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Vanishing of the cosmological constant in nonfactorizable geometry
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We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times includ-
ing the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton
propagation in a general four dimensional background and find an explicit solution for a zero mass bound state
of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is
strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the
context of this model. We also show that the results of Randall and Sundrum can be generalized without any
modification to the Schwarzschild background.
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I. INTRODUCTION

Any realistic theory of gravity should be able to repr
duce ther 21 behavior of the gravitational potential in th
Newtonian limit. Generically, the potential falls off lik
r 2d13, whered is the number of extra dimensions with in
finite extend. Thus, to obtainr 21 behavior, higher dimen-
sional theories of gravity have been assuming compact
(' Planck length! of the extra dimensions. Thus, in the co
ventional way of extracting an effective lower-dimension
theory from higher dimensions, one performs a Kaluza-Kl
reduction in which the extra dimensions are warped up in
compact space~of the order of Planck length! such as a torus
or a sphere~see Ref.@1# and references therein!. Provided
that the scale size of these internal dimensions is sufficie
small in relation to the energy scale of excitations in t
lower dimension, then the mass gap separating the mas
modes from the massive modes will be sufficient to ens
that the internal dimensions are essentially unobservable,
the world will essentially appear to be effectively lower d
mensional. If an extra dimension is noncompact, there wo
be continuum modes with masses extending down to z
when seen from the lower-dimensional viewpoint.

Recent developments in string theory have shown tha
matter fields are localized on a 3-brane in 1131d dimen-
sions, while gravity can propagate in the extra dimensio
then the extra dimensions can be large@2,3#. In this scenario,
the Planck scaleM P is traded for the size of the extra dime
sions felt by gravity. Likewise, gauge coupling unificatio
can be preserved and remain perturbative, but it now oc
at scales as low as a TeV. One can therefore have gravity
gauge coupling unification occurring at as low a scale a
few hundred GeV to 1 TeV. This new scenario has be
claimed to be experimentally testable@4# and offers a simple
qualitative explanation to the fermion mass hierarchy pr
lem @6#.

In these large extra spatial dimensions, deviations fr
Newtonian potential will be detected at the scale of the ex
dimensions. The form of the Newtonian potential can be
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tained for a pointlike mass, in these models, by means
Gauss’ law@2#. Denoting byr the radial distance in 41d
dimensions and byr b the radial distance as measured on t
3-brane, we find for distancesr much greater than the typica
size of the extra dimensionL a potential of the form

V(4)52GN

M

r b
, ~1!

whereGN5mp
22 is Newton’s constant in four dimensions

On the other hand, forr !L the potential becomes

V(41d)52G(41d)

M

r 11d
, ~2!

with G(41d)5M (41d)
222d5LdGN . This implies that the huge

Planck massmp
25M (41d)

21d Ld and, for sufficiently largeL and
d, the bulk mass scaleM (41d) ~eventually identified with the
fundamental string scale! can be as small as 1 TeV. Since

L;@1 TeV/M (41d)#
112/d1031/d216 mm, ~3!

demanding that Newton’s law is not violated for distanc
larger than 1 mm restrictsd>2 @2,5#. Further bounds are
obtained by estimating the production of Kaluza Klein gra
tons and support higher values ofd @9#.

On the other hand, Randall and Sundrum~RS! @7# have
shown that these extra dimensions in five-dimensional sp
times need not be compact. They have shown that ford51,
gravity can be localized on a single 3-brane~where the stan-
dard model particles are confined! even when the fifth di-
mension is infinite. The noncompact localization arises
the exponential warp or conformal factor in the nonfactor
able metric:

ds25exp~22kuyu!@dt22dx2#2dy2. ~4!

The metric signature we adopt is (12222). For yÞ0,
this metric satisfies the five dimensional Einstein’s equat
with negative five dimensional cosmological constant,L
'2k2. The brane is located aty50, and the induced metric
on the brane is a Minkowski metric. The bulk is a five d
mensional anti–de Sitter metric, withy50 as boundary, so
©2001 The American Physical Society21-1
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thaty,0 is identified withy.0, reflecting theZ2 symmetry
with the brane as fixed point, that arises in the string theo

Perturbations of the metric~4! shows that the Newtonian
potential on the brane is recovered at lowest order:

V~r !5
GM

r S 11
2

3k2r 2D . ~5!

