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We construct supergravity solutions corresponding to fivebranes wrapping associative three-cycles of con-
stant curvature in manifolds &,-holonomy. The solutions preserve 2 supercharges and are first constructed
in D=7 gauged supergravity and then lifted ®=10,11. We show that the low-energy theory of
M-fivebranes wrapped on a compact hyperbolic three-space is dual to a superconformal field thBory in
=3 by exhibiting a flow to an AdgSregion. For IIB-fivebranes wrapped on a three-sphere we speculate on a
connection with spontaneous supersymmetry breaking of piréd super Yang-Mills theory iD=3.
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[. INTRODUCTION sequent work type IIB fivebranes wrapped on two-spheres
leading to V=1 supersymmetry in four dimensions were
When a brane wraps a supersymmetric cycle one typica||§tudied[3]. A fascinating aspect of this work is that it seems
finds a “twisted” field theory realized on the world volume t0 provide a starting point for analyzing the larydimit of
of the brang1]. One way to see this is to note that the cyclePUre /=1 supersymmetric Yang-MillSSYM) theory in
will typically not have a covariantly constant spinor and four dimensions.

hence supersymmetry must be realized in some twisted fash- It is natural to extend these investigations by trying to
; Persy Y . . Iaonstruct supergravity duals corresponding to branes wrap-
ion. The transverse fluctuations of the brane are specified

) ing higher dimensional supersymmetric cycles. The ex-
sections of the normal bundle of the brane world volume a”%mples we will focus on in this paper are M-fivebranes or

it is the structure of this bundle that giveS rise to the thStlngtype 1B fivebranes Wrapping associative 3_Cyc|es in seven-
An investigation of the supergravity—string-theory dualsdimensional manifolds witlG,-holonomy. These configura-

of such theories was presented 13] (for related work see tions preserve 1/16 of the supersymmetry and hence lead to

[4-11]). Consider a supersymmetric spacetime of the fornthree-dimensional field theories witk=1 supersymmetry,

RYxM and a @+ p)-brane wrapping a supersymmetric after suitably decoupling gravity. The 3-cycles will be taken

p-cycle 3,CM. After taking an appropriate limit to de- to have constant curvature: we will consider three-spheres,

couple gravity while keeping the volume of, fixed hyperbolic three-space and possible quotients of these spaces

[2,12,13, one obtains a twisted field theory on the world _by freely acting discrete subgroups of the corresponding

volume of the bran&4x 3. . It was argued if2] that in isometry groups. Note that such quotients of hyperbolic
p-

. . - . e o space can be compact.
this decoupling limit the field theory is insensitive to the Following the strategy ifi2,3] we construct the 10 and 11

global geometry oMM: its effect is local and simply deter- gimensional solutions, by first constructing solutions in mini-
mines the specific twisted field theory. At energies low com-mal D=7 gauged supergravity. When the topological mass
pared to the inverse size &f;, these theories then reduce to vanishes, corresponding to Neveu-Schw@is) fivebranes,
D=q+ 1 dimensional field theories. If we have a large num-we find explicit solutions. The solutions are singular both in
ber of branes wrapping the cycle, we might expect to be abl® =7 and inD=10,11. For the case of the three-sphere, the
to find supergravity duals for these theories. SU(2) gauge fields irD=7 have a meron form and more-
The cases analyzed j&] correspond to M-fivebranes and over we do not find a supersymmetric instanton. This is sur-
D3-branes wrapping Riemann surfaces that are holomorphprising in the sense that one has the reverse situation in
cally embedded in Calabi-Yau two- or three-folds. Theseyang-Mills theory where the instantons are supersymmetric
give rise to four-dimensional field theories witti=2,1 su-  and the merons are non-supersymmetric. At the end of the
persymmetry and two dimensional field theories withpaper we comment on the possibility of the singularities of
(4,4),(2,2 supersymmetry, respectively. One interesting feathe solutions being resolved by a non-supersymmetric instan-
ture of this work is that supergravity solutions were foundton and speculate on the connection with spontaneous super-
with AdSs and AdS regions in the IR, respectively, provid- symmetry breaking of puréV=1 SYM theory inD=3.
ing new AdS/conformal field theofCFT) examples. In sub- When the topological mass is non-vanishing, corresponding
to M-fivebranes, for the case of hyperbolic spaces we find a
flow to an AdS region. This implies that at low energies the

