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Massive Schwinger model and its confining aspects on curved space-time
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Using a covariant method to regularize the composite operators, we obtain the bosonized action of the
massive Schwinger model on a classical curved background. Using the solution of the bosonic effective action,
the energy of two static external charges with finite and large distance separation on a static curved space-time
is obtained. The confining behavior of this model is also explicitly discussed.
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I. INTRODUCTION

Two dimensional quantum electrodynamics or t
Schwinger model@1# may serve as a laboratory for studyin
four dimensional gauge theories and important phenom
such as confinement, screening, chiral symmetries, etc
flat space-time, it is known that, in the massless Schwin
model via a peculiar two dimensional Higgs phenomen
the photon becomes massive and the Coulomb force is
placed by a finite range force, giving rise to the screen
phase. When the dynamical fermions are massive, the m
is not exactly soluble, but a semiclassical analysis revea

linear rise energy for opposite test chargesq and q̄, binding

them into qq̄ pairs @2#. By taking into account the finite
distance corrections, one can show that, in addition to
linear confining term, the potential is also composed o
screening term which is modified with respect to the ma
less case@3#.

One of the interesting questions is, how can a curv
background modify these effects? We think that this is
important question, because it can be viewed as a first ste
studying these physical effects in the context of quant
gravity. Moreover, they may have applications in stri
theory and quantum gravity coupled to nonconformal ma
~note that the kinetic term of the gauge fields spoils the c
formal invariance of the theory!.

Although the Schwinger model on curved space-time
been studied in several papers the confining aspects o
model is still unclear~for a discussion about the subtleties
determining the confining phase of the Schwinger model
curved space see@4#!. For example, the author of@5# has
suggested that the curvature of the space does not chang
confining behavior of the massive Schwinger model, and
@6# it has been claimed that on a particular black hole,
massless Schwinger model remains in screening phase.
in @4#, by comparing the role of temperature and the cur
ture, it has been argued that the curvature may modify
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confining or screening nature of the Schwinger model. M
recently, this model has been investigated on a cons
negative curvature space-time~i.e., the Poincare´ half-plane!
@7#, and it has been found that the confining feature of
Schwinger model depends on the geometry of the spa
time, for example, in different regions of Poincare´ half-plane
the system is in different phases~i.e., confining or screening
phases!, which is in contradiction with flat space-time re
sults. Also in @8#, the confining aspects of the massle
Schwinger model on de Sitter space in different coordina
have been discussed and the results have been extende
non-Abelian situation.

In this paper we want to study the massive Schwin
model on a general noncompact Riemann surface, and tr
obtain, as much as possible, information about the confi
ment in this background. We consider only the effects
geometry on confinement phenomena and ignore nontri
topologies.

In the Schwinger model the potential of external charg
can be obtained using several different methods; for
ample, ~i! integrating over the fermionic fields~or equiva-
lently over bosonic fields in the bosonized version of t
model! results in an effective action for the gauge field
from which the potential can be extracted by solving t
corresponding equations of motion;~ii ! integrating over
gauge fields in the bosonized action and then obtaining
static solutions of the equation of motion and deducing
potential of the system as the difference between the Ha
tonian in the presence and absence of external charges
spectively. In this paper we follow the second procedure

The plan of the paper is as follows: In Sec. II, our ma
task is to obtain the bosonic version of the mass
Schwinger model on a general noncompact curved ba
ground. To find this bosonic representation, it is necessar
employ an appropriate normal ordering description in de
ing the composite fields, which are always present in
bosonic representations. As we will see, this needs sev
change of field variables in order to reduce our main mo
~interacting massive fermionic fields in curved backgroun!
to a free massless fermionic field theory in flat space-tim
Then using the equivalence of this theory with a massl
bosonic field theory, we may obtain the appropriate norm
©2001 The American Physical Society18-1
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ordering description from which our bosonic representat
can be found.