Thus, the four dimensional gravity is recovered at high
ergies, with a first-order correction that is constrained
current submillimeter experiments@8#. The zero mode pro-
duces the standard 1/r gravitational potential along the bran
and the Kaluza-Klein modes give rise to corrections of or
1/r 3. @The general line element of the form in Eq.~4! has
been obtained earlier by Gogberashvili@10# by setting the
momentum toward the large extra, fifth, dimension to
zero.#

The corrections to the Newtonian gravitational poten
VN(r )}(m1m2 /r ) have been investigated earlier by seve
authors from different points of view. Duff@11# had obtained
a similar result by computing the one-loop corrections to
~flat! graviton propagator. In his analysis, the single gravi
exchange provided the linearized Schwarzschild line e
ment, which in the weak field limit is the standard 1/r po-
tential and the inclusion of the quantum corrections to o
loop order modifies gives rise to corrections of order 1/r 3.
Since the lowest order corrections have to be linear inG\, it
is obvious from dimensional grounds that the correction w
multiply VN by a factor of the form@11a(G\/c3r 2)# where
a is numerical coefficient.†While this is the leadingquantum
correction, it may be noted that the lowest order po
Newtonian approximation will give a correction of the for
@11b„G(m11m2)/c2r …#, where b is a numerical factor,
which has a slower fall-off with distance.‡

Danoghue@12# has obtained similar results by treatin
gravity as an effective field theory. He argues that the le
ing quantum corrections, in powers of the energy or inve
powers of the distance, can be computed in quantum gra
through the knowledge of the low-energy structure of
theory ~effective field theory!. He shows that the one loo
corrections to the graviton propagator gives the 1/r 3 correc-
tions to the Newtonian potential. He also emphasizes tha
correction to low energy gravity, treated as an effect
theory is remarkably unique and the leading quantum cor
tion to the potential is (1/r 3). ~There have been other simila
analysis in the literature where the classical and quan
corrections to the Newtonian potential have been calcula
See, for example, Ref.@13#.!

In the case of RS, there is no background Schwarzsc
metric and they merely study the graviton perturbatio
around theflat four-dimensional spacetime. Their approa
is essentially to look at the corrections to the graviton pro
gator arising from a set of continuum states with massm
.0. The analysis by itself is classical and indeed, the c
rections toVN which they find does not depend on\ directly;
of course, they provide aninterpretationwhich is quantum
mechanical. In contrast, much of the earlier work, conc
10502
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trated on quantum gravitational corrections, have used
background Schwarzschild line element.

This raises the question: Is it possible to generalize
ideas of RS to a situation in which the four-dimension
metric is nontrivial~say, a Schwarzschild metric or de Sitt
universe!? Will we get the same mass spectrum for the gra
ton modes and the same correction term toVN(r )? The fact
that Duff and Danoghue obtained similar results sugge
that this could be the case — though it needs to be explic
demonstrated.

In this paper, we show that the main results of RS hav
simple mathematical origin and can indeed be generalize
a wider class of models. We will provide ageneralsolution
to the zero mass graviton mode inarbitrary background and
— as an illustration — will work out explicitly the case tha
incorporates a spherically symmetric solution in four dime
sions.~This will include as special cases, the Schwarzsch
and de Sitter manifolds.! It is important to show that the
properties of the graviton propagation, and the effect
gravitational potential do not change under such a gene
zation. We shall provide exact solutions which demonstr
that such is indeed the case; these solutions also pro
some insight into the structure of the solution and will po
sibly allow us to study — for example — models for blac
hole evaporation in this context.