*Email address: bacharya@physics.rutgers.edu corresponding twisted field theory on the M-fivebrane flows
"Email address: j.p.gauntlett@qgmw.ac.uk to a superconformal field theory =3, at least in the large
*Email address: n.kim@gmw.ac.uk N limit.
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The plan of the rest of this paper is as follows. We beginthis sphere is jus§ itself and hence/ must be trivial. One
with some preliminary discussion of the twisted theoriescan immediately conclude that there are no zero modes since
arising from the fivebranes wrapping associative threethere are no harmonic spinors on the three-sphere. However,
cycles. The supergravity solutions are presented in Sec. Ilve do not know if this is the generic situation for associative
and the paper closes with some discussion of our results. three-spheres. Similarly one can consi®H?3) which ad-

mits aG,-holonomy metric defined on an open subjsH].
Again, V is trivial, but in this case becaud# has negative
Il. GENERAL COMMENTS ON THE TWISTED constant curvature it is possible that harmonic spinors may
FIVEBRANE THEORIES exist.
, . When M-fivebranes wrap an associative cycle there is one
_ Consider the type 1IB NS 5-brane wrapped on an assoCiggimension which is neither tangent to the fivebrane world
tive 3-cycleX in a manifoldM of G, holonomy. The world 41 me nor tangent to the manifold wita, holonomy. The
volume of the fivebrane is theit>*x 3. The non-trivial part g symmetry is nowSQ(5) but the twisting involves embed-
of the spir_1 connection on the_wc_)rld volume is a (_:onnectionding theSU(2) spin connection in aBO(4) subgroup in the
on the spin bundleS of %. This is anSU(2)CSpin(1,5)  same way as for the type IIB fivebrane. Consequently the
bundle. The normal bundle to the fivebrane in theynayysis above allows us to conclude that this theory also
G, -manifold is four dimensional and given bW=S®V  ,osanes\'=1 supersymmetry iD=3. For a single five-
whereSis the spinor bgndle oE_ andVis a rank—ZS U(_2). brane we expect to get a singlé=1, D=3 scalar super-
bundle[14]. From this information the appropriate twisting fig|q and possibly some extra massless states arising from the
can be deducetsee[15]): one identifies the structure group omay pundie. It is less clear what we will get when we
of S, SU(2)s , with one of theSU(2) factors SU(2). say,  hayveN coincident fivebranes since we do not have an ex-
in the Spin(4)=SU(2). X SU(2)r R-symmetry group of pjicit six-dimensional Lagrangian for the fivebrane theory. If
the fivebrane. _ we wrap one of the uncompactified world-volume directions
The spin content of the twisted theory can thus be specig, 4 circle, we would get the twisted theory in 2 spacetime

fied by giving the transformations undeBpin(2,1)  gimensions arising from the (N)D4-brane theory wrapping
XSU(2)pXSU(2)r, where SU(2)p is the diagonal of e associative 3-cycle.

SU(2)s X SU(2), . Now recall that the fields of the flat five-
brane consist 4 scalars transforming ak,2(2, under
Spin(5,1)XSU(2)_. XSU(2)r, fermions transforming as lll. SUPERGRAVITY SOLUTIONS

(4.2,9+(4,1,2 and a six-dimensional vector field. By de-  Following [2,3] our strategy for constructind =10 and
composing theSpin(5,1) representations int&pin(2,1)  p=11 supergravity solutions corresponding to string theory
X SU(2)s representations we can then deduce the represegnd M-fivebranes wrapped on associative 3-cycles of con-
tations of the twisted theory. We find that the Six-stant curvature is to first construct the solutions AA
dimensional vector field gives rise to a three-dimensionak 1 p=7 gauged supergravity.

vector field plus three scalars tr_ansf_orming &1 of The bosonic field content of'=1, D=7 gauged super-
SU(2)p X SU(2)r- The 4 scalars give rise to scalars trans-gravity [16] consists of a metrig, dilaton ¢, a three-form
forming as @,2): they have become sections of the normalpgtentialA; andSU(2) gauge field#\=A2(7%/2), wherer?
bundle mentioned above. Finally, the fermions transform ag e pauli matrices. The fermions are made up of a dilatino
(230+(21,)+(223 of Spin2,1)xSU(2)o  and a gravitinoy,, each an eight component complex
XSU(2)r. The spinors that generate the supersymmetriegy2) Majorana spinor. The Lagrangian for the bosonic
on the NS fivebrane transform in exactly the same way ange|ds in the string frame is given by

(2,1,7) are the preserved supersymmetries corresponding to
N=1inD=3.