In Sec. III, by introducing two external chargesq andq̄ in
the bosonized action and by restricting ourselves to st
metrics ~so that the static potential between probe char
becomes meaningful!, we obtain the energy of widely sepa
rated external charges for small dynamical fermions ma
Obviously, the final result depends on the metric. For a s
cific example~the full de Sitter space-time!, we will show
that one recovers a confining behavior in the above m
tioned limit. We also show that whene8/qPZ, wheree8 ~q!
is the charge of external~dynamical! charges, the externa
charges can not modify the energy. This is the same resu
the flat case. Note that in Sec. II where we use the p
integral approach, it is more convenient to consider the
clidean signature, but in Sec. III, where we are going
calculate the energy, it is better to work with Minkowskia
signature, in which the concept of energy is more natura

To study the same problem but with external charges w
finite distance separation, in Sec. IV we restrict ourselve
the case in which the gauge coupling is very large with
spect to the variation of the metric. The main reason for s
a choice is that the massive scalar Green function, whic
needed in calculating the energy, is only known for a f
number of space-times. But if we restrict ourselves to
above mentioned metrics, we can use the WKB approxim
tion to find a general expression for the energy of exter
charges. Like the flat case, the energy takes a screening
rection term beside the confining term. As a result we sh
that atm50, the phase structure of the system depends
the metric and, in contrast to the flat case, the model can
in confining phase in specific cases~such as the full de Sitte
space-time! which is in agreement with the result of@8#.

II. BOSONIZATION OF THE MASSIVE
SCHWINGER MODEL

All two dimensional spaces are conformally flat, hen
any noncompact Riemann surface is described by the m

ds25Ag~dt21dx2!, ~1!

whereAg is the conformal factor. On this space-time, t
massive Schwinger model is described by the partition fu
tion

Z5E DAmDcDc† expH 2E d2x

3S Ag@c†gm~]m2 iqAm!c1mc†c#1
1

2Ag
F2D J ,

~2!

wheregm[ĝaea
m are the curved space counterparts of H

mitian Dirac gamma matrices:ĝ05s2 ; ĝ15s1 . s i are Pauli
matrices.]m is the covariant derivative and the zweibeins a
defined through
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a en

bdab , gmn5ea
meb

ndab. ~3!

The metric components aregmn5(1/Ag) d̂mn, where d̂mn

5 d̂mn5diag(1,1).q and m are the charge and the mass
dynamical fermions respectively. In Eq.~2!, the dimension
of q and m is the inverse of the length dimension ande is
dimensionless. The~dual! field strength F is described
through F5 êmn]mAn in terms of gauge fieldsAm , where
êmn5 êmn and ê0152 ê1051. The partition function~2! can
be written as

Z5 (
k50

`
~2m!k

k! K )
j 51

k E d2xjAg~xj !c
†~xj !c~xj !L , ~4!

wherex5(x,t). In Eq. ~4!, the expectation values are com
puted from the Lagrangian

L5Agc†gm~]m2 iqAm!c1
1

2Ag
F2. ~5!

In terms of the new fermionic variablesc̃ and c̃†,

c̃5exp~qg5w!c,

c̃†5c† exp~qg5w!, ~6!

where Am5 êmn]nw and g552 i ĝ1ĝ0, the Lagrangian~5!
can be rewritten as@9#

L5Agc̃†gm]mc̃1AgS 2
m2

2
wDw1

1

2
wDDw D , ~7!

in which D is the Laplace-Beltrami operatorD5gmn]m]n

and

m5
q

Ap
. ~8!

In this way the massless part has become a free field th
on a curved background with an effective action contain
an anomalous term@2(m2/2)Agwnw# coming from the
Jacobian of the transformation@Eq. ~6!#. The term
(1/2)AgwD(D2m2)w is the effective Lagrangian density o
the gauge fields. The fermionic part of the Lagrangian~7! is
free and hence is invariant under the Weyl transformati
gmn→V2gmn andc→V21/2c. ChoosingV5g21/4, one ob-
tains

gmn→ d̂mn , c̃→l5g1/8c̃, c̃†→l†5g1/8c̃†. ~9!