In Sec. II, we will solve the equation for graviton prop
gating in general four dimensional space-time and obtain
explicit solution for the zero mass bound state of the gra
ton. In Sec. III, we perform the analysis for the four dime
sional spherically symmetric space-times and show explic
that the four dimensional cosmological constant should v
ish. Finally in Sec. IV we summarize the results and disc
the implication of the result in the compactified Randa
Sundrum model.

II. GENERALIZATION OF RANDALL-SUNDRUM MODEL

In this section, we study the plane wave gravitons,hmn ,
propagating in the five dimensional space-time,

ds25gabdxadxb5exp@22a~y!#@gmn
(4)dxmdxn#2dy2,

~6!

with the condition that it satisfies the full five dimension
Einstein’s equation with the five dimensional cosmologic
constant. We use the lowercase Latin letters for the full fi
dimensions and the lowercase Greek letters for four dim
sions.~We follow the notation of RS closely to provide eas
comparison.!

Denoting the perturbed metric byg̃ab5gab1hab and us-
ing the gauge

h555h5m50, ¹mhmn50, hm
m50, ~7!

it is easy to see thathmn can be written as plane wave grav
tons, i.e.,hmn5emnF whereemn is the polarization tensor
The equation satisfied byF can be separated with the ansa
F(xm,y)5A(xm)Z(y). Substituting into the wave equation
1-2
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separating the variables using a constantm2, we find thatA
satisfies the standard wave equation for a particle of masm
while Z satisfies the equation

d2Z

dy2
1„24ȧ2~y!12ä~y!1m2exp@2a~y!#…Z50. ~8!

~The essential steps leading to the above equation are g
in the Appendix.! This reduces to Eq.~8! of RS, when we
use their solutiona(y)5kuyu. We are interested in the a
lowed range of values form and whether we can get a
acceptable solution form50. By inspection, it is clear tha
this equation has a solution form50, given by

Z5exp@22a~y!#. ~9!

In fact, this ispreciselythe ground state wave function whic
RS obtain~after a series of algebraic transformations! for
their special case ofa(y)5kuyu. The physical meaning
mathematical simplicity and generality of the result is hidd
by ~i! their transformations and~ii ! the fact that they neve
give c(y) but only ĉ(z) in their paper.@Note that Eq.~9! is
a valid solution to Eq.~8! with m50 a long asa(y) is
continuous even if its derivative is discontinuous at the o
gin.#

This is the first result of this paper and shows that
existence of a zero mass graviton is a very general result
does not require much of the extra assumptions in RS ex
thatZ should be well behaved andnormalizableas a function
of y, in the relevant range.~Note that the ground state wav
function for an arbitrary four dimensional line element
exactly the conformal or warp factor in the generaliz
Randall-Sundrum model.! This clearly shows that the stabi
ity of the 3-brane can be explicitly shown in the RS mod
by obtaining the zero mass graviton wave function which
well behaved and normalizable. The question arises as to
conditions under which we will obtain a normalizable fun
tion for Z(y). Such an analysis for a generala(y) is compli-
cated and hence we will illustrate it explicitly for a spec
case. In the next section, we take a simple case by assu
that the four dimensional spacetime is spherically symme
and show that for the case of nonzero four dimensional c
mological constant, the zero mass ground state wave fu
tion is non-normalizable.

We would also like to point out the following point: Th
other eigenvalues and eigenfunctions can be found by c
verting Eq.~8! into an eigenvalue equation form2. In gen-
eral, an equation of the form

d2S

dx2
1„EV~x!24k2

…S50 ~10!

@whereE andk2 are constants,V(x) is a continuous function
of x# can be transformed to an eigenvalue equation forE by
changing the independent variable fromx to z by

z5E dxV~x!1/2 ~11!
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and dependent variable fromS to Ŝ5SV21/4. This will give a
modified Schroedinger equation of the form

d2Ŝ

dz2
1F2

1

16S d„ln@V~x!#…

dz D 2

1
4k2

V~x!
2

1

4

d2
„ln@V~x!#…

dz2 G Ŝ

52EŜ, ~12!

where,x in the above expression is expressed in terms oz
using Eq.~11!.