When type 1IB NS fivebranes wrap an associative 3-cycle L= \ge 2%
they give rise to this twisted theory with all fields in the
adjoint of U(N). At energies much less than the size of the h2
cycle the theory will reduce to a'=1 supersymmetric field — (—e4¢— 4he 2¢—24
theory inD=3. The low-energy degrees of freedom corre- 2
spond ta\N=1 SYM theory inD =3 but there could be extra 1 h
massless fields arising from zero modes of the normal +—F3NFANAAz— - GAA3 (3.9
bundle: harmonic sections 8% V. In this paper we are only 4 2
considering associative 3-cycles that are 3-spheres, hyper-
bolic 3-space or quotients of these spaces. An example of where G=dA; is the four-form field strength ang=dA
non-compactG,-holonomy manifold with an associati& +iANA=F?3(7%/2) is the SU(2) field strength. The Ein-
was described ifi25,26. The 7-manifold is in fact the total ~stein metric is related to the string metric \ga=e~**/g.
space of the spin bundle 8, S(S%). SU(2) bundles or§®  The potentialV =e*?[h?/2e~*¢—4he 2¢—4] is drawn in
are trivial soS(S%) is homeomorphic t&?*x S, The asso- Fig. 1. Note that we have set the gauge coupling constant of
ciative S® is identified as the zero section 8f In this case, [16]to \2 and we have rescaled the topological magy a
as pointed out if14], it is obvious that the normal bundle to factor of 8 for convenience. When the topological mass van-

R— ZF8 For+ 407
8~ ¢
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v{e) where w, are left invariant one-forms on a 3-sphere which

73 we take to satisfydw;=w,/\w3, and cyclic. This solution
preserves 1/2 of th&/=1 supersymmetry. It is also a super-

-7.4 symmetric solution of type IIA/B supergravity preserving 1/2
supersymmetry and corresponds to the near horizon limit of

7.5 the type IIA/B NS fivebrane solution.

7.6 When the topological mass is non-vanishing it is more
natural to use the Einstein frame. The potential for the scalar

7.7 field ¢ has a supersymmetric maximumeit?=1/h, giv-
ing rise to the Ad$ solution preserving all supersymmetry:

I I 3 3 . exp (-2¢)

h:I;I-G. 1. Scalar potential oD=7 gauged supergravity with dsé=R2[d—l:J;+u2dsz(El’5)}

ishes we can dualise the 3-form potential and rewrite the

Lagrangian in terms of a 2-form potenti@las e 26— % (3.6)

1 1
L=+ge 2 R— -F2 F¥#"+49$?—-H,, H“V’J+4}
Yo 8 mv P 3 with the AdS radius given bR=2/h'®. Using the formulas
(3.2 in[19] this solution uplifts to Ad$x S* in D=11 which is

1 the near horizon limit of the M-fivebrane solution.
with dH= gFa/\Fa. Bosonic solutions to the equations of

motion preserve supersymmetry if the supersymmetry varia- A. Fivebranes wrapped on three-spheres

tion of the dilatino and gravitino vanishes: To find more general solutions corresponding to type |IB
) fivebranes and M-fivebranes wrapped on associative three-
[ 1 spheres, we consider an ansatz of the form
— v 2 vpo, —2 '
ON=|bp— ZTH'F,+ 26¢ orureeG,, ,—he 2%+ 1}6

ds?=e?[d&?+dr?]+a’os+b2o5+ 203

=0
i . 1 | 2 -
I : vpo A: — |+ — |+ R
3, =|D,H+iA, = 5F, I+ %ez‘ﬁl“lf °Gpes aoy| 5 |+ B0z 3 7”3(2)
_ge—qup# e=0 33 A=k \op\os—1dEONDENdE? (3.7

where the spinok carries anSU(2) index upon which the With f,a,8,7.k,I functions ofr only ando, a basis of left
Pauli matrices act. invariant one-forms or8® satisfyingdo,=0,/\o5; and cy-

To orient ourselves, we first recall some simple configu-Clic permutations. Throughout the papei¢® refers to
rations that preserve supersymmetry. For vanishing topologs’(E*?). When a,b,c are not all equal, the fivebranes
cal mass, the linear dilaton solution would be wrapping a squashed three-sphere. Note that in the

special case that

ds?=ds?(EM) +dr?

