PHYSICAL REVIEW D, VOLUME 63, 105021

Vanishing of the cosmological constant in nonfactorizable geometry
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We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times includ-
ing the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton
propagation in a general four dimensional background and find an explicit solution for a zero mass bound state
of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is
strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the
context of this model. We also show that the results of Randall and Sundrum can be generalized without any
modification to the Schwarzschild background.
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[. INTRODUCTION tained for a pointlike mass, in these models, by means of
Gauss’ law[2]. Denoting byr the radial distance in #d
Any realistic theory of gravity should be able to repro- dimensions and by, the radial distance as measured on the
duce ther ~! behavior of the gravitational potential in the 3-brane, we find for distancesnuch greater than the typical
Newtonian limit. Generically, the potential falls off like size of the extra dimension a potential of the form
r~973 whered is the number of extra dimensions with in-
finite extend. Thus, to obtain™! behavior, higher dimen-
sional theories of gravity have been assuming compactness
(= Planck length of the extra dimensions. Thus, in the con-
ventional way of extracting an effective lower-dimensionalwhere GN=m52 is Newton’s constant in four dimensions.
theory from higher dimensions, one performs a Kaluza-KleinOn the other hand, for<L the potential becomes
reduction in which the extra dimensions are warped up into a
compact spacéof the order of Planck lengjtsuch as a torus M
or a sphergsee Ref[1] and references therginProvided Vara= _G(4+d)r1_+d’ @
that the scale size of these internal dimensions is sufficiently
small in relat_ion to the energy scale of exc_itations in the,ith G(4+d):M(:12J:dd:LdGN_ This implies that the huge
lower dimension, then_the mass gap separating the massle|§§anck massn?=M2, | 4 and, for sufficiently large. and
modes from the massive modes will be sufficient to ensure, " = P (4I+d) llv identified with th
that the internal dimensions are essentially unobservable, ath e bulk mass scal (4., g (eventually identified with the
. ) . ~fundamental string scalean be as small as 1 TeV. Since
the world will essentially appear to be effectively lower di-

M
V= _GNEa (1)

mensior_1a|. If an extra dimension is noncom_pact, there would L~[1 TeV/M (4+d)]1+2/d1031/d716 mm, @)
be continuum modes with masses extending down to zero,
when seen from the lower-dimensional viewpoint. demanding that Newton’s law is not violated for distances

Recent developments in string theory have shown that ifarger than 1 mm restrictd=2 [2,5]. Further bounds are
matter fields are localized on a 3-brane in3+d dimen-  gbtained by estimating the production of Kaluza Klein gravi-
sions, while gravity can propagate in the extra dimensionsions and support higher values @f9].
then the extra dimensions can be lafg¢3]. In this scenario, On the other hand, Randall and SundrdR®) [7] have
the Planck scal&p is traded for the size of the extra dimen- shown that these extra dimensions in five-dimensional space-
sions felt by gravity. Likewise, gauge coupling unification times need not be compact. They have shown thatifet,
can be preserved and remain perturbative, but it now occurgravity can be localized on a single 3-bramenere the stan-
at scales as low as a TeV. One can therefore have gravity arghrd model particles are confinedven when the fifth di-
gauge coupling unification occurring at as low a scale as gnension is infinite. The noncompact localization arises via

few hundred GeV to 1 TeV. This new scenario has beerhe exponential warp or conformal factor in the nonfactoriz-
claimed to be experimentally testalpl and offers a simple  gple metric:

gualitative explanation to the fermion mass hierarchy prob-

lem [6]. ds?=exp(— 2k|y|)[dt?—dx?]—dy?. (4)
In these large extra spatial dimensions, deviations from
Newtonian potential will be detected at the scale of the extrd’he metric signature we adopt is-(~———). Fory+0,