III. SPECIAL CASE: SPHERICALLY SYMMETRIC
SPACE-TIME

In the previous section, we have shown that the existe
of the zero mass graviton is a very general result in the c
of the RS model. However, the analysis of the normalizat
of ~zero mass! ground state wavefunction for a general fo
dimensional space-time is complicated. Here, we take
simple case by assuming that the four dimensional space
is spherically symmetric and is of the form

ds25exp„22a~y!…@A~r !dt22B~r !dr22r 2dV2#2dy2,
~13!

wheredV2 is the angular line element anda(y), A(r ) and
B(r ) need to be determined via the five-dimensional E
stein’s equations. We consider the latter to be of the form

Gab5Lgab ~14!

with possible nonzero vacuum energy densityL in five di-
mensions. Inserting the ansatz~13! for the metric, the only
nonvanishing components of the Einstein tensor,G, are the
diagonal components. The Einstein’s equation, for (00) a
(11) components, reduces to

1

r 2
2

1

r 2B~r !
1

B8~r !

rB2~r !
5exp@22a~y!#R~y! ~15!

2
1

B~r ! F 1

r 2
2

B~r !

r 2
1

A8~r !

rA~r !G5exp@22a~y!#R~y!

~16!

where

R~y!5L16ȧ2~y!23ä~y!, ~17!

and the prime denotes derivative with respect tor. Combin-
ing the two equations, we obtainB(r )51/A(r ). Substituting
for B(r ) in the above equations and to the~22! and ~33!
components of the Einstein’s equation, we get

2A~r !S 1

r 2
2

A8~r !

rA~r !
2

1

r 2A~r !
D 5exp@22a~y!#R~y!

~18!
1-3
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2
1

2r
„2A8~r !1rA9~r !…5exp@22a~y!#R~y!

~19!

2S A9~r !

2
12

A8~r !

r
1

A~r !21

r 2 D 5exp@22a~y!#

3„L16ȧ2~y!…. ~20!

Solving the above equations givesA(r ) to be

A~r !512
C

r
2

l

3
r 2, ~21!

whereC and l are the constants of integration. This fou
dimensional metric is the well known Schwarzschild–de S
ter metric for the choice ofC.0, where l is the four-
dimensional cosmological constant, in the sense that the
dimensional metric withA(r ) given by Eq.~21! corresponds
to a four dimensional space-time with this cosmological c
stant.~We use the term cosmological constant in four dime
sions in the above sense and it should not be confused
the other possible ways of defining the cosmological c
stant — for example, from the brane tension, etc. Note t
the sign ofl is still undetermined.! Substituting the form of
A(r ) in the original equations, the differential equation f
a(y) becomes

d2a~y!

dy2
5

l

3
exp„2a~y!…. ~22!

It is clear that the conformal factor will haveonly the l
dependence and will be independent ofC. ~Normally the
four dimensional space-time can have a nonvanishing
mological constant only when there is a source in the rig
hand side of the four dimensional Einstein’s equations.
our case, if we write the five dimensionalGab in terms of
four dimensional Einstein tensorGmn and extra terms arising
from the fifth dimension, it is possible to show that the e
fective source forGmn is exactly that corresponding to a fou
dimensional cosmological constantl.!

Solving Eq. ~22!, it is easy to obtain the form ofa(y)
such that it reduces to the RS result ofa(y)5kuyu when l
50. We get

exp@22a~y!#5exp@2kuyu#†exp@22kuyu#2~l/12k2!‡2

~23!

with k being a constant related toL by L526k2. This
shows thatL,0 for an acceptable solution. Equations~23!,
~21! with the resultA(r )51/B(r ) completely determine the
metric. The modulus sign inuyu will make the derivatives of
a(y) discontinuous at the originy50 which can be taken to
be the location of the membrane as in the RS case.