b2+c2—a2_ a2+c2—b2_ a2+b2—cz_
¢=-r (34 2bc @ 2ac =B 2ab 7
(3.8

with F=G=0 preserves 1/2 of the supersymmetry. Uplift-
ing to D=10 using the formulas if17,18 we get
the SU(2) gauge fields are equal to the components of the
1 spin connection on the squashed 3-sphere directions. More
ds?=ds*(E"®) +dr?+ Z(w?r w5+ w3) precisely, in the frame given by ef, ...
=(efd¢b efdét,efde? efdr,ao; ,bo,,co3), we then have
w’s=[(b?+c?—a?/2bcloy=A' and similarly %,
=A2 *=A3 This is the expected twisting for associa-
1 tive three-spheres as discussed in the last section.
NS_ © Upon substituting this ansatwithout assuming Egs.
H™= 8‘"1/\")2/\603 @9 (3.9] into Egs. (3.3 we have only found supersymmetric

b=-—r
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configurations with non-vanishing gauge-fidldshen the 1. Vanishing topological mass

four-form is trivial, k=1=0, the squashed 3-spheres are | ¢t s first consider the case of vanishing topological

round,a=b=c, anda=p=y=1/2. Note that these restric- 555 h=0. In this case we can easily integrate E@s10
tions do indeed satisfy Eq§3.8). Specifically, to obtain the explicit solution

d?=e?[dé?+dr?]+a?(o2+ o5+ 03) ro, .,
d32=d§2+dl’2+§(0'1+0'2+0'3)

A 1 rt N 72 N 3
T2 2] %2 T8 A_l 7'1+ N 3
EAE AR FIARE )
@26 — g~ 2r 3145240
is a supersymmetric solution to the equations of motion pro-
vided that the functions,f,¢ solve the differential equa- A;=0. (3.11
tions
This solution has a curvature singularity at the origin as one
a’ ¢ 1 h 24 might expect from the singularities of the meron gauge field.
2% 12 2°¢ =0 For example, the Ricci scalar is given By=3/r. In addition

to the 3-dimensional Poincare invariance, the solution is also
3 invariant undeiSQ(4) symmetry[the round 3-sphere is ob-
e fop'— 1Taz—he‘z"“r 1=0 viously invariant and the gauge fields are up to&d(2)
gauge transformatign
This solution can be uplifted to a solution &f=1 super-

el 24
2e 'f'—he ""=0. (3.10 gravity inD = 10 using the formulas ifi17,18. Explicitly we

These configurations preserve 1/8 of the 16 supercharges.(‘#at

y® are gamma matrices with respect to the above mentioned r 1

frame, the preserved supersymmetries satisfy=i°r'e ds?=d&?+dr?+ §(0§+ o5+ od)+ i v+ v5+ 3]
=iy%47%e=1iy*73= € (note that the last condition is implied

by the second and third conditiong he spinore has a radial @26 — a2 3/4a2¢0

dependence given by=ef?¢, for constante,. Since the
spinors are independent of the coordinates on the three-
sphere, these solutions are also supersymmetriSBh, HNS= —2[02/\03/\1/14— o3/\o1/\vy+ o1/ \oy/\vs]
wherel is a discrete subgroup &0O(4), theisometry group 3
of S%, which acts freely and discontinuously. 1

It is interesting to note that the gauge field is half pure + §v1/\ vo/\va (3.12
gauge or a merof21] (for a recent discussion sg¢&2]).

Explicitly, by definition of the left-invariant one-forms,, With v,=w,— 04/2 andw, the left invariant one-forms on a

we haveA=—(i/2)o(i 7°/2)= — (i/2)U _ldU whereU is  3.gphere introduced before. We have directly checked that
an arbitrary element &U(2). In Yang-Mills theory merons  njs solution admits Killing spinors afv=1 supergravity in

are singular gauge-fields that are not Bogomol'nyi-Prasadp — 1 -

Sommerfield(BPS but solve the second-order equations of

motion. Moreover, the singularities at the origin and at infin- 1

ity can be resolved by adding a half-instanton. Here we have ON= ( WMoup— gHMNPYMNP) €=0

a somewhat reverse situation in that the meron is part of a

BPS configuration and we have not been able to find corre- 1

sponding supersymmetric instanton configurations. As such 5¢M:(DM— ZHMNPVNP> e=0 (3.13

it would seem that the singularities in the gauge field cannot

be resolved by adding half-instantons while preserving Subrovided thate is constant and satisfies
persymmetry.

3567 — 3648, — 3459, — ¢ (3.14

Y
When the topological mass vanishes there is a supersymmetrf&1 the frame eo' T ’eg):(dgo'df_l’d_fz'dr’(”Z)l/z["l’ .

solution with vanishing gauge fieldsy=3=y=0. It hasf=k  92,03],(1/2)v1,v2,v3]). These projections can be recast in
=0, a=b=c=const, ¢=(1+1/4a%) "%, and G=(e 2%/a)de° the following elegant waysee, e.g., Eqs11) and (78) of
AdéPAdE2Adr. When uplifted toD =10 it gives rise to the 1/4 [23]]:
supersymmetric type 1IA/B solution corresponding to the near ho-
rizon limit of two NS fivebranes intersecting on a string that was <
discussed if20]. 3

