting the real-photon integration phase-space, we rewrite

It is now necessary to notice that Eq. (62) as follows:
2] n 3
P d3k, 1 f d°k;
2 () = —_ 1 12 :

a—m{fz—l(gh(ks)l ] o HZO n!,ﬂl (2,7T)32k19|5(k1)| 0(Q.k)
_ ) d3kj —
is a o-like measure concentratedlat=0 and we may there- + J ﬁ|5(kj)|2®(ﬂyk]‘)
fore use the limit (2m)°2k;

n
dn(kly---nksy---rkn) deTo(P_jZl kJ,pg,p4)

—>dn(kl,k2, P !kS*l!OYkSJrlY P ,kn)
Edn—l(klvk2! R !kS—likS+l! . ,kn).

X exp(2a9MB,)dy(Ky Ko, - . . Ky)- (66)

After expanding the binomial product intd'2erms let us
The above limit helps us to notice that all of the terms in theconsider for instance the sum of all)&n terms in which
>1_, are identical and we may sum them (giter formally  one photon is i) and the other ones are not:
renaming the photon integration variables in the second in-
tegra) and rewrite Eq(64) as follows:

The disadvantage of the ckf>¢/s/2 is that in the MC simu-
lation it has to be implemented #lfferentreference frames for ISR
8This method of validating the IR-finiteness was noted by G. Bur-and for FSR; this costs the additional delicate procedure of bringing
gers[29]. The classical method of R€i8] relies on the techniques these two boundaries together, see IREfand the discussion about
of the Fourier transform, which could also be used here. the analogous-channel case in Refl11].
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1 & d3k
— - > 2
2 f 2mp2 o (KO 1Lk

. d3kj 2@
x]1 fmh(kjﬂ 0(Q,k)

j#s
n
X f dTo( P_jgl K;j ;p3,p4>

XquzamB4)dn(kl,k2, e lkS*lloikSJrl’ e ,kn)

1(n d3k ,
Tl fmls(k)l O(Q.k)

X f d7,-1(P;p3,P4. Ky Kz, ... Ky—p)

n—-1

><J]:[l O(Q,k))|s(kj)|2dn-1(ky K, . .. kn-1). (67

A similar summation is performed for th&)(terms wheres
photons are i}, giving rise to
3 s

1 2 (n d3k
=22 (s)( f amzie sk

Xf d7_s(P;P3,Pa. K1, Kz, o Kyos)
n—s

<1 {lstk) P02k}

XeX[(ZamB4)dn,s(k1,k2, e ,kn,S)

o1
:n§=:0m dTn(P;p31p41k11k27 "'1kn)

d3kj ,
XGXF’UWWWI 0(Q.k))

XeX[{ZaiRB[l(pl, e
n

lejl{ls(knlzém,kj)}dn(kl,kz ..... ko). (68

Pa)]

The additional overall exponential factor contains the well-

known function

- d3k;
2aB4(py, - - - ,p4)=f Wh(kﬂﬁ@(ﬂ,kn
]

=2a[Q%B,(p1,p2) + Q7Ba(P3,Pa)
+QeQBa(p1,P3) + QeQiBa(p2,Pa)

—QeQB2(p1,Ps) — QeQrBa(p2,p3)],
(69)

PHYSICAL REVIEW D63 113009

- dk . . 2
Bo(p.a)= —j m@(ﬂ.k)[lp(k)—lq(k)]

d%k (-D(p a)?
oG v

which forms together with 23B,4(p4, . . .
tional YFS form factor

,pa) the conven-

. ,p4)=2a§4(p1, < 5Pa)
+2amB4(plv e 1p4) (70)

Y(Q;pg, ..

in our master Eq931) and(32). The dependence an,, in Y
cancels out. The photon mass gets effectively replaced by the
size ofQ) in its role as the IR regulator. The YFS form-factor

Y can be decomposed into six dipole components, see Eq.
(37), and can be calculated analytically in terms of logs and
Spence functions, see Ref80—-37, keeping exactly all fer-
mion masses.

As already indicated, in the MC with the YFS exponen-
tiation, it would be possible to do witho@ (declaring it as
empty and to rely uniquely on the IR regularization with a
small photon masm,, only [3]. In such a case the formulas
(38) for the YFS form factor would include only the second
virtual-photon integral part.

For the sake of the completeness of the discussion, it is
necessary to examine once again the IR cancellations in the
total cross section, witlll as the new IR regulator:

1
”“12@ dr(P:ps,Pa.Ki Ko, ... Kp)

n

xj[ll {|s(k))|2O(Q,k))}exd B4(Q;py, - - . pa)

+2a9‘{B4(p1, e 1p4)]dn(kllk21 PR ,kn). (71)

IR finiteness of the total cross section now simply translates
into its independence of th@ domain(assuming, as usual,
that the size of} is very small

5
Eam:o. (72)

The proof can be given along the same lines as the previous
one for the photon mass. Let us assume that we want to vary
0—0"'=0+68Q, that isQ)'=0—5Q. Note thatQl’ can

be much larger or smaller thaf, the only requirement is
that both be very small We proceed as follows:

1050 does not need to be infinitesimal with respecfXolts size
should be much smaller thafs.
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(”—i LT f ¢k, k)20(Q' k +J ¢k, k)20 (50, k
=2 nith || @epaclt IOk | G syl Fe (o0 k)

exn:za’éll(ﬂvpl! e 1p4)+2amB4(pll e 1p4)]dn(kl1k21 e vkn)

XJ dTo(P_Z Kj:P3,Pa

1 n d3k s
=2 o2 (S)[Jmlsw)m(m,k)} fdrnfsm;pa,m,kl, o kaes)
x]ll {|5(kj)|26(9’:kj)}eXF{ZQEAQ?pl- oo Pa) +2aRBy(P1, - - - Pa) ]dn_s(Ki,Kp, Ll Kpsg) (73

1 d3k -
:nzo nr d7(P;p3,pa.Ky, - .. ,kn)eXF{J Wh(kﬂz@(ﬁﬂ,k)+2aB4(Q;p1, o Pa) +2aRBy(Py, - - - Pg)

n

xj[[l {|s(k))|2O(Q" k)b dn(ky Ko, - - - Kn),

recovering the same expression as Egl), but with Q' o Pkikz: - Ky
instead ofQ). ) =

NoLog - - O Hl [5Li(ki)+55i(ki)]%[ba][cd] :

=

C. Narrow neutral resonance in CEEX (74)
The main new feature of CEEX with respect to EEX is  (B) The version for the nonresonant Born with partitions:

that the separation of the IR real singularities is done at the

spin amplitude level; after squaring and spin-summing them o PKika- - Ky n o1

(numerically the higher order terms are retained, while in 9t )( ): > I 570 (k) Bpagreay (X,)-

EEX they are truncated. For a more detailed discussion, see S 75

Sec. IV C, where we explicitly show the relations between

the ,E’S of CEEX andﬁ's of EEX. Keeping the above in (C) The version for the resonant Born:
mind, we still have at least three possible versions of CEEX.

No05- - -0y

In the following we shall describe them, concentrating ) pkiks- - -Kky
mostly on the third one, which is designed for the neutral M, N

. . .. . 1Y2 n
s-channel resonancksand which is the principal version
implemented in theCC Monte Carlo. Let us stress immedi- n (1) xf}
ately that the resonance may be arbitrarily narrow. However, = 2 H 5(fiJ' (ki)—‘2
our approach works without any modification for any value pe{lFn 1=t (P3+Pa)

of the resonance width.

. . X Z %Fba][cd](Xp)eXF[aABE(X@)]- (76)
1. General discussion R=7v,Z2

We believe that CEEX is the only workable technique for| et ys immediately define the additional form factor for the
the treatment of narrow resonances in the exclusive MC. Tg yesonancécase(C)]:

understand the essential difference between the three pos-
sible formulations of CEEX, it is sufficient to limit the dis- d*k i
cussion to the simplest case of %a°). The three possible al Bﬁ(x):f R 3J1,(K)
> > ke—m:+ie (2m)
options are the following. Y
(A) The version for the nonresonant Born without parti-
tions: X[ JE(k)]*

(X)Z_ '\72 B
(X—k)2—M?2

1), (77

UThe simultaneous application of our CEEX methods to the pro-WhereM_z: MZ—iM Iz, the currents)* are defined in Eq.
duction and decay processes of pair-produced charged resonand&$), While for the nonresonant part we haueB;(X)=0.
such as thaV* resonances and of pair-produced charged unstabld@he AB%(X) form factor sums up to infinite order the virtual
fermions such as™, cc, bb, andtt in e"e™ annihilation is notyet ~ a In(I'’z/M) contributions; we postpone the discussion of its
covered in the literature. origin and importance to the latter part of this section.
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Coming back to the more elementary level, we see thatemembered, however, that the additional suppression factor
case(B) becomes cas€A) if we can neglect the partition I'/M disappears if the experimental cut on photon energy is
dependence of the four momentum in the Born amplitudeof the order of the resonance width,,,/Epean~I'/M, and
Bipacd (Xp) = Bvayca (P), where P=p,+p, or P=p.  for an even stronger cli,,<I" the IFI effect becomes of
+pg or any other choice that does not depend on the moerder (a/ ) (Ena/T)-
menta of the individual photons. This is thanks to the iden- If T'/M is extremely small, as for the lepton, the IFI
tity: cancellation can be taken for granted and the photon emis-

sion interference between production and decay can alto-
n gether be neglected. In the case of thieoson close to th&
52‘,"}(ki). (78 resonancéLEPY) the IFI effect is detectable experimentally,
=1 but it is small enough that it can be omitted in the Monte
Carlo programs used for correcting for the detector accep-
Only case(C) is efficient for the resonant process, so obvi-tgnce only. In this caseoRALZ/YFS3 [10] with the EEX ma-
ously (A) and(B) are limited to nonresonant processes. Theyix element was the acceptable solution.
immediate question is the following: Which of them is bet-  The most convenient solution is the universal Monte
ter? If (A) does not sum the higher orders much better tharcario program in which the IFI is included, which can evalu-
(B), then it has the clear advantage of being simpler—theyte the IFI effects near the resonance, far from the resonance,

summ_ation over partitions makes the computer code MOrgyr inclusive quantities, and for strong energy Cls,
complicated and adds heavily to the consumption of CPU_T Thjs is exactly what our CEEX offers.

time1? The answer is that, although we did not investigate
quantitatively the differences betweéh) and(B), we think 2. Derivation of the resonance form factor

that (B) sums up the LL higher orders more efficiently than . .

(A) and is therefore better, even if there is no resonance. In As we have already pointed o(fbllowmg .REfS'[ZZ’Z.?H.)'

our case, since we want to cover the resonant process angﬂ- the presence of narrow resonances it is not sufficient to

way, it is a natural choice to us@) for the nonresonant SUYM UP the real €MmISSIons coherently, taking properly into

background component of the spin amplitude#-shell v account the energy shift n the resonance propagatoly

exchangg even if it is not vital. Once the summation over due to the ISR phOt.O')'SIt is also necessary to do the.s‘?‘”.‘e
for the virtual emission, and also to sum them up to infinite

partitions is in place, it is the easiest to use it for the non S
resonant background as well. The additional bonus of bettg?"der—this is why the resonance form factor &f)(has to

higher-order convergence provides an extra justificationP® included, see quzﬁ) and(77). In the following we shall

Summarizing, ifC) is implemented, the(B) comes for free  derive Eq.(77) for B; and show analytically that the IFI
Having discussed the differences between the three c,Fgancellatlon_s do re_ally work, as expected, to infinite order.

tions, let us now concentrate on the opti@) for the reso- L€t us write again the formula for the standard YFS func-

nant process, remembering that for the nonresonant backon in Eq.(50) in a slightly modified notation

ground component it becomes automaticéy. First of all, 4 .

for the narrow neutral resonan¢te Z boson in our cage aBy(p P ):J d’k :

the photons emitted during the production and decay pro- Alar ol k?—m>+ie (2m

cesses are separated by a long time interval; they are there-

fore completely independent and uncorrelated. In the pertur- S(k)=S,(k) + Se(k) + Syni(k),

bative QED this simple physical fact is reflected in a certain (79

specific class of cancellations between the ISR and FSR pho-

tons on the one hand and the virtual and real corrections on S(K)=13,(K)|%  Se(k)=]Ie(k)|?,

the other. For inclusive observables such as the total cross

section or charge asymmetry, the effects of the ISR-FSR Sint(K)=—29R[J,(k) - JZ (k).

interference in the nonresonant case are of owder, typi-

cally up to 1%, as can be seen from many examples ofn the presence of the narrow resonance, the YFS factoriza-

explicit O(a") calculations. The IFI effect will be of order tion of the virtual IR contributions has to take into account

(al ) (Emax/Epeam, When the experimental cut on the pho- the dependence of the scalar part of the resonance propagator

ton energy isEna. Note that the IFI effect is not directly on photon energies of ord€r(the numerator is treated in the

enhanced by such big mass logarithms agrid~20. For  soft-photon approximation, as ushialhe relevant integrals

the resonant process the IFI effects in the inclusive obserwith n virtual photons look as follows:

ables are of orderd/ ) (I'/M) and are therefore often neg-

ligible on the scale of the experimental error. It must be

I s k) +stikpl= 2
i=1 i i pell,F}

i=1

)3S(k),

o1
I=(P?-M?* > —
n=o0 N!

2We note thatA) is implemented in théCKC MC and is a factor > ﬁ [ d*k;
of ~10 faster in evaluation thaiB); it can be economical for cases X % 120 (277)3 K2— mZ Swi(ki) pP2_M2’
. . . pebnl= i —m, o
without resonances, like the small-angle Bhabha scattering or for
J(s)<Mz, where(B) is an overkill. (80)
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whereM2=M2—iMT, andP, is a set of all 3 partitions 1 1
(91,92, ... 9n) With p;=1,F,Int, andP,=P— EJ_,mk n 2 = n
includes only the momenta of the photonssmt and not the ( P—2 k| —M? P2-2P> kj—M?
momenta of photons i§, or S-. The (P2—M?) factor is =t =t
conventional, to make the integral dimensionless. We shall 1 1
show that the above integral factorizes into the conventional == -
YFS form factor(dependent on the photon mass) and the P*—M -3 2Pk
additional non-IR factor due to the resonar®e Z: =1 P2—M?2
| =exd aBY(m, ,s,M)]=exd aB,(m,,,s) + aAB(s,M)]. 1 ﬁ 1
(82) PZ-M2=1 2Pk
Our aim is to find the analytical form of the additional func- P2—M?2
tion ABY. In the current calculation, we use the following N by =
approximate formula, also used by Greetal. [22,23, __ 1 I Pe—M
— P2—M?2j=1 (P—kj)2—M?
t M2—s
aABR(s)= —2Qle—In In vE (84)
o and this leads to
1 M2—s
_E,ylntln W (82) |ZEXFXaB|+a'BF)
4 2_p\p2
In the following, we s_haII derive the above app_roximat_e re- Xexp( f (2m)3 kiz—m2+i68”n(k)(P—k)—2—l\72
sult and show explicitly that the above approximate virtual v
interferencg part of_the form factor cgncgls exactly with the =exd aB,(m,) + aABR(I)], (85
corresponding real interference contributions.
Since the soft virtual photons entering inBp and S¢ in i d% P2_ M2
Eq. (80) do not enter the resonance propagator, we may aABZ‘(F)zfﬁFS”n(k) —
therefore factorize and sum up the contributions v@ttand (2m) (P=k)*=M
: ow solid is the above “derivation”? Strictly speaking it is
Sr How solid is the above “d 2 Strictl k
. justified in the limit where we follow Yennie, Frautschi, and
I 2 f S (k) E Suura in Ref[8] and express thk—0 emission amplitude
iio Niliyo J (2m)° 2 —m2 as

M—

; g1+ O(KIM) + Fi[eﬁ O(k/l\W)]),
z

|2 0 f(277 SF(k )

whereeg, , are constants independentlofso that

- d*ki, 2Pk /(P?~ M?)| <1,
n f (2 )3 2 ZSInt(k|3) o ) - -
ng=0 Naliz=o m k that is, if photon energy is below the resonance width. This
restriction is thus entirely analogous to the usual YFS expan-
1 sion into an IR-singular part and the rest. We note that Greco
2 (83 et al.in Refs.[22,23 have also pointed out that the result for
P—E k]-) —M?2 ABR(T) in Eq. (85) follows from the YFS expansion; we
- show here how this happens in detail.
The best situation would be to have a more precise evalu-
11—[ [ d*k; ation of the integral of Eq(80) (the integral is probably
nt f (2m)° k2—m? calculable analytically For the moment, however, following
Refs.[22,23, we choose an easier “pragmatic” approach
based on the fact that the virtual and real contributions from
n 2 - the IFI for photons withE ,>1I" do cancel as a consequence
( P—> kj) —M?2 of the time separation between the production and decay, and
j we shall check that the above cancellation really works. In
this way we trade the analytical evaluation of the more dif-
Now we neglect the quadratic terms in the photon energieficult multiphoton virtual integral for an easier evaluation of
O(kik;) the multiphoton real integral.
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3. Cancellation of the virtual form factor with the real emissions

Let us therefore examine analytically the real multiphoton emission contribution from tH2 TRE starting point is the
integral in which thetotal photon energ;KzEJn:lkj is kept beloWE na=Umaxy/s, Wherel' <E < \/s:

n 2

1
N R
> I s — exf aB{(X,)]
petrmn it U x2—m? e

S0

=1 ( 32k| o1 0

n
Emac— > kj)
=1

ex aBR(X,)1|"
x ,—M?2

S 1f Joi) *{p}exli“54(xa)]
= - —0 J
2 ! K0<v\5 Il_[l (2 )32k| o’lzo'n 0P 62“ F}n I[ [J] X M2

co1 o - -
=2 —fKO Il > 11 2S.<k> H 25:(k;) H 2Sni(k;) HFI 2Sini(ky)
. <v+ j:

_ 0
5i=1 2K, a2 B2 Fnpn o;=12 =

exf aBJ(P—K,—Kg)]) "

expl aBg(P— K, —Kig)]
X —
(P—K;—Kg)?—M?

(P—K,—Kg)2—M?

: (86)

where we have simplified the Born amplitude to the level of the scalar part of the resonance propagator and we write

2(2m)%8 (k) = 2 Isifl? 22m) &(k)—E [sfi71,
2(2m) %Sk =2 sm@m})*—z sty (sfip.
7]

K2= 2 Ki, Kg2= 2 Kj, (87)

9j =F2

Ke= 2k, Ke= 2 kj,
ijIF {{JJ':F|

K:K|2+ KF2+ K||:+ KFl .

As we see, the product of two sums, each ovBrpartitionsg,p’ €{l,F}", is now replaced by the single sum ovet 4
partitionsg e {12,F2,IF,FI1}", where thelF ,FI represent the interference terms.