Equation~23! allows us to draw an important conclusio
which is the second key result of this paper. Note that
conformal factorZ5exp@22a(y)# depends onl but not on
C. In the limit of l→0 the conformal factor for the four
dimensional world line element is same as in the RS mo
10502
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Thus, the original analysis of RS can be generalizedwithout
any modificationsto the case in which the four dimension
spacetime is described by Schwarzschild line-element@l
50, C.0 in Eq. ~21!# as well suggesting that the zero
order gravitational interaction, in the form of Schwarzsch
line element, gets ‘‘corrected’’ by the conformal factor. Th
could possibly be the reason why the one-loop correction
the Schwarzschild metric in the earlier analysis of Duff@11#
also gives a similar result.

The above reason is strengthened by the results in R
@14,15#: In a recent paper, Duff@14# has shown that the
propagator for the continuum graviton modes, in the RS p
ture, incorporates all quantum effects of matter on the bra
Using the Duff’s analysis, Alvarez and Mazzitelli@15# have
shown that for the conformal fields and up to quadratic or
in the curvature, the nonlocal effective action is equivalen
the d11 action for classical gravity in AdSd11 restricted to
a d21 brane.

The condition on thefour-dimensionalcosmological con-
stantl is more interesting. The ground state wave functi
Z5exp„22a(y)… in Eq. ~23! is not normalizable forlÞ0
and hence we do not get a massless@m50 in Eq.~8!# gravi-
ton for lÞ0. An examination of the general solution to E
~22! confirms this conclusion. UsingZ5exp„22a(y)…, the
first integral to Eq.~22! can be written as

dZ

dy
56S 4b1Z21

4l

3
ZD 1/2

, ~24!

whereb1 is the constant of integration. Forb1,0, the solu-
tion is oscillatory with nodes and hence is not of interest. F
the caseb15k2.0, we obtain the solution to be

Z52
l

6k2
1

1

16k2
exp„62k~y2y0!…

1
l2

9k2
exp„72k~y2y0!…, ~25!

wherey0 is the constant of integration. In the case ofl50,
the wave function~Z! is normalizable and reduces to th
ground state wave function obtained by RS with a suita
choice of the signs fory.0 andy,0 @we take the solution
to be varying as exp(22ky) for y.0 and exp(2ky) for y
,0 with the membrane being located aty50#. However,
whenlÞ0, the wave function is not bounded asuyu→` ~for
any combination of signs in the argument of the exponent!
and hence is not normalizable for nonzerol. This is because
the third term on the right-hand side of Eq.~25! ~which is
nonzero whenlÞ0) comes with an argument to the exp
nential having a different sign compared to the second te
This shows clearly that the nature of the solution forZ(y) —
which acts as the ground state wave function for zero m
graviton mode — is very different whenlÞ0 compared to
the case considered by RS.@The above result can be unde
stood in a slightly different manner: The ground state wa
function in Eq.~9! is the same as the conformal factor of th
line element~6!. If the ground state wave function blows u
1-4
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as y→` then the conformal or warp factor in the Randa
Sundrum line element will be very large for largey. Hence,
the brane located aty50 is unstable to the metric perturba
tions.#

IV. CONCLUSIONS AND DISCUSSIONS

To conclude, we have shown that the existence of a z
graviton mode is general, i.e., it exists for a wide class
four dimensional metrics in the case of the RS model.
particular, the results of RS are valid without modificatio
for a four dimensional Schwarzschild black hole. But t
presence of nonzero cosmological constant in four dim
sions modifies the RS results. The presence of a non
cosmological constant does not provide a normaliza
ground state wave function corresponding to the zero m
graviton. Hence, we have obtained a dynamical reason
the strict vanishing of the cosmological constantwithin the
context of these models. The stability of the 3-brane to dif
ferent classes of matter fields in the context of the gen
five dimensional metric is under investigation.

We would like to point out to the reader the difference
the approach taken here and to the earlier works@16#. The
earlier analysis of the Schwarzschild metric on the brane
performed by taking the casea(y)5kuyu. In this case, it is
easy to demonstrate that theR̂ab solves the RS equations o
motion, provided the four dimensional brane is Ricci fl
(Rmn50). Hence in these analyses, replacing the Ricci
branes with the flat branes was by forcing the conforma
warp factor to be the same as that of RS.