1
7ij+Z¢ijkl7’kl)€=0 (3.15
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wherei,j,k,l € {3—9} and the four-formy is G, invariant  This preserves supersymmetryl i n/4=C for constantC,

with non-zero components given by provided thata,b, ¢ satisfy

+ 1= iys78= Y3456= Yas75~ Y3567 Yseso ,, b 8C

(a ), = E 1+ F

— 1= tf3780= Yaa68- (3.19
Under the decompositiorSpin(9,1)— Spin(2,1)x Spir(7) (b?)' bl 1- b? 1 8C
the spinors decompose 46— (2,8). We can further decom- 4a? b?
poseSpin7) underG, with 8— 1+ 7. Equation(3.15 asserts
that e is G, invariant. , 3C 4cC

This solution is also a solution of type IIA and type 1IB =22 o3 (3.19

supergravity, where it still preserves 2 supercharges; i.e., it

now preserves 1/16 of the supersymmetry. To see this recglly, c— 1/32, b=1/2 we recover our previous solution

that_ in _the string frame a boso_nic type lIA configuratioq with (3.12. ForC=0, after introducing a new radial variable we
vanishing Ramond-Ramond fields is supersymmetrisé®,  fing that the non-trivial seven metric is given by

e.g.,[24])
k3 -1 p2 ,02 k3
1 = 1- — 2, F 2, 2, 2y P [, 7
5)\+=i((9¢igHMpryMNP)et:0 ds; p3> dp +12(0'1+0'2+o'3)+ 9 1 p3)
1 X[vi+v5+ 3] (3.20
= z NP —
5¢+_(DMi4HMNP7 )€+ 0. 3.17 which is known to be a metric witl, holonomy[25,26]

and is the one discussed in Sec. Il. We have not been able to
We find that the solution breaks all supersymmetries and find the exact solution to Eq$3.19. However, we can es-
preserves 1/8 of the_ supersymmetries. This is exactly as tablish the asymptotic behavior. By analyzidg?/da® we
expected: thes,-holonomy metric will preserve spinoks.  see that for larga? we haveb?~4a?/3 and ¢~ const. Us-

satisfying Eq.(3.14. If we wrap a type IIA NS fivebrane ing a as a radial variable we then have, asymptotically,
around the associative 3-cycle in the directigdss,6}, we

must imposeyg.45¢+= €+ Which is only consistent with 4a?

e_ . By explicit calculation or simply by noting that we can dsi=12da’+a’(oi+ o5+ U§)+T[V§+ v+ v3]
obtain the type IIB solution by performing a trividlduality (3.20)
in the € or £? direction, we conclude that as a solution of the

type IIB theory it also preserves 1/16 of the supersymmetrywhich is the large limit of Eq. (3.20. For smalla? we have

We can also trivially uplift the type IIA solution to obtain a b2~ 1/a and ¢~ const+ 12Ca, giving rise to the asymptotic
solution inD=11 preserving 1/16 of the supersymmetry. metric

The symmetries of th® =10 solution consist of th®

=2+1 Poincareinvariance as well aSU(2)% symmetry: 342120 2, 2. 2 X 5 5,
the two left actions for whickw ando are left invariant and dsi=16a°da’+a’(o7+ o5+ 05) + S [+ vi+v3).
an SU(2) right action which is the sum of the two right (3.22

actions. These isometries arise from the fact that the associa-

tive 3-cycle is a round three-sphere and that the normalNote that these solutions are not solutions of minirBal

bundle is not generic. =7 gauged supergravity because they have another scalar
The asymptotic behavior of the fivebrane is as one exfield active.

pects for a type IIB fivebrane wrapping the three-sphere.

Presumably the fact that the three-sphere is getting large is 2. Non-vanishing topological mass

related to the fact that the =2+1 gauge coupling has di- To find supergravity solutions describing M-theory five-

mension 1/2. Note that just as in seven dimensions,xthe branes wrapped on associative three-spheres we need to

_ P 2
_.10. SO|LI|'[IOI’(lj.IS smglglI(ar a?s—>0. F%r exampIeHh a_md the — goive Eqgs.(3.10 with h#0. We have not been able to find
Ricci scalar diverge like £f. We will return to the issue of exact solutions, but it is not too difficult to establish the

singularities in the I"."St secyon. . asymptotic behavior of the solutions. Dividing the second
Before closing this section, as somewhat of an aside, W%quation by the first and defining

report on a generalization of the solutit@12). Consider the
ansatz F=x%e 2% x=a? (3.23

— 2 2 2, 2 2 2 2r.2 2 2
ds’=d¢?+dr?+a’(oyt ogt o) + byt v+ vi] we can obtain the following differential equation