Keeping track of the dependence of the propagator€,enK,-, andKg, , the summation over the number of photons can
be reorganized, leading us back to the following factorized formula:

1
0(Vma) = E

ni= Onl

1 1
H 2S.< .1)2 H 2SF< .2)2 H zsmt(k.g)

exg aBR(P—K2—K,p)] & 1 D d
X : [T —528m(k,)
4

(P_K|2_K|F)2_M2 ny= 0n4 |4—

exf aB(P—Ki2—Kg)]) " o o
X ——| O(Ena— K= Kpa—KE—KR), (89)
( (P—K|2—KF|)2—M2 max 12 F2 IF Fl
whereK2=2; ki , Kp2=32,; ki, Kig=2,; k;_, andKg,=Z; k; . The sums over the pure initial- and final-state contributions,
1" 2 12’ 313’ 4 '4

and over the interference contributions, are now well factorized and can be performed analytically. As a first step, we integrate
and sum up contributions from the very soft photons betoys, similarly to what was shown in Reff7]:

BIn the practical CEEX calculation, the contribution from the IFI is evaluated numerically, inside the MC program.
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[’ nq

Emax Emax 1 d3k
o(vmax>=f dE’f S(E'—E|—Er—Ejn)dEdEdERdE; > — ] f 525(ki)
0 0 n=0 N1tij=1 ki, >eE 2k

L d*ki,
Xexp[ZaB,(sE)+2a9f{B|]5(E| E k? )E —H f 25:(k )
= n k >8E 2k
Ny d’k; exp[aABR(P—K|z—K,F)]
X exf 2aBr(sE)+2a9%Be]8| Eg— >, K° — f —29¢ 4 _
q: o F(8 ) a F] ( F 22 I >n320 n3 |3 1 k >8 2k0 Slnt (P—Klz—KIF)Z—Mz

_ 1M d’k;, _ ex] @ABR(P—K,2—Kg )]\ ¥
xXexd aB E)+ aRB,,i|0| E\g— K? — f —25 ; —
Hea Int(8 )t a Int] ( IF '23 i )n420 Nyl =1 O~ eE 2k0 Int( '4) (P—K|2—KF|)2—M2

X exd aBni(€E) + aMB nJexp2aRABY) 5( Eri— > k?4) , (89)
I4

where E=\/s/2. The integration over the photon momenta can be performed without any approximation, leading to the
following result(here,y,ni= v = v&1):

C"(Umax):JO maxdv5(U_U|_UF_U|F_UF|)J dUIF(Yl)'}’IUrI_lquzaEI(E)+2amBl]

X f dUFF(’yF) ’)/FU'):/F71 eXF{ZaEF(E) + 2(1’%8;:]

deUIFF(Ylnt)l (U2)y,— l(eXp[a/ABR[S;(l v)(1—vp) ]}

2 2')’Int IF S(1—0)(1—pyp)— M2 ) exd aBn(E) + aRB)]

Yint| 1 . exp{aABR[s(1-v))(1—ve) ]} " -

which is explicitly free of any IR divergences. integration limit to fydv ., at the expense of an error of
The essential question is whether we have perfect cance(I'/M ;). One possible evaluation method is to use the
lations of the In[/Mz) terms in the interference subintegral standard techniques of the complex functions. First, we re-

formulate the integral as an integral over the discontinuity

R —— Vi C, along the real axi$
lne=9 dvieF| —-
2
7|F 1
1 210t _ exp{aABY[s (1~ UIF)]} lini=F| 5~ |exd aABS(s VTN
><27’”: IE I SIN(773 Yint)
s'(1—vp)—M?
(9D

1
XJ de?’mt(_Z)(l’Z)Vlnrl . (92
C1

s'—M2-s'z
We omit from consideration the constant IR-finite factor
exd aB(E)+aRB,,], because it does not depend on the
resonance parameters. The bulk of the integral comes from4ye have also pulled out of the integral the expBj) factor,

the neighborhood of =0 and the integrand is-1/v® at  because most of the integral comes from the neighborhood of the
largev, due to the resonance; we can therefore extend thsingularity atv,r=0.
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Since the contour can be closed in a standard way with the (L) pky (1) pky ~ (P -
big circle, the integral is given by the value of the residue at /5’1{;} ()\01; P) =MiR ()\01; P) —/36)( N ) ! }( ky),
z=1-M?¥s':

. [=0,1,
T3
|,m=F(72' )exquB4(s )
'n(ﬂ'i 7Int) B(z) pklkZ X | = (2) pklkz X
M2—g’ | 71 q Hog,ob\ Ngqo, " Hop.wb\ Ngyo,'
(L
s’ s’ ®
B?L]{-Zul}()\o. Xw) ! 2}(k)
1 (7Int> 77'%7Int
= =—F| 5" | ————exd aAB(s")] o
MZ=s" | 2 Jsin(myin) B P, sy
V3 (112)y
MZ s’ Int A D
| =5 —BBO)()\:Xw>5£uil}(k1)522}(kz),
1 .
==; [1+O(yin0)]. (93)  where Xw:P—Ewi:|ki, P=p,tpy- Introduction of the
M?=s partition indexw; defining whether a photon belongs to the
ISR or the FSR is in a sense not such a deep and great
The above is true because complication—it is now just anothgthird) attribute of the
photon similar to its helicity.
— Let us look closer into the structure of terms like
R/ a [ty [M—s B (K wa}
alABy(s )=—2Qle;In J In 2 1{w1}( L Xw)5, 2(k) For example, ifw,=F and w,
=1, it reaolsﬁ‘l?F}(""1 P—ky)sil)(ky), that is, the total shift
_ Ewm In I\/I__—Zs) 94y  in Xin 1) depends not only on the type; of “its own
2 M photon,” but also on the type, of the photon in the!“2!

factor that multiplies it.

We have therefore proved the full cancellation of the depen- The 9t amplitude in Eq.(95) is given essentially by Eq.
dence on the resonance parameters for the integrated crdéd), with the form factor including the resonance péft
section. present

4. Definitions of B’s with partitions

The O(a"), r=0,1,2, B-functions for the variant of the

Xo (96)

O(a")

CEEX with the summation over the partitions, as in Egs.
(31)—(35), are derived with the recursive relations of Egs. ={exp[—aB4—aABff(Xw)]

(59) [similar to those of Eq961)]. The only additional com-

plication is that we must keep track of the indices, which say o[ Pk Ky

whether an external real photon is of the ISR or FSR type, XMf,r{L)}<)\U g }

and of the total photon momentum after emission of the ISR ! "

photons(the one that enters the resonance propagator, if such

a resonance is present As we see the typ®= y,Z of the “resonance” form factor
BY has to be adjusted to the type of the componentiff)R
) m[P (we have temporarily introduced an explicit indento M
Bo’l \ ) P | =M )\;P), 1=0,1,2, (95  and", andy is essentially a “resonance” of zero width

pky k D. Virtual corrections, no real photons
(1+|)( P_k )—Dﬁ(”')(p Loy )
Bigy ; 1 =M 1 -
Aoy o] We now start to accumulate the actual formulas forghe
functions entering the CEEX amplitudes of in E¢&1)—(35)
,8(')( P— k1) {I}(kl) with the case of no real photons and up to two virtual pho-

tons. The “raw materials” are thé/t amplitudes from the

Feynman diagrams, which are turned into tfﬁe‘unctions
1=0,1, using the recursive relations of E(95).
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a C a C
5 v
4 4
b d b d

+ : FIG. 3. First-order diagrams.

1. Photonic corrections

Let us start with the simple case of tt¥ a?) spin amplitudes with one virtual and zero real photons coming directly from

the Feynman diagrams, which will be used to obtain the first o&g@r. The relevant spin amplitudes are

M“)( ) %(f )[1+Q§Fl<s,me,my>][1+Q?Fl<s,mf, >]+ML%3X(A, ) (97)

where F; is the standard electric form factor regularized with a photon mass, see Fig. 3. We omit, for the moment, the

magnetic form factoF,; this is justified for light final fermions. It will be restored in the future.Hp we keep the exact final
fermion mass. If not stated otherwise, the four-momentum conservatiom,= p.+ pq holds.

In the present work we use the spin amplitudes+ey and y-Z boxes in the small mass approximatimﬁ/s—>0, mfz/s
—0, see Fig. 3, following Ref4.33,34:

Ty Tho, TO0oNUS U
M(Blo)x(p;X)ZZiez 5 gx °g> >\ Neha ! Aphg gx “In, Ui, Unag
A B=vy,Z X _MB+IFBX /MB

o J— -
X By, nyOhg -hg o QeQl i, x, Foor(ME M, St = 6y, feoe(M3. M, ,S,u.b)], (98)

where(here, BDP refers to Brown, Decker, and Paschos in [3f])

i ol L, m’ il L M3—s L M2+u L M2+t
= — _— = — prm— + — - —
BDP( Blm’ylslult) n u n (tu)llz n u n Mg |2 Mé |2 Mé
( Y(u—t—M3) [ [ - M2-s|  [M2+t)  [M2-s
+ 5 B in| — In Ez +Li, Ez —Li, Ez
u S Mg Mg Mg
(M2—s)(M3—s) [M2—s| M2-s [ —t
+—= P in| = |+ ——n| = |, (99)
us M2 u M3
|
M2=M3—iM,I';, M2=m?, and the functiorfgpp is that Now using Eq.(96) we determine
of Eq. (11) of Ref.[34]. The standard Mandelstam variables _p p
s, t, and u are defined as usuab=(p,+py)2 t=(pPa g”()\;x):%()\;x)[u sHe(s)1+ 8 ()]
—po)?, u=(pa—pqg)?. Since in the rest of our calculation
we do not US&an/S*)O, we intend to replace the above box o p
spin amplitudes with the finite-mass restithat were given + Reox )\’ ' (100
in Ref.[35].
where
£/1|2?(S) Qe l(S Me,M y)_anBZ( Pa,Pb !m'y)
15For the y-y box we can use the spin amplitudes with the exact
final fermion mass. It seems, however, that th& box for the —Q 2 & 1— (101)
e ’

heavy fermion is missing in the literature.
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FIG. 4. Second-order vertex diagrams.

s (s)=Q%F(s,m,m,) — QZ2aB,(p¢,Pg,M,)

al_

_Qf Lf,

L I(S
:n_
e 2

mg

Note that we departed in EGLOO) from the strictO(a?) by
retaining the 5(:5(s) 8{){(s) term, i.e., by replacing the
“additive” form 1+5§,1|Zf(s)+5§,1,2[(s) with the “factor-

ized” form [1+ 8)8(s)][1+ 8}(s)]. The above does not

+im—1.

] S
+im—1, Lf—ln(
m?

f

need really much justification—it is obviously closer to the

reality of the higher-orders, so the “factorized” form is pref-

erable. The only question is whether the above method do
not disturb the IR cancellations. It does not, as is seen fro

the definitions of5{})%(s) and &{}){(s).

The IR subtraction inM $), using Eq.(96) at O(at)
leads to the IR-finitéRg.,. The above subtraction is equiva-
lent to the following substitution:

fBDp(Mé,my,S,t,U)%fBDP(Mé,my,s,t,u)_ﬁR(my,t,u),
(102
where
fir(m,,t,u)=—B(Pa,Pc.M,) — —Ba(Pa,Py.M,)
=| t)l mi +1| ! 103
=1n G n \/ﬁ E n a , ( )

and the additional resonance factor expAB;(9)] in Eq.
(96) induces the additional subtraction in theZ box part:

aAB(s); (104

fepp(s,t,u)— fgpp(s,t,u) —

see Eq(82) for the definition ofABS.

Our O(a?) expressions fop{?) are still incomplete. We
base them on the graphs depicted in Fig. 4 in which we
omitted some trivial transpositions of the diagrams. Follow-
ing again Eq.(96), we obtain

A P p
5’2)(>\;X):%(x?x [1+ 63(s,me) [ 1+ 6F)(s,mp)]
@ |P.
+RBOX )\,X . (105)

In the present calculation we neglect the two-loop double-
box contributions iMR{Z), , depicted in the first row in Fig. 5

lagrams in the second row of Fig 8In fact we keep only

e first-order box contributiorRS) in our incomplete
O(a?)-type matrix element.

Two remarks: in spite of the temporary lack of the above
contribution, we are not stuck because what we neglect is IR
finite. This statement is not as trivial as it may look because,
in the calculation without exponentiation, neglecting such
contributions would violate IR cancellations, and correcting
for such a violation would be rather complicated and physi-
cally dangerous. Secondly, what we neglect is expected to be
numerically small, of0(«?Lt), and therefore it does not do
much harm to our overall physical precision.

Coming back to theD(a?) corrections to the electric
form factor from the diagrams in Fig. 4, they are well known
since they were calculated in Ref48,37-39 and they con-

tribute as follows:
a\Y L2 (8 3 .3
= 18 Tlel 35 Z§2+§§3 :

18In fact the two-loop double-box contribution became known re-
cently[36], so there is a chance of including it in the future.

’f%nd the vertex-box type of diagrams, see the examples of

8G(s,me) =

sPe(s)+| =
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b d

¢
c
d

»

§:< M M FIG. 5. Missing second-order diagrams.
+o.

c
V. Z
A

2[12 andZ propagators are multiplied by the corresponding hook-
f f o Lf f— 3 3 3 . .
5§/2)t(5,mf)= 5&,1-)t(s)+ —| | = +Lf{==— =L+ =45 . functions (scalar form factorsdue to the vacuum polariza-
i i ) | 8 32 4 2 tion:
(106
In the above we kept terms @(«?L?) and O(a?L'), and HyﬁnyL,
neglected the knowfB9,40 negligible terms ofO(a?L°). 2—11,

2
_ . H,—H,X 16 sirf 6y oL by———— pey. (108
In the not-so-interesting case of the absence of the elec- agE ™2
troweak (EW) corrections, the couplings of the two neutral
bosonsy andZ are defined in a conventional way:

2. Electroweak corrections

In addition the vector couplings of the& get multiplied by
the respective extra form factors. First of all we replace
GY'=gi'-rgr', GY'=gV’, A=+,-=RL,

e 2T3-4Q,si Oy  2T3—4Q, S OyFEy(s)

97°=Qe=—1, 9y=Qr, 9X°=0, 9gX(=0, W T6sifoycodoy 16 sirf 6, coS by
3 ; 3 ;
g7 2T—4Q, s by gznyZTf_4Qf sinf Gy ,¢ 2T3-4QqsirPOy  2T;—AQ; SirPOwF Ly(s)
V' 16sirfoycosy’ 7V 16sirfoy cos oy, % = 1656y cofby 16 Sirf 6y COL b1y
Z,e 2Tg Z,f ZT? (109)
98" = 1650y cofoy,’ 9~ T 16sif6y,, coLhy,’ whereFg,(s) andF{,(s) are the electroweak form factors

(107 provided by thebizeT packagd14], which is a part of the
ZFITTER semianalytical codg5] and corresponds to the elec-
WhereTf3 is the isospin of the left-handed component of thetroweak vertex corrections.
fermionf (T3=—1/2T3=-1/2). The electroweak box diagrams require a more compli-
The actual implementation of EW corrections is practi- cated treatment. In the Born spin amplitudes we have essen-
cally the same as iRORALZ [10]. It goes as follows: they tially two products of the coupling constants

97°9%1 = (95— Ngx®) (0% + N gx ) =95°0% — Nga 0% + N gl 0x - gk 0k,

0505 = (99— Mg ®) (9% - Mg H=00°0d - Ngx 0% — Aoy o0x T+ g con (110

In the above the following modification is done for the doubly-vector component:

g7t _4TETY- BTEQIFEW(S) ~ BT{QFEu(S)+ 16Q,Q FEl(S Y
v (16 sirf 6, cos 6yy)? ’

(111
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where the new form factoF&{,(s,t) corresponds to elec-

a 1 a c
troweak boxes and is angle-dependent. The Born spin ampli- « g
tudes modified in the above way are also used in the case !
when a single and multiple real photons are present, see the c d
next sections.
,Y*Z*
b d b 1

E. One real photon

We start the discussion of th# tensors corresponding to
the emission of a single real photon with the tree-level case FIG. 6. ISR diagrams.
(zero virtual photons The starting point is the well-known
O(a*) split amplitude for the single bremsstrahlung, which The summation in the first two terms gets eliminated by the
we shall reconsider separately first in the case of the emisdiagonality property o andV, see Eq.(A21) in the Ap-
sion from the initial-state beams and later for emission fronpendix, and leads to
the final-state fermions. This will be the “raw material” for

obtaining 3{*) using Eqs.(95). pki) 4 p pky
The first-order, one-photon, ISR matrix element from the Mgy oy =50, (KB ) |1 Aoy’
Feynman diagrams depicted in Fig. 6 reads
k eQ PbKy kik1Pa
Pk r (p 1) =t %[ U
Ml{l}()\ﬂ') i )\0-1 2k1pa§ )\bp [cd] Pa'l)\a
00D XM Pat m—Ky & (K \ _ eQe PoKiKy|  [KiPa
_eQev(pb! b) {I} _Zklpa o’l( 1)U(pa- a) 2klpb > )\ba-lp p)\a [Cd]'
— . —pPpt+m-+k; (119
+eQev(Pp,\p) €y (k)5 5 Mu(pa.ra),
1 1Pp
(112) m K b(rl(klapa) bul(kl!pb)
50'1( l)__eQe 2k1pa +eQe 2k1pb

where . -
The soft part is now clearly separated and the remaining

non-IR part, necessary for the CEEX, is obtained.
M= ie2 2 HSV(X)GBM(GfB,V)[czﬂ (113 The case of flnal—s.tate, o_ne_—real—photon emission, see Fig.
B=yZ 7, can be analyzed in a similar way. The first-order FSR,
one-photon, matrix element is
is the annihilation scattering spinor matrix, including the
final-state spinors. We split the above expression into the M PK1
soft IR parts’ proportional to §+m) and the non-IR parts W Noy
proportional tok;. Employing the completeness relations of

=eQuu(pe o)) (Ky)

Eqg. (Al4) in the Appendix to those parts we obtain: % p0+m+klM{F}v(pd Ng)
2K1pe ’
M (pkl):_ eQe PuPa paklpa _ _'bd+m_k1
HH No 2kipa 5 NbPa - PaT1Na +leU(pCa)\c)M{F}Tlpd
, 6% PoK1Py [pbpa} X £ (K)v(Pg.Ng), (116
2k1py 5 [ Noo1pb] [ PpNal g
where
N eQe > %[pbkl} U KiK1Pa
Zklpa P )\bp [cd] P‘Tl}\a

a C a C
. eQe z v pbklkl B klpa ) Sz
2klpb P )\bo-lp P)\a [Cd] 1 1
(114 oo
b d b d

This kind of separation was already exploited in Hefl]. We
thank E. Richter-Wa for attracting our attention to this method. FIG. 7. FSR diagrams.
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a2 v B B pky )\ eQx
M =ie B:E%Z HEg"(X)(Ge ipa Gy, (117) r{F}(Mr X)_Tpcu[cll’]%[bal’d](x)

is the spinor matrix for annihilation scattering, including the eQ
initial spinors. Similarly, the expansion into soft and non-IR 2kp
parts for the FSR spin amplitudes is done in a way com-

pletely analogous to the ISR case: In the lowest order, the Born spin amplitud®sare defined
in Eq. (44), and we show explicitly as an argument the four-
M (p 1) {F}(k )%( )+r (pk1> momentumX that enters the propagator of teehannel ex-
HF} . {F} ’ change. Note that the formulas here differ by an overall sign
from those of Ref[3].