dimensions. The form of the Newtonian potential can be obthis metric satisfies the five dimensional Einstein’s equation
with negative five dimensional cosmological constait,
~ —k2. The brane is located gt=0, and the induced metric
*Email address: paddy@iucaa.ernet.in on the brane is a Minkowski metric. The bulk is a five di-
"Email address: shanki@iucaa.ernet.in mensional anti—de Sitter metric, with=0 as boundary, so
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thaty<O0 is identified withy >0, reflecting theZ, symmetry trated on quantum gravitational corrections, have used the
with the brane as fixed point, that arises in the string theorybackground Schwarzschild line element.
Perturbations of the metri@) shows that the Newtonian This raises the question: Is it possible to generalize the
potential on the brane is recovered at lowest order: ideas of RS to a situation in which the four-dimensional
metric is nontrivial(say, a Schwarzschild metric or de Sitter
universg? Will we get the same mass spectrum for the gravi-
2 ton modes and the same correction ternVigr)? The fact
V(r):T( 1+ 3k2r2)' ) that Duff and Danoghue obtained similar results suggests
that this could be the case — though it needs to be explicitly
demonstrated.
Thus, the four dimensional gravity is recovered at high en- In this paper, we show that the main results of RS have a
ergies, with a first-order correction that is constrained bysimple mathematical origin and can indeed be generalized to
current submillimeter experimenf8]. The zero mode pro- a wider class of models. We will providegeneralsolution
duces the standardrlgravitational potential along the brane, to the zero mass graviton modearbitrary background and
and the Kaluza-Klein modes give rise to corrections of order— as an illustration — will work out explicitly the case that
1/r3. [The general line element of the form in E@) has incorporates a spherically symmetric solution in four dimen-
been obtained earlier by Gogberashyilo] by setting the  sions.(This will include as special cases, the Schwarzschild
momentum toward the large extra, fifth, dimension to beand de Sitter manifolds.It is important to show that the
zero] properties of the graviton propagation, and the effective
The corrections to the Newtonian gravitational potentialgravitational potential do not change under such a generali-
Vn(r)ec(mym,/r) have been investigated earlier by severalzation. We shall provide exact solutions which demonstrate
authors from different points of view. DufL.1] had obtained that such is indeed the case; these solutions also provide
a similar result by computing the one-loop corrections to thesome insight into the structure of the solution and will pos-
(flat) graviton propagator. In his analysis, the single gravitonsibly allow us to study — for example — models for black
exchange provided the linearized Schwarzschild line elehole evaporation in this context.
ment, which in the weak field limit is the standard po- In Sec. II, we will solve the equation for graviton propa-
tential and the inclusion of the quantum corrections to onegating in general four dimensional space-time and obtain an
loop order modifies gives rise to corrections of ordar*l1/ explicit solution for the zero mass bound state of the gravi-
Since the lowest order corrections have to be lineadin it ~ ton. In Sec. lll, we perform the analysis for the four dimen-
is obvious from dimensional grounds that the correction willSional spherically symmetric space-times and show explicitly
multiply V, by a factor of the forni1+a(G#/c3 2)] where f[hat the fou_r dimensional cosmolqglcal constant shoulq van-
ais numerical coefficien{While this is the leadinguantum  ish. Finally in Sec. IV we summarize the results and discuss
correction, it may be noted that the lowest order post_the implication of the result in the compactified Randall-
Newtonian approximation will give a correction of the form Sundrum model.
[1+b(G(m;+m,)/c?r)], whereb is a numerical factor,
which has a slower fall-off with distande. Il. GENERALIZATION OF RANDALL-SUNDRUM MODEL
Danoghue[12] has obtained similar results by treating
gravity as an effective field theory. He argues that the lead- In this section, we study the plane wave gravitams, ,
ing quantum corrections, in powers of the energy or invers@ropagating in the five dimensional space-time,
powers of the distance, can be computed in quantum gravity
through the knowledge of the low-energy structure of the dsZ:gabdxadxb:exp[—2a(y)][gﬁf3dx"dx"]—dyz,
theory (effective field theory. He shows that the one loop (6)
corrections to the graviton propagator gives the® borrec-