HNS:|[0'2/\0'3/\V1+(Tg/\O'lAV2+(Tl/\U'2/\V3] dl: 5F + 16xXF

+nvAvy/\vs. (3.18 dx  4x+8hF ° (3.24
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5/4

F(x) If F(O) vanishes, we generically hate=F x> and

10
ds2=F3T16a"da?+a ¥d¢?+a"™(o5+ o5+ 03]

Fo

e 2¢= e (3.28

a

| IR (BS)

4 The behavior of the separatrix is~x/8h, giving
2t dsé: 1 1_6 2a6’5da2+a‘2’5d§2+a6’5
(8h)2/5 5

X (o€+ o-%-i— 0'%)
FIG. 2. Behavior of the orbits for the three-sphere whenl.
The AdS-type region is aF~x?, for largex. The dashed line is

the separatrix. The singularity in the IR region is always of the bad e 26— 1 _ (3.29
type (BS). 8ha?
The behavior of the orbits in thé=(x) plane is illustrated in  All of these metrics are singular. Note that E¢3.27) have
Fig. 2. It is also useful to note that Eq&.10 implies doo decreasing as one approaches the singularity, while the
others have it diverging. Before we conclude that the former
df hF is thus an example of a “good” singularity by the criteria of
dx X2+ 2hEx’ (3.29 [2] (see alsd29]), we should recall that the definition ap-

For largex we haveF ~x?/h—3x/8h. Switching the ra- plied to theD=11 solutio_n. U_sing the formulas 9], we
dial variable fromr to a we then deduce that the asymptotic 5¢€ that theD=11 metric will have the form(e.g., for

forms of the Einstein metric and scalar are given by =1)
2 1

2 da? 1 — A1/3 BALU3yp2 1 T A —2/3y—1 2, .2, 2
ds§=(ﬁ) da? dg2+z(o§+a§+a§)) ds?=AMdE+ XPA Yo%+ ZA 2 X cogO(vi+ 13+ 1))
h a (3.30

1 3 whereX=e?#/5

e_zd’:H—W (326)

A=X"*sir6+ X cog 6. (3.3)

(we have rescaled the coordinats This is the asymptotic H’] all cases the 00 component of the 11-dimensional metric

behavior that one expects for an M-fivebrane to be wrappe . : - ttp o 17
) : . . Is divergent and hence the singularities are “bad” by the
on a three-sphere: the dilaton is at the supersymmetric maxi=

mum of the potential, and the metric has the form of AdS cr|te_r|a of[2]. 24
. 51 ; Finally, we note that for all solutions™ <% starts from the
except that the slices of constamthave >~ replaced with : . :
1o 3 . : supersymmetric maximum ath,/ decreases in value before
[E=*Xx S°. Moreover, the next to leading order behavior of theturnin and then running off to infinit
dilaton is given byg~ (In h)/2+ 3/(16a?). This corresponds 9 9 Y
to the insertion of the boundary operatOy, of conformal _ )
dimensionA =4, since the falloff is like ®*. This op- B. Fivebranes wrapped on hyperbolic space
erator is dual tob? where® are the scalars in the tensor  Let us now more briefly describe what happens when we
multiplet of the M-fivebrane theorgsee e.g[27]). The next  replace the three-sphere with possible quotients of hyper-
order of the expansion corresponds to the expectation valusolic three-spacell®/T". HereT is a discrete subgroup of
of this operatof28]. _ SO(3,1)=PSL(2,C), the isometry group ofl®/T", which
For smallx, the behavior ofF depends on the value of acts freely and discontinuously. This includes the cases when
F(0). If it is non-vanishing, we havé~F,+5x/8nh. The  H3T is compact.
dilaton and the Einstein metric are then, asymptotically, Consider the metric ansatz

2

22/5 a
d52=e2f[d§2+dr2]+427(d22+dx2+dy2) (3.32

a
dst=4F§" ——da’+a”™

1
dé+ Z(o§+ o5+ 0l)

where @,x,y) are local coordinates oH®. We set the four-
“2¢_ Fo form G to zero and take th&U(2) gauge fieldsA? to be
e =z (3.27 - . . . .
a specified in terms of the spin connection via
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Al=%=0 Foo
1
1
2_ 6 _ _ — 6
A=ow 4 zae 0.8 IR (BS)
1 0.6
3_ 4 _ — 5
; frqe0 qel 42 04
using the frame(e'(d¢&”,dé+,d€%),(2a/z)(z,x,y)). These
configurations preserve 1/8 of the supersymmetry if -~ P
0.2 “AdS 4t IR (GS)
a’ 1 h 24 el T
a® Taa2t2® 70 —— x
0.2 0.4 0.6 0.8 1

FIG. 3. Behavior of the orbits for hyperbolic spaces when
=1. The AdS-type region is aF ~x?, for largex, and flows to the
IR fixed point or the goodGS) and badBS) singularities in the IR.
2e ff'+he 2¢=0. (3.34  The dashed lines are the separatrices.

