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P and T odd asymmetries in lepton flavor violating = decays
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We calculate the differential cross sections of the processes in which one of the pair erpatédles at an
e"e” collider decays into lepton flavor violating final states, em~uy, 7—3u, 7—puee Using the
correlations between angular distributions of both sides décays, we can obtain information on parity and
CP violations of lepton flavor nonconserving interactions. The formulas derived here are useful in distinguish-
ing different models, since each model of physics beyond the standard model predicts different angular
correlations. We also calculate angular distributions of the major background process tosearch, namely,
Tl v?y, and discuss the usefulness of the angular correlation for background suppression.
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[. INTRODUCTION [11,12. We can define a parityP) odd asymmetry fornu
—evy process andP and time reversalT) odd asymmetries
Recent results from neutrino experiments such as théor u— 3e processes. These asymmetries are useful to dis-
Super-Kamiokande experiment strongly suggest neutrino osinguish different models. For example, in the GUSUSY
cillation so that there are flavor mixings in the lepton sectofGUT model with small and intermediate values of ffa
[1]. This implies that charged lepton flavor violating pro- ratio of two vacuum expectation values of Higgs figJamly
cesses such gg—ey, T—uy, T—ey, etc, also occur at *—e'y (or u~—ery) occurs because LFV is induced
some level. It is, therefore, important to search for leptonthrough the right-handed slepton sector. On the other hand,
flavor violation (LFV) in rare decay processes of the muonsysy models with right-handed neutrinos prediat”

andr. - . . —eqpy (or u~—e_ y), and SUSY models with vectorlike
The prediction of the branching fraction of LFV processes eptons can induce both* —e] y and u* —e; y depend-

dhepen_d_s onl models_ of phfysrllcs beyc(Jjnddthe s(’;a?darrt]j_ r;:odekl. Hg on how the interaction breaks lepton flavor conservation.
the minimal extension of the standard model, which takes, models with extra dimensions, only” —eg y can occur.
into account neutrino oscillations by the seesaw mechamsn'g\S for the T odd asvmmetry in thes— 3e process. it was
of neutrino mass generatidg], the expected branching frac- shown that as mme){[r cou?:j be s?;able ir? the(!Sl.’SUSY
tion is too small to be observable in the near futiBg On GUT [11.12) y y

the other hand, in supersymmett8USY) models, the pre- In thi e di he LEV afe
diction can be close to the current experimental upper bound. n this paper, we discuss the LFV processes alecays
In this case, flavor mixing in the slepton mass matrix be-SUCh asr—my, T._’3'“’ T—”ie?' taklng Into a(_:counP+an7d
comes a new source of LFV. Even in the minimal supergrav:r o.d(.j asymmetries. In th_e T par productlon_ ae e

ity scenario[4], in which the slepton mass matrix is propor- CO"'_S'Ons’ we can extract mformaﬂpn on Fhe spin of the de-
tional to a unit matrix at the Planck scale, the €&YIN97 particle from the angular distribution of thedecay

renormalization effects due to LFV interactions can induceDrOd.uCtS in the opposite side. Using _th|s t.echnlque, we can
sizable slepton mixingg5]. For example, such LFV Yukawa obtain theP and T odd asymmetry de_flned in the rest frame
interactions exist in the SUSY grand unified the¢&UT) of 7. The method of the spin correlation h.aS been developed
model[6], SUSY model with right-handed neutrinpg, and since the days before the d|scover){mpart|cle[;3]. There _
SUSY models with exotic vectorlike leptori§]. Another ~Nave been many works on the spin correlation method in
interesting possibility is models with extra dimensions,S€&rch of anomalous coupling involving 14]. In those ref-
where the neutrino masses and mixings are obtained from tHences various energy and angular correlations as well as
Yukawa interaction between the ordinary left-handed lepton&Symmetries are introduced to extr&andT odd quantities.
and the gauge-singlet neutrinos which propagate in the bull/¢ have applied the same formalism in order to obtain the
of extra dimension&9]. This Yukawa interaction breaks the nformation on LFV interactions undét and T symmetries.
lepton flavor conservation and the Kaluza-Klein modes ofV€ @lso calculate angular correlation of the process where
the bulk neutrinos can enhange—ey decay,— uy decay, ©One of ther’s decays through the—|»vy mode. This mode
etc., through the loop diagrani0]. is a background process to the-|y search if the neutrinos
In the muon decay, the polarized muon experiments procarry little energy. As in the muon ca$é5], the angular
vide useful information on the nature of LFV interactions correlation is useful to identify the background process and
background suppression is effective foi —u, y (7"
— g y) search.
*Email address: ryuichiro.kitano@kek.jp This paper is organized as follows. In Sec. Il, we intro-
TEmail address: yasuhiro.okada@kek.jp duce a formalism to calculate the spin correlation. In Sec. Il
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we present a differential cross section of the production and

t a dirterential cr ! o 1 dgy d’qy,
decays ofr" 7~ ate” e” colliders where one of's decays in dR, A= 0 3502 (2m)*
T7— 7y or —ey modes, and show how to extract tRedd I'@2m32q} (2m)32q) 2m,
asymmetry ofr decay. In Sec. IVP andT odd asymmetries n
in three body LFV decays#—3u, 7— uee, etc) are con- w &4 z qi_pA)pD, ©6)
sidered. In Sec. V, we consider the-| vvy mode and show i=1 2

that the analysis of the angular distribution is useful for

background suppression of the» .y and r— ey searches. oty 1 d%qnis d3Gnsm

A summary and discussion are given in Sec. VI. The Appen- dR, T (27)32q° o (27)32q°
dixes contain the derivation of basic formulas and a list of n+l nem

kinematical functions. 1 n+tm 5
X (2m)*et 2 ai—ps|py . (D)
T i=n+1

II. GENERAL FORMULA FOR SPIN CORRELATION

In this section, we present general formulas used in th&/hére we assume théj is anPod}/ system andg is am
calculation of differential cross sections and spin correlaP0dy Systempe:(pe-) is thee(e") four-momentumpg

tions. (pa) is the 77 (77) four-momentum, and);’s are the mo-
We calculate differential cross sectionsefe™—r*7~ ~ Menta of final state particles is determined as=(pe-
—fgfa, Where fg(f,) represents the decay products of TPe-)"- I' andm, are the width and the mass of the