tions to the Newtonian potential. He also emphasizes that thgith the condition that it satisfies the full five dimensional
correction to low energy gravity, treated as an effectiveginstein’s equation with the five dimensional cosmological
theory is remarkably unique and the leading quantum correcconstant. We use the lowercase Latin letters for the full five
tion to the potential is (1). (There have been other similar gimensions and the lowercase Greek letters for four dimen-

analysis in the literature where the classical and quanturgjons.(We follow the notation of RS closely to provide easy
corrections to the Newtonian potential have been calculateq;.omparisor)_

See, for example, Ref13].) : - )
In the case of RS, there is no background Schwarzschilﬂ]gljtﬁgoégggg]e perturbed metric 1, =gap+hap and us
metric and they merely study the graviton perturbations
around theflat four-dimensional spacetime. Their approach
is essentially to look at the corrections to the graviton propa- hss=hs,=0, V*h,,=0, hy=0, (@
gator arising from a set of continuum states with mass
>0. The analysis by itself is classical and indeed, the corit is easy to see thdt,, can be written as plane wave gravi-
rections toVyy which they find does not depend érdirectly;  tons, i.e.,h,,=e, ,® wheree,, is the polarization tensor.
of course, they provide aimterpretationwhich is quantum The equation satisfied b can be separated with the ansatz
mechanical. In contrast, much of the earlier work, concen®d (x*,y)=A(x*)Z(y). Substituting into the wave equation,
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separating the variables using a constait we find thatA  and dependent variable froBto S= SV~ This will give a
satisfies the standard wave equation for a particle of mmass modified Schroedinger equation of the form
while Z satisfies the equation

d?S

2 P
dz +(—4a?(y)+2a(y)+mPexg 2a(y)])2=0. (8 dz

dy?
=—-ES (12

1 (ol(ln[V(x)]))2 4k 1 d2(n[V(xX)] |~
— + S

16 dz V(x) 4 g2

(The essential steps leading to the above equation are given

in the AppendiX. This reduces to Eq@8) of RS, when we where,x in the above expression is expressed in termg of
use their solutiora(y)=Kk|y|. We are interested in the al- using Eq.(11).

lowed range of values fom and whether we can get an

acceptable solution fom=0. By inspection, it is clear that IIl. SPECIAL CASE: SPHERICALLY SYMMETRIC
this equation has a solution fon=0, given by ' 'SPACE_TlME
Z=exd —2a(y)]. 9 In the previous section, we have shown that the existence

of the zero mass graviton is a very general result in the case
In fact, this ispreciselythe ground state wave function which of the RS model. However, the analysis of the normalization
RS obtain(after a series of algebraic transformatipfisr  of (zero masgground state wavefunction for a general four
their special case of(y)=k|y|. The physical meaning, dimensional space-time is complicated. Here, we take a
mathematical simplicity and generality of the result is hiddensimple case by assuming that the four dimensional spacetime
by (i) their transformations andi) the fact that they never s spherically symmetric and is of the form
give (y) but only /(z) in their paper[Note that Eq(9) is
a valid solution to Eq.8) with m=0 a long asa(y) is ds®=exp(—2a(y))[A(r)dt>—B(r)dr?—r2dQ?]—dy?,
continuous even if its derivative is discontinuous at the ori- (13
gin.]