The spinors satisfyi y%°rle=iy*®r2e=iy**r*=y3e=—¢ For largex there are solutions that behave like=x?/h
and their radial dependence is again givenesye'?e, for ~ +3x/8h which give rise to the asymptotic solution
constantey. Since the spinors are independent of the coordi- 5
nates onH3, these solutions are also supersymmetric on 2
3T d$=(ﬁﬁ>

For vanishing topological mas$=0, these equations
can be integrated to give metric and dilaton:

2

a

—+a?
a2

dé?+ %(dzz+dx2+ dyZ)D

[

3

—2¢_ _
e 2=_4
8ha®

(3.39

>

ds?=d&?+dr?+ 2—g(dz2+dx2+ dy?)
z as one expects for an M-fivebrane wrapping hyperbolic
@26 — @2y ~ 340240 (3.35 space. The next to leading order behavior of the dilaton is
now ¢~ (Inh)/2—3/(16a2), again corresponding to the in-
This solution can then be easily uplifted B=10. Apart Sertion of the boundary operatdt, of dimensionA=4.
from the change in sign of the dilaton this is very similar to  There are three different types of behavior of these solu-
the case of the three-sphere. The solution is singular both iHons asx decreases. First, there is an orbit that ends up at the
D=7 and inD=10. solution (3.36. WhenH3/T' is compact, this orbit thus cor-
For non-vanishing topological mass things are quite dif-"esponds to a flow “across dimensions” from the Aegpe
ferent from the case of the three-sphere. We first note that tH&gion(3.38 to an AdS x H*/T region. This implies that the

differential equations(3.34 admit the exact solutiora®  twisted field theory residing on an M-fivebrane wrapped on
=5/16, e 2%=8/5h, ande'=5/4r. In the Einstein frame we compactH?®/T flows in the far IR to a new superconformal

have theory (at least for largeN) whose dual is described by Egs.
(3.38.
2 8\% ) ) 5 2 ) ) There is also a class of orbits in which for smaJl F
ds’=|gy| |gg2(de +dr)+ a2 (dz+dx"+dy?) asymptotes to a constaifty. These solutions give rise to the

(3.39 asymptotic metric for smabk of the form

a.22/5
—thzda2+ a?s
0

corresponding to AdS< H3/T". This can easily be lifted to
D =11 using Eq(3.30, with v,= w,—A,, and the formula ~ dsE=4F3"
for the four-form in[19].
We can get further insight into the solutions of E£g§.34)
by again analyzing the differential equation foF o206 Fo (3.39

=x%e"2%¢ x=a% We now have at

1
dé?+ ?(dzer dx®+ dyz))

dF —5F+16xF These have a similar structure to E¢3.27). In particular,
dx  —4x+8hF - (3.3 althoughggg is decreasing as we approach the singularity at
a=0, the 00 component of the uplifteD =11 metric is
Notice that this is the same equation as H&s10 after x divergent and hence these are “bad” by the criterid 2
— —x. The behavior of the orbits for the region of interest For these flowse™ 2% monotonically increases from H/to
here is illustrated in Fig. 3. infinity.

106003-7



ACHARYA, GAUNTLETT, AND KIM PHYSICAL REVIEW D 63 106003

Finally there is another class of orbits in whithde-  presence of NS three-form flust on the three-sphere would
creases as a function afand then turns back on itself and give rise to these theories. However, our original ansatz did
decreases to zero for large At the end of these orbits the allow for this type of possibility, but we did not find such a
largex behavior forF is of the formF~F,e**. Althougha  supersymmetric solution. We have not proved that our solu-
is not a good radial coordinate along the whole of thesdions are the only ones within our ansatz that preserve super-
trajectories, it is good enough to describe the asymptotic besymmetry but we expect that a more general ansatz is prob-
havior and we find that they have “good” singularities by ably needed to find these solutions, if they indeed exist.
the criteria of[2]. For these flowse™2¢ begins increasing In our approach, followind2,3], we did not start with a
from 1h before turning and running back to zero. manifold with G, holonomy and then construct a solution
describing a fivebrane wrapping an associative 3-cycle.
Rather we built the solution all at once. This then raises the
question about whiclG,-holonomy manifolds we are con-