5t Bbact’](X) Vi1 14)

pckaky
Nco1p

pkl) eQy
r = U
{F}( 2k1p¢ 2

)\0'1 )

klpd}

[ba][ PNy First- and second-orde;

Now we employ the tree-levef)( ') variant of Eqs(95)

e [pckl} kiK1pg - .
- B vV , obtaining the following results:
2k1pd§ ball Nop || porihg g 9
pKy
Flhe—eQ Dy, (.P0) Byl P ,;%;}( b kl)_r{,}(A P kl)
. ! 2K1pc ! 2kipg
(118

) ) ) ) PKi | pky
For the purpose of the following discussion of the remain-  Bi{r Aoy’ P =MF oy’ P
ing non-IR terms, it is useful to introduce an even more
compact tensor notation: (Pt Pgtky)? B )%( P_X)
(pc'*'pd)2 N .
}Egg[ba][cd] , (122

(119

pskiK;

\ioi0;

PcPd
Acxd

PbPa
xbxa

=Usij ‘3[

The “context-dependent” reduced total momentui(the
etc. For the “primed” indices we understand contractions,total four-momentum in the resonance propagator, if prgsent
for instance is in the above definition uniquely defined As=P—k; in

the case of the ISR, and= P in the case of the FSR. In the
general context of the CEEX amplitude of Eq31)—(35),
that is in the presence of the additional “spectator” ISR
photons in a given termX is also defined quite unambigu-
(120 ously: X,, includes not onlyk; but also all additional ISR
_ _ _ momenta in the process. For the pseudoflux factor there is
Using the above notation, the compléfa') spin am-  some ambiguity, however. In the presence of the additional
plltude for the one- phOton IS‘RFSR Coming direCtly from Spectator” ISR photons |t can be def|ned e|ther a&d(
the Feynman diagrams, with the explicit split into IR and 1 p, —k,)2/(p,+pp)?2 or (pe+ pa+ ki) (pc+pg)2. We are

PaKi k

Naoio]

Uta,iinVii i = E o i\

J

non-IR parts, and ISR and FSR parts, reads free to choose either of them and we opted for the second
choice(it seems to lead to more stable MC weights
m(f)( pkl) fm(ﬁ)}( >(p k1)+9ﬁ(1?p}( pkl)(P) ~ The one-loop level()(a?) case of3{*) is quite interest-
Ao Aoy ing, because this is the first time that we deal with the non-

trivial case of the simultaneous emission of virtual and real

i P pk; photons. It is therefore instructive to write the formal defini-
=si)B| P~k Trly Pk tions of 3{?) following Egs.(96) and (95) in this particular
case:
Pk p 121
B +r{,:} )\0_1, ) ( ) .
m@ [P 'YX, | =1 exp[—aB,
Hol\ No
pky eQe
oy X = 50— Bp1rcaq(X)Up1r14)
)\0’ kaa R (2) pkl
- aAB4(Xw)]M o} ,Xw ’
eQ Noy 0(a?)
— — V111811 aca (X)
2kpy, - [PrH1 T acd w=1F, R=72Z, (123
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5 o [ Pk In the above expression the first term describes the already
/3(1{?}( P—k1> :fm(m)}( o 'P—kl) discussed tree-level single bremsstrahlung, the next two cor-
respond to the vertexlike diagrams in Fig. 8, and the last one
m ~m[P.5 represents the “5-box”-type diagrams in the third row of
5al(k1)f80 )\'P ki (124 Fig. 5. In the present version we temporarily omit from the
calculation the contribution t@{?) from the last, “5-box”
term, which looks as follows:

pky {F} A(l)(p
)\Ul,P)—sa (ko) 5V L3P

What is at present available from the Feynman diagrams?_ P Pk pk,
For the moment we have at our disposal the amplitudes cor—Bl{w}’Bm( Nop ) aQleSﬁl{w} BOX5( ,X)
responding to vertexlike diagrams in Fig. 8, and we miss
diagrams of the “5-box” type shown in the thirtbottom) o p PR p
row in Fig. 5. More precisely, after applying the IR virtual l]RBox()\’x) S}1] RBOX()\;X>'
subtraction of Eq(123 we expand in the number of loops,
keeping track of the initial- and final-state attachment of the (126)
virtual photon:

2 2
,3(1{)F}( P) =i

@) pkl_x (D) pkl N otk pky X As we see, the trivial IR part, which we remove, is propor-
Kol Ngy? ™)~ Ul A “Qe 1{0)} P\ Noy’ tional to the ordinary box contributions discussed before. We
expect the above to contribute in the integrated cross section

[1] pkl_x at most ofO(a?Lt), and in the resonance scattering it will
Yo} F?\ N oy’ be suppressed by an additiod&M factor.

Limiting ourselves to the pure “vertexlike” diagrams of
Fig. 8, for one real ISR4¢=1) photon we obtain from the
Feynman rules the foIIowing)(Qﬁaz) result:

R4 a4 1 f : I E : I 2 :
>—{ §—< % % FIG. 8. One-loop corrections
"z

+aQMm

p
+aQuQill, BOXS()\O_:L x). (129

o

c to single bremsstrahlung.

O
aSaad
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@) pk e The analogoui?(Qfaz) contribution for one real FSR
181{I} =rmly X |[1+80(s) (w=0) photon is
<2>e<s a1, B)IL+8GR(s)] pk pk
PVirt Virt :8(1%):}()\ X ) r{F}()\O;X)[1+ SUN ()1 +80i(s)
p ~~
+8| ;X st (k) pPe(s,a,
()\ )501( Dpvir (S, @, B) £/2|ZI(S o B )
(127) p F 2)f ~r 7
here +%B A,x)si, 'p{i(sa’ B

P :
RS 3B = 2 Q25 V(5@ B) + V(s B, e Rk o

+pgt+k)?
U N <+ s 1- PP
V(s,a,B)=In(@)In(1—B)+Li(a)— 5In*(1-a) (Pct Pa)
(130
21—+ 2 (=) (128  wh
In(1- S—————=—" where
2 YT 2 1r(1- )7
. ~ ~ a 1 ~ ~
and we use the Sudakov variables pvzlz{(s e ,8’)=;Q$ZLf[In(1—a”)+|n(1—ﬁ”)],
~ 2k ~ 2k
o= |pb, = |pa. (129) -
2paPp 2paPp ~, 2kpy ~, 2kpe ~, a
@ = : - T = A
Let us make a number of observations concerning(Ej?): 2PcPy 2PcPy I+a’™+p
The terms ofO(a?) like |s!p{2)|2 in the cross section, ~
although beyond?(a?), are not rejected, as would be the -~ B’
case in an ordinary(a?) calculation without exponentia- = m (131

tion. They are included in the process of numerical evalua-

tion of the differential cross sections out of spin amplitudes. )
(It is essential that they be IR finife. In the above FSR amplitudes we keep only the LL part,

The termr.. s contributes toO(a?L2) to the inte- averaged over the photon angles, much as in EEX. Th!s cor-
{1} Zvirt (aL) responds to the present status of our CEEX amplitudes

grated cross section: oné is explicit (from the virtual pho- . . . .
ton) and anothet.! is from the integration over the angle of |mplemented n Fhe!CIC MC version 4.13, and we expect this
to be improved in the future.

the real photon.
The term ~In(a)Iin(1—B) contributes a correction of

O(a?L?) to the integrated cross section, with the double F. Two real photons
logarithmL? resulting directly from the integration over the  In the O(a?), the contributions from two real photons are
angle of the real photon: completely at the tree level, without virtual correctigs
5 the futureO(a®) version we shall include the virtual correc-
K3 2)e T . 2 2 de - tions to the double bremsstrahlung in the LL approximdtion
0 ALovird (K){Boso} (K]~ fmz S_m(“) The double bremsstrahlung is considered in three separate

cases: two ISR photons, two FSR photons, and one ISR plus
S one FSR photon. The corresponding spin amplitudes will be
Nanz In2—. given without any approximation, in particular we do not use
e
a 1 a 1 a c

The other terms nﬁ(ﬁ,)} contribute at mosO(«?L?).

The FSR virtual corrections are included multiplicatively
through the factof 1+ 5{}){(s)] and are not included addi-
tively like [1+ 8()%(s)+ 8)f(s)]. This is our deliberate
choice.

The subleading term(1—a)/[1+ (1—a)?] has in fact a
more complicated spin structure than that of the Born ampli-
tude (it should be restored in the futyreThe unpolarized
integrated cross section is however correcOifu?L1). FIG. 9. Feynman diagrams of the ISR double bremsstrahlung.

b 2 b 2
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the small-mass approximation; /\/s<1. The main problems to be solved will i@ to write all spin amplitudes in a form
that will be easy for numerical evaluation, that is in terms oftthendV matrices(b) to extract the3, functions by removing
IR-singular parts.

1. Two real ISR photons
The second-order, two-photon, ISR matrix element from the Feynman rules, see Fig. 9, reads as follows:

PaPpkikz . ) —
MG A:Abalgz:P—kl—kz)=|e28=2ﬂ TE"(P—ky—ka)(GP,)cay(€Qe) 2w (Py Ap)
(Ppatm)—K,— (patm)—k
x| GE,— - £ (k) 2E (ko)
2Ky pa— 2k2pa+2k1k2 1 2kypa 2
m) + k —pPp+m)+k,+k
+é*(1) —ppt+m) 1é§(k2) (—pPptm)+ Kk +K; B
— 2Ky pp 22 =2k pp— 2Kopp t+ 2K Ko
(—Pptm)+k; (Ppatm)—Kk;,
* B *
+£5,(ky) ~2keps er —2kopa €q,(K2) +(1=2) 1u(pa.ha). (132

We shall use Eq(95), which in this case reads

- pkik, pkik, - pky
BS) -P—kl—k2)=9ﬁ§%.’|}( P—ki—ke| =B ) i Pk sl (ko)

20\ N gy0y Noyoy N
- B P2 bk kg — BO| PP —ky—kp | sl (ky)sl (k) (133
{1} )\0.2’ 1 2 oy 1 0 A’ 1 2 oy 1 o, 2).

We shall proceed similarly to the way we used in the one-photon case, isolating from the above expression the group of terms
containing two factors of f+m), then the group containing a single factor gf+m), and finally the rest. Such a split
represents almost exactly the split in EO) into a contribution with twas factors(the double IR singularity with a single
s factor (the single IR singularity and the IR-finite remnarfﬁ(zz), which is our primary goal. In other words, we decompose
9)?(2%,),} into several terms or parts, as described above, and we apply the IR subtraction(b8&derm by term.

Let us first discuss the doubly IR-singular part proportional to two factorgefr(). To simplify maximally the discus-
sion, let us neglect for the momenk &, in the propagator. Using the completeness relations of £4¥) and the diagonality
property of Eq.(A21) in the Appendix, we can factorize the soft factors exactly and completely:

— (pa L (pa+ * ( pb ( pb B
(eQo)?v(pp A b)[ eﬂm €q (K)—p—— 2k2p (kz) + £, (kl)—b (Z)MG&M

(—ppt+m) (Patm)
x B
(k) 2k1pp Ce 2kaPa

£ (k) +(12) {U(Pa \a)

B bal(klipa) boz(k21pa) b(rl(klipb) ba'z(k21pb) bal(kl!pb) baz(k27pa)
=(Gg )ibay(€Qe)? + - +(12)
’ 2K1Ppat2Kapa  2KzPa 2kipp  2Kipp+2kapp 2k1pp 2Kpa
=(Gg ) pasy) (kpshl(ky), (134
where the identity
1 1 1 1 1 1
(139

2l(lpzf"ZI(ZF)a Zklpa I 2klpa+2k2pa 2k2pa a 2klpa Zkzpa

was instrumental.
If we restore the termsi2k, in the propagator, the corresponding analog of @§4), M 2{",‘,’?'6 'R leads to
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2{ll'} No105

B(2)Double{ pkika

2{11} Noi0, =

Double IF{ pkiky

—s{'}<k1>s{'}<k2>93[ ﬂ

p
- ol sefian |

(136)
b(r (kl !pa)
s (ki) =s{}) = _eQelZKT’
1Ma
ba (kl !pb)
84 (ki) =s{y) = +eQ912kT’
I

sh (k) =s{i + {7 =53 (k) +5P(ky),

PHYSICAL REVIEW D 63 113009

Ao CkapitZiopr
T 2kyps+ 2k, ps + 2K Ky

B + 2k ks,
 2kyps+ 2kyps ¥ 2Keky

f=a,b,c,d,

and the upper sign should be taken fora,b. Obviously,

B?)Powleis |R finite because of tha factor. In the above
we have introduced a more compact notation for ¢Hac-
tors. In addition, from now on we shall use the following
shorthand notation

r|f=2ki-pf, r”:Zklk f=a,b,C,d,

J H
(137)

The next class of terms that we are going to consider
carefully is the one in which we sum terms with a single
(p+m); more precisely, let us include terms that may lead to
a single IR singularity(if k;<<k, or k,<k,), that is, with
(p+m) next to a spinor, at the end of the fermion line:

single iR PKiK2 | Y B — B —kyi—k; (Iba
MR F{)\alaz =ie’ :zz 15" (X)(GF ) eq (€Qe)*v (Pp , Np) Ge,ﬂm (K1) £, (ko)
* (_pb+m) * +k2 B * \(_pb_l— B _V(
+ &5, (ky) . é‘TZ(kZ)—rlb—r2b+rlzGe'“+é"1(k“ ; Geﬂ_r o,(k2)
* (p *
+é5 (k)= rl Gs, _ar é (kz)+(1<—>2)] U(Pa,Na)- (138

ingle IR ;

Using the compact notation, already introduced wirejtalculating the single bremsstrahlung, we expm%”} ina
form that will make numerical evaluation easy, that is in term&/aindV matrices:

(b) Vib221B[27 ajred T Vb211B11 a)[ cd]

MSingIem( pklk2)_e ~Bp1red Y 1a)~ Biv2rired Y2/ 1a] () 4
2010} e

Noi0os —l1a—Toatr

U224

b
— @Qe5{1]Bio2jca —

On the other hand, the single-IR part to be eliminated is

B LB D
Bimnpsiat Biny2istn = 115t21 + T {21901)

=| eQeDBb1r)[cq]

Altogether we get

eQ.—

3[2 Q —l1a=T2at T2
V[bl

%[1/a][cd5[2]+(1H2) (139
Ui Vibir
179 _eQ, [ ]%[1,a][cd s+ (12). (140
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pkikz i pkika | - -
nglg}le( ) =M 2??}'(9 IR( ,3(11()1)[1 ,3 [2]5[1}

)\0'10'2 )\0'10'2

U[Z’la]

Vipou
[b21']
Tt Bi1rajlcd

— (a) (b)
=—QeBb2/[cd = 21+ €Qes(y) S

U114 B U[l’la]) @

—eQe‘B[blf][cd]( — S[2]

Fia—roatro —Tlia

Vib22'] ~ Vibazy

(b)
+e Bio: +(1<2). 141)
Qesfa) —la=Toatrls I ) 2" aea ) (

It is rather straightforward to see that the above is IR finite.

Finally, we have to include all of the remaining terms from E4), which have not yet been includedm{”}. They are
IR finite (in the case of only soft-photon enejggnd they read

Rest| PKika | ., ) B 7 B (Patm)—k;—k; o —K .
BZ{..}(MNZ =le B:E%Z "Gy, )ea(€Qe)™v (Po Mo) | Ge, ™= —— o (K =~ 5, (ko)
Kkq (= pPpt+m)+Kk;+Kk,
* * B
+é“1(k1)—r éaz(kZ) —lip—laptrae Ce
+E5 (kl) GB 2 éj;z(kz)+(1<—>2)]u(pa,)\a). (142

Using tensor notation in the fermion helicity indices, the above can be expressed in term&)cdnib® matrices as follows:

pRest pkik, :(eQ)Z%wa'][cd]u[aqz']_‘B[bl'][cd]U[lflzr]_%[bzf][cd]u[zrlzr] —Ul2r2gq)
2\ Noyo, ¢ —l1a=loatrlo —I2a
(e )ZV[bw] ~ V012011 B1br ajred T Vir2r1Br1rajred) H Virr221 B2 ajrcd
M T —Tp—Toptro
U
b11’ 2'2
+(eQe)*— [ lo By 2’][cd]%+(1 —=2). (143
The total ISRBZ{”} is the sum of the three,
; Pkik, _ 7Doubl Pkikz ~Singl Pkaka ~Rrest| Pkikz
BZ{II}()\Ulaz)—ﬁz{u} No0 + B2, No oy + B2y Noyoy) (144

2. Two-real FSR photons

The case of final-state double real photon emission can be analyzed in a similar way. The second-order FSR, two-photon,
matrix element is

ki k (Pe+m)+k (pe+m)+ky+k
(2) PKiK2 —ia2 wv 2 * c 1 % [ 1 2 B
2{FF}()\0.10. ) ie E HE"(P)(G )[ba(le) u(pc,A ){ (17 2k.p, (212K pet 2Kopc+ 2K K
(—pgtm)—Kk— (—pgtm)—k;
Gf” [1] (2]
Zklpd+2k2pd+2k1k2 2k2pd
(Bct+m)+Ky (—pgtm)—K;
* B
+ [1] 2K1pe Gf,v 2K,Pg [2] +(1-2) v(Pg,Ng)- (145

Similarly, the expansion into soft and non-IR parts for the FSR spin amplitudes is done in a way completely analogous to the
ISR case. The subtraction formula is now
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- pkika pkika
Bé%%F}(MlUZ:P)=£m‘2?FF}(MlU B[ 2P sk~ B | O 2P s k- B 5P sl (k)slF o).
(146
First we obtain the contribution from terms with twp{ m) factors:
. K,k pkik (Pt Pyt Ky t+Ky)?
(2)Doubld PK1K2 | pouble | K2 m cTPdTR1T K2
Birry E{)\Ulaz =Mrr) F‘{)\Ulgz S1115(2{ Biba[cd] (Pt Pa)?
PoPa [ (Pet Patkitky)?
= (A 599+ A g5 Bppayieq — st 551 B [ } ~1]; 14
(Acsaysiay + Aasaystz)) Broared 511512 Br \ \ || ™ (¥ py)? (147)

by, (ki Pc)

s (ki) =sff) =+eQ

ic

(d)(k) 5(d)—_eQ bU-i(ki ’pd)

O | —

lid

{F}(k )= 5(C)(k )+5(d)(k )E Ed])

which is explicitly IR finite. The second group of terms with only onfe(m) factor at the end of the fermion line is

single IR PK1K2 2 v (Pt m) Kyt Ky B
Mzir::glzf %)\0_10_2)_ e 2 g (X)(Ge,u)[ba(le) U(pca c)[ SN Ecz]rlc+r2c+r12 f,v

B —ki—ky , (—pgtm) L (pc+m)GB —k;
f'Vr1d+r2d+r12 [ 1y (21771 ryge Ly

(2]

+é[1] GB % F2]+(1<_>2)]U(pda7\d)u (148

and it translates, in the matrix notatigim the fermion spin indices into

k. k Ui Upc22g -V
single IR PK1Kz2 ) (©) [c21] (© [c22'] [1'1d]  (4)
=e — q+e = e — 5
MR R()\olo-z) Qrs(1] rlc+r2c+r12%[ba][l a1+ eQxs Lty Bibay2d) T €QBibajcr Mt Toat I S[2]
V[2 "1d] —Vio
_ [1d (d) [2'2d]
+eQBpac2r T gt Toat I [2]+le5[1 Bibajc2'] g

[c11’]
+le %[ba][lrd]s ]+(1<—>2)

(149
On the other hand, the single-IR part to be eliminated is
Biywst] + BLdyisty] = fifsfs] + ridfs{t]
Urerr V
[c11] [171d]
=| +eQcBpa1a) rcl —eQe Mg %[ba][cr 5%2]}
Cc
(Pt Patky)?
+(1<_>2)_%[ba][cd] E:pc'i'—pd)z_l 5%]’?]5%2':]4‘(1(—72). (150

Altogether we get
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pkik, i pkik, - pky A pky
| DAk | g Pl ) | Pl el gy Pl e

Nojo Noq0, ot Noy

ka
g2

ky
g1

Ureoor Uicoor Uiy
- (c) [c22']  Y[c22'] , [c21'] ,
les[l][ Factlictriz  Tac )‘B[ba][z ar rzcﬂLrchfrlz%[ba][l d]]
_V ’ —V ’ —V ’
[171d] [171d] [271d] (d)
+e % ’ — % Ty
Qr) Bibayrc1 F 1t Taat 1 1 PR L L ]] 2]
(pC+ pd+kl)2 E E
*Bivatea| ~(prp? L sfislh]+(1-2). (151)

Finally we include the remaining terms in Ed.45),

([bc"r m)+k1+ kz
Fictroctra

Rest ( pkiky

— k
—in2 v B 2 1
MR )\0_10_2)—|e B;/,Z HE"(X)(Ge, ) ey (€Qy) u(pr)\c)[ Fl]rlc Ecz]

f,v
B( Patm) —ki—ky , —Kz Ky I'(2

+ Gy + £ G Y +(1—=2 Ag)s 152
Mgt og+ 1 (17, [2] (1]} s [2] +( ) (v (Pd,Aq) (

which in the programmable matrix notation looks as follows:

pkik, pkikz
Bs{elzslt:}( 2) =M 2R{erlt:}(

Noqo No10,

Uic1ry Uparae1Brvayrerd) T Y211 Bibayiarap + Y221 Bibayrz o)

=(eQ)?
lic Mctroctra
(eO )2_ Bibayred)Via 127~ Bibayrer1 V121~ Bivaycz' Viz 12 — Vizrad)
f Fgtrogtra I'2d
[cll’] —V[2r2q]
+(eQ)? sB[ba[lfzf] +(1<2). (153

The total contribution from the double FSR real photon emission is

~ pkik, - pkik, pkik, pkik,
Baer L | pou] PI%e | ponel PIIG | e | Phik | (159

Nojo No103

3. One-real ISR and one-real FSR photon

As we have seen in the previous cases of the double-real emission, most of the complications are due to the simultaneous
emission from one fermion “leg.” The case of one-real ISR and one-real FSR photon is easier, because there is at most one
photon on one leg:

(2) papbpcpdklkz

D_ —in2 e T
MZ{IF} )\a)\b)\c)\dglaz'P kl) e B;y,z HE"(P—k1)eQev(Pp,Ap)

B ¢a+m_k1 % % _¢b+m+k1

5 _
X Ge,ﬂTlpa it [1]TMGe,M)U(Da.Ra)leU(pC.7\c)

B _pd+m_k2 * * bc+m+k2

B
X Gf,szpd 21t [Z]szcef,v)v(pd-)\d) (155

and the subtraction formula is now
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- pkika pkik 2.
T R LT [ e Y e P T

B&?F}( Ple kl) sW(ky) - B“”( Pk st (ks (ko). (156

The simplicity of this contribution is manifest in the fact tlfbgt{,F} is obtained by the simple subtractiGmmission of all
terms proportional to one or twg)(-m) factors

- pkiky ), v — ki Ky 3
ﬁz{lF}()\Ulgz,X)—le B;;,z I15"(X)eQw (P . \p)| Gg , . iy —— G
-k, Kk,
XU(Pa.Na)eQuu(Pg . N) ny 2] 5[2] ny v(Pd,Ng)- (157
In the computation-friendly matrix notation it reads
" pkika | ., v —Up1r1a) - Vb1, g
Bz{lp}( P X) ie E I5"(X)eQeeQy (Geﬂ) G R + o (Ge Wp1ra
-V U
2r2g  Yie2z)
x| (GF,)car ; (Gf V)[zfd])
2d M2c
_U ’ _V !
(171a] — V[2/2d]
=eQele<%[b1'][c2'](X) — 2
la I'2q
U — Uy V — Vo Vip1111 Ureoor
[ 22'] [1'1a] b11] (2r2d] | Vb1 Upezo
+—= %[bl’ [2d)(X)—— . %[1' ajre21(X) +— : Biirazd(X) |-
MNa I'2d b Toc
(158
|
IV. RELATIONS BETWEEN CEEX AND EEX B. Neglecting IFI

Having shown the CEEX and EEX schemes in detail, we The second important case we would like to discuss is the
would like to compare certain important and interesting feacase of the very narrow resonances, when the<dIEBR
tures of both schemes in more detail. In particular we wouldnterference contribution to any physical observable is so
like to show how the two examples of the EEX scheme carsmall that it can be altogether neglected. This corresponds to
be obtained as a I|m|t|ng case of the CEEX, and to show thé& well-defined limit in the CEEX scheme. In this limit, in the

0
exact relation between th&s of the EEX and the's of the ~ Simplest case of thé(a”) exponentiation we have
CEEX. From these considerations it will be clear that the

CEEX scheme is more general than the EEX scheme. | M O)2= 2 2 exd aB4(X,)]
eP p'eP
A. Neglecting partition dependence p p *
* . .
Let us first examine the interesting limit of the CEEX in X exf aBa(X,/)] ‘B()\,Xp)%()\,xp/)
which we drop the dependence on the partition index . .
— P, whereP=p,+py,, for example. Note that it is not in T s“'T] {07}
the EEX class. In this limit, in the simplest case of thgx°) ] %1l =1 %]
exponentiation, we have
X N =exX{ 2aRB;(Pa,Py) JeXH 2aRB,(pc,Pa) ]
p )
2 eaB4(X) ( ,X )H 5{@} 2N
ver Al x 3 ( ) I1 1531 (160
peP

n
:>e“B4%( )H 5[,']}+5H:]}) (159

What we did in the above transition is to neglect the ISR
because of the identit{78). Note that in the above transition ® FSR interferences entirely, by dropping the nondiagonal
we keep the ISR FSR interference contribution. termsgp #p’ in the double sum over partitions, and to re-
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place the resonance-type form factor by the sum of the traareunnecessarilyruncated, which probably worsens the per-

ditional YFS form factors for the ISR and the F$Rv inter-  turbative convergence of the EEX/YFS scheme in compari-
ference. In this way we have th@(a®)gex, which at this  son with that of the CEEX. The above formula shows in a
order is identical ta?(a®) ceex. At O(a’)cgex, F=1,2, in most clear and clean way the difference between the EEX
order to get fromO(a")ceex to O(a')gex, We have in ad- and CEEX exponentiation schemes.

dition to truncate thqé’s down to B’s, as will be shown in

the next subsection. , _ V. SEMIANALYTICAL APPROACH
TheO(a")gex, r=1,2, neglecting the ISRFSR interfer-
ences was used in thes2/3[7,9] of KORALZ [10] and it is This section is devoted to the so-called semianalytical cal-

well justified close to th& resonance position at LEP1; see culations. Their role in this work is to reproduce and/or
also the relevant numerical results in the next section. Agross-check our Monte Carlo numerical results for the inte-
LEP2 the above approximation can no longer be justified. grated cross sections and asymmetries. In the following in-
. A troduction we characterize briefly the well-known features of

C. Relation among g's for EEX and g’s of CEEX semianalytical methods. In the main part of this section we

For the sake of completeness of the discussion, it is necderive unpublished semianalytical formulas mainly within

R 2 ; 3 ;
essary to find out the relation between s defined at the O(a )Pf.ag’ and occasmnal_ly up Fm(a Jprag - l\_lumerlcal

) st ) comparisons of these semianalytical results with the Monte
amplitude level and the older EEX/YF8's defined at the

. L . Carlo results will be presented either immediately or in the
level of the differential distributions. Let us suppress all SPiNfollowing sections.

. . . . 2
|nd|cef, understanding that for every term like -|* or In the semianalytical approach an integration over the
R[AB*] the appropriate spin sum or average is done. Th‘?)hase-space is done analytically, leaving the last one- or

traditional 8’s of the YFS scheme at th@(a?) level are two-dimensional integrations for numerical treatmémsu-
— 02 ally non-Monte-Carlp. Well-known examples of semiana-
Bo’ =My, 1=0,1,2, lytical programs areFITTER and TOPAZO [5,41]. Semiana-
lytical programs are generally faster in terms of computer
(k)= |9)?(1')(k)|(2a|+1)—Eg)ls(k)lz, |=0,1, CPU time than MC programs and are therefore better suited

(161  for fitting the standard model to experimental d&t&emi-
analytical calculations have also important disadvanta@es:

B(Ky k) = MMP(Kky ko) 12— B (k) |s(Ky)|2 they are able to provide predictions only for quite primitive
or absent experimental cutoffs, in practice they are always
_E(ll)(kz)|5(kl)|2 used in combination with the MC event generatdls;they
are rather complicated beyond the three-body final state, that
— BOs(ky)|?s(kp)|2, is they are limited practically tad(«') calculations(the
single photon emission in the fermion pair produciion
where the subscrig,r) means a truncation t@(a'). Now In the testing of the Monte Carlo programs semianalytical
for eachon{"*" we substitute its expansion in terms @%  calculations carn(@ check the technical/numerical correct-
according to Eq(58), getting the following relation: ness of the phase-space integratitm,check the correctness
of the implementation of the SM matrix element, at@l
Eg)=|lgg)|(2al), 1=0,1,2, give an estimate of some unaccounted higher orders. In the
following we shall illustrate all possible examples of such
E(ll)(k): IZSS')(k)|2+29‘%[238){23(1')(k)}*](an+1), 1=0,1, tests. In particular, we shall see the test of the technical pre-

(162 cision of the KK MC at the 2<10 * level, based on the
semianalytical formula obtained in this section.

E(zz)(klvkz):|Z3(22)(k11k2)|2+zm[,égl)(klﬁ(kz) The role of semianalytical calculations as a test of the
~ (1) . ~2) Monte Carlo programs is seriously limited in the following
X{B1 (ka)s(ky)} ™ ]+ 2R B57(ky ko) sense: a numerical problem may show up not for the simple

~(1) ~(1) kinematical cuts accessible for the semianalytical code, but
X 1B (ky)s(kz) B (Kp)s(ky) rather for a more realistic/complicated event selection. The
~(0) * ultimate tesiof the MC calculation is always the comparison
+ ky)s(k . ) ;
Br s(ky)s(ka)}"] of two independent MC programs, because it can be done for
H 9
As we see, the relation is not completely trivial: there are@rbitrary cutoffs.? One may argue that the two-MC test costs

some extra terms on the rhs, which are all IR finite. From the
above exercise it is obvious thats are generally more com-

plicated objects than thB’s and that, for example, the in- 8t js definitely possible to fit SM parameters to experimental data
lUSi f 1h in d it i f, i int ' s with the help of the Monte Carlo event generators, as it is currently
clusion of the spin density matrix formalism into tigs 0?one in the measurements of ti\épair process in LEP2.

would be quite a nontrivial exercise—the great advantage of 1915 king of test was for instance done for the first modern
the CEEX scheme is that this is done numerically. It is alsqy(41) Monte Carlo event generatarusTrAAL of Refs. [16,17]
seen that in the8, and 8, some higher-order virtual terms with the very high precision at that time of 1%.
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too much work to realize in practice. However, our past ex- exp(—Cvy) . .
perience shows that at the subpermille precision level the =F(1—+7)7’V7 =F(y)yV" 7,
amount of work required to obtain the semianalytical formu-

las and to test the corresponding code is probably the same C=0.5772156... .

as the amount of work necessary in the development of an- . )
other Monte Carlo code. The above remark does not contral/® Propose tg 'Pd“dﬁ hard pho_tor}s in the game, and from
dict the fact that the semianalytical calculations will alwaysr}%"; on W? 'ehlt?e t ed YFS ”:ﬁ usive Itexfpt(;ne?tiatlt?n
be very useful, especially when the precision requirement i§ EX) in @ straightforward way as the result of tamalytica
not excessive and when the observables do not involve co _ha§e-space Integration of the distributions of the YFS ex-

: . clusive exponentiation:
plicated experimental cuts.

YFES inclusive exponentiation

. - = Analytical integration of YFS multiphoton integrals.
A. Inclusive exponentiation: IEX

We do not need any “recipes” for IEX at higher orders, and
what we only need to know is how to integrdnalytically

the phase-space.

One may argue, however, that with the above definition of
X we are replacing one difficult problem by another one
that is even more difficult—the analytical integration ower

real photon phase-space. We shall see in the present section
that this approach can really work in practice. Our methods

a ratherad hocway, such that the soft limitno hard pho- of the analytical evaluation of the phase-space integrals will

tons agrees with the result of the Yennie, Frautschi anJO!IOW the f(_)llovying general rule: in spite of the use of cer-
Suura(8] ' ' tain approximations, all of our approximate methods will be

The well-known examples of thad hocexponentiation alwaysexactin the soft-photon limit. The soft-photon part
are presented in Ref842,43 and later in Ref[44] for the will be integrated exactly and only the remaining noninfrared
initial-state bremsstrahlu’ng @ e~ annihilation; it was also (non-IR) contribution will be calculated using approximate

practiced in many QED calculations for the deep inelastiCmEthOdS' typically the I_eadi_ng-lqgarithmic collinear approxi-
and Bhabha scattering processes. With some effortathe mation. The LL approximations in n(_)n-IRr%ahrts may concemn
hocexponentiation procedure may be improved gradually b)POth the phase.-space and_the matrix elerment. .

taking into account missing higher-order effects. For ex- In the following subsections we shall show explicitly the

analytical integrations leading to ﬂ(’é(az)prag IEX results.
?)r?slzt)a,irt}hg(gf(.cles?rgrc]gdlgzgr ?ngg;lzi]n vlgaesf. f:ﬁngi(\j,\,_to We shall compare the Monte Carlo with the EEX matrix

i 2
ever, the upgrade to higher orders is rather an art than Iﬁmeg_:cfand the Ililxbfor[]nulas, both 'rPI U o gpfag C'?‘SS-
science, i.e., thad hocapproach is not systematic—it has to eir difference will be then necesszarl y O .)Pfag’ €.,
be “reinvented” again and again for each perturbative ordetP to a factor of 10 .smaller thafi(o )PraQ_qu'te a strong
and for each inclusive observaBife. test of both calculations. On one occasion, we shall go to a

The important practical question is therefore the follow- L?f?;?egltrfelcllajgtvlveeveer: %fetrsﬂeg éﬁ d) Téaﬁ'is":)fv(vﬂg(%se the
o . C prag-
ing: Is there any better and more systematic way of reformu Finally, let us note that the set of IEX formulas presented

lating the ad hoc exponentiation, such that it applies to @Min this section was used over many years as a basic, albeit
inclusive distribution at any perturbative ordef?would be vy '

also desirable to have a direct connection to the exclusivggﬁig/sréi’ [St)elsé] Ofroth;rﬁée%sr:?nse?f “trr:’?efj [e7>]<a;n?es
YFS exponentiation of the EEX or CEEX type, both of -:J Prog ' y very P

which are discussed and implemented in this work. The ob9f the IEX results were already shovwithout derivation

ious int as o wich diecton 0 go n s the folowing KIS Mool e Fenile b awehene
well-known fact: when all photons are soft, the following P P ’

; ; ) -~ the analogous set of IEX results was obtained and published
f ex gar(;tlair;a;)\//tgi:laalbf%gula for the multiphoton phase-space in for the t-channel-dominated Bhabha procd4s]. In fact
' Ref.[13] describes a case of the IEX at t@éoﬂ)prag that is

The meaning of “exponentiation” in the literature is
strongly context dependent. Following the unpublished pre
sentation of Ref[4] we call an “ad hocexponentiation” the
exponentiation of the typical semianalytical approach. Th%E
essence of thad hocexponentiation is to take as a starting
point an analytical result for a certain one- or two-
dimensionalinclusive distribution from a QED finite-order
calculation,O(a) or O(a?), and to “improve” this result in

> oq0n d3k even more sophisticated than t@(az)prag example pre-
f(y,V)=expylne) >, _IH — sented here. With the experience of Rdf3] it would defi-
i=0 N1 Jig>2082 Ki nitely be possible to do af(a>) 554 IEX calculation for our
1 n s-channel process, both for the ISR and the FSR.
XS(pl;pz;ki)é(V—g(pl-i- pz)'(zl ki))

2l et us note that the LL evaluation of the phase-space integral
was already employed to some extent in the original YFS W8tk
20For instance it is still not known how to do inclusive exponen- At that time, because of the lack of fast computers, it was the only
tiation for the acollinearity distribution. accessible method.
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B. Semianalytical formulas for ISR where the essential multiphoton integral

We shall start the construction of IEX expressions with " 3 3
the ISR case, first showing the basic techniques in working (0)=exy Ins)z i d°q; d°q; f
out the example with thé&(«®) EEX matrix element. In this Polt YRS e nr) g0 gl s .
case the multiphoton differential distribution is just the Born
cross section times the real-soft factors. While for the other Xﬁé K)S =S K 2
IEX formulas the phase-space will be integrated basically in k? (ki) P17 P2 ~
the O(az)p,ag, we shall make more effort in the case of the
O(a®)gex and do it in theO(a?)prag, @S it is done in Ref. (167)
[13]. Let us call the attention of the reader to the fact that we . . . .
have the matrix element in the(a®) ey and the phase- is the main object of our interest. Note that we have split

. S Y,(e)=vyIne+ s
space integration is in th€(a?),..q Of the O(a®)prag. ! i . .
There is no contradiction in this, as we shall see in the fol- In this simplified case, the QE.D matrix e'e”.‘e”‘ IS totally
lowing. absent beyond the soft photon integral. The inclusive YFS

exponentiation, as defined above, amounts to calculating

analytically the multiphoton phase-space integral dgfv).

5 ) o As explained above, we shall do it in tlaé(az)prag, but we
The completeO(a”)prag Calculation/exponentiation ac- shall keep the proper soft limit undestroyed. Let us note first

cording to the rules laid down at the beginning of this sectionat in the soft limitv—0 the functionpg(v) coincides with

will be rather involved; let us therefore illustrate our calcu-ne soft integral of Eq(163), i.e., p(v)— f(y,v). Since the

lational methods with the simplest possible example. Evennost singular part in this limit is known, we isolate it and we

this simple example features some non—tr|V|aI. technical feaexpect the@(az)prag result to be in the form

tures and we shall therefore present two versions of the cal-

culation. _ _ . po(0)=f(v,0)[1+vyf1(0)], (168
The basic example discussed in the following is the

O(a®) initial-state YFS inclusive exponentiation. In the wheref,(v) is nonsingular. How does one find the function
master equatiofd) we set the charge of the final fermion to ()7 Let us inspect the difference

zero,Q¢=0, and we replace the sum Efs with the O(a°)

1
1-v——
S

1. Baseline high-precision results fo©(a¥)gex

version of 3, that is proportional to the Born differential do(v)=p(v)—f(y,v)
cross section: 1 f d3k1“3 . fdskz“s .
oBom _ﬁ ktl) 1(Kp) k(2) 1 ( 2)

BEA1.92)= 5 g~ (A1+a2)%, ),

X|6|1-v——=| p1+p2— k-)
Be=[1-4ml(q;+ ;)] s|T
(163 n
N >k 169
where the normalization is such that olv g(pl+pz)‘ = (169
d3g; d*q, ; . . . . .
f — —05(4)(X—q1—q2)ﬁgo)(ql,q2) This neV\l/ o_bject has rather interesting propertlles. First 'of' all,
q: 0z the O(«™) integrals cancel exactly and the first nontrivial
B 2 integral is of O(a?). This second-order integral is not, how-
=91+ 0A2)%). (164 ever, IR divergent. According to our general rules we are

therefore allowed, without any danger of spoiling the soft
limit, to calculate it in the LL approximation.
o 3 3. n 3 Let us now present our first of two methods of calculating
1 (d°g, d°q d>k; L .
0022 _f _01_02 11 _0'~5|(ki) po(v). In the LL approximation we replace the collinear
—on') gy d; i Ki singularities in the photon angi,=0,m by &-like peaks

The initial-state®(a®) YFS formula reads

1 3.
X0 k?—isJé)a«l) p1+p2—q1—q2—; kj> f %él(ki)
xexfg Y, (£)182((a1+q2)2, 9o). (165

o JldXiJl d Si2 JZﬂ'dd)
=572 ~ G222 i
Integration over the final-state fermion two-body phase- 2mJo Xi J-1 (1= Beci) o
space is done trivially, leading to

1 1
(170

(.
_ ! Bor - ()X_i G
7= | dvo™s(1-v)lextt sy dpo(v), (168
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where n
P=p;+p,, K'=2 k', K =X k.
Be=(1—4m?/s)}?  c;=cosh;, s=sing;, i=1,2, Loz =1 =
and using the above LL substitution we get The above sum of integrals factorizes into two sums. Each of

the sums can be evaluated exactly, leading to the following
simple convolution

d d
do(v) _nm—f le ﬁ[a(v (1) (1~ %))

e—0

— S(v—X1—%)]. 171 f(y,v)=fdv+dv5(v—v—v+)f(%,v+)f(%,v).
(174
Two immediate remarks are in order: out of the four terms in
the product [&(ci—1)+6(ci+1)][o(c2—1)8(c.+1)]  This identity holds for the integration result anyway, but we
only two contribute, those with two anticollinear photons have also obtained it through the direct phase-space integra-
c;=1c,=—1, andc;=—1c,=1. The result of the inte- tjon. So far all calculations were exact and we only reorga-
gration depends critically on careful regularization and fornjzed the phase-space integration, which will be useful in the

this reason we explicitly keep the IR regulator. A quick next step. Let us consider thi(v) difference again
careless calculation gives a zero value for the integral. A

very similar phenomenon is present in the calculation of 1" a3t
f(y,v), where a naive calculation up to second order gives  d,(v)=expyIn 8)2 B — f —
the v”~ 1 factor only. The remainingr(y)=1—(mw?/12)y? v Nhnrti=t Jasar k
+ ... factor comes from careful consideration of tk&
> g/s/2 condition for two photons. With our proper regular- X'él(k#)(a( KT0— g \/E)
ization we obtain ! : 2
n’ 31, —
i Jy s 0] -e ]
= — 7 X —L3 ki )© =
do(v) = — (172 11 <t O (k) —e\/5
which is finite in thev—0 limit, ols v_1+_(P_K+_K_)2)
S