This is the first result of this paper and shows that thevhered(? is the angular line element ara{y), A(r) and
existence of a zero mass graviton is a very general result ar8(r) need to be determined via the five-dimensional Ein-
does not require much of the extra assumptions in RS excegtein’s equations. We consider the latter to be of the form
thatZ should be well behaved amdrmalizableas a function
of y, in the relevant rangéNote that the ground state wave Gapb=A0ap (14)
function for an arbitrary four dimensional line element is
exactly the conformal or warp factor in the generalizedwith possible nonzero vacuum energy densityin five di-
Randall-Sundrum modeIThis clearly shows that the stabil- mensions. Inserting the ansdtz3) for the metric, the only
ity of the 3-brane can be explicitly shown in the RS modelnonvanishing components of the Einstein tensarare the
by obtaining the zero mass graviton wave function which isdiagonal components. The Einstein’s equation, for (00) and
well behaved and normalizable. The question arises as to tHd1) components, reduces to
conditions under which we will obtain a normalizable func-
tion for Z(y). Such an analysis for a genegdly) is compli- 1 1 B'(r)
cated and hence we will illustrate it explicitly for a special 7 +—
case. In the next section, we take a simple case by assuming re reB(r) rBAr)
that the four dimensional spacetime is spherically symmetric
and show that for the case of nonzero four dimensional cos- 1
mological constant, the zero mass ground state wave func-— B(T)
tion is non-normalizable.

=exd —2a(y)JR(y) (19

1 B(r) A'(r)
2 2 TA(N

=exd —2a(y)IR(y)

We would also like to point out the following point: The (16
other eigenvalues and eigenfunctions can be found by con-
. X ) . 2 where
verting Eq.(8) into an eigenvalue equation fon”. In gen-
eral, an equation of the form ‘Y .
R(y)=A+6a%(y)—3a(y), 17
2
ﬁ+(EV(x)—4k2)S=O (10 and the prime denotes derivative with respect.t€ombin-
X

ing the two equations, we obtaB(r)=1/A(r). Substituting
for B(r) in the above equations and to tli22) and (33)

2 . B .
[whereE andk* are constants/(x) is a continuous function components of the Einstein’s equation, we get

of x] can be transformed to an eigenvalue equatiorEfby

changing the independent variable fronto z by 1 AN 1
—A(r) 2TA =exd —2a(y)JR(y)

z= f dxV(x)*? (11) (18
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1 Thus, the original analysis of RS can be generaliz@tout
— 5 @AT(N+rA"(r)=exd —2a(y)R(y) any modificationgo the case in which the four dimensional
(19) spacetime is described by Schwarzschild line-elemant
=0, C>0 in Eq. (21)] as well suggesting that the zeroth
A'(r)  A(r) Ar)-1 order gravitational interaction, in the form of Schwarzschild
- =exd —2a(y)] line element, gets “corrected” by the conformal factor. This
could possibly be the reason why the one-loop corrections to
the Schwarzschild metric in the earlier analysis of Ouff]
also gives a similar result.
The above reason is strengthened by the results in Refs.
[14,19: In a recent paper, Duff14] has shown that the
A propagator for the continuum graviton modes, in the RS pic-
A(r)=1- T §r2, (21)  ture, incorporates all quantum effects of matter on the brane.
Using the Duff's analysis, Alvarez and Mazzitelli5] have

whereC and A are the constants of integration. This four- Shown that for the conformal fields and up to quadratic order
dimensional metric is the well known Schwarzschild—de Sit-in the curvature, the nonlocal effective action is equivalent to
ter metric for the choice oC>0, where\ is the four- thed+1 action for classical gravity in Ad§S; restricted to
dimensional cosmological constant, in the sense that the fo@d—1 brane. _ _ .
dimensional metric wittA(r) given by Eq.(21) corresponds The condition on théour-dimensionatosmological con-

to a four dimensional space-time with this cosmological conStant\ is more interesting. The ground state wave function
stant.(We use the term cosmological constant in four dimenZ=exp(—2a(y)) in Eq. (23) is not normalizable foi #0
sions in the above sense and it should not be confused withhd hence we do not get a masslgss=0 in Eq.(8)] gravi-

the other possible ways of defining the cosmological conion forA#0. An examination of the general solution to Eq.
stant — for example, from the brane tension, etc. Note that22 confirms this conclusion. Using=exp(—2a(y)), the
the sign of\ is still undetermined.Substituting the form of ~first integral to Eq(22) can be written as