Therefore the partition function~2! can be reduced to

Z5 (
k50

`
~2m!k

k! K )
j 51

k E d2xjg
1/4~xj !l

†~xj !

3exp@22qg5w~xj !#l~xj !L , ~10!
8-2
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where the expectation values are computed from

L5l†ĝa]al1 1
2 AgwD~D2m2!w. ~11!

Therefore the massless fermionic part of the theory is
duced to a free fermionic field theory on a flat space-tim
Using (g5)2n51, it can be easily shown that

l† exp~22qg5w!l

5l†S 11g5

2
exp~22qw!1

12g5

2
exp~2qw! Dl.

~12!

The fermionic part of Eq.~11! is chirally invariant, hence the
only nonzero terms in Eq.~10! are those with equal numbe
of s1 ands2 @10#, wheres65l†(16g5)l/2. Hence

Z5 (
k50

`
~2m!2k

~k! !2 K )
j 51

k E d2xjd
2yjg

1/4~xj !g
1/4~yj !

3exp@2qw~yj !#exp@22qw~xj !#s1~xj !s2~yj !L .

~13!

The expectation values of the fermionic part can be es
lished in the same manner as in the flat case@11#:

E DlDl†)
j 51

k

s1~xj !s2~yj !expS 2E d2xl†ĝa]al D

5S 1

2p D 2k )
i . j

k

~xi2xj !
2~yi2yj !

2

)
i , j 51

k

~xi2yj !
2

. ~14!

But the Green function of the massless scalar fieldf(x) is

^f~x!f~y!&521/~4p!ln@ ẽ2~x2y!2#,

where the massẽ2 ( ẽ2→0) is introduced to avoid infrared
divergences. This is equivalent to infrared renormalization
exponential of massless scalar field discussed in@12# in op-
erator language. So using

E Df~x!expS (
j 51

k a j
2

2
D~xj ,xj !D

3expS (
j 51

k

ia jf~xj !D expS 2
1

2E „]mf~x!…2d2xD
5d(

j 51
k a j

expS 2(
i , j

k

a ia jD~xi ,xj !D , ~15!

in which we have usedẽ2→0 limit and

D~xi ,xj !521/~4p!ln~xi2xj !
2,
10501
-
.

b-

f

one can write Eq.~14! in the form

S 1

2p D 2k

expF2p(
i 51

k

D~xi ,xi !GexpF2p(
i 51

k

D~yi ,yi !G
3E Df~x!expF2iApS (

j 51

k

@f~xj !2f~yj !# D G
3expS 2E d2x

1

2
„]mf~x!…2D . ~16!

Hence Eq.~13! can be written as

Z5 (
k50

`
m2k

~2p!2k~k! !2 K )
j 51

k E d2xjd
2yjg

1/4~xj !g
1/4~yj !

3exp@2pD~xj ,xj !#exp@2pD~yj ,yj !#

3exp@22qw~xj !#exp@2qw~yj !#exp@2iApf~xj !#

3exp@22iApf~yj !#L , ~17!

where the expectation values are calculated from the follo
ing Lagrangian~note thatAggmn5 d̂mn):

L5 1
2 Agwn~n2m2!w1 1

2 Aggmn]mf]nf. ~18!

Now if we note that there are the charge conservation law
contracting the composite fieldseibf @10#, then the partition
function ~17! can be written as

Z5 (
k50

`
m2k

~2p!2k~k! !2 K )
j 51

k E d2xjd
2yjh~xj !h~yj !

3expF2iApS f1
iq

Ap
w D ~xj !G

3expF22iApS f1
iq

Ap
w D ~yj !G L

5K (
k50

`
1

k! H m

pE d2xh~x!cos

3F2ApS f~x!1
iq

Ap
w~x!D G J kL

5K expH m

pE d2xh~x!cosF2ApS f~x!1
iq

Ap
w~x!D G J L ,

~19!

in which

h~x!5g1/4~x!exp@2pD~x,x!#. ~20!