Our analysis in this paper is geared towards understan
the stability of the 3-brane against the metric perturbati
~in the five dimensions! for a general four dimensiona
space-time. We have shown that the stability of the 3-br
in the RS model can be explicitly shown in the RS by o
taining the zero mass ground state graviton wave func
which is well behaved and normalizable. Here we have p
formed this analysis for a four dimensional spherically sy
metric metric and obtained the general form of the four
mensional spherically symmetric metric along with t
conformal factor a(y) by solving the five dimensiona
vacuum Einstein’s equation~with nonzeroL). The general
solution we obtained shows that there the conformal or w
factor is independent of the Schwarzschild mass~see Sec.
III !. However, the analysis~of the four dimensional
Schwarzschild metric in the 3-brane! by earlier authors is by
forcing the conformal or warp factor to be same as that of
and hence replacing the Ricci flat branes with the flat bran
The reason for the conformal factor to be independent of
Schwarzschild mass@constantC in Eq. ~21!# is not clear in
the earlier works.

An interesting alternative scenario would be to use
model by RS in Ref.@6#. In this scenario, we can set up tw
3-branes where the 3-branes are extended in thexm direc-
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tions and are located at some fixed points in they axis and
thus restricting the extra dimensions to be compactified.~In
this model, it is assumed that the branes do not contribut
the energy momentum tensor.! By restricting the extra di-
mensions to be compactified, we can obtain normaliza
zero mass gravitons. Such an analysis leads to two diffe
situations depending on whether~i! l.12k2 or ~ii ! l
,12k2. The first possibility, even ifk'TeV, will give a
large cosmological constant. The other case, which is m
plausible, gives us the upper bound on the compactifica
scale~radius! of the extra dimensions.~Some of these issue
have been discussed in Ref.@17#.! These issues are unde
current investigation.

Finally, we would like to mention the following curiou
fact: In conventional four-dimensional general relativity, li
earizing the Einstein-Hilbert action,

Sgrav i ty52
c3

16pGE A2g~x! @R~x!12l#d4x ~26!

@whereR(x) is the Ricci scalar,l is the cosmological con-
stant andgmn is the general four-dimensional metric#, we
obtain

h (4)hmn52lhmn . ~27!

The cosmological constant appears as a mass term in
linearized spin-2 wave equation. Vanishing of cosmologi
constant is required for this equation to be interpreted
representing the massless spin-2 particles~gravitons! in gen-
eral. @The graviton propagation in de Sitter backgrou
~which is a maximally symmetric space-time! has been per-
formed ~see for example Ref.@18#! and it was shown tha
gravitons possess only two physical propagating degree
freedom. A detailed analysis for ageneralbackground has
not been performed and in these cases the vanishing o
cosmological constant is required to interpret it as repres
ing massless gravitons~corresponding to a long range inte
action!.# However, by making the cosmological consta
very small one can obtain a long range interaction for gr
ity. Our analysis here shows that evenan arbitrarily small
cosmological constant will make the ground state wave fu
tion ~corresponding to a massless graviton! non-
normalizable, requiring the cosmological constant to stric
vanish. Whether there exists a deeper connection betw
the two results is not clear and is under investigation.
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APPENDIX

For the sake of completeness, we outline the essential steps leading to Eq.~8! in Sec. II. DefiningQmn
c [gachmn;a ~the

semicolon on the right-hand side represents the covariant derivative!, we have
1-5
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¹a¹ahmn5gac¹c~hmn;a!5Qmn;c
c

5Qmn,c
c 1Qmn

m Gmc
c 2Qmn

c Gcm
m 2Qmm

c Gcn
m ~A1!

5~2g!21/2]c~A2gQmn
c !2Qmn

c Gcm
m 2Qmm

c Gcn
m . ~A2!