Now we present the second calculational method, which
will often be employed in the following. In this variant we
take into account the influence of additional soft photns
addition to the two hard ongsThey do not change the
second-order result, but provide the proper IR regulation by
replacing the formee regulator. The LL treatment of the As before, the whole integral is finite in the—0 limit and
phase-space will be a little different. Starting from Eb63) it gets the first nonzero contribution in the second order.
we split (in the CMS framé the photon integration into its From the previous exercises we know that the essential

175

oo 2P (K +K"
- (v—gP-(K +K )) :

forward and backward hemisphere parts: second-order LL contribution comes from two anticollinear
photons—this is why we divided the photon phase-space into
d3k d3k d3k two hemispheres. Now, the LL approximation is realized by
f KO~ LM/QWJF L<w/2W substituting in the firs®
and after changing the summation order we get K*=#=(K*9,0,0~£|K*9)).
1 1 Note that, contrary to the previous calculation, we did not
f(y.v)=exp(yine)> oo modify the'S factors, we did not introduce collinea’s in
"o n the photon angular distribution, and we kept an infinite num-
n 3 ber of photons. In spite of the apparent increase of the com-
x| J S|(k+)@< k;° plication level, the integral reduces to a nice form
=1 Jg>mrz kO

f(y,v)=fdv,dv_[S(v—v_—v,+tviv_)

S| 3K ( i
_8\/;>j]:'[1 J0<‘n’/2k Osl(k )0 J —o6(v—v_— v+)]f( U4 f(%,v),

—s\/g)a(v P (K +K" )) 173 (176

which is calculable analytically. Neglecting terré% y°) we
where obtain

U’)l\)
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dlo)— ex(—Cy) 1 (1 17 SRR O ]
o0)= " F(Lay) W gyind-e). 77 010 F -
Note that since in the present variant of the calculation we : _(2) 0% _(2)
have treated the soft photons in a more friendly way, we 0,1 0,F ]
recovered the proper soft factdéfy,v) as a factor in the 005 - 7
solution. ]
Summarizing, the(’)(az)prag phase-space integration re-
sult is . ]
000 e e N .
expl— 1 1 ’ ]
po(v)= myv’ 1——3"”(1 v)|, (178 ]
and the corresponding cross section reads 005 3 E
exp—Cy) |
(Umax) = €Xp(6 s)— v s(1-v)] i
: ST (14y) —010F .
1 Cov v vv vy | NI Lev e by v
Xyp? Y 1= 77 In(1— v)) (179 .25 50 75 1.00

The above integration methods provide us with the FIG. 10. The comparison between theC MC and the

) O(a? )prag |IEX formula of Eq.(181) for the constant Born cross
O(a .)pfa.g phase _SpaC? integration result for any of mﬁ section(200 GeV. The difference between thék MC in the EEX
contributions as listed in Eq9). For example, the contribu-

mode and the semianalytical formula divided by the Born cross

; 2
tion from ) reads section is plotted with a dotted line, as a function of the, cutoff
on the total energy of all of the ISR and FSR photons. We also
(2)_ Bor @) include the integrated cross section divided by the Born cross sec-
j dvo™s(1-v)]pgy tion, and multiplied by a factor of 1%, as dots for the IEX and a

line for the MC.

P=F(y)exp(s (1462
po =F(y)exploved yo 7 (146 (204) and Table Il. We consider the total cross section with

the cut on the total photon energy defineduhy, as follows:

X l—%yln(l—v)). (180

2 f”max f”l(l Umax)
. O ,(2)o a(2)— v Uo,
From now on, we shall not restrict ourselves to the BYeBP ™ | 0 Born
O(a® )prag EEX matrix elements, but rather consider the

2 2
complete EEX clas®)(a?) ;.4 matrix elements as defined in X[s(1- U)(l—U)]Pfg)gz)(v)P(Fﬁ—)gz)(U)-
Sec. Il. The practical significance of the IEX formula of Eq.
(180 is rather important. The biggest terms neglected in it (181

are of O(y%) andO(ay), and we expect them to stay below
0.1%. (This will be true provided there are no extra enhance! In order to get a clearer picture about the magnitude of the

ment factors, see the discussion belotm. other words we  discrepancy between the EEX MC and the [EX formula we

use the art|f|C|aIIy flat Born cross-sectiar,,{s(1—u)(1
—v)]— 0for(S) in both. The results of the comparison are

presented in Fig. 10. Following our expectation, the differ-

ence is well below 0.1% for the entire range of the photon

energy cutoffv pay-

The situation does not look as good when we switch on

expect, for theBy 82) contribution in the EEX matrix element
in Sec. Il, that the result of the Monte Carlo phase-space
|ntegrat|on will agree with the formulél80) to within about
0.1% for an arbitrary cud ay-
Let us check the above conjecture with a numerical exer-

cise. In the numerical test we shall already include at this
—12) the s dependence in the Born cross section. In Figallive
moment not only the ISBB™ contribution of Eq.(180), see see the relevant comparison. At the CMS energy of 189 GeV
also Table I, but also the analogous FBE’ contribution,  the position of theZ radiative return is ab =0.75 and we
which will be calculate in the next subsection, see Eq. clearly see a worsening there with respect to the previous
case in Fig. 10 where the discrepancy is now almost 0.2%
(0.4% in terms ofopyy). The situation is even more dra-
22We could present results of the numerical téstsich we have matic in the last bin, which corresponds UQa=1— 4mi/s
done for the ISR alone. However, they look very much like the and here the discrepancy between dher? )prag [EX and the
simultaneous ISR and FSR results, so we decided not to preseﬁ?(a )prag MC EEX is —2% of the total cross section, that
them as figures. is —7% in terms of the Born cross section. This is, of
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course, due to th& resonance and dbehavior of the Born
cross section at very low(especially for the case of theu

PHYSICAL REVIEW D 63 113009

The additional terms of the)(L'a?) and O(L3«®) are
shown in Table | at the end of this section. We do not show

channel shown in Fig. 31In order to be sure that the above the details of the phase-space integration that provides these
effect is not due to some technical problem in the MC inte-two additional terms. The method is generally rather similar
gration, we had to improve our IEX formula and upgrade thel© the one used in this section and in Rf3].

analytical phase-space integration for the ISR to the level of
O(a®)prag. We show the comparison with th@(a?)yaq

IEX for the same EE)(Q(QZ)prag MC in Fig. 11(b). Now the In the following step our aim is to calculate analytically
difference is reduced to less than 0.1% everywhere, and ithe ISR contribution to the total cross section frq?ﬁ) as
the last bin it is reduced from 2% to +0.2%, as expected. given by

2. Beta-bar-one:El

3

"1 (d3qg, d® " d
o= _J' ql q2 H
n=o0 N!

K~
o g3 ) L o SPa etk [1- O k) Jext V()]

n n
ngl E(lzl)(X,pl,p2,Q1,Q2,kj)/~S|(kj)5(4) p1t pz_‘h_QZ_;l kj)

1 d3q1 dsqz " d3kj~ d3k
=2 _|J 0 0 | . Tsl(p1yl32i|<j)[1—®(9|;kj)]eXIL[Y(Ql)]kT
nsont) ap a; J =1 K

X[1-0(Q,;k)]6¥ (182

n
p1t pz_Q1_Q2_k_j§1 kj)ﬁ(ﬁ)(%"'%.plipz,%,QZ.k)-

We start again from the EEX)(aZ)prag matrix element for where
the initial-state bremsstrahlung and we shall perform the
phase-space integration also in tﬁeaz)prag. We integrate

B(z) K) = a 2plp2
first over the final-state fermion four-momenta: 1 (P1,P2.K)=

477 (kpy)(kpy) Vel @A)

d’q; dq . . R
fq—glq—;é(‘”(pﬁpz—qrqz—k) ><[1+A|(1)(a,,8)]%{(1—a)2+(1—B)2}

X B)(ay+dy,P1,P2,01,02,K)
=B®(py,p2,k) oM (q1+02)2],

—=S(p1.p2.k)(1+ 6, (184)

(183 and obtain

0.02 , ; : 0.020 | :
IMC " %8em (a) M (b)
0.01 7gem 1 oot Tsan ] FIG. 11. The comparison between tieC
o v MC and the IEXO(a?) a4 formula of Eq.(181)
SENO — Se FEXO — Sem.An Best prag ;
BEND = S v EERD = Sem. A for the ssdependent Born cross section at 189
0.00 b 0000 Bl b s GeV. The difference between th&C MC in the
r EEX mode and the IEX formula divided by the

IEX formula is plotted as a function of the,,,,
cutoff on the total energy of all of the ISR and

—0.010 ]
1 FSR photons.

-0.01

/ /
-5 . /s , 1—¢ . /s
— Strong ("m IHIIH/ Yo Cut — _0.0% « Strong qm |mm No Cut =

-0.02 -
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
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n 3

1 o1 %K.
o= [[avextisestyine) S [T oBpapaik)
0 n=o n: k;j

k?>s\s‘§/2 j=1

d3k 1 2
xfo WB&”(pl,pz,k>aB°”[s<1—v>]6(v——(P—E kj—k) )
Kj>es/2 S j
= foldvp(lz)(v)oBo"[s(1—v)]. (185

In the calculation Ofo(lz) we could follow the first of the methods employed 8. Let us describe it briefly, without going
into the details of the calculation. We calculate the first two nonzero integrals thé&( ajeandO(«?). The first one of)(«a)
has to be calculated keeping both the leadidd-«) and the subleading terr®(L°«). This can be done following the
well-known O(«) analytical calculation§15]. The O(«?) integral with two real photons can be treated in the LL approxi-
mation, i.e., keeping only thé(L2a?) terms. This can be done by introducing collinear peaks in the photon angles as
demonstrated in the case 8§. Both integrals are connected due to the infrared regulationavitfhe first one is proportional
to explyIn £)=1+yln g, and the termy In & from the first one cancels the IR divergence in the secondiodependently of
the LL approximatioh As it is in the case 0B, one has to pay attention to the subtle “edge effects” indhegularizatior?>

Let us describe in detail the second method in which the soft photons provide the convenient IR regulation. Thganain
contribution comes from the configuration in which we h&Je=v \/s/2 and one or more soft photons. This part has to be
calculated exactly ifO(«). We split, as before,

Pt ()= 1(0) +dP(v) (189

in such a way thaﬂ(lz)(u) vanishes inO(a)—it can therefore be calculated in the second-order LL wf'ﬁ?é(v) is simple
enough to be calculated exactly in th¥«). We define

3

d3k o1 T3k 2
f(lz)(v)zexrx&(,:s)f—oexqwns)E —lfo [T —'Sikpslv—=P-| X kj+k
k =0 N' Ji Kj S i

>e\s/2 j=1

)B&”(pl,pz,m

d3k 2 @)
IeXK5YF§fo y.w = 5PK|Bi(p1,p2.K), (187
where

2p,p
0 _ @  2PiP2
B1(P1P2.K)= 272 (i (kpy)

~ .1 - . ~
We(@,B)5{(1= @)%+ (1= B)* = 5(p1.p2 k). (189
The remarkable feature dﬁz) is that we could integrate over the spectator photons exactly. Note that tbgulator has
disappeared from thkeintegral. In the next step we integraggactlyover photon angles following the ol@(«) calculations
and we are left with a single integral over the photon enargk®/+/s, with the strongest singularity(~ x)*~* being nicely
regularized by the soft photons

v 1
fP)(v)=exp(SyrdF(7) fo dXV(v—X)V’ly{ —l+5x

+0(9?). (189

1 1
=eXp(5st)F(7)wy[—1+ VTS

Now we shall calculate the remaining paff) of p{*). Since it vanishes aP(a) we may calculate it in the LL approxi-

mation. Although it is not strictly necessary, we treat the photons géhin theﬁo example, so that we do not use the crude
collinear approximation. As before, we split the photon angular integration into the forward and backward hemispheres and we
integrate immediately over the final fermion momenta

ZGenerally, the calculation fo8, is more difficult than forg, and 8,, because this is the only cased{«?) where we deal with the
simultaneous emission of real and virtual photons.
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dk . a3k
dP(0)=exyine)S S o 2 o O dved L1 —'s|<kr>®(kr°—8\/§)

7 Ninit Jo<arz KO =1 Jo>mr kO

. ok s (P—k—K*—K")2
X —LG (k7 (k-o— \ﬁma( —1+ )
i} qu/z oSk 10[ ke 3| o] :

2P (k+K*+K")
—dlv— s

1
HB&”(pl,pz,kH 8l v—1+ g<P—k—K+—K—)z)[B&”(pl,pz,k)

—B&”(pl,pz,kn]. (190

Using the collinear replacemeKt™=(K*°,0,0+|K*?) in §’s allows us to integrate over the spectator multiple photons

1 1 d3k
d<12>(v):fo dUJO dvL<W/2Fexp(5yps)f<%,v+)f(%,v){[5(v—1+(1—x—v+)(1—v))

—8(w—x—v,—v_)]BM(p1,p2,k)+ 8w —1+(1—x—v )(1—v_)[B?(p1,p2.k)—BM(p1,p2.kK) 1},
(191

wherex=2k% /s and the other notation is the same as it is in E@ecase. Integration over the photon angles leads to
1 1 1 Y y

d(lZ)(v):f dv+f dv,f dxexp Syggf 70U+ f E,v){[5(v—l+(1—x—v+)(l—v))—5(v—X—v+—v)]yb1(x)
0 0 0

+0(—1+(1-x—v4)(1—-v_))y?ba(x)},

B 1 B 1 1 2In(l—x)
bl(x)——1+§x, bz(x)——1+§x—§[1+(l—x)] v (192

Let us quickly show the calculation of the part proportional to the difference of thevhich is somewhat more tricky. We
convoluteb; first with the photons in the same hemisphere and next with the photons from the opposite hemisphere:

dgie(v)=f dVdy _[8@w—1+(1-V)(1—v_))— 5(v—V—v_)]eXp(5y,:3)f(%,v_

xf dxdv+5(V—x—v+)f(%,v+)ybl(x)

1
= exp 5@#(%) yort | dyy“’%(l—y)(”z”1{(1—vy><1’2>7—1}{—1+ e
0

3]

1
-1+=-v +0(93). (193

=exp oypg F(y)yv” 2

1
(—Eyln(l—v)

The remaining part ofi”) is easier to calculate because it is The contribution from the initial-stat8; with an O(a?) prag

explicitly of O(y?): QED matrix element and with act?(az)prag analytical inte-
gration over the multiphoton phase-spdsee Fig. 12reads
2 L 1 (2) -t L
d(lB)(v)ZeX[X5YFS)F(y)‘yv’/y > -1+ SV pi~(v)=exployrs F(y)yv” > _1"‘50

1 1 1
——v——v%+ g[—1+3(1—v)2]|n(1—u)

o |

(194 +0(7%). (195

In(1-v)

v

1 2
— gl (1-v)?)

]+0(y3). +y
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=(2 (2 B 010 - =(2 =(2
A2 & g2 O Y

005 F B

000 .000

—.005 4 —0BE ’ 4

010 4 —=010F B

L
5 .50

!
75

b

1.00 .25 .50 75 1.00

i

FIG. 12. The comparison between the results of A&f#€ MC and the IEX(’)(a2)prag formulas for the integrated cross section as a
function of the cutoff parameter;,,, on the ISR and FSR photons. Presented ard(ieMC (solid line) and the IEX(line with open circles
results for:(a) the ISRB{? and the FSRB?, (b) the FSRB{2 and the ISRB{?), multiplied by a factor of 0.1in order to fit into the scale
The difference between thHé/XC MC and the IEX results is shown as a dotted curve. The center-of-mass energy is 189 GeV. The final-state
fermion is a muon.

The contribution with ar(’)(al)prag QED matrix element
and with an analyticat?(az)prag multiphoton phase-space
integration is obtained by retaining or‘tlﬁzA) and it reads

3
0
Ki

o1 d3Q1d3Q2
Uz_nzomf q‘{ qg

X[1-0(Q; k) lexgd Y(Q))]

n d )
Hl lsl(plapz;kj)

i=

1 1 L
P(ll)(v):exp(éyps)F(V)yvV1[2 ~1+5v X > Bz%l)(x’gl'szql'qz’kj’kk)é(“)
n=j>k=1 S|(kj)s|(kk)
N D 1( 1+1)|(1 )]+O( %) n
——pc— = = =v|In(l—v .
¥~ 5025 5 Y X p1+p2—q1—q2—j§1 kj)- (197

(196
This contribution is in a sense more trivial than the previous
two: since it is pureOd(«?), it has no IR singularity in the
two-photon phase-space integral.

We can calculate the contribution froEZ with the same

methods as in the case @f or ;. The integral is reorga-

3. Beta-bar-two:E2

In the following step, our aim is to calculate analytically
the contribution to the total cross section fr(ﬁj) as given

by

00 E

005 F

000

—.005

-.010

nized easily such that the integration over the photon mo-

(b)

O

005

2(2) o 2(2)
Bor @ Borp

010

L L I

iy

1 -5k

4 -010F

I L

000

4 -.005

1 -010F

25 .50 75

1.00

L
.25 50 5

100

.25

1
50
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FIG. 13. The comparison between & MC and the |EXO(a2)prag formulas for the integrated cross section as a function of the cutoff
parameten ., on the ISR and FSR photons. Presented ar&ikeMC (solid line) and IEX (line with open circlesresults for:(a) the ISR

3(2)

B%) and the FSRB{?,

(b) the FSRB2 and the ISRBE) (c) the ISRB!? and the FSRB!2 . The difference between theék MC and the

IEX results is also includedots. The center-of-mass energy is 189 GeV. The final-state fermion is a muon.
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menta in the8%) is isolated and we are able to integrate over ~ The fu_nctic_mp‘zz)(v) can be calculated in the LL approxi-
final-state fermion momenta, bringing the integral to themation with either of our two methodkeeping an additional

standard form spectator photon or nptafter integration over the photon
. angles, the integral boils down to the following integral over
02=f dvp(zz)(v)asorr[s(l_v)]_ (198 th_e Iongltudl_nal photon momgnta_, separately for the cases
0 with two collinear and two anticollinear photons

1 e
p(zz)(v)If dv,dv+75(v—v+—v,)
0

U_

) mewl]
x()x Tp— +20+v_x(v7)x T

2v.,v_

1 1 yz

- Zw(v_)— Zw(v+)— - + fo dv_dv+z5[v—1+(1—v+)(1—v_)]

« 1
vwﬁx(m)x(vf) ;w(vf) ij(v+) oo

21
=Y gU (199
|
where y(x)=[1+(1—x)?]/2 andw(x)= — 1+ x/2. mula involves the convolution of the already known expres-

Eventually, by keeping the additional soft photons in thesjon for the ISRB!{?) and the FSR3{2. The corresponding

calculation, we obtain our final result for the initial-state nymerical comparison of the IEX formula and the EEX MC

(’)(az)prag contribution fromp, in a more elegant form is shown in Fig. 1&). In fact the IEX matrix element was
1 deliberately constructed in such a wéfactorizing virtual
- correctionsg that it results in the above convolution-type IEX
pP(v)=exp(SyrgF(y) 07 7% +O(5). > YP
4 formula.
(200

. . 4. Summary on IEX for ISR
We have compared numerically the above formula with

the K MC in the case that the FSR is switched off and have  The entire initial-stat@(a?),5gintegrated cross section
found an agreement to better than 0.1%. In Figlal3ve IS obtained by combining the contributions from all of the
present the comparison in which, as it is in the case of théhreeg'’s, and it reads

previousﬁ's, the FSR is switched on. In Fig. (&8 we com- )
pare the convolution of the ISR’ and the FSRB{2: o(P= fo dvp@(v) B s(1—v)],

(2) Umax v/(1~Umay f
0 52)5 5= dv duopgg[s(1—u)
2 0 0 0

2
_ Y 7
o o PI7(W) =expdyrdF ()7 Y 1+ 5+ &
X(1=v)]p g(v)pgga(u). (201
2 0 1
The above IEX result is compared with th&C MC results, tol -1+ E)
and they agree within 0.2%. In Fig. @8 we show the analo- )
ison for th lution of the FBE and th v_1+3(1-v)
gous comparison for the convolution of the FBK’ and the +yl - 5 Tm(l_v)
ISR B{?) (anticipating the IEX results for FSB2 to be

found in the next sectignand we find a similar agreement. +O0(y%) +O(ya). (202
Finally, there is another, more trivial contribution in g€

family, which corresponds to the case with one real photorThis ISR formula has been obtained as a result ofhé@oc
emitted in the initial state and one real photon emitted in theexponentiatior(interpolatior) in Ref.[7] and was used there
final state. This case does not require a separate analyticab a numerical parametrization/test of the cross section from
phase-space integration effort, because the relevant IEX fothe Monte Carlo programiFs2. It is now derivedstarting
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TABLE |. Contributions to the functiop,(v)=ds+Ay(v) from By ,k=0,1,2. The ISR matrix element
is at O(a"),rag With YFS/EEX exponentiation; =0,1,2, as marked in the first column. The phase-space
integration is done analytically always With(ﬂ(az)p,ag, except for the@(ao)prag case in the first row,
where the phase-space integration is doné)(n3)prag.

ds AH(U)
— 1 la
0(a®) Bo 1 - 77In(1-0)= 5 —In’(1-0)+0y
1 B Y Ll ma
O(a™) Bo 1+3 RALC )
— v V2 v(2-v)
Bl 0 v _1+§ +7/{—E—Tln(l—v)
2 1_U)2
Al Y PP T A _
1+2 v 1+2 +y{ 5 1 In(1-v)
— y 7 1
O(a’z) Bo 1+§+§ —Z’yln(l_l))
— 0 ( 1 U) v V2 *1+3(1*U)2| 1
B vl — +§ + fzfszn( —v)
2
— v
ﬁz 0 +,yZ
2
Al v.Y PP O B o)
l+2+8 v l+2+y{ 5 7 In(1-v)
z 1+(1-v)?
O(a?)— O(ab) z + 'y[ B Gl
8 8
from YFS exclusive exponentiation by means of direct Yy 1 72
phase-space integratiéf. Svrs= 7zt | T3t 3]
Summarizing our IEX calculations for the ISR, we have
obtained through the analytical integration over the ISR mul-
tiphoton phase-space the inclusive exponentiated cross sec-
tion for the IEX matrix elements in theO(a®)paq. y=23<ln—2—1) F(y)= M.
O(a) prag, and O(a?)yaq for each g, (i=0,1,2) sepa- ™\ Mg F(1+y)

rately. The phase-space integration was always done analyti-
cally within the O(az)prag. All results from the above ex-
tensive study are summarized in Table |, where we have
listed the two functionglg andAy(v) in the following for-
mula (the notation is recalled for the convenience of the
readey:

C. Semianalytical formulas for FSR

The calculation of theO(aZ)prag IEX formula for the
FSR, with theu,,, cutoff, that isu=1—s'/s<Upax, IS quite
similar to that in the ISR case and we do not enter into the
details. We only discuss the basic differences between the

1
Ulzfo dvp(v)o®s(1-v)], (203

pi(v)=exp(Syrgd F(y) yo ' dst+Ap(v)],

24pAd hocexponentiation is of course easier to do and, in Ref],
even the(?(a3)prag formula for the initial-state bremsstrahlung was

ISR and FSR cases and present the final result.

If we switch off the ISR completely, then the FSR-
integrated cross section for th@(a')prag, r=0,1,2, EEX
matrix element reads

Umax
0e(Umax) = TBom 0 dupg(u),

given, but the derivation method presented here is much better

founded and the result does not depend on any kind of interpolatio
or guesswork.

T (W) =exp(Syrg F(yp) yru? i+ AL(W)],
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TABLE Il. Contributions to the functiomg(u)=dg+ A/,(u) from Ek,k:O,l,Z. The FSR matrix element
is at O(a')prag With YFS/EEX exponentiation; =0,1,2, as marked in the first column. The phase-space
integration is done analytically, always (ﬁ(az)prag.

ds A{y(u)
— 1
0(a°) Bo 1 -z vin(-u)
O(at) Bo 1+ 3’ - Zvin(-u)
— 0 L u u? u(2—u)I L
B1 uf — +§ +’yf—5+ > n(1—u)
2 2
Vs u us —1+4u—2u
All Al 14— oy = _
1+ N 7 In@-v)
2
— 1
O(a?) Bo 1+ §+ % — Z7in(-u
— 0 u u u 2+6u—3u2I L
B U—1+§ +’)/f—§—z+Tn( —u)
— W u2-u)
0 _ _
B> +yf(4 2 In(1 u))
u u ui2-u
All 1+§+§ U(*1+§)+’yf §+%In(lu)}
¥? 2—6u+3u2I .
O(a?) = O(a?) B Ty AW

1+772
23

sults in the case that the ISB is switched off for each com-
' bination of the ISR and FSI®’s.

, Vi 1 o
5YFS:Z_ §7f|n(1—u)+ p

D. Semianalytical IEX for ISR and FSR

')’fZZ%( In%— 1), (209 The last numerical test, which we show in Fig. 14, is the
f case in which we switch on all of the ISR and FBR listed
in both Tables | and II:

where the functionslg andA/,(u), obtained with an analyti- . oi(1-ur )

cal integration of the phase-space using @@r?) .4 ap- Trot= j "y f ™ du

proximation, are listed in Table II. 0 o

The main difference and complication in the phase-space
analytical integration with respec? to the case ofF?SR arepthat X 0gord S(1=U)(1=0)Jpr(W)py(v). (209

the YFS for_m faCt(.)réYFS depe_nds in the case of the ZFSZR Mt is done for the constant Born cross section, the case with
the Integration variable. This is why the terms oD(L"a") the variable cross section will be shown in the next section.
are dlfferfant !n the two cases. In Table Illwe show separately(Ne use the IEX formula of the pUl@(az)prag type[without

the contributions from eacjs. Note that in the case of the (9(a3)prag improvements for the ISR The overall agree-
FSR we did not integrate the phase-space fgrat the  ment between the IEX formula and th&C MC is within the
(9(a3)prag analytically, as we did in the case of the ISR.  advertized 0.2%. When looking into all previous figures in
was not necessary in order to reach the precision level ahis and the previous subsection, it is interesting to note that
0.2%) We have checked numerically the agreement of thehis difference does not come from one particular combina-
KK MC with Eq. (204 separately for each type ¢@f, with  tion of the ISR and FSEB’s, but from several of them.

the ISR switched offplots are not shownWe have already The reader may wonder why we elaborate so much in this
presented, in this section, the complete set of numerical resection on the IEX semi-analytical formula, which is related
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FIG. 15. General structure of tHéxC Monte Carlo program.
FIG. 14. The comparison between th&C MC and the IEX prog

O(a?) prag formula. The difference between theC MC in EEX _ _ _
mode and the IEX formula divided by the Born cross section isthe semianalytical prograi/Csem. These results are mainly
plotted with the dotted line, as a function of the cutoff,,on the  for the x~ u™ final state. For more results on the quark final
total energy of the ISR and FSR photons. Included also is°10 states and other interesting numerical results fromifie
X (U mad/osom, a@s the dotted line for the IEX formula and the MC we refer the reader to the forthcoming proceedings of
solid line for the MC. the LEP2 Monte Carlo Workshdgt5].

The general structure of theXCMC code is depicted in

to the EEX type of matrix element in théC MC if in fact ~ Fig. 15. The program is divided into two distinct pattsv-

the main matrix element in thEx MC is now CEEX. One  €19: (&) the phase-space Monte Carlo integration engine with
reason is that historically the EEX was the first availablecommon-importance sampling for the entire family of QED
example of exclusive exponentiation, and the IEX semi-distributions(EEX and CEEX; (b) the collection(library) of
analytical formula was developed in parallel, providing aPrograms for the SM/QED spin amplitudes and differential
valuable cross-check of the MC. Another reason is that aflistributions, at various orders, with various styles of expo-
this stage, as we shall see in the next section, both the |ERentiation. In this work we do not enter into a description of
and the EEX provide a reference calculation and valuabléhe MC integration algorithm in the universal MC integration
test for the CEEX. The precision of the pres‘@(taz)prag engine. The Monte Carlo m_ethqd of_phase—space integration
IEX is limited, but it could be improved to the full is fully documentedfor the first time in Ref.[1], and some
O(a®)raq if Necessary. A more important limitation in the aspects of the phase-space parametrization are documented
present@(az)prag IEX as a test of the CEEX model is the in the forthcoming Ref[46]. Here we rege_lrd this low-level
absence of the ISRFSR interference. We believe that this MC program as a black box, capable to integrate the phase-
effect can be included in the semianalytical IEX if SPace exactlyup to a statistical error

necessary® Thead hocvariant of theO(a') exponentiation, Life, hQWE\‘/‘l?f, iS_ not tfla_t Sim_ple, and a .num:arical pro-
including the ISRY FSR interference, is already available in 9"aM. Wh'Eh in principle” is doing something “exactly/
Refs.[22,23. rigorously,” may still give imprecise results because of pro-

gramming bugs and numerical instabilities, especially when
they are in a program as complicated asAti€ MC is. This
VI. NUMERICAL RESULTS AND TESTS is why we always introduce the concept of ttechnical
precision of a given program/calculatiofsee below. The
sults from the/CK MC in which the standard model ampli- basic aim of the numerical exercises we present in this sec-
R tion is the determination of the totaheoretical precision
tudes for the process € —ff+ny of the Se(_:s. IEEX) associated with our calculation of standard model predictions
and lll (CEEX) are implemented. The analytical results of ¢ oyherimental observabldalthough we limit the discus-
Sec. V will also be exploited to obtain numerical results fromg;o 1o the QED part of the SM for most of our discusgion
As far as observables are concerned, we shall concentrate
mainly on the total cross section and charge asymmetry at
#See the following section for a simple semianalytical formulaLEP1, LEP2, and linear collider energies.
for the ISR® FSR interference in the soft limit. What are the technical and physical precisions? We define

In this section we shall mainly present the numerical re
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thetechnical precisioras the total uncertainty related to pure Method (a) is generally better, because it can be done for
numerical problems such as programming bugs, numericarbitrary kinematical selectionguty and for the simplified
instabilities, numerical approximation, etc. In our case theQED matrix element, while methdd) is limited to a simple
question of the technical precision will mainly concern theor absent kinematical selection. In the following we shall use
MC integration engine. It is important to determine it at anmethod(b).

early stage of the work and it should be generally much For our basic test of the technical precision we use the
better than the physical precision. On the other hand, theimplest possible variant of the QED model, that is of the
physical precision is the total uncertainty related to the netype O(a®)gex defined in Sec. II. For this type of QED ma-
glected higher orders in the coupling constanor in other  trix element we were able to integrate analytically the total
expansion parameters such as the inverse of the big-log 1/ cross section in Sec. V. The relevant formula can be read
or the ratio of the width to the mads/M for a narrow from the first row in Tables | and Il. For the sake of com-
resonance. For the physical precision we note that the aboyaeteness we write down the complete expression explicitly:
truncations are done in the spin amplitudes and/or the differ-

ential cross section. If some of them are done in the phase- ¢ _ [/m« f _ _ (0) (0)

space integration, we tend to associate them with the techni- USAN_I v 0ol S(1 =W (1 =0) ]pi () pe7(W),

cal precision (as phase-space integration is a technical

problem).

We start this section with the basic discussion of the tech- (0)(1)=F(y,)ex E +ﬁ
nical precision; we then proceed to a subsection elaboratind)' Ye 47",
on the physical precision for the EEX matrix element, based
on the comparison; between tkéC MC and ;e_mianalytical 1— lyeln(l—v)— l 3|n2(1—U)+o yé)
results; later, we discuss the physical precision for the case 4 2w
of the full CEEX matrix element. In this section we also (206)
present numerical results and a rather complete discussion of
the effects due to the ISR-FSR interference in the fermion-
pair production process. ) 1 1

We note that it would be good to include also more nu- Pr (W =F(y1)exp 7yi— 5 ysIn(1—u)
merical tests at lower energies,10 GeV, and at very high
energies~1 TeV, and some more tests specific to spin ef- a( 1

14_71'2
23

Yev e~ !

X

2

T
fects. However, the basic pattern of the spin correlations in + P + 3
the doubler decay was already cross-checked in R2f.

1
yfuyfl( 1- R4 In(l—u)).

As we remember the coefficient in front of th@(L3«?)

term is zero, as marked explicitly. It was essential to calcu-
The best way to determine the technical precision is tdate analytically and introduce the ISR term©@{L*a?) be-

compare the results of two or even more independent calcicause it amounts numerically to several percent for the cross

lations that implement the same physics model but differ insection located close w=1.

the technical details of the actual implementation like the In Fig. 16 we present the comparison of & MC with

method of phase-space integration, independent coding, etthe semianalytical formula of Eq206). The difference be-

The two best possible methods de¢ to compare two inde- tween the MC result and the semianalytical result is divided

pendent Monte Carlo calculations @) to compare Monte by the semianalytical result and, as we see, the difference is

Carlo results with results of a semi-analytical calculation.remarkably small. The comparison is done for #aéu~

A. Basic test of the technical precision
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final state at/s=189 GeV, as a function af .. In the last We therefore conclude that the technical precision of the
point (bin) the entire phase-space is coverag,,=1 KK MC due to the phase-space integration is 0.02% of the
_ 4mi /s, integrated cross section, for any cuts on the photon energies,

The conclusion from the above exercise is that we controZ inclusive and Z exclusive, stronger thdh M, (ff)
the phase-space integration at the level ok * for >0.1ys and any mild cut on the transverse photon energies
U max<0.999, including the radiative return, and at the level due to any typical realistic experimental cuts. For the cross
of 3% 10 2 for no cuts at all. sections with a single photon tagged, it is about 0.2—0.5%
The possible loophole in this estimate of the precision isand with two photons tagged it is 10% of the correspond-
that it may break down when we cut on the transverse moig integrated cross section. These conclusions are based on
menta of the real photons, or switch to a more sophisticatethe comparisons with at least six other independent codes.
QED model. The second circumstance is very unlikely as the
phase-space and the actual SM model matrix element are
split into completely separate modules in the program. The
guestion of cuts on the transverse momenta of the real pho- We now start the presentation of the numerical results
tons requires further discussion. Here, it has to be stressdtbm the C/C MC run in the EEX mode with the semiana-
that in our MC the so-called big-logarithm lytical calculations based on the results in Sec. V. Note that
the EEX matrix element of Sec. Il is very similar tbasi-
cally the same g@ghe one implemented since many years in
L=In(—sz) -1 (207) the KORALZ program[10]. We do this for two reasonga)

m; these tests were historically the firghey existed, unpub-
lished, for many years, giving us confidence that the
KORALZ/YFS3 program provides correct resyltand (b) they
are now still useful as a reference calculation for the newer
CEEX scheme. They will also allow us to introduce some

) . . *>$hotations and to introduce gradually the reader to the subject
singularity cancellation for the FSR. We do not see anythlngbf the discussion on the theoretical precision of our results.

like that at the 0.02% precision level. In addition there is a0f course. we shall remember that in the case of the EEX we
wealth of comparisons with maripdependent codesf the do not incllude the ISR-FSR interferenags!)

phase-space integration fog=1,2,3 real photons, with and ", 'rig "17 \ve show the dependence of the total cross
without cuts on the photopy . It should be remembered that section on the cut on the total photon energy (1SFSR).

the multiphoton phase-space integration module/code in th : . + - g
KK MC has been unchanged for the last 10 years. For thghe comparison is done for the*u final state atys

ISR it is based on thers2 algorithm of Ref[7] and for the 189 GeV, as a function af ;4. In the last pointbin) the

FSR on therrs3 algorithm of Ref[9]; these modules/codes etr; It:(rli p?aﬁgjpﬁﬁc\?v\;erid’n"%‘) ”r‘f‘X: Il_tﬁm,?{; Tth ? \I/erry
were part of the&korALz [10] multiphoton MC from the very S gla eli-known phenomenon IS that the fotal Cross

beginning, already at the time of the LEP1 1989 workshopseCt'On due to the huge ISR correction is almost three times

[40], and they were continuously tested since then. Théhe Born cross section, in the absence of any kinematical
pha:se-space integration for—1 was tested very early by cuts. Part of this ISR contribution is located closevte 1,

- ’ 2 fan : H
the authors ofvFsJyFs3 against the older MC programs S ~4M,/S; letus callit theyy* process. This amounts to as
MUSTRAAL [16] andkoRALB [35] and with analytical calcu- MUch as the Born cross section itseff, ,«~agom, while
lations, at the precision level 6£0.1%, with and without the dominant part of the cross sectioprr~20pom IS cON-
cuts on the photo;. The phase-space integration foj centrated close to=1—M32/s~0.75, and is associated with
—2,3 with cuts on the photop, was tested very many times the so-called Z radiative return”(ZRR) process, that is the
over the years by the authors wfS2YFSFKORALZ, and in-  resonant production of thg, after the emission of a rather
dependently by all four LEP Collaborations, using other in-hard ISR photon, Wh*'Ch is usually lost in the beam pipe. In
tegration programs such asOMPHER GRACE [61,62 and the experiment the/y* process is almo_st always eliminated
others, in the context of the search of the anomaloysad ~ from the data, and the ZRR process is also not very often
3y events. Another important series of tests was done in Refncluded in the data sample. The typical experimental cut is
[47] for the ISR, =1,2 photongwith cuts sensitive to the ~Situated somewhere in the range 9dy,<0.3. As we see
pr of the photons comparingkorALz/YFs2 with the other N Fig. 17a), the total QED correction o:(vmay) —~Tgoml/

independent MC’s for thevvy(y) final states. Typically, geBg]r;_tlif/em this case quite close to zero, in fact it is slightly

these tests, in which the QED matrix element was pro- : . .
grammed in several independent ways, showed agreement %tm F'g'. 17b) e compare theck. MC calculation with
the semianalytical expression based on the phase-space

the level of 10% for the cross section foy=2, which was integration in Sec. V. In the MC calculation we use the
of the order of 0.1% of the Born cross section, or 0.2—0.5% o
for n,=1, which was of the order of 1% of the Born cross
section, so they never invalidated our present technical pre-

cision of 0.02% in terms of the Born cross secti@n the 28t downgrades to 0.5% foM;,,(uux)=2m,, ie., for full

total cross section in terms of thkinclusive cuj. phase-space.

B. Physical precision, the case of EEX

is theresult of the phase-space integratiand if this inte-
gration were not correct then we would witness the break
down of the IR singularity cancellation and the fermion mas
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second-order EEX  type of QED model EEX2 hoth from the’kk MC and the semianalytical formula. Tak-
=0(la,al,a’L")gex, defined in Sec. Il. The semianalyti- ing conservativelysee the discussion belpwalf of the dif-
cal formula used in Fig. 1) is also in the class EEX2. Itis ference between the EEX2 and the EEX1 as an estimate of

defined as follows: the physical precision of the EEX2, we arrive at similar es-
Vo timates of about 0.2% for the standard oyf,~0.2, 0.7%
TEAN= JO dv o] S(1—u)(1—v)1p{P(v) pE(u), for the ZRR process and up to 3% for the* process.

The other useful piece of information comes from Fig.
(208 18(b), where we plot the difference EEX3EEX2, with

where the distributions(® andp(® are from Tables I and Il. EEX3=0(La,aL,a’L? a’L%)gex; this provides direct in-
What kind of lesson can we draw from Fig. (by? We sight into the neglected third-order LL contributions. As we
treat the result in Fig. 1B) as an indication that the contri- See it is always below 810~ (This estimate will also be
bution from the QED(non-IFI) photonic corrections to the useful for the case of CEEXIf the O(L°a®) correction is of
combined physical and technical precision in the EEX2-clasghis size, then the main contribution to the above estimate of
integrated cross section for the standard oy,~0.2 is  the theoretical error necessarily comes from e 'a?)
about 0.2%, for the ZRR process it is 0.7%, and forihé& corrections.
process it is 3%. We are here talking about the technical In fact the absence of th@(«?L') corrections in both the
precision of the coding of the EEX2 matrix element, notEEX2 and the EEX1 is the main deficiency of the above
associated with the phase-space integratmvered in the tests, so that they cannot directly pin down the size of this
previous section contribution. Keeping this limitation in mind, from the test
In Fig. 18 we make an attempt at estimating the physicabhbove we nevertheless estimate tentatively the combined
precision of the QED model in the EEX class. Specifically, physical and technical precision in the integrated EEX3-class
we look into the difference between the EEX&s defined cross section of th&/C MC to be 0.2% for the standard cut
above and the EEX1, with the EEX1 being th®(al)gex of  vmax=0.2, 0.7% for the ZRR process, and about 1.5% for
Sec. ll, EEXEO(1,«a,al)gex. This is plotted in Fig. 1&)  the yy* process. The caveat of this exercise is that we know

0.0010

060F (2 1 3 3 2
bos0 - (2)_ (1) (a) 0 (b)
P)
e \ P
0.0005 -
0.040 | 1 EEX3-EEX2: KK M.C.
FIG. 18. An attempt at esti-
mating the physical precision for
0.0000 EEX: O(a«?) and O(a®). The
0.020 TN it
8 e~ process, energy, and definition of
cuts are the same as in Fig. 17.
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consecutive orders in the expansion parameters, for instance
by comparing results from th@(a") andO(a" 1) calcula-

] tions, or theO(L"a") versus theO(L" 1a") calculations,
IMC " %5em ] etc. For example, when only the Born aéia?) results are

] available, one should take the difference between the(owo
0.010 | . some fraction of it as an estimate of the physical precision.

i FEX ALCL — Som A ] The above conservative recipe gives a solid estimate of the
R s L physical precision and we shall employ it as our basic
method in the following. In most cases in the literature, how-
ever, authors try taestimatethe uncalculatedhigher order
effects with some “rule of thumb.” For instance in the case
when Born and O(al) results are known, they take
$L(a/m) as an estimate of the missing/uncalculag{dy?)
corrections. This has to be done with care because one may

0.020 e e e N amaan _

0.000 ¢

—-0.010

L easily overlook some “enhancement factor.” For example
the cross section close to a resonance can be modified by
; additional powers of the big logarithmIlM. In most cases
o S/ ' / 1 these “enhancement factors” are already seen ince?)
[ — Strong Cut i No Cut — 1 calculation so it is not difficult to trace them.
—0.020 Lo S NP B B e . . .
0.95 0.50 0.75 1.00 We are in a rather comfortable situation because for the

QED “photonic” corrections we have at our disposal the

0 1 2 -
FIG. 19. The final attempt at estimating the physical precisiono(a ), O(a”), andO(a”) calculationgat least for the ISR,

for EEX3: the difference between EEX3 from thek MC and the  Where they are the bigggsiVe can thlerefore aff<2)rd to take

semi-analytical EEX3best, see the definition in the text. The proNalf of the difference between th€(«") and O(«”) calcu-

cess, energy and definition of the cuts are the same as in Fig. 17/ations as a conservative estimate of the physical precision
due to QED “photonic” corrections. We also profit from the

retrospectively the QED non-IFI component of the precisionfact that the exponentiation considerably speeds up the con-
on thekORALz/YFS3 Monte Carlo at LEP2 energies becausevergence of the perturbative series by the “advanced sum-
the EEX ofkoraLz and the EEX of theCAC MC are practi- - mation” of certain classes of corrections to infinite order,
cally the samé’ The above exercise does help indeed, inand by not introducing additional spurious cutoff parameters
spite of the fact that the neglected IFI contribution to thegyiding real emissions into soft and hard ones, which are
integrated cross section is of the order of 1%, becausgical of the calculations without exponentiatiésee the

KORALZ in the nonexponentia_ted)(a) mpde can calt_:ulate discussion on the famouk, parameter in the 1989 LEP
the IFI separately; see the discussion in the following SUbWorkshop[40])

sections.

Let us finally make an ultimate effort to estimate the total
precision, staying all the time within the EEX model. As we o . o i .
have already noted the most important missing contributiorf” additional fermion pair, either real or wrtgal. We do it
seems to be th&(L1a?), most probably the ISR part of it. becausg(a) there are many MC programs that |mplgment the
In the semianalytical formula for the total cross section weProduction of the four-fermion final statesften with the
are able to add it, since it is known from RE£8]. We may addltlonal' ISB and (b) in the experiment this contr!butlon
add theO(L3a3) corrections as well and, in this way, we &0 be eliminated at an early stage from the data in the ex-
replace thepfz) by the P|(3) of Ref. [44], which is the true perimental data analysis aimed at single_ferm_ion_—pair_ pro-
O(as)prag for the ISR (according to the terminology duction, see for example Re{f48j. In fact this point is still
explained in the Introduction and O(QZ)prag for under debate; see the proceedings of the LEP2 Monte Carlo

i : workshop[45]. It was proposed that in the final combined
1]%(1?3 C(:;?_rgl I;Ii_l a%ﬁtg) us Thcealc:iffelrten clel:))((e?vk\)/g; LEP2 data the so-called nonsinglet initial-state and final-state
- ) ) H 1 L EEX -

. : secondary pair contribution will be kept in the data, as it is
the semianalytical EEX3best and the EEX3 from #i& .
MC is plotted in Fig. 19. As we see, this final test com‘irmsdone byopaL, see Refs[49-51. We have recently included

. . : . he virtual corrections of the “vacuum polarization” type
the previous estimate of the physical precision of the EEthith the fermionic bubble in the(a?) photonic contribu-
type of matrix element. ) i . . .
tions to the vertex corrections in the yet unpublished version
C. Physical precision, the case of CEEX 4.14 c_)f the/lCKC MC. This is done_while keeping in mind the
o o . o combined results of th&/C MC with those of the other MC
The quantitative determination of tfghysical precision  ,rograms for the four-fermion production process, such as
should be based on the comparison of calculations in twQ e w [52]. The tandem of théCK MC andKORALW pro-
grams will be able to realize any possible scenario of the
treatment of the soft/light pair corrections in the LEP2 data.
2"The version 4.02 okoraLz and its earlier versions have EEX In Fig. 20 we present the numerical results on which we
implemented differently fromiCX MC. base our quantitative estimate of the physical precision due

Let us mention that we omit, in our estimates of the physi-
cal precision, from the discussion tii(«?) effects due to

113009-54



COHERENT EXCLUSIVE EXPONENTIATION F®& . . . PHYSICAL REVIEW D 63 113009

(a) (b)
T T FTT T 0.0040 T T T
0.010 F o ]
a7—g —— IFION A2 _ 4D ypron
o FB FB
— IFIOFF 0.0020 F — IFIOFF 4
0.005 [ ]
0.000 pp——— | 0.0000 !
—0.005 [
—0.0020 |
—0.010 | v ] v
« Strong C““t rrllax A No Cut — —0.0040 «— Strong Cl'nt H}ax Yo Cut —
0.2 0.50 0.75 1.00 0.25 0.50 0.75 1.00

FIG. 20. Evaluation of the physical precision for the total cross section and charge asymmetry. The difference bet®¢ef) gaey
and O(a®) ceey is plotted as a function af may=1—5'min/S. Results are shown for the »~ final state at/s=189 GeV.

to the photonic QED corrections. In this figure, we plot the We have to stress very strongly that the estimate of the
difference between thé(«?)ceex and theO(al)ceex re-  physical precision depends on the type of observabie
sults for the total cross section and charge asymmetry at 1880k o andAgg), the type of final statéwe took thew pair
GeV as a function of the cut on the total energy emitted byfinal state; for the quark-pair final states, the QED FSR ef-
all ISR and FSR photons in the" «~ final state. The cutis fects are smaller, because of the smaller electric charges of
formulated with thes’>s’ i, or equivalentlyv <v . con-  quarkg, and on many other input parameters, for example,
dition, wheres’ is the effective mass squared of the u~ on the total CMS energy. The great thing about the Monte
pair andv =1—s'/s, as usual. One should remember that theCarlo is that the type of evaluation we proposed and imple-
actual experimental cut is aroumnd,,,~0.2 (eliminating the  mented in this sectiofihalf of difference O(a?)—O(at)]
Z radiative returhin the case of the standard data analysiscan be repeated for any observable, any final state, and any
and sometimes aroung,,,,~0.9 in the case when thgra-  energy. For example, in Fig. 21 we repeat our evaluation of
diative return is admitted in the data. The “kink” around the physical precision fos- and Agg at a linear collider en-
Umax~0.75 is at the position of th& radiative return. In  ergy of 500 GeV. As we see the resulting precision is worse,
either case, whether we admit or eliminate theadiative  negligibly for a mild cut of the order of,,,<0.5 and sig-
return, that is forv,,~0.9, the difference between the nificantly by a factor of almost 2 for th& radiative return,
O(a?) ceex and O(at) ceex results for the total cross section Which is now placed close to=0.95.
is below 0.4%, and the corresponding difference is below
0.002 for the charge asymmetry. D. Absolute predictions, more on the physicdtechnical

Taking conservativelyhalf of this difference between the precision

O(a?) ceex and theO(a') ceex results as an estimate of the | this section we shall present the SM absolute predic-
neglected?(a?) ceex and higher orders we conclude that thetions for the total cross section and charge asymmetry at
physical precision due to the photonic QED corrections ofLEP2 (189 Ge\j and at the linear collidet500 Ge\j. We
our O(a?) cgex calculation, for all possible cutoffs in the 0 compare them with our own semianalytical progriiiasem,
<vmax<0.9 range, is 0.2% in the total cross reaction andwith KOrRALZ [10], and in some cases WitFITTER [5]. They
0.001 in the charge asymmetry. This estimate would even bmay not improve our basic estimates of the technical and
a factor of 2 better, if we restricted ourselves to the mosphysical precision from the previous sections, but they can
typical cutoff range of 0.£v,,<0.3. The above estimate confirm them(or disprove them
will be confirmed by more auxiliary tests in the following. In Table Il we show numerical results for the total cross
As we see, we have improved on the physical precisiorsectiono (v ) and charge asymmetdig(v may as a func-
estimate with respect to the previous estimates for the EEXon of the cutv 4 On the total photon energfthe cutoff
model—in addition we do include IFI all of the time. For the parameterv,,, is defined as in the previous subsecjion
respective precision of the ZRR process we now quote, foGenerally, in Table 1l we show results with the ISR-FSR
the integrated cross section, 0.2% instead of the previouisterferencgIFl) switched on and off. Th&Xsem semiana-
0.7%, and for the analogougy* process precision we have lytical program(part of the CC MC package provides the
something like 0.3% instead of the previous 1.5%. These weeference resultfor o and Agg, see the first column in
interpret as the results of the inclusion of L a?) ISR  Table Ill, which are without the IFI and are obtained from
correction in our CEEX spin amplitudes. using the EEX3best formula defined in Sec. VI B. For the
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FIG. 21. Evaluation of the physical precision for the total cross section and charge asymm@&ry50 GeV. The difference between
O(a?) ceex and O(at) ceex is plotted as a function of ma=1—S"min/s in the u* u~ final state.

charge asymmetry we use the convolution-type semi- In the case with the IFI switched oi;Xsem cannot be
analytical formula of Eq(208). (In fact we use this formula used as a cross-check of thidC MC. Remembering that the
separately for the cross section in the forward and backwar{Fl in KOrRALZ in the O(«') mode (without exponentiation
hemispheres and then we calcul#gg from these partial is very well tested, we combine ti@(«?) IFI contribution
integrals) The results from theCXC MC in Table Il are  with the CEEX result without the IFI. Such a hybrid solution
shown for two types of QED matrix element: ti¥a?)cgex denoted in Fig. 22 as “"CEEX2IFI at O(a?)” is used as
with and without IFI. In addition, the results we include from our primary test of the full CEEX matrix element with IFI
KORALZ are for theO(a') matrix element with and without switched on. The above procedure is done separately for
IFI, which will be discussed in the next section. cross sections in the forward and backward hemispheres such
As tables with lists of numbers are difficult to compre- that the prediction for charge asymmetry is also available.
hend, we present the essential results of Table Il in Fig. 22, It is worth mentioning that the above hybrid solution was
where they are all plotted as a difference with théerence already successfully used in Reff§3,54] for the study of the
results of our semianalytical prograwi/Csem. (In other  IFI contribution at theZ peak, imposing a strong acollinear-
words the results frofCCsem are exactly on the axis) ity cut. It is also implemented in a semianalytical form in

TABLE III. Absolute predictions for the total cross section and charge asymmetry. They are fot* fbe final state at/s=189 GeV.
The results are plotted as a function of the cutoff on the total photon ergrgy1—s'in/s. The “reference” o and Agg in first column
are from theXKsem semi-analytical program. We have used a Higgs boson mass of 100 GeV and a top mass of 175 GeV as input
parameters.

U max KKsem refer. O(e®) gexs O(a?) ceex int OFF O(?) ceex KORALZ KORALZ interf.
o(vma [Pb], KK MC andkorALz 1st order
0.01 1.67120.0000 1.668%0.0020 1.6696:0.0020 1.76790.0024 0.963%2 0.0009 0.1616:0.0009
0.10 2.5198 0.0000 2.51640.0023 2.5176:0.0023 2.596%0.0027 2.191¢0.0010 0.088&:0.0010
0.30 3.0616:0.0000 3.056%0.0024 3.05810.0024 3.1196:0.0029 2.7696:0.0010 0.054%0.0010
0.50 3.37470.0000 3.36820.0025 3.371320.0025 3.42030.0029 3.056%0.0010 0.038%0.0010
0.70 3.7225 0.0000 3.713%10.0025 3.720€:0.0025 3.7596:0.0030 3.364%0.0010 0.0246:0.0010
0.90 7.1434 0.0000 7.0904 0.0024 7.1496:0.0024 7.178%0.0030 6.3558 0.0010 0.021€:0.0010
0.99 7.6145 0.0000 7.55110.0024 7.6254 0.0024 7.6542-0.0029 6.7004 0.0010 0.02130.0010
Arg(vmay), LK MC andkorALz 1st order

0.01 0.5654-0.0000 0.5656:0.0014 0.5656:0.0014 0.611%0.0016 0.576%0.0013 0.120%0.0013
0.10 0.56640.0000 0.5666:0.0011 0.5666:0.0011 0.59220.0012 0.5784 0.0006 0.00324: 0.0006
0.30 0.5692-0.0000 0.568Z 0.0009 0.5686:0.0009 0.5856:0.0011 0.5818 0.0005 0.0164 0.0005
0.50 0.57440.0000 0.573&0.0009 0.573%0.0009 0.58630.0010 0.5868 0.0005 0.01120.0005
0.70 0.5864:0.0000 0.58520.0008 0.58520.0008 0.594% 0.0009 0.59720.0004 0.007& 0.0004
0.90 0.3105:0.0000 0.31150.0004 0.309€ 0.0004 0.317€:0.0005 0.3266 0.0002 0.003% 0.0002
0.99 0.285% 0.0000 0.2867 0.0004 0.2843 0.0004 0.29120.0004 0.30320.0002 0.0024:0.0002
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FIG. 22. Absolute predictions for the total cross section and charge asymmetry. They aredonthefinal state at/s= 189 GeV. The
results are plotted as a function of the cutoff on the total photon engfgy=1—5in/S.

ZFITTER 6.X. On general grounds, we expect this recipe to belue to QED effects, at LEP2 energies of about 0.2% for the
rather good, because the IFI correction itself¥') does  total cross section and 0.2—-0.4@epending on the cutoffs
not contain any large mass logarithms, is relatively smallfor the charge asymmetry. Finally, we examine the analo-
and can be handled additively. gous results from th&C MC at 500 GeV in Fig. 23. In this

In Fig. 22 we also show the numerical results from thecase we include only results from th&C MC and Ksem.

KK MC in the EEX3 modeno IFI) and fromkorALZ inthe  The pattern of agreement is, up to a factor of 2, the same as
EEX2 mode(no IFl), which are not included in Table IlI. at 189 GeV.

Let us now comment on the results in Fig. 22. The EEX3
from the /C MC differs from the EEX3best of th&€sem
(no IFI in eithey by about 0.7% for the ZRR process, as we
have already seen, and we interpret this difference as the The control of the initial-final-state interference correc-
result of the missing)(L'a?). The EEX2 ofkorALZ 4.03is  tion down to the precision of 0.2% in the integrated cross-
closer to the EEX3best of théCKsem for the ZRR section and in the charge asymmetry is rather important—
process—we do not see any contradiction in this since th#his is why we dedicate this section to a more detailed study
implementations of the EEX imorALz and the/CKC MC  of this QED correction. In particular we would like to answer
differ in the detailfcausing a difference aP(L*a?) in the  the following questions.

E. Initial —final-state interference

integrated cross sectign (1) How big is the ISR FSR interference iy, Arg?
In the case with the IFI switched off, the CEEX2 result, (2) Do we know the ISR FSR atO(a?')?
corresponding exactly to th@(a?)ceex, defined in Sec. Il (3) Do we know the ISR FSR beyond)(a?')?

as implemented in th&£X MC 4.13, agrees very well with (4) How sensitive is the ISRFSR to cutoff changes?
the EEX3best of théCKsem. This result is compatible with ~ KORALZ is the best starting point and reference for the
the total theoretical precision of 0.2% for the integrated crosgroblem of calculating the ISRFSR. In Fig. 24 we show
section, even including the ZRR process. results from theD(a') KORALZ (no exponentiationfor the

In the case with the IFI switched on, the hybrid solution u™ x~ final state at/s=189 GeV. The angular distributions
“CEEX2+IFI at O(a')" also agrees with the full CEEX2 from KORALZ, in pureO(a') (without exponentiation were
result, confirming the total theoretical precision of 0.2% forverified very precisely at the level 6t 0.01% using a spe-
the integrated cross section, including the ZRR process. cial analytical calculation, see Ref55], so we know the

For the charge asymmetry in Fig. 22, the situation is quitd SR® FSR at O(a) very precisely. As we see, the ISR
similar. The IFI effect is up to 4% for strong cuts. In the case® FSR contribution to the integrated cross section is about
with the IFI switched off, the CEEX2 result agrees with the 3% and its contribution is about 0.03 5. This is defi-
EEX3best of theCsem to within 0.2%. When the IFl is nitely above the ultimate experimental error tag for the com-
included, the CEEX2 agrees with the hybrid solution rathebined LEP2 data at the end of the LEP2 operation. The en-
well, to within 0.4%. Note that in the above Monte Carlo ergy cut on the total photon energy is fixed in the results of
exercise we have used the symmetric definition of the scaf~ig. 24 to just one valuey <v,»=0.1 (Where v =1
tering angled” of Ref.[55] (which is close to what is used in —s'/sis defined as usuglThis is close to the usual value in
the LEP experimenjs the experimental LEP2 data analysis. We introduce also the

Summarizing, the numerical results in Fig. 22 establishangular cufcosé|<cos#,,, and vary the value of ca%,ay,
our basic estimate of the theoretical precision ofkté MC, see Fig. 24&), where the value used in the experimental
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FIG. 23. Total cross section and charge asymmetry for tfig.~ final state atJs=500 GeV. The results are analogous to those

in Fig. 22.

LEP2 data analysis is around afs,,=0.9; this corresponds (This kind of exponentiation will be implemented in the next
to two bins before the last one in Fig. @4 (the last point in ~ version of ZFITTER, see[45] for the first numerical results.
the plot is for cog,,—=1). In this way we have already The typical experimental cytos6<0.9 eliminates most of
answered the first two questions from the above list. the above trouble anyway—what is probably more important
In Fig. 25 we present similar results from th&gC MC, is the correct “convolution” of the IR-finiteO(a') ISR
which will help us to answer whether we know the ISR ® FSR with the®(a?) ISR. In theX(C MC, this is done in a
®FSR beyond)(a') and to inspect in more detail the de- maximally clean way from the theoretical/physical point of
pendence on cutoffs. In Fig. 29,(b) we essentially repeat view (at the amplitude levewhile in the semianalytical pro-
the exercise of Fig. 24, finding out the IS8RSR contribu-  grams likezrITTER [5] this is done in a morad hocmanner.
tion to the angular distribution anti-g for the same energy Let us remind the reader that we still lack the genuine IR-
cut usingKK MC instead ofkoRALZ. As we see, the results finite O(a?) corrections in the ISRFSR class from dia-
change slightly, the ISRFSR effect is about 20-30% grams like 2-boxes and 5-boxes, see Sec. lll. These contri-
smaller. We attribute this mainly tta) a different(bette)  butions are most likely negligible, of the order 6{L'a?)
treatment of the ISR in th&/ MC and(b) the exponentia- at most.
tion of the ISRRFSR effect in theXK MC. As is well In Fig. 25c),(d) we make the energy cut looser,,y
known, in O(al), the ISRRFSR contributes like =0.9, thus admitting the ZRR into the available phase-space.
4Q.Q¢(al/m)In(l—cosh)/(1+coshd) to the angular As aresult, the relative ISRFSR decreases by a factor of 3,
distribution—this even causes the angular distribution to besimply because it gets “diluted” in the integrated cross sec-
negative close to cas=—1. In the CEEX exponentiation the tion, which is larger by a factor of 3 while ZRR does not
above singularity is summed up to infinite order and thecontribute to the ISR FSR because of its narrow-resonance
angular distribution neafcosf|=1 is no longer singular. character, as we already discussed at length in Sec. lll. The
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O(at) KorALZ (no exponentia-
tion) for the u* u~ final state at
Js=189 GeV. The energy cut is
ons'ls, wheres’=mf7. The an-
gular cut is|cos6|<cosf.. The
scattering angle is th&= 6" of
Ref. [55].
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FIG. 25. Results from thé)(a?) KK MC for the u* u~ final state at/s=189 GeV. The energy cut is i/s, Wheres’=mfff. The
angular cut igcos6|<cosf,.. The scattering angle is the= 6" of Ref.[55].

fact that the ZRR does not contribute to the ISRSR can
be seen explicitly in Fig. 26 where we plot the ISRSR
contribution toAgg “binperbin,” that is calculated in each where there is n@ resonance.

bin separately. As we see the contribution from the ZRR,

0.100 — o

0.000

—0.050 |

— Strong Cut
—0.100 L

1—s'/s

No Cut —

FIG. 26. The ISR FSR contribution tAgg “binperbin.”

0.25

0.50

0.75

1.00

which at this energy189 GeV is located ab =0.75, is very
small, smaller than the contributions from all of the othé&r

In the above exercises, and also in the following, we al-
ways use the energy cut on the=1—s’/s variable defined

in terms of the effective mass of the “bare” final fermions,
that is without any attempt at combining them with the col-
linear FSR photons. This is experimentally well justified for
the w-pair final states but not for-pairs or quarks. It is
possible, and in fact rather easy, to define a “propagator” or
“reduced” s") that takes into account the loss of energy due
to ISR but not FSR. In other words, tiss effective mass-
squared sums up FSR photons. One can ask the following
legitimate question: If we would cut not on the “bare” final
fermion variables’, but instead on the “propagators,,
would perhaps the estimate of the ISRSR contribution
then be dramatically different, for instance would it be much
smaller? In Fig. 27 we show a numerical exercise in which
we employ the energy cut in terms of = 1—s£,/s. One can
construct such aeg, by looking into the angles of the outgo-
ing fermions. This type of variable was used in H&6]. In

Fig. 27 we use the definition (#) of ALEPH [56]. As we see

in this figure, the result is not dramatically different from
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FIG. 27. Results from th&(at) KK MC for the u* u~ final state at/s=189 GeV. The energy cut is an,=1-s'/s, wheres’ is an
estimate of the “propagator eff. mass” as definedAngpH. The angular cut iscosf|<cos6.«. The scattering angle is thie= 6" of Ref.
[55].

what we have seen in Fig. 25. The magnitude of the ISRo the Born valug For stronger cuts,,,,<0.2 we see a large
®FSR contribution is close to what we could see if we ap-(factor of 2 discrepancy between the results from &
plied the same value of the energy cut for the “ba”’(as  MC and bothkoRALz and zFITTER, because of the lack of
we have checked independently exponentiation irkORALZ and zFITTER (in ZFITTER the ISR
We shall now examine the dependence of thed$R  ®FSR is taken without exponentiation and combined with
contribution on the energy cut,,,in more detail. In Fig. 28 the ISR “additively”). We also observe the discrepancy of
we show the ISR FSR contribution toAg as a function of about 0.2% for the ZRR between th#&C MC on the one
the energy cub s at two energiega 189 GeV and(b)  hand and botlkorALz and zFITTER on the other hand. Our
Js=M, at theZ peak. No cut is applied on c#sIn addition  guess is that it is due to the difference in the method of
to the ICIC MC results, we show the results from ti¥ o) combining the ISRFSR with the second-order ISFof
mode ofkoRALz and fromzrITTER?® At 189 GeV and for  course, we believe that the CEEX method of doing it at the
the typical energy cut 02v,,,,<0.3, all three programs amplitude level is the best one can)dm Fig. 28b) we see,
agree very well. This cut is relatively “inclusive,” so that first of all, the well-known phenomenon of the strong sup-
exponentiation effects are not so important and the ISR ipression of the ISRFSR contribution at the resonance, es-
eliminated in a “gentle” way(the total cross section is close pecially for a loose cutoff. Even for a strong cutyax
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2%ne thank D. Bardin for providing us the results framTTER.
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=0.1, the ISRYFSR contribution is about 0.01, a factor of ® FSR is much weaker as we go away from the center of the
about 30 smaller than it is in the off-resonance case. Herggsonance, and it changes the resonance curve in such a way
the KK MC agrees rather well witikorRALZ and zFITTER.  that it affects the fitted mass of the The actual size of the
The differences are generdfyup to 0.0015. shift of M was studied in Refl57], and it was found to be

In Fig. 29a) we examine the ISRFSR contribution to 0.15 MeV. Results of theCX MC are smaller by about
the integrated cross section as a function of the energy cut0—20 % than th&(a') estimates 0kORALZ andZFITTER,
Umax- At 189 GeV and for the typical energy cut &1,  away from theZ peak. This is compatible with the 10—20 %
<0.6, all three programs agree reasonably welRALz and  size of the O(L%a?) ISR corrections with respect to
ZFITTER are generally closer to each other than to k%  O(L!a?) corrections, which are included in thigC MC and
MC. After admitting the ZRRyp ,5,0.8, all three programs are not included irkorRALZ, and apparently are also not in-
agree even better. For a very strong ay,<0.1, KORALZ cluded in zFITTER/TOPAZO (which agree very well with
andzrITTER differ dramatically from theC/C MC because of KORALZz). Our last comment concerns the reliability of our
the lack of exponentiation iKORALz and zFITTER for the  estimate for the ISR FSR contribution in the absence of the
IFI. In Fig. 29b), we see again the strong suppression of thecorrect implementation of the simultaneous emission of the
ISR® FSR contribution at the resonance, especially for the=SR photon and the FSR gluon. We think that through the
loose cutoff. The suppression is cutoff dependent and geneusual arguments, see R¢R7], we can neglect considering
ally stronger forkoraLz andzrITTER than for theXCKC MC.  the emission of the FSR single gluon, as long as we stick to
Most of the comments that we made on the &SR con-  a very inclusive cross section, such as the total cross section

tribution to Agg apply also here. in Fig. 30. For stronger angular cuts, or events with a definite
Finally, in Fig. 30 we go back to the vicinity of ti&@peak jet multiplicity, we would need to improve our calculation.
(LEP1) and we show the magnitude of the ISRSR contri- We summarize the results of this section on the ISR

bution to the integrated cross section as a function of the® FSR as follows.

CMS energy, for thes~ u* final state and for all five quark

final states taken togethé@he so-called hadronic cross sec- i RARAAANRARSEERAS
tion) from the KX Monte Carlo. No angular cut or energy Tint ° qCEEX ’f’fxw

cut is applied(the full phase-spageFor the u u™ final Ttot o, pKORALZ st ord.

state, we also include results from ti¥ o) KorALZ and 0.005 L X ZFITTER/TOPAZO
ZFITTER/ITOPAZO [5,41]. The results on quarks are multiplied
by a factor of 10 to be visible, because the SIRSR con- o |
tribution in this case is small. It is not only suppressed by the ® ]
smallness of the quark charge, but we also have partial can- \
cellation among the up- and down-type quarks, see [[S6f.
However, the ISRFSR contribution to the hadronic cross t
section has to be known much more precis@lyfactor~ 3) &

because it is measured much more precisely, thanks to higher
statistics. In Fig. 30 we see that the suppression of the ISR —0.005

0.000 %

T
&
|

Vs— My
2°The difference betweekoraLz andzrITTER should perhaps be —am ”_'2'.(')6‘ '”‘ 060 - 2"00' a0

smaller, since both ar@(a')? The difference could be due to the
angle definition. FIG. 30. Back on th& peak.
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(1) For a typical experimental energy cut of 0.3 the ISRto express our gratitude to W. Ptaczek, E. Richters\Wd.

®FSR interference is about 1.5% iny; and Agg . Skrzypek, and S. Yost for valuable comments. This work
(2) For the energy cut of 0.1, it is a factor of 2 larger. was supported in part by Polish Government Grants Nos.
(3) The cut|cosf/<0.9 makes it 25% smaller. KBN 2P03B08414 and KBN 2P03B14715; the U.S. DOE

(4) The O(al) ISR® FSR interference is under total con- Contracts Nos. DE-FG05-91ER40627 and DE-ACO03-
trol, usingkorALz and KC/C Monte Carlo for arbitrary cuts. 76SF00515; the Maria Sktodowska-Curie Joint Fund Il

(5) Effects beyondO(at) are negligible] <20% of the PAA/DOE-97-316, and the Polish—French Collaboration
O(at)], except when the energy cut is stronger than 0.1. within IN2P3 through LAPP Annecy.

(6) The ISR® FSR interference at thé radiative return is
very small, as expected. APPENDIX: BASIC KS/GPS SPINORS AND PHOTON

(7) Changing froms’ to the propagato®? in the energy POLARIZATIONS

cut has no effect. . .
The arbitrary massless spinof(p) of momentump and

chirality \ is defined according to the KS methodst,25.
In the following we closely follow the notation of Ref2]
Let us summarize the total theoretical precision. (in particular we also us¢={)). In the above framework
(1) For the most typical cutoff range Oy ;,54<0.3, ex-  every spinor is transformed out of the twamnstant basic
cluding theZ radiative return, we quote for CEEX a total spinorsu, (), of opposite chiralityh = +, as follows:
precision of 0.2% for LEP2 and for the LC at 0.5 TeV.

F. Total theoretical precision

(2) For a cutoff including ZRR we quote 0.2% total pre- 1
cision for LEP2 and 0.4% total precision for the LC at 0.5 ux(p)= \/Z—buﬂ((), u (9)=#Hu_(9),
TeV. pe
. 0 . i
(3) For vy* we quote 0.3% at LEPZ2there is no firm #=-1, (50)=0. (A1)

result for the LQ.

In the above estimates the technical component of thehe usual relations hold£u, ()=0, wyu, (&) =u\({),
error was significantly below the physical one. The restric- (g)g )=t — —
i : X . . - (8)uy W) pux(p)=0, w\U\(p) =ur(p),
tions to be applied are as follows: no light-fermion palrsuk(p)uk(p)zlwa, wherew, = 1(14 X ys). Spinors for the

(pure photonic QER no EW component. massive particle with four-momentum(with p?=m?) and

VIL. OUTLOOK AND SUMMARY spin projection\/2 are defined similarly:

The most important new features in the present CEEX are N)= 1 +
the ISR-FSR interference, the second-order subleading cor- u(p.A)= \/z_pg(p mu-(0),
rections, and the exact matrix element for two hard photons.
This already makes CEEX a unique source of SM predic- 1
tions for the LEP2 and the LC physics programs. Note that v(pN)=—(p—m)u,(2), (A2)
for these programs the electroweak correction library has to \/2_p§

be reexamined at LC energies. The most important omission .

in the present version is the absence of the neutrino an@ €quivalently,
electron channels. Let us stress that the present program is an
excellent starting platform for the construction of the second-
order Bhabha MC generator based on CEEX exponentiation.
We hope to be able to include the Bhabha and neutrino chan-
nels soon, possibly in the next version. The other important m
directions for the development are the inclusion of the exact v(p,N)=Uu_\(py)— —=w(0), (A3)
matrix element for three hard photons, together with virtual \/2_p§

corrections up t@(«°L%) and the emission of the light fer-

mion pairs. The inclusion of the&/* W~ andtt final states is
still in a further perspective.

in terms of massless spinors

m
u(p,A)=u +—u_ ,
(p ) )\(p{) \/Z—Mu )\(g)

where pgzﬁzp—gmzl(%p) is the light-cone projection
(p§=0) of thep obtained with the help of the constant aux-
iliary vector {.
The above definition is supplemented in R&f} with the
ACKNOWLEDGMENTS precise prescription of the spin quantization axes, the trans-
lation from spin amplitudes to density matridgdso in vec-
Two of us(S.J. and B.F.L.W.would like to thank the tor notation, and the methodology of connecting production
CERN EP and TH Divisions. We are grateful to all four LEP and decay for unstable fermions. We collectively call these
Collaborations and their members for support. In particularules the global positioning of spit(GPS. Thanks to these
we would like to thank Dr. D. Schlatter afLEPH for con-  we are able to easily introduce polarizations for beams and
tinuous support and help. One of €S.J) would like to  implement polarization effects for final fermion decays
thank the DESY Directorate for its generous support in ther-leptons,t-quarks, for the first time also in the presence of
critical stage of the beginning of this project. We would like the emission of many ISR and FSR photons.
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The GPS rules determining the spin quantization frameén our spinor algebra we shall exploit the completeness rela-
for theu(p, =) andv(p, =) of Eq. (A3) are summarized as tions
follows.
(@) In the rest frame of the fermion, take thexis along — _
; p+m=2 u(pMu(p,\),  p=m=2 v(pMv(pN),

(.b) Place thex axis in the plane defined by theaxis from

the previous point and the vectér in the same half-plane as —

; k=2 u(k,\u(k,\), k?=0. (A9)

) A
(c) With the y-axis, complete the right-handed system of

coordinates. The rest frame defined in this way we call the . o circularly polarized photon with four-momentum

GPS frame of the particular fermion. ) .
See Ref[2] for more details. In the following we shall ngg)hc?f“t(;:glgola_ri;a\t?loena\;jeocrt)éf}he KS choictsee also Ref.

assume that polarization vectors of beams and of outgoin
fermions are defined in their corresponding GPS frames.

The inner product of the two massless spinors is defined [e4(B)]* :M
as follows: 7 V2u_,(K)us(B)’
S1(P1.P2)=U.(PLU-(P2), Uy (K) y*1,(4)

MO = A10
Lot O = B w0 (A0

where B8 is an arbitrary light-like four-vectop3?=0. The
second choice with,(£) (not exploited in[24]) often leads
to simplifications in the resulting photon emission ampli-
tudes. Using the Chisholm identify

s_(P1,P2)=U_(p)u,(p2)=—[5:(p1,p2)]*.
A4)

The above inner product can be evaluated using the Kleis
Stirling (KS) expression
s+(p,9)=2(2p¢) " *2q0) YA (p&)(am) — (p7)(ad) 0y By 20 B0+ 20 (KT (8)
U, U, =2u,(B)u, u_,(ku_,(B),
—i E,U.Vpo'g,u nvppqo] (AS) Tu 7 (All)

in any reference frame. In particular, in the laboratory frame — _ — —
we typically use/=(1,1,0,0) andy=(0,0,1,0), which leads Us(K)7,ut6(4) 7"—Zug(g“)ug(k)—2u,0(k)u,g(§)(,A12)
to the following “massless” inner product

. we get two useful expressions, equivalent to 0):
s+ (p,a)=—(a?+ig®)\(p°= pH/(d®—q) 9 P . &40

24 109 (P aDI 5T, 2 _
+(p?+ip)V(a°—agh)/(p°—ph).  (AB) [éa(k,ﬂ)]*:UT\/;(ﬁ)[ug(ﬁ)ug(k)

Equation(A3) immediately provides us also with the-

ner productfor massive spinors +u_,(Ku_,(B)] (A13)
u(p1, A )U(P2,N2)=S(P1,My,A1,P2,Ma ), L o= J2 ~ .-
[ a'( !g)] - \/Z—gk[ua'(g)u(r( ) u—o’( )u—o'(é’)]'

U(p1, A 1)v(P2,A2)=S(P1,My,N1,P2,— My, — o),
(A7) In the evaluation of photon emission spin amplitudes, we
shall use the following important building blocks—the ele-

v(P1,A)U(P2,A2)=S(P1,—My,—\1,P2,My,\2), ments of the “transition matricestJ andV defined as

U_(pla)\l)v(p27)\2)zs(p1a_m11_)\1,p2a_m2,_)\2),
30Contrary to other papers on Weyl spinor technigi®t59, we

where keep here the explicitly complex conjugationenThis conjugation
is canceled by another, following Feynman rules, but only for out-
S(p1,My,N1,P2,Ms,\>) going photons, not for a beam photon, as in the Compton process,
see Ref[60].
=0y, -2, (P1z,P2g) SlFor B=¢ the identity is slightly different because of the addi-

5 5 tional minus sign in the “line-reversal” rule, i_.egg(k) Y*u (&)
+ 5>\1,A2< m; \/&ﬂL mz\ ﬁ) (A8) = —u_,({)y*u_,(k), in contrast to the usual, (k) y*u,(8)=
2{p; 2{p, +Uu_(B) v u_ (k).
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Wpr A&k Bulpann=U| <||PP?|=ug | (k )
u(p1,ha) € (K, B)u(pz,Az)=U| Nl ry 2, (K P1,My, P2, My),

k
(o
In the case ofi,(¢) the above transition matrices are rather simle:
2{p
\ S8 (k.py),
U (k,pa,my,p m>=ﬁ 2ck (A15)
e N CZTT LTI I
20p, 20,V acks (kP2

U}tl,)\z(kvplimlip2!m2):[_ U)Tz,xl(kipZ!mZaplvml)]*a (A16)

(A14)
P1P2

v_(pl,hl)éi(k,i)v(pz,MFV )\1)\2} :Vgl,xz(k,pbml,pz,mz)-

Vgl,xz(kvplimlipZ!mZ):Ug)\l,f)\z(kipl!_ml!DZI_mZ)' (A17)

The more general case with,(3) looks a little bit more complicated:

2
U+(kap1:ml’p2’m2):\/7k,3)

|2{B 2k /2 2B
" S+(p11k)s B p2)+mlm2 2§p1 2§p2 2§ S+(k p2) m2 g S+(p11k)
\/ s_(B, )m\/gs( B) (P B)S(kA)+mm\/2ﬁ2§k |
2( 1 p2 2 2§ P1, -(P1, +(K,P2 1112 2§p1 2§p2

(A18)

with the same relation6A16) and (A17). When analyzing the soft real photon I|m|t we shall exploit
In the above the following numbering of elements in ma-the following importantdiagonality property
tricesU andV was adopted

pkp | pkp |
U )\10-)\2 - [)\10)\2 _bo(kvp)é)\l)\za (AZl)
(++) (+_) g-(k )_\/— o’(k)pua(g
{AMAdi=| (—+) (=)| (A19) U o(K)ug(4)
2{p ~
=2 25 (KP), (A22)
When analyzingmulti) bremsstrahlung amplitudes we shall which also holds in the general casewf(5), where
also often employ the following compact notation: b (kD) \/5 P s (5K
g il =T o ng' L So' H
P (kB) PSP
m2
pkp - +—= (2B§)(2§k)>- (A23)
U AN, = Al,)\z(kvpl’mlapZ:mZ): 2{p
%20ur U andV matrices are not the same as Menatrices of Ref.
[25], but rather are products of several of those.
v PP Vi, (KiPp1,my, pa,my). (A20) 33 et us also keep in mind the relatiorb_,(k,p)=
N1oX; L —[b,(k,p)]*, which can save time in the numerical calculations.
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