By changing the field variablef→f2( iq/Ap)w, and using
Am5 êmn]nw, the partition function~19! becomes@note that
8-3
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this change of field variable is somehow inverse of Eq.~6!
and couples the matter and gauge fields#,

Z5E DAmDf expF2E d2xAgS 1

2
gmn]mf]nf

2 i
q

Ap
emnAm]nf1

1

2g
F2

2
m

p
g21/4~x!exp@2pD~x,x!#cos„2Apf~x!…D G ,

~21!

whereemn5(1/Ag) êmn. By integrating over the gauge field
one can see that the effective Lagrangian of the fieldf is

Leff5
1

2
Aggmn]mf]nf1

m2

2
Agf2

2
m

p
g1/4 exp@2pD~x,x!#cos@2Apf~x!#. ~22!

Now we want to convert the mass term in Eq.~22! to a more
convenient form, by absorbing covariantly the ultraviolet
vergence in the massm or in operator language, by definin
an appropriate normal ordering prescription (Nm) with re-
spect to the scalem @15#. To do so in the flat case, we writ
exp@2pD(x,x)# as

exp@2pD~x,x!#

5exp$22p@Gm~x,x!2D~x,x!#%exp@2pGm~x,x!#

5expS g1 ln
m

2 Dexp@2pGm~x,x!#, ~23!

whereGm is the Green function of a massive scalar field w
massm which for Ag51 is Gm

flat51/(2p)K0(mux2yu). K0

is the modified Bessel function of the second kind andg is
the Euler constant. We can now absorb exp@2pGm(x,x)# in
redefinition~renormalization! of massm:

mc†c52M
q expg

2p3/2
cos~2Apf!, ~24!

where M[m exp@2pGm
flat(x,x)#. In operator language@10#,

this is equivalent to the well known result@15#:

mc†c~x!52m
q exp~g!

2p3/2
Nm cos@2Apf~x!#. ~25!

Now let us consider the normal ordering in curved ba
ground. In this case, one can use a covariant point-split
method in order to regularize the composite operatorf2 ~our
regularization method should respect general covariance!

^f reg
2 ~x!&5 lim

x→x8
@Gm~x,x8!2Gm

DS~x,x8!#, ~26!
10501
-

-
g

whereGm
DS(x,x8) ~extracted from DeWitt-Schwinger expan

sion! is the counterterm needed to regularize the ultravio
divergence of the Green function@13#

Gm
DS~x,x8!52

1

4p F2g1 ln~m2e2!2
1

6

R~x!

m2
1O~e2!G .

~27!

R is the scalar curvature of the space ande is one half of the
proper distance betweenx andx8. @Note that in the flat case
R50, Eq. ~27! coincides with limx8→xGm

flat(x,x8), and from
Eq. ~26! we obtain the usual regularization which kills o
the loops.# Now if we follow the same steps as in the fl
case, but here usingGm

DS(x,x) instead ofGm
flat(x,x), we ob-

tain

mc†c~x!52m
1

pg1/4~x!
exp$22p@Gm

DS~x,x!

2D~x,x!#%Ñm cos@2Apf~x!#, ~28!

in which we have defined the normal orderingÑm as

Ñm cos@2Apf~x!#5exp@2pGm
DS~x,x!#cos@2Apf~x!#.

~29!

In the static curved space-time we can use a normal orde
which like the flat case kills the loops~the vacuum is now
defined using the global timelike killing vector of the stat
space-time@14#!. In the same manner as the flat case,
obtain

mc†c52
m

pg1/4
exp@2p~D2Gm!

3~x,x!#Nm cos@2Apf~x!#. ~30!

It is easy to show that Eq.~30! is equal to Eq.~28!. From Eq.
~30! @or equivalently Eq.~28! for static space-time#, we ob-
tain

^c†c~x!&m5052
1

pg1/4
exp@22pG~x,x!#, ~31!

whereG(x,x)[Gm(x,x)2D(x,x). So, as we expect, the ex
pectation valuêc†c& is independent of the method of regu
larization ~or normalization! of composite fields.

III. QUARK-ANTIQUARK POTENTIAL IN THE MASSIVE
SCHWINGER MODEL ON STATIC CURVED

SPACES: WIDELY SEPARATED CHARGES

In this section we obtain the energy of two external sta
charges introduced into the massive Schwinger model.
consider an infinite static conformally flat space-time w
trivial topology described by the metric

ds25Ag~x!~dt22dx2!. ~32!
8-4
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The bosonized action of the massive Schwinger model
the presence of the covariantly conserved external curre

J0~x!5
e8

Ag
@2d~x2b!1d~x2a!#, J150, ~33!

describing two opposite point charges2e8 ande8 located at
x5b andx5a, respectively, is

S5E d2xS 1

2
Aggmn]mf]nf1

q

Ap
Ff1

m

p
g1/4

3exp@22pG~x,x!#Nm cos„2Apf~x!…

1
1

2Ag
F21h̃F D , ~34!

where

h̃~x!5e8@u~x2a!2u~x2b!#5H e8, a,x,b,

0, x¹@a,b#.
~35!

Equation~34! is the Minkowskian version of Eq.~21! in the
presence of external current~33!. In deriving Eq.~34! we
have also used Eq.~30!. Integrating over the fieldF results

Seff5E d2xS 1

2
Aggmn]mf]nf1

m

p
g1/4

3exp@22pG~x,x!#Nm cos„2Apf~x!…

2
q2Ag

2p
~h1f!2D , ~36!

in which we have definedh5(Ap/q)h̃. For widely sepa-
rated charges,h̃ is equal to the constante8 in the whole
space~in the next section we will obtain the necessary c
rections for finite charge separation distance!. If one changes
the variablef→f2h, one finds

Seff5E d2xS 1

2
Aggmn]mf]nf1

m

p
g1/4

3exp@22pG~x,x!#Nm cos@2Ap~f2h!~x!#

2
m2

2
Agf2D . ~37!

For (e8/q)PZ, the action is not modified by the presence
external charges, hence the energy is not changed. In o
words, in this case external probes with chargee8 are
screened by dynamical fermions. The same effect occur
flat space-time@2#.

Now let us restrict ourselves toufu!1 scalar fields. In
this regime, the action~36! becomes Gaussian and the cla
sical solutions of the action coincide with the quantum on
The classical equation of motion for the static fieldf is
10501
in

-

f
er

in

-
s.

@]1
22m2Ag24ApmSAg cos~2Aph!#f

522ApmSAg sin~2Aph!, ~38!

in which S is defined through

S~x![
1

g1/4p
exp@22pG~x,x!#. ~39!

The solution of Eq.~38! is

f5O212ApmSAg sin~2Aph!, ~40!

where

O52]1
21m2Ag14mpSAg cos~2Aph!. ~41!

Now that Eq.~40! can be written as

f5@12O21~O22ApmSAg!#sin~2Aph!, ~42!

the conditionufu!1 is satisfied whenmS!m2. The energy
of the system is

E5E T0
0dx52E Ldx, ~43!

whereTn
m is the energy momentum tensor andE is the en-

ergy measured by a static observer with respect to the c
dinate~32!. By substituting Eq.~40! into Eq.~36!, we obtain

E~h!52E
a

b

@2pm2 sin2~2Aph!SAgO21SAg

1mSAg cos~2Aph!#dx. ~44!

Up to the first order ofm and by consideringmS!m2, one
can arrive at

E~h!>2m cos~2Aph!E
a

b

S~x!Agdx. ~45!

Therefore the energy of external charges is

Eext[E~h!2E~0!5mF12cosS 2p
e8

q D G E
a

b

S~x!Agdx.

~46!

This completes our general result for the energy of wid
separated external charges6e8 in a static curved back-
ground. This result coincides exactly with the result of@8#, in
which the same problem has been discussed using the fe
onic action. As is clear from Eq