EvaluatingQ ’s in the right-hand side~RHS! of the expression~A1!, we obtain

Qmn
c 5gcahmn;a

5gca@]ahmn2Gma
s hsn2Gna

g hms# ~A3!

Qmn
c 5gcahmn;a5gcahhn;a ~using the gauge conditionh5m50!

5gca@]ahhn2Gha
s hsn2Gna

s hhs# ~A4!

Qmm
c 5gcahmm;a5gcahmh;a ~using the gauge conditionh5m50!

5gca@]ahmh2Gma
s hhs2Gha

s hms#. ~A5!

We know

Gkl
i 5

1

2
gimF ]gmk

]xl
1

]gml

]xk
2

]gkl

]xmG ~A6!

Gma
s 5

1

2
gsmF ]gmm

]xa
1

]gma

]xm
2

]gma

]xm G . ~A7!

G can be easily evaluated for the line element~6! and is given by

Gma
s 5

1

2
gsbF ]gbm

]xa
1

]gba

]xm
2

]gma

]xb Gda
a2ȧ~c!dm

sd5
a . ~A8!

Thus Eqs.~A3!, ~A4!, and~A5! will get modified to the form

Qmn
c 5gca@]ahmn12ȧ~c!d5

ahmn#2
gca

2
@gsb~]a gbm1]m gba2]b gma!da

ahsn1gsb~]a gbn1]n gba2]b gna!da
ahms#

~A9!

Qmn
c 5gcahhn;a5gca@]ahhn12ȧ~c!d5

ahhn#2
gca

2
@gsb~]a gbh1]h gba2]b gha!da

ahsn

1gsb~]a gbn1]n gba2]b gna!da
ahhs# ~A10!

Qmm
c 5gcahmh;a5gca@]ahhm12ȧ~c!d5

ahhm#2
gca

2
@gsb~]a gbm1]m gba2]b gma!da

ahsh

1gsb~]a gbh1]h gba2]b gha!da
ahms#. ~A11!

We obtain the full expression ofhmn;a
;a by substituting these expressions obtained forQ in Eq. ~A1!. The first term in the RHS

of Eq. ~A1! is

~2g!21/2]c~A2gQmn
c !5h (4)hmn1]5

2hmn22ȧ~c!]5hmn28ȧ2~c!hmn12ä~c!hmn2
~2g!21/2

2
]t@A2ggtagsb

3~]agbm1]mgba2]bgma!hsn#2
~2g!21/2

2
]t@A2ggtagsb~]agbn1]ngba2]bgna!hms#,

~A12!
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whereh (4) denotes the four dimensional D’Alembertian o
erator. The second and third terms in the RHS of the exp
sion ~A1! are

Qhn
c Gcm

h 5
1

2
III agta]ahmn2ȧ~c!]5 hmn22ȧ2~c!r ]5 hmn

2
gca

4
@ I a3III a3da

ahsn1II a3III ada
ahhs#

~A13!

Qmh
c Gcn

h 5
1

2
III b gta]ahmn2ȧ~c!]5 hmn22ȧ2~c!]5 hmn

2
gca

4
@ I b3III b3da

a hsn1II b3III b3da
a hhs#

~A14!

whereI a,b , II a,b , III a,b are the terms which depend only o
the four-dimensional coordinatesxm. Combining the terms in
B
-

i-

es
’’

e

10502
s-
the expressions~A12!, ~A13!, ~A14! and rearranging them
we get

hmn;a
;a 5h (4)hmn1]5

2hmn24ȧ2hmn12ähmn

1terms depending on the 4D coordinates.

~A15!

Thus, it is easy to see from the above relation thathmn can be
written as plane wave gravitons, i.e.,hmn5emnF. The equa-
tion satisfied by F can be separated with the ansa
F(xm,y)5A(xm)Z(y). Substituting into the wave equation
separating the variables using a constantm2, we find thatA
satisfies the standard wave equation for a particle of masm
while Z satisfies the equation

d2Z

dy2
1„24ȧ2~y!12ä~y!1m2exp@2a~y!#…Z50.

~A16!
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