A(r) in the original equations, the differential equation for

2 r r2
X (A +6a%(y)). (20

Solving the above equations givagr) to be

a(y) becomes d_Z:+( 2 AN )1’2
dy 48,27+ 3 z| (24
d*a(y)
a7 zexp2aly)). (22)  whereg, is the constant of integration. F@, <0, the solu-
y tion is oscillatory with nodes and hence is not of interest. For

_ 2 . .
It is clear that the conformal factor will havenly the A the casg8,=k">0, we obtain the solution to be

dependence and will be independent @f (Normally the

four dimensional space-time can have a nonvanishing cos- _ L+ Lexp(+2k “v0)

mological constant only when there is a source in the right-  BK2 16K2 =2k(y=Yo

hand side of the four dimensional Einstein’s equations. In

our case, if we write the five dimension@l,;, in terms of A2

four dimensional Einstein tens@,,, and extra terms arising + @exp(: 2k(y—Yo)), (25

from the fifth dimension, it is possible to show that the ef-
fective source foG,, is exactly that corresponding to a four
dimensional cosmological constani)

Solving Eq.(22), it is easy to obtain the form cd(y)

wherey, is the constant of integration. In the casexct 0,
the wave function(Z) is normalizable and reduces to the
. = ground state wave function obtained by RS with a suitable
s_ughvtyat it reduces to the RS resultagfy) =k|y| whenx choice of the signs foy>0 andy<0 [we take the solution
=0. We get to be varying as exp{2ky) for y>0 and exp(Ry) for y
_ — _ _ 2\12 <0 with the membrane being located yt0]. However,
exHL ~ 2a(y)] = exp 2kly|Jlexid —2kly| ]~ (M1 )](23) when\ # 0, the wave function is not bounded [g$— o (for
any combination of signs in the argument of the exponential
with k being a constant related t& by A=—6k?. This and hence is not normalizable for nonzaroThis is because
shows thatA <0 for an acceptable solution. Equatiaf@8),  the third term on the right-hand side of E@5) (which is
(21) with the resultA(r)=1/B(r) completely determine the nonzero wher\ #0) comes with an argument to the expo-
metric. The modulus sign ity| will make the derivatives of nential having a different sign compared to the second term.
a(y) discontinuous at the origimp=0 which can be taken to This shows clearly that the nature of the solutionZgy) —
be the location of the membrane as in the RS case. which acts as the ground state wave function for zero mass
Equation(23) allows us to draw an important conclusion graviton mode — is very different whex#0 compared to
which is the second key result of this paper. Note that thehe case considered by RFhe above result can be under-
conformal factorZ=exg —2a(y)] depends or\ butnoton  stood in a slightly different manner: The ground state wave
C. In the limit of A—0 the conformal factor for the four- function in Eq.(9) is the same as the conformal factor of the
dimensional world line element is same as in the RS modeline element6). If the ground state wave function blows up
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asy—o then the conformal or warp factor in the Randall- tions and are located at some fixed points in yhexis and
Sundrum line element will be very large for largeHence, thus restricting the extra dimensions to be compactified.
the brane located at=0 is unstable to the metric perturba- this model, it is assumed that the branes do not contribute to
tions] the energy momentum tenspBy restricting the extra di-
mensions to be compactified, we can obtain normalizable
IV. CONCLUSIONS AND DISCUSSIONS zero mass gravitons. Such an analysis leads to two different
situations depending on whethér) A>12k? or (i) A\

To conclude, we have shown that the existence of a zere-19¢k2. The first possibility, even ik~TeV, will give a
graviton mode is general, i.e., it exists for a wide class Ofigrge cosmological constant. The other case, which is more
four dimensional metrics in the case of the RS model. Iny|aysible, gives us the upper bound on the compactification
particular, the results of RS are valid without mOd'f'Cat'O”Sscale(radius) of the extra dimensiongSome of these issues

presence of nonzero cosmological constant in four dimengyrent investigation.