We have found supergravity solutions that describe fivesidering in our final solutions. This does not seem to be a
branes wrapping associative 3-cycles that are effierHi®  straightforward question to answer as it is not clear how to
or quotients of these spaces. For the M-fivebrane case wiwitch off” the fivebrane flux. Nevertheless, it appears that
determined the general asymptotic behavior of the solutionthe manifolds ares(S*/T") or S(H3/T) of [25,26 that we
to the BPS equations. In the case of the M-fivebrane wrapdiscussed in Sec. Il. The evidence for this is as follows. First,
ping a hyperbolic three-space we have shown that there isthe decoupling limit that we take leads to a non-compact
flow from an AdS-type region to an AdS< H3/T" solution.  manifold: only the local description of the associative three-
For compactH®T this implies that at low energies the cycle is important. Second, the structure of the normal
wrapped M-fivebrane theory flows to a superconformalbundle of the associative cycles $¢S*/T') or S(H¥T) cor-
theory inD =3 at least for larg&\. It would be interesting to  respond to our solutions. The generic normal bundle of an
study this theory in more detail. We also found a class ofassociative three-cycle has structure gr@@(4)~SU(2)_
orbits with “good” singularities which presumably corre- XSU(2)g and the twisting requires an identification of the
spond to switching on a vev for the operai©y,. For all SU(2) spin connection on the cycle with one of the factors,
other orbits, both for the three-sphere and for hyperbolicSU(2),, say. Our solutions are constructed in minimal
spaces, the singularities in the IR are “bad” by the criteria ofgauged supergravity which only h&U(2), gauge fields
[2]. It will be interesting to see if and how they can be and hence we can only construct solutions corresponding to
resolved. associative three-cycles with non-generic normal bundles.

For the type IIB NS fivebrane theory we obtained exactThe normal bundles to the associative three cycles in
solutions to the BPS equations and they are all singular in th8&(S3/T") or S(H3/T') also have theSU(2)r bundle trivial.

IR. Let us speculate on how the singularities might be reFinally in Sec. [IIA1 we derived some generalized BPS
solved for the case of the three-sphere. In Sec. Il we notedquations that contain these manifolds as well as our solu-
that after taking a suitable decoupling limit one expects thations as special cases, for the case of vanishing topological
the type IIB NS fivebrane wrapped on an associative threemass. If we compare Eq63.20 and(3.12), it is interesting
sphere should give rise =1 supersymmetric Yang-Mills to note that associative 3-sphereS(S®) gets shrunk when
theory in the IR, at least for certal@, manifolds when the we add the fivebrane while the other asymptotic three-sphere
associative three-sphere is rigid. Witten has shg8aj that  that shrunk to zero size at the zero section gets blown up to
the Witten index vanishes fok'=1 SYM theory inD=3 finite size. The latter is necessary in order for there to be
with vanishing Chern-Simons coupling and has provided cirnon-zero flux transverse to the wrapped brane. It is also in-
cumstantial evidence that supersymmetry is actually spontderesting to note that while th&, invariant metric on
neously broken. If this is indeed the case, it is natural toS(H%/T) is not complete, when we add the M-fivebrane flux
suggest that our supergravity soluti¢.12 describes this we can get the regular solution AgSH3/T" uplifted to D
case and that the singularity can only be removed in a non=11.

supersymmetric fashion. Recalling that the singularity is re- Note added After this work was completed we became
lated to the meron gauge fieldsin=7 gauged supergravity, aware of[31] where they also found the AdS H? solution

it is plausible that the singularity can be removed by a suof minimal D=7 gauged supergravity. In addition this paper
persymmetry breaking instanton. It would be interesting topresented an AdS H* solution for maximalD =7 gauged
construct such supergravity solutions and thereby, hopefullysupergravity. This solution is related to M-fivebranes wrap-
demonstrate spontaneous breaking of supersymmetry in pupng special Lagrangian 3-cycles in Calabi-Yau three-folds
N=1 SYM theory inD=3. as will be shown elsewhel&2].

We should comment that Witten has also shq@&®@] that
for suitable Chern-Simons couplings the Witten index\in
=1 SYM theory is non-vanishing and hence supersymmetry
is preserved. One might hope to be able to find supersym- We thank Fay Dowker, Nikita Nekrasov, Paul Townsend,
metric gravity solutions describing this situation. Since theDaniel Waldram and especially Juan Maldacena for helpful
type 1IB NS fivebrane includes a coupling of the fofn  discussions. J.P.G. thanks the EPSRC for partial support.
AFAByns~wcg(A)/\H, whereF is the field strength of the J.P.G. and N.K. are supported in part by PPARC through
gauge fieldA residing on the fivebrane, one expects that theSPG No. 613.

IV. DISCUSSION
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