. - H H 1 1 D7
(7). If the intermediate states were spinless particlesfespectively. In order to define”, a®-, a®+, pg,, p,

the cross section is simply a product of a production crosand p5+, we first write down the invariant amplitude of
section and decay branching ratios. However, in the case qfte~_ 7+ 7~ f;f, as follows:
spin 1/2 particles, we have to take into account spin correla-

tion between two intermediate particles. If we take— fg e’ _ B _
to be a LFV decay mode, we can measBrand T violation M=3 (Patm,) y*(Pg—m;)Bve+y,Ue-
of LFV interactions by using the angular correlations of de-
cay products ofr* and 7. 1 1 ®
The differential cross section &f"e™ — 77~ —fgf, is X : > 2 , > 8
3 wherev +(U.-) is the wave function of the positrofelec-

do=do”dB™ ~fadB™ s+ > dsPd R;__’fAd Rg+_’f3 tron) andA andB are spinors which include wave functions
ab=1 of final states and interaction vertices. By using the
(1) Bouchiat-Michel formulag16] and the narrow width ap-

and proximation,a®, a®-, P+, pf,, p:", andpbD+ are given
by
d? dd 1
oP=—PA BB~ (o . leét
(2m)%2py (2m)°2pp 28 o= 2 TT(Ba+m) ¥ (Pg—m,)y']
X 5 (pa+Pe—Per—Pe-)a’, ()
PaTPePer e XT Ber 7, 7,1, ©
- 1 d% d’qp
dB™ ~fa==— 2.m)4 1 —
T 2m2® (2m2q0 2m. 2™ o= (A(pat m,)AY, (10
n
_ D_ 1 _
<o & p’*)“ | B aPe=2 (B(pe—m,B}, ay
3 3
dB#ﬁfB:i d°0n+ 1 d°dn+m o 1 et . o )
r (27,-)32(]2+1 (277)32q2+m Pabzzg Trl ys8a(Pa+ M) y* ysbg(Ppg—m,) ¥"]
1 o X T Pet ¥ubPe-7,] (12)
X (277)454 2 di— Ps aD+’ (4) et YuPe Vvl
2m7’ i=n+1
1 _
Fox pa =5 (AYsEA(Ba+ M)A}, (13
P A Pe 4
ab™ 350 3,0 7 (27)
(2m)2p} (2m)%2pg 25 1
D+=_ — b _
X 5*(pat P Per—Pe-)p”, @ P T2 {BystelbemmBl, 19
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where the spins of the final state fermions are summed oveferent ratio of A, and Ag. For example, the SB) SUSY

and the four-vectorssf)* and (sg)” (a,b=1,2,3) are a set
of vectors which satisfy following equations:

Pa-SA= pB'ngov (15)

s2.s0=g2.sh=— 5%, (16)

3

PauPay
2 SA) (SA _gMV+ MZ f
= m

P

GUT in the minimal supergravity scenario predicts that only
A, has a nonvanishing value for small and intermediate val-
ues of taB. Therefore the separate determinatiompfand

Ag provides us important information on the origin of LFV.
For this purpose, we need information about thgolariza-
tion. This can be done by observing angular distributions of
the final state ofr decay in the opposite side in the modes of
T—mv, T—pv, T—a,v, and r—Ilvv, because these pro-
cesses proceed due to tHeA interaction and therefore have
a specific angular distribution with respect to polarization of
7. Using 7" -7~ spin correlation, we can determip®, |2 and
|Ar|2, separately.

We first define three coordinate syste(kag. 1). The first
coordinate systeniframe J is the center of mass frame of
thee™e™ collision in which thez axis is taken to be the™
momentum direction. The second offeame 2 is the rest

3
Pe.PB»
E SB) (SB __g;Lv+ B#ZB .
b= m

T

7

frame of ther, and the third onéframe 3 is the rest frame
of the 7. More explicitly, the relation of a four-vector in the
The derivation of the above result is shown in Appendix A.three systems is given as follows:
Not|ce thatdo®, dB™ —'A, anddB™ — 8 in Eq. (1) are the

™ productlon cross section anddecay branching ratios, 1 0 0 0 4

in which the spins of’s are averaged, ar.©, dR:*fA, cosé, sing, 0

0 0

and deHfB represent the spin correlation effects of this &=l o 0 1 0 0
process. 0 0 vB,

In the above formulas, it is assumed thaiair production
occurs through photon exchange. It is straightforward to in-
clude the contribution fronZ boson exchange ang-Z in-
terference. If we consider tre" e~ center of mass energy to
be in the range of the" =~ threshold energy considered in  —
the 7-charm factory or théY (4S) resonance energy where
e"e B factories are operated, these effects only contribute
to the production cross section at the leveifl0™*) of the
photon exchanging diagram. y

0
Xl o
YB;

o O +» O
o » O O
o

—siné, Cosé .

0
cosf, O
1
0

o O O -
|
=
o

o O O -
o

sing.,

YB-

lll. PARITY ASYMMETRY IN  7—py DECAY

0 | &, (19
Let us calculate the cross section effe”—7"7"

—u*y+f, processes. Fof,, we consider hadronic and

leptonic modes such asr, pv, a;v, andlvv). Below we
neglect the muon mass compared to thmass, and there-
fore all formulas can be applied also to thesey process.
The effective Lagrangian for" — u*y decay is given by

o o +» O
o » O O

Y

where y= \/§/(Zm7) and B,.= \/1—4m27/s, and the four-
vectors ¢, _3 are defined in frames 1-3, respectively. We
calculate the production process in frame 1 and#thér™)

Frame 2
4G|: %
L=— \/_ {mTARTO' "PLuF,, N

+mM,A_T0* PruF ,,+H.c}, (18)

where G is the Fermi coupling constanB, =(1— vy5)/2, g it
and Pg=(1+ vy5)/2. In this paper we use the conventions \/ g 5
- L
v

o' =il2[y*,y"], F,,=d,A,— , andD,=d,+ieA, 11 Frame 1
for electrons where(70) is the posﬁron charge. The operator Frame 3
with the COUp“ng constanAg (A_) induces ther” H,U-RY FIG. 1. The coordinate systems. The plane determines‘lay

(" —p . y) decay. As mentioned in the Introduction, eachand r* »~ momentum vectors corresponds to #eplanes in each
model of physics beyond the standard model predicts a difef three coordinate systems.
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decay in frame Zframe 3. In the calculations, we choose
the spin vectorssx)*, (s3)* as follows:

0

(sp)F= ( San (20

) (in frame 3,

PHYSICAL REVIEW D 63 113003

0

Sop (21)

(SE)”=< ) (in frame 2.

The production cross section and spin dependence term

are obtained from Eqg9) and (12) as follows:

dQ, ma? 4m? 4m? am?
doP= —\/1- 1+ +|1-—|cog 0, |, (22)
47 s S S S
am?\ 2m,
1+ —|sirfe, 0 — —sin26,
s Vs
2 2 4m?
(e 40 7 [ amt 0 (1——7)sin249r 0
b 47 s s S ’
2m, | 4m? 4m?
—=sin 26, 0 —|1- -1+ cogo,
Js s S
(23)

where 6, is the angle between the" and 7" directions in
the frame 1, andi(), is a solid angle element af", d(),
=dcosh, d¢ ..

For decay processes, we také— u 'y for the r* side
and hadronic t —# v, 7~ —p v, and 7 —a, v) and
leptonic (-~ — 1~ vv) decays for the™ side.d B” ~# 7and
de“’ﬁ’ [see EQ.(1)] can be calculated from Eq$l1)
and(14) in which the spinomB is given by

8i
B=—= Gm,0*"(q,) .(ArPL+ A Pr)€;v(0,), (24)

V2

wheree, is the polarization vector of the photon, amgl ),
is the momentum of the photon, andq,,) is the wave func-
tion of the muon. These quantities are given as follows:

12

GEMY(|AL|2+|AR?),

(29

dQ
ropty TR
dB 4o I' @

e d0, 12
IR T T CMRAL AR

sinf, cosg¢,

< sing,sing,, (26)

cosﬁﬂ

Next, we listdB anddR for the 7~ decay in each mode of
T —w v, T —p v, T —a, v, and7r —| vv. For 77

— v decay, the spinoA in Egs.(10) and(13) is given by
(27)

wheref . is the pion decay constarg,, is the momentum of
the pion, andu(q,) is the neutrino wave function. Then,

dB” =7 ”anddR. " " are given by

A=2iV 4f ,Ged,PLu(q,),

. do_1 1
T T v KA 2£2G2m3
dB im T 8 | Vud f2GEM7, 28
sing, cos¢,,
dR. ~7 *=dB7 —7 ¢| SNOzSinds | (29

cosé,,

where @, ,¢,) are the polar angles of~ momentum in
frame 3 andd() ,=d cosé, d¢ . (we use a similar notation
in the following expressions Here we neglect the mass of
the pion. As before the three elements in E2§) correspond

to a=1, 2, and 3. Similar results can be obtained for the
vector mesons. The spinédrfor 7—pv, 7—a,v is given by

A= —2V,49yGré/PLuU(q,), (30

where gy and e, are the decay constant and polarization
vector of the corresponding vector mesons, respectively.

where @, ,¢,) are angles in the polar coordinate for a unit From this expression, we can obtal® anddR for the lon-
vector of the muon momentum direction in frame 2. Thegitudinally polarized vector mesons, e.g.,—p (L)» and

three components in E§26) correspond tdo=1, 2, and 3.

7~ —a, (L)v as follows:
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dB7 —V(L) r= dQVl 1 v |2 9v
4 T 87 ! ud m?
2
m
X G,Z:me’m\z,( 1- —Z) :
mT
Sin 6y coS¢y
dR;_HV(L)_”:dBT_ﬂV(L)_” sin 6y, sin ¢y ,
CoSsby

wheremy, and (v, ¢y) are the mass and polar angles of the
corresponding vector meson,
versely polarized vector mesons, the spin dependence terms
have a minus sign contrary to the case of the pion and lon-

gitudinally polarized vector mesons:

2

dB” —V(M v= dQV 11 2 9v
47 T 87 Vua m\2/
mZ\ 2m3
><G§m3m\2,( 1- —\2/) —2V
mZ) mZ
—sin 6y, cos¢y
AR, V(M r—gr VD —sindy singy
—Cosby

respectively. For the trans-

PHYSICAL REVIEW D63 113003

For leptonic decays, after integrating over the phase space of
the neutrinos, the branching ratio and the spin dependence
term are given by

(31)

- dQ| 1 GZm?
dB” ! vr=—— d = 32x2(3 2X),

T 1 (35

(32

dQ| 1 GZm>
T 19273

R77 — 1 7;11

T 2x%(1—-2x)

Sin 6, cosg,

% siné, sin ¢, , (36)

cosé,

(33)  where we neglect the masses of the leptanarfd ) andx
is the lepton energy normalized by the maximum energy
m_ /2, i.e.,x=2E,/m_., and (¢,,¢,) are the polar angles of
the lepton in frame 3.

Substituting these results into the formula in Et), we
obtain the differential cross sections of each process. For
example, the differential cross section of thée  — 7" 7~

(349  —uty+7m v process is given by

do(ete ="' —uty+7 v

olete —=7rt7)

dQ,dQ, dQ,

4 2m§ B(r —a ) B(r —u"y) 2= 4 477 4
3
4m? 4m? : - :
% A . Tr) C0§07+Ap(sm 0,C0S¢, sind,sing, cosl,
am? 2m, | ]
1+ —"|sirfe, 0 — ——sin26,
s Vs .
A sing, cos¢,
m7\ . .
. 0 (1_ T) sm207 0 sing,sing, ' 37)
cosd,,
2m, . am? am?
—sin 26, 0 —l1- —| 1+ —"|cogs,
Js s s

113003-5
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where

4ara 4m§/
3s s | s

olete —7rT7r7)=

(39

is the 7" 7~ production cross section. The branching ratio of

7 —m vandr—u'tyis given by

11
B(r =7 v)=r g~ Vud *f5GEm?, (39
+ + 12 2.5 2 2
B(r"—nu Y)ZF; GEmy(|ALI*+|ARl?),
(40)
and the asymmetry paramet®p is defined as follows:
ALZ—|ARl?

Ap .
|ALI?+ ARl

(41)

PHYSICAL REVIEW D 63 113003

Notice that angular distribution in the rest framesrof and
7~ can be easily converted to the energy distribution in the
center of mass frame of the"e™ collision. We obtain

do(ete —r'r —su*y+a7v)
=o(e'e =7 1 )B(rT—=uty)B(r =7 v)
s(s—2m?)
(s—4m?)(s+2m?)

X 2

T

dz,dz,| 1—
s—4am? * (

XAp(22,—1)(22, - 1)) : (43

where z,=E,/E, (z,=E,/E,), and E,, E;, and E,
=/s/2 are the energies of the muon, pion, andn the
center of mass frame, respectively.

The angular(or energy distributions in Eq.(42) [Eqg.

We can see that the measurement of angular correlation ¢#3)] can be understood as follows. Because of the helicity
the pion and muon momentum enables us to determine th@onservation of ther" 7~ production process, the helicities

parameterp, so that we can obtaifA |? and|Ag|? sepa-
rately.

of 7* and 7~ are correlated; namely; 7 or 757, is pro-
duced. This means that twospins are parallel in the limit of

A simpler expression can be obtained if we integrate over/s> m,. In the decay process, the tends to be emitted in

the angled,, ¢., ¢,, and¢, in Eq. (37). The differential
cross section is given by

do(e*e =17 —uty+7 )
=o(ete =7 )B(rt=uty)B(r =7 v)
dcosd, d cosew/ s—2m
2 2 |

2
> Ap cosf, cosd, |.
2

s+2m
(42)

the spin direction ofr~ for 7~ — &~ v, because of th¥/-A
interaction. On the other hand, far" — u ™y decay, the
muon tends to be emitted in the same direction ofthespin

if Ap>0. Therefore the differential branching ratio is en-
hanced(suppressedif the sign of cog), cosé, is negative
(positive). In other words, pion and muon energies in the
center of mass frame of the" e~ collision have a negative
correlation if Ap>0. If Ap<0, we have an opposite corre-
lation.

We can define an asymmetAf‘+7"’_” by the following
asymmetric integrations:

. -
AL VT V=

where the weight functiomw(u,v) is defined by

d?c
fdcosaﬂ d cosé, w(cosé,, ,cosb,,) W_N+++N“—N+‘—N‘+ »
olete =77 )B(rt=uty)B(v =7 ») NTT+N" "+N*T +N"
|
. s—2m?
ARV V= = ——————Pp. (46)
4(s+2m?)

uv

o] 49

w(u,v)=

In Fig. 3, the /s dependence oA 77 7 is shown forAp
=—1. We can see that the asymmetry is already close to the

and shown in F|g 2.1n EC{44), Ntt are the event numbers maximal value at th@_factory energy.

where the first- represents the sign of cés and the second

one is that of co¢g,,, respectiverA”+V'”_V is related to the
parametedp by

It is straightforward to extend the above formula to other
cases. We only present here formulas corresponding to Eq.
(42) for different decay modes aif :

113003-6
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v
A

-1 +1

-1

FIG. 2. The weight functiomw(u,v).

U

+10

do(ete =17 —uty+V )

=g(ete =7 )B(r = uty)B(r =V )

y d cosé,, dcosby
2 2

s—2m?

X 1+—2
s+2m

Ap c0sb,, cosby |,

(47)

PHYSICAL REVIEW D63 113003

The measurement of the polarization of the vector mesons
can be done by the analysis of the distribution of the taro
three pions from thep (a;) meson decayl7].

In the case of-~ decays intow” y and 7" decays via the

= +
V-A interaction, thedR] ~' and dRy ~'8 acquire extra
minus signs. For example,

!
dQ;, 1 2

2.5
= — Ggm

T Y
dR; A7 T o

(|ALI2=|AR)

H ! !
sinf, cos¢,,

% sing, sing, (49)

!
cos&M

- o dQ,
" 4 T 8w

|Vud|2]c G

H ! !/
sing;. cos¢ .
H ! H !
« | sind;sing; ,
cosé,.

(50

where + corresponds to the vector mesons with transverse
polarization V=p(T),a,(T) and — corresponds to those where (9),,4,) [(6.,¢.)] are the polar angle of the muon

with longitudinal polarizationv=p(L),a;(L). For leptonic
decay, we obtain

do(ete =7 7 —u y+1 " vy)

=o(ete =7 7 )B(r"—=uty)B(r —l _71/)

d cosé,, dcos6,
2 2

dx 2x2

2
5 (1—2x)Ap cos6,, cosb,

T

. (48

N
W

—_ —_ )
=) [ S
Al LI L I

Aﬂ+%” v (%)

W

B—factory

(I N T N R RSN N N
4 5 6 7 8 9 10 11 12 13 14

R (GeV)

FIG. 3. The observable asymmeww'“” vs /s for Ap=

(=}

W

—1. The dashed line represents t{ig of 7-charm factory and the

dotted line represents that Bffactory.

[pion] momentum in frame $frame 2. The formula in Eq.
(42) can be applied to the” — u~ y case by the replacement
of (6,,0,) by (6 ,0.), and therefore same angular and
energy correlatlon holds as in thé — u " v case. In a simi-

lar way, we can obtain the formulas corresponding to Egs.
(47) and(48) for the 7~ — u~ y case by the replacement of
(6v,6) by (6),6/), where 6,(6/) is the angle between
the vector mesorflepton momentum andr* direction in
frame 2.

IV. P AND T ASYMMETRIES IN LFV THREE
BODY 7 DECAYS

In this section, we consider LFV three body decays, i.e.,
7—3u, 7—3e, 7—uee andr—euw. Within the approxi-
mation that the muon and electron masses are negletted,
—3u and 7—3e (or 7—ueeandr—euu) give the same
formula, so that we only consider—3u and 7— uee pro-
cesses. In these processes, we can define duz as well as
T odd asymmetries of decays.

For 7" —u*u*u~ decay, the effective Lagrangian is
given by

4Gg
L=— N {mTARTG' "PLuF,,+m AT PruF .,

+91(TPLp) (P L) + 9o TPr) (uPgpt)
+ga(TY*Pri) (1Y, Prit) + Ga(TY*PLI) (1Y, PLi)
+ 95(7‘}’“PRM)(;7’MPLM) +gs(TY*PLL)

X (py,Pru) +H.cl. (51)
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—

24

/i,/

el 7 ;

0

¥ e ?
T4 Zq
FIG. 5. The relation between frame 2 and frame 4.
+
u

body decayg§12]. Frame 4 is the rest frame of” and we
take thez direction to be thew™ momentum direction, and
the xz plane to be the decay plane. Tkalirection is deter-

. . L . mined so that th& component of the momentum for the"
With t_h's Lagrarlglan |_n Eq+(51), we can caIF:uIate the dif- with larger energy is positive. The coordinate system is
ferential branching ratialB* ~%* and the spin dependence shown in Fig. 4. Any four-vector in frame 4 is related to that
termdR} ~3#in Eq. (1). In order to calculate these quanti- in frame 2 by Euler rotation with three angle8, ¢,y) as
ties we first define the Lorentz frantrame 4 for the three  follows (Fig. 5):

FIG. 4. The coordinate system in the-3u calculation.

1 0 0 0 /1 0 0O O 1 0 0 0
0 cosp —sing O 0 cos# O sind 0 cosy —sing O
&=|o sing cos¢p O[O 0 1 0 0 sing cosy O &, (52
0 0 0 110 -—sind 0O cosé 0 0 0 1
where
O<f@<m, O0<¢<2m O<y<2. (53

We also define the energy variabbes=2E; /m, andx,=2E,/m_ whereE,(E,) is the energy ofu™ with a larger(smalle)

energy in the rest frame af'.
With these angles and energy variables, the branching ratio and spin dependence term can be expressed as follows:

5~2
T—F

+ 1m
dB” AB”ZF@ dx; dx, dcosé d¢ dy X, 4

5~2
dre —— 2 MOF 4 dx, dcoso de dy
Rb F 2567T5 1 2

—Y Sy CytZ(CyCyCy—SySy) + W(CySyCytCySy)
Y CoptZSyC T WSS,

X

wheres(s,, s,) andcy(c,, ¢,) represent sid(sin ¢, siny) and cog(cose, cosy), respectively. The functiony, Y, Z, and
W are defined as follows:
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2 2
XZ(%*‘%+|93|2+|94|2)al(X1:X2)+(|95|2+|96|2)6¥2(X1-X2)+(|9AR|2+|eAL|2)6¥3(X1:X2)
—Re(eArg; +eA g3 ) ay(Xy,X) — Re(eArgg +eA 08 ) ars(X1,X2), (56)
o |gl|2 |92|2 2 2 * *
~| 16 _T+|93| —|94]? | @1(X1,%) + Re(€ ARG — €A 03 ) ag(X1,Xp)
—Re(€ARgE —eA g% ) as(Xq,X2) + (|95|%— 96|%) B1(X1,X2) + (|e Arl?— [€ AL|?) Ba(X1 , X2), (57)
Z:(|95|2_|96|2)71(X11X2)+(|eAR|2_|eAL|2)72(X11X2)_RdeARgZ_eALg§)73(Xl!X2)
+Re(eArgs —eA 05 ) va(X1,X2), (59)
W= —Im(eAggj +eA g3 ) ya(X1,Xo) +Im(eAzgs +eA g% ) y4(X1,X2), (59

wheree(>0) is the positron charge and functioas_s, 81_,, andy;_, are given in Appendix B. Notice that théandZ
terms represer® odd quantities with respect to thé spin in the rest frame of " and theW term represents & odd quantity.
These are the same as tReand T odd terms considered in the differential decay widthuof—e"e*e™ [12]. The sign
differences in some terms of the above expressions from the formulas i IR¢fare due to the difference of the sign
convention in the definition of the covariant derivative.

The differential cross section is obtained by substituting this into(Eq.In the case that the opposite sidalecays into
T~ v, we obtain, after integrating ovef., ¢, 6., and¢,,

do(ete —7"

T oututuT+r v)=0(ete =1 )B(r =7 v)

128+* 2

m>G2 d cosé,,
r dx; dx, dcosf d¢

2

s—2m
x| X— - 2{Y cosf+Zsin g cosp+Wsin 6 sinp}cose,, |. (60)
s+2m:
The termsX, Y, Z, andW can be extracted by the following.symmetri¢ integrations:
dSo m5G§ -
tom ot - T
f d cosfd ¢d cosé,, dx,dx,d cosfd$d cosd. gle’e =77 )B(r —7 v) 32773/1“
=X, (61
d*o mSGIZ: -
+a- + .- - - T
f d cosfd cosé ,w(cosé,cosh..) dx,dx,d COS0d COS ole’e -7 7)B(7 =7 v) 32773/1“
(s—2m?) ©
 4(s+2m?d)
fdd o' R Ly
¢d cosé w(cos¢,cosh,.) dx,dx,dd cOSO_ ole’e -7 7 )B(r —7 v) 323
(s—2m?)
= —F7Z, (63
4(s+2m?)
d*o m5G,2: -
; to ot - T
f d¢d cosé, w(sin¢,cosh..) dxqdx,dpd cosd. gle’e =77 )B(7 —7 v) 327T3/1“
(s—2m?)
=——FW. (64)
4(s+2m?)

Notice that the functiotW represents £ P violating LFV interaction. We can see that this is induced by the relative phase
between the photon-penguin coupling constais &nd Ag) and the four-fermion coupling constants;gs).
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A similar formula can be obtained for the' — u*e*e™ decay. The effective Lagrangian for thé — u*e*e™ is given
by

4G
2

+N4(TPRru) (PRE) + As(TY“P i) (e7,P L)+ No( TY*P i) (€7, Pre) + N 7(7¥*Pru)(ey,PLe)

L= {M ARTo™ PLUF ,,+ M A T0# PRuF ,,+ N1(TPL 1) (EPLE) +\o( TP 1) (ePge) + N g(TPru) (€PL€)

+Ng(TY*Pru) (€7, Pre) + No(Ta* P i) (€0 ,,8) + N1 70" Pru) (€0 ,,€) + H.C}. (65)

In this calculation, we define frame’ 4vhich is almost the same as frame 4 in the—u " u* u~ case. The definition is
obtained by the replacement @f~ of r" —u*u*u” by e of 7" —ue*e”, the u™ with a larger energy ofr*
—ututu byut ofrt —utete”, andut with a smaller energy of " —ututu” bye* of 7t —utee . If we take
the definition of @, ¢, ) in such a way that the same relation is satisfied as in(&2), the branching ratio and the spin
dependence term are given by

7_-¢—ﬁ/."-¢-e-¢—(_:‘—_:I- mEG|2: 4

dB _F @ XmdXZd COSHdgbdl/fx y (66)
o e 1 meGE

ng noe e :F—256ﬂ5 XmdXZd Cosad(ﬁdlp

—Y'SeCy+Z'(CoCyCy—SySy) + W' (CSyCytCySy)
Y'CoptZ'seCytW'SgS,,

X

where the functionX’, Y', Z', andW'’ are given by

X'=(|eArl?+]eA|?)Ai(X1,X;) + RE(@ARNE + A NG )Ax(X1,Xp) + Re(€ARN + @A NS )Az(Xy)

F (NP H N2+ NI+ NP As(Xq) + ([N 5|2+ Mgl D) As(X1,X0) + (IN6| 2+ N 7]?) Ag(X2)

+(|No2+ N 1d D A7(X1,Xp) + RENINE + N gh o) Ag(X1,X2), (69)
Y'=—Re(eANE —eA NS )Ax(X1,Xo) + RE(EARNE — €A NS )A3(Xq,X2) — (|Ns]?—|\g|H) As(X1,X2)

+(|eArl?—[eAL[%)B1(x1,%2) + (N 1]?+ N ol =[N3l = [Ng|?)Ba(x1,X2)

+(IN6|2= X715 Ba(Xq,X2) + (| Ng|* =[N 101?) Ba(X1,X2) + REN ;NG — Mg\ o) Bs(X1,X2), (69)
7' =(|eArl>—|eA[?)Ci(X1,Xz) + Re(€ARNE — €A NE ) Ca( Xy, X2) + RE(€ARNE — €A NF ) C3(Xq,X2)

F (N2 IN 2= N3P = [N gD CalX1,X0) +{ [N 6l? = N7 2+ Re(— 2N 1N + 2N 40T} Cs( X1, X5)

+(INg|*= N 10*) Co(X1,X2), (70

W' =Im(eAshs + €A N3 )Co(X1,X2) +IM(eARNG + €A NT)Ca(X1,X2) +IM(N1Ag + A1) Cr(Xy,Xo). -
71

The functionsA; _g,B;_5,C;_7 are given in Appendix B. Th&’, Y’, Z’', andW'’ can be extracted in the same way as in
Eqgs.(61)—(64).

Next we consider the decay modef— .~ e*e*. This case is different from above in the point that bethe andu—e
transitions are necessary. The effective Lagrangian for this process is given by

4G — — — — — —
L=~— Tzlz{gi( 7P e)(uP e)+gs(7Pre)(uPre) +93(7y*Pre) (1 v, Pre)

+g4(Ty*PLe)(ny,PLe) + 95( Ty Pre) (1 y,PLe)+gg(Ty*PLe)(ny,Pre) + H.c}. (72)
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If we take a coordinate system similar to frame 4, in which the lafgemalley energyu ™ is replaced by the largésmalle)
- + —atat
energye™, dB” ~# €' anddR; * © © are given by

dp o erer L meE dx,dx,d cosgdgdyX” (73)
T 25675 ¢ '
—Y"S¢Cy+Z"(CeCyCy—SySy)
_ 1 I'T]EG2 " "o _
ng+_>M+e+e :F ';de_dXZd COSHdgbdl// Y Sgsl/,‘l'z ( C@C(ﬁslp S¢C¢) '
2567 Y'CotZ"syCy
(74)
where functionsX”, Y”, andZ" are given by
oo (leil® les L P,
X'= 16 +E"‘|93| +1941% | aa(x1,%2) + (|95 °+ 96| *) aa(X1,X2), (79
91 lgal® L, vo
Y”:( 16 _W+|93|2_|94|2 a1(X1,%) + (195> = 19613 B1(X1.%2), (76)
Z"= (195>~ 19¢l*) v1(x1.,%2), (77)
|
where a4_5,, B7, and y; are the same functions that we 1 G2m°a B
defined in thert* —u* ™ u~ calculation.X”, Y”, and 2" dBB-G-:l:F—lI5 dxdydzd}, sinz “EE (79
can be extracted by asymmetric integrations as before, but 3X2%m y
we cannot obtain information o8P violation in this case.
Notice that the above three cases exhaust all possibilities
in the three body decay of to e and/oru as long as we sc 1 ﬁmfa ) u
neglect the electron and muon masses compared tar the dR, T 3%l 5 dxdydzd), S'”27
mass. Namely, the formula for other cases can be obtained
by appropriate replacements efand/or w. sing, cos¢,,
The formulas for LFV decays with~ can be obtained in sing, sing
a similar substitution as the— uy case. Using appropriate X(—pB,G+H cosz) # woL (79
angles ofr~ decay in frame 3 and" decay in frame 24 R, cosé,
gets an extra minus sign in Eq&5), (67), and(74).
V. 7—uvry PROCESS AND BACKGROUND wherex andy are the muon and photon energies normalized
SUPPRESSIONS by m./2, respectively, andd, ,¢,) is the polar coordinate

. . . of the unit vector of the muon momentum direction, all de-
In this section, we consider the background processes fctJr

ned in the rest frame ofr* (frame 2. Here B
the 7— uy search, and we show that the measurement of_ 1=k with r=m2/m?. The analez is defined b K
angular distributions is useful in identifying the background — =Mm,/M;. The angiez Is delined byz
=7—0 where ¢, is the angle between the muon and

process. In the muon decay, the physical background can be : wy? um i th f Th o
suppressed if we use polarized mudbs]. In the following, photon momentum in the same irame. These guantiies can

we show a similar suppression mechanism holdsrfdecay g%obtaipellddby a Si”.‘é’t'ﬁ ]rcepl{ahcem%r)t tfrom the fo:jmula of the
if we use the spin correlation. ifferential decay wi or the radiative muon decay pre-

One of the main backgrounds for the—uy search sented in Ref[18]. For completeness, the functiofs G,

comes from the kinematical end point region of the andH are given in Appendix B. . . .
— . ) The background comes from the kinematical region near
— pvvy process where two neutrinos carry out a little en-,

X =1+r andy=1-r, at which the branching fraction van-
ergy at the rest frame af. In the following, we assume that jshes. However, with finite detector resolutions, this kine-

7" decays intou" vvy and 7~ decays through one of had- matical region gives physical backgrounds. If we take the
ronic and leptonic decay processes. For thedecay, the signal region as +r—éx<x<1+r and 1-r—dy<y<1
differential branching ratio and the spi_n dependence term are r, the leading terms of the branching ratio and spin depen-
given in Egs.(28)—(36). For 7t — ut vy, these quantities dence term expanded in terms fSx, and 8y, after inte-

are given by grating overz, are given by
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1 2mla
BG._ — __F 7
dB =T PYSSTHE dQ#

8 for the 7" —ug (7 —u_y) and 7" —egy(7~—ev)
x4 oy?+ = 5x35y3> ) searches.
3 We would like to give a rough estimate of the number of
(80) 777~ pairs needed for the asymmetry measurement at the
8 B-factory energy. As an example, we take the- uy pro-
—
dQ,u( XAyt 3 &3&/3) cess for LFV decay and r—mv, pv, and

2.5
s, 1 Gimla

:f3><211775 a;(—m7 7 7*)v for the opposite sider decay. Forr
) —av, we use the angular distribution in E@2). In 7
sinf, cos¢, —pv and r—a, v, we have to look at the angular distribu-
i i ti ft th i i ition to th
«| sinb,sing, | (81) ion of two or three pions in addition to the csand cosi,

distributions in order to use the information on thenda;
polarizations. With help of optimized observable quantities
defined in Ref[19], the statistical errors for the determina-
Then after integrating ovep,,, ¢, ¢,, andé,, the differ-  tion of the parameteA, with N signal events are 3.4N,
ential cross section foe*e =77 —utvvy+a vis  46AN, and 9.5(N for 7—mv, 7—pv, and r—a,v, re-

cosoﬂ

given by spectively. The combined error is then given by
dO’(e+e_—>T+7'_—>,LL+V;’y+ T V) 1
(e 1) B(r— 1) 1 ewa+epo+6alBal
=o(e e —-7 7 T —T V Op = s
P 2NB,_ .\ 382 46 97
GZmla dcosd, dcosd,, (83
3x2%74 2 2
wheree,, €,, and €5, Are the signal selection efficiencies
4e2. 8 3.3 s—2m? for these modes, anB,_,,, B,, B,, andB, are ther
X1 | oxAsy?+ = ox38y3| — _ _ 1
3 s+2mf decay branching ratios, namel,_.,,=B(7—uvy), B,

=B(7—mv)=0.11, B,=B(r—p»)=0.25, andB, =B(r
—av—a 7 7 v)=0.09. HereN, is the total number of
7 pair. If we assume that thB(7— wy) is 1X 10 ®, which
is just below the current experimental bouf0], and the
(82)  signal selection efficiency is 10%—20%&,5-5)x 108 7 7~
pairs are required in order to distinguida=+1 and—1 at
30 level. This number means that the ongoiBefactory
experiments could provide useful information on the LFV
interaction if theB(7— wy) is close to the current experi-
mental bound.
In this paper, we only consider decay. We can obtain
. : similar information in muon decay experiments if initial
because 5'9”?" and backgr+ound+processes have pllfferent HMuons are polarized. Although highly polarized muons are
gular correlatlons._ For the” — u, v search, t_he signal t(_) available experimentally, a special setup for the production
background ratio is alm_ost the same even if we take intq,q transportation of a muon beam is necessary for an actual
account angular correlations. _ experiment. The advantage of thecase is that we can ex-
A similar background suppression works for the-ey  yact the information onr spins by looking at the decay
case because Eq0) and(81) do not include the mass of iyinytion of the other side of decay so that we do not

the muon explicitly. need a special requirement for the experimental setup.

X

8
— ox*oy?+ 3 5x35y3) cos6,, cosaw} :

If the photon energy resolution is worse than the muon en
ergy resolution, the ternvx*dy? is small compared to
(8/3)6x36y3. In such a case, the angular distribution is simi-
lar to theAg=0, A #0 case of ther— w7y angular distri-
bution. See Eqs(25), (26), and(42). This feature is useful
for the background suppressions for thé— upy search

VI. SUMMARY AND DISCUSSION
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APPENDIX A: THE DERIVATION OF THE GENERAL FORMULAS

In this section, we derive Eq1) from the amplitude in Eq(8).

By using the completeness relation of the fermion spinors, the amplitude squared is deformed to
2

|A(Pa+m,) y*(pg—m,)B|?= x2 2 Au(pa N U(PA A1) Y0 (Pe N2)v(Pg,A2)B

1=

:)\2: > E [Au(pa, N)u(pa,ApA]

=% )\i + :i

X[u(pa 1) Y*0(Pg A 2)v(Pe,A5) Y U(pa, N 1[Bu(Ps A3)v(pe,A2)B], (Al

wherel\’s are the spin eigenvalues. The spin summation can be performed by using the Bouchiat-Michel formulas as follows
[16,21]:

|A(pa+m,) y*(pg—m,)B[>=aP- T (Pa+m,) y*(Psg—m,) y"]a’+
+aP-Tr{ (pa+m,) v ysba(Ps—m,) v 1oy *
= Tr ys8a(Pat+m,) y*(pg—m,) y"]aP+

+ 0 Tr ys&a(Pat m,) v ys2(Ps—m,) v"1pp *, (A2)

where T (pa+m,) y*ysba(Ps—m,) ¥"]

1 _ 1 _ =4im_e*"Ppg (SB) ,+4im, e*"Ppp (S2),
a® =5 {AlBat M)A}, a® =5 {B(ps—m.)Bl, Pert%e Pa(Se

(A8)
(A3)
Tl ys8a(Patm,) y“(pg—m,) ¥"]
=3 {Aysa(patm,)AL = 4im """ pg,(SA) o+ 4iM €77 Pp,(Sh) 5,
(A9)
Py =5 ~ {Bst(ba-m,BY, (A4)

%ﬁ |U_eJr Yule- | 2= Tr pe+ 'y,upe* Y]

where 63)“ and (3)” are four vectors which satisfy the

following equations: =4Pe uPe T 4Pet1Pe ™ 4G, Pe * Pe-

(A10)
Pa-SA=Pe-Sg=0, (A5) _ _ o
Using the narrow width approximation
s2.s2=sd.5h=— 5%, (A6) . 2
s —— — 8(qQ°— , All
3 92— (m—il/2)? mF (g7 =m) (AL
2 a ay pA,upAV
- (SA)/_L(SA)V__g}LVJ’_ 2 . . .
a=1 m: the first and last terms in EGA2) give formula(l) after the
phase space integral.
: Pe,.P
B Bv
Z (S8) u(SB) =~ 0+ :12 : (A7) APPENDIX B: THE KINEMATICAL FUNCTIONS

T

In this section, we list the kinematical functions used in
The second and third terms in EGA2) vanish because the the formulas of branching ratios.

production parts are antisymmetric gnand v indices while The functions a;_5, B1_,, and y,_, in the 7"

the square of the electromagnetic current frefre~ colli- —u u*u” and 7" —u~e"e” decay calculations are
sion is symmetric onu and v indices. Explicit calculation given as follows. These functions are the same as those used
gives in ut—e*ete” decay[12]. Herex, andx, are given by
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X1:2E1/m7. andX2:2E2/mT:

a1(X1,X2) =8(2—X;—X2) (X3 + X~ 1), (B1)
ap(Xq1,X2) =2{X1(1=X7) +X2(1=Xp)}, (B2)
2X5—2x,+ 1 2x2—2x;+1
a3(Xy,X2)=8 1-x, 1-x, (B3)
a4(X1,X2)=32(X1+X2—1), (B4)
as(Xq,X2) =8(2—X;—Xp), (B5)
B1(X1,X3)

2(X1 4 X2) (X2+X5) — 6(X1+ X2)2+ 12(X1 + X,) — 8

B 2—X,— X, ’
(B6)

8

Pl = oA @ X%
X{2(x1+x2) OG5~ 40X +x2)

X (2X2 4 X1Xp+ 2X5) + (192 + 30x X+ 19X3)

—12(2x,+2x,— 1)}, (B7)
(1= x) (1= %) (Xg X — 1) (X~ Xq)
Y1(X1,X2) = ZR—_ )
(B8)
B [ Xp+Xo—1 (X3 +Xp—1)(Xp—X;)
V2(X1,%2) =32 (1=Xx1)(1—xy) 2—X1—Xy '
(B9)
B X1t X,—1
73(x1,x2)—16\/m(x1+x2—1)(x2—x1),
(B10)
B X1+X—1
Ya(X1,%X2) =8 \/m (2= X1 X2)(X2—X1).
(B11)

The functions A;_g, B;_5, and C;_; in the 7*
—utee” decay calculation are given by

8(2—X1—4 Xp+2 X1 Xp+ 2 X3)

Ax(X1,X2) = 1-x, : (B12
A2(X1,X2):_8(X1+X2_1), (813)
Az(Xp)=—8(1—Xp), (B14)
Ay(Xy) = M (B15)
As(X1,X2) =2(2=X1—=X2) (X3 +Xp—1), (B16)

PHYSICAL REVIEW D 63 113003

As(X2) =2 Xa(1—X2), (B17)
Az(X1,X2)=—8(4—5X,+X5— 8 Xp+4 Xq X+ 4 X5),

(B18)

Ag(X1,X2) = —4(1=X1) (X1 +2X;—2), (B19)

f— >< — —_ 2
B1(X1,X2) A=) (2= x1=%) (—6+8x;—3x7+12x,

— 11Xy Xp + 2X3X, — 8X5+ 4X X5+ 2%3),  (B20)
—(1=X)(2=2 X+ X5— 2 Xp+ X Xy)
B2l %)= 22— % x;) |
(B21)
B : 2(1— %) (2= 2 X1 — 2 Xp+ Xq Xp+ X3)
X1,Xp) = :
s 1 2 2_X1_X2
(B22)
B4(x1,x2):m><(—1o+16x1—7x§+x§+22<2
17X2
— 23Xy X+ 5X2x, — 16x5+ 8x X5+ 4x3),
(B23)
Bs(X1,X2)
A(1—x)(2—4 X+ X2— 4 X+ 3 X1 Xo+ 2 X3)
B 2—X1— Xy ’
(B24)
Ci(X1,X2)

_ —16(X1+Xo— 1) V(1= X1) (1= Xp) (X1 + X, — 1)
(1-X1)(2—X1—Xy) '

(B25)
8= D) V(1—x)(1—Xp) (X + %~ 1)
Co(X1,X0) = 1-x )
(B26)
_ —8(1—x) V(1= x)(1—Xp) (X1 + X~ 1)
Cs(X1,%2) = 1-x ;
(B27)
C(L=x) V(1= %) (1= %p) (X +Xp— 1)
Cu(X1,X2) = pR— ,
(B29)
AL =X V(LX) (1= X) (X +Xp— 1)
Cs(X1,X) = pa— ;
(B29)
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Ce(X1,Xp) +6x%y (2+y)d, (B36)
_ 16V(1—x)(1—x2) Xy + X~ 1) (3= X, — 2X2) F) d):—sz(—4+3x+3y)+ﬂ (B3
2—X1—Xo Y P d°
(B30)
—8x{4x%+y(—1+2y)+x(—2+6y)}
C7(X1,X2):8\/(1_X1)(1_X2)(X1+X2_1). (831) G(O)(X!yrd): d
Finally, the functions, G, andH in the 7— uvvy decay +4x%{— 2+ 3y +4y* + x(4+6Y)} — 4xy (2
calculation are given by
+y)d, (B39)
F=FO+rF®4r2p@) (B32
32(—1+2x+2 8X(6X—
G=GP+rcW+r?G®), (B33  GW(xy,d)= 2 7 N (d )
—H(0) (1) 4 p2H4(2)
H=H®4+rH® + 2R, (B34) —123(2+y), (B39)
whereF(OHZ) GO~ andH©~ () gre the functions of
=2E,/m,)), y(=2E /m) d(=1+p,cosz) with B, @ _~9%
\/1 4r/x2(r—m/m)andz m—6,,. These functions G 00y.d) d2 "’ (B40)
are given by
—8y(X+y)(—1+2x+2y)
—8(=3+2x+2y)(2X>+2x y+Yy? (0) -
FO(xy.d)= ( 32( y+y?) HO(x,y,d) 5
2 _
+8x{x%(2+4y)+y(—3+y+y?)+x(—3 TAXY{2XTH 2y (1+y) +X (= 1+4y)}
oy2y2(_ 3,,342
+y+4y?))—2x2y [~ 6+y(5+2y) + 2x (4 27 (=1t dx+2y) d+ 2Xy7d’,
B41)
+3y)}d+2x3y?(2+y)d?, (B35) (
32y(—1+2x+2y) 8y(—2+x+5y)
32Ax+y)(—3+2x+2 H®(x,y,d)= —
FO(xy.d)= (x+y)( y) (xy,d) N d
xd? -
—4x(3x—2y)y+6x°y-d, (B42)
+8{6x2+(6—5y)y—2x(4+y)} ( vy y
d —96y 4
H®(x,y,d)= 2y+iy. (B43)
—8x{—4—(—3+y)y+3x(1+y)} xd d
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