sions modifies the RS results. The presence of a nonzero Finally, we would like to mention the following curious
cosmological constant does not provide a normalizabl@act: In conventional four-dimensional general relativity, lin-
ground state wave function corresponding to the zero massyrizing the Einstein-Hilbert action,

graviton. Hence, we have obtained a dynamical reason for

the strict vanishing of the cosmological constavithin the c3

context of these modelFhe stability of the 3-brane to dif- Syravity =~ RJ V=g(x) [R(x)+2)\]d**  (26)
ferent classes of matter fields in the context of the general

five dimensional metric is under investigation. [whereR(x) is the Ricci scalarh is the cosmological con-

We would like to point out to the readelr the difference N Gtant andg,, is the general four-dimensional meftiave
the approach taken here and to the earlier wile. The obtain r

earlier analysis of the Schwarzschild metric on the brane was
performed by taking the cas®y)=K|y|. In this case, it is O®h =—\h 27)
~ . g I

easy to demonstrate that tRg, solves the RS equations of
motion, provided the four dimensional brane is Ricci flatThe cosmological constant appears as a mass term in the
(R.,=0). Hence in these analyses, replacing the Ricci flatinearized spin-2 wave equation. Vanishing of cosmological
branes with the flat branes was by forcing the conformal okonstant is required for this equation to be interpreted as
warp factor to be the same as that of RS. representing the massless spin-2 parti¢gavitons in gen-

Our analysis in this paper is geared towards understandingral. [The graviton propagation in de Sitter background
the stability of the 3-brane against the metric perturbationgwhich is a maximally symmetric space-tiinieas been per-
(in the five dimensionsfor a general four dimensional formed (see for example Ref18]) and it was shown that
space-time. We have shown that the stability of the 3-brangravitons possess only two physical propagating degrees of
in the RS model can be explicitly shown in the RS by ob-freedom. A detailed analysis for generalbackground has
taining the zero mass ground state graviton wave functiomot been performed and in these cases the vanishing of the
which is well behaved and normalizable. Here we have percosmological constant is required to interpret it as represent-
formed this analysis for a four dimensional spherically sym-ing massless gravitor{gorresponding to a long range inter-
metric metric and obtained the general form of the four di-action.] However, by making the cosmological constant
mensional spherically symmetric metric along with thevery small one can obtain a long range interaction for grav-
conformal factora(y) by solving the five dimensional ity. Our analysis here shows that evan arbitrarily small
vacuum Einstein’s equatiotwith nonzeroA). The general cosmological constant will make the ground state wave func-
solution we obtained shows that there the conformal or warpion (corresponding to a massless gravjtomon-
factor is independent of the Schwarzschild mésse Sec. normalizable, requiring the cosmological constant to strictly
lI). However, the analysis(of the four dimensional vanish. Whether there exists a deeper connection between
Schwarzschild metric in the 3-braney earlier authors is by the two results is not clear and is under investigation.
forcing the conformal or warp factor to be same as that of RS
and hence replacing the Ricci flat branes with the flat branes.
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APPENDIX

For the sake of completeness, we outline the essential steps leading (8) ky.Sec. Il. Defining@)fwsgf"chw;a (the
semicolon on the right-hand side represents the covariant deriyatrechave
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Vava}”],uv: gaCVc(hp,v;a) =07

wvic
=05, t O e 00, I'c, — 08, T, (A1)
:(_g)il/zﬁc( V_g®;V)_®g1VFI:n;L_®EnMFg]V' (AZ)

Evaluating®'’s in the right-hand sidéRHS) of the expressioriAl), we obtain
0%,=9%N,.a
=9 dah = Tahe, =T lah ] (A3)
05,=9%m,.a=9%h sna  (Using the gauge conditioims,, = 0)
=9 dah ;=T 7ahs, =T 7ah,,] (A4)

@Zm: 9N, ma=9%,,.a (using the gauge conditioms,=0)

:gca[aah,u,ﬂ_FZahWO'_F(;ah;ur]' (A5)
We know
i L1 il 99mk . 99mi 99k
[ 111] B bl -
F=39 ax' axk axm (A6)
1 agm agma ag a
o _ _ om Il _ M
Fua=39 ax3 i axH ax™ | (A7)
I' can be easily evaluated for the line elemé&)tand is given by
1 Jg Jg dg .
o _ " ~oB By Ba _ YJpa _ o
[ha=59 o + o axﬁlgz a(y) 6,68 (A8)

Thus Eqgs.(A3), (A4), and(A5) will get modified to the form

ca

: g
®;:LV= gca[&ah,uv_'— Za( l//) 5gh,uv] - T[QO—B(&E} gﬁ/.L+ (9[1. gﬁa_ aﬁ g,u,a) éﬁhov—i_ gaﬂ((?a gﬁv+ d, gﬂa_ 8,8 gva) 6ih/.m']

(A9)
. gCa
@)?rw: gcah pria_ gca[(?ahnv+ za( lﬂ) 6‘gh 771)] - T[QO—B(O”a gﬁ77+ [?7] gﬁa_ 0’)5 gna) ﬁhav
+g(rﬁ((9a gﬁv+§v gﬁa_ aﬁ gva) thno] (AlO)
. gca
O7m=9°N, 0= 94 dah,, +2a(y) 55h,, 1 — 7[9013(% 9put 9u9pa= 95 9ua) Sahoy
+ggﬁ((yagﬁn+(9ngﬁa_aﬁ gna)ézhuo]' (All)

We obtain the full expression ¢f?

.1:a DY substituting these expressions obtaineddon Eq. (A1). The first term in the RHS
of Eq. (Al) is

. — : : y (G p—
(_g) 1/2(?(:( _g®fw):D(4)h;¢v+a§h,uv_Za(l;b)(?Sh/,w_8a2(¢)hﬂv+2a(lp)hﬂv_T‘?T[ _ggragaﬂ

(_g)flIZ
X (aagﬂ/.t-{_ a,u,gﬁa_ aﬁgp,a)ha'v] - T (97[ VT ggragaﬁ( aagﬁv_l— avgﬁa_ aﬁgva) h/,w']!

(A12)
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where® denotes the four dimensional D’Alembertian op- the expression§A12), (A13), (A14) and rearranging them,
erator. The second and third terms in the RHS of the expresve get

sion (Al) are

h:2

2 a=0®h, +d¢h,,—4ah, +2ah,,

1 . .
T2 ==111,9%.h,,— h,,—2a? h : .
Ol 2 ad dahuy=a(#)dsh,, =285 ()1 s +terms depending on the 4D coordinates.

gcd (A15)
- T[Iaxlll aX 85N, H11 X111 .85, ]
Thus, it is easy to see from the above relation thgtcan be
(A13)  written as plane wave gravitons, i.&.,,,=e,,®. The equa-
s 13
1 tion satisfied by® can be separated with the ansatz
@fmrgvz_ 979N, — a(y)ds hu— 2a%(h)ds h. d(x*,y)=A(x*)Z(y). Substituting into the wave equation,
2 separating the variables using a constafAt we find thatA

gea satisfies the standard wave equation for a particle of mmass
_ T[| pX X 85y + 1 X T X 85 0] while Z satisfies the equation
(A14) d2z .
— +(—4aX(y)+2a(y)+mlexd 2a Z=0.
wherel, ,, 11,4, I, are the terms which depend only on dy? ( ) ) H2ay)])
the four-dimensional coordinat&$. Combining the terms in (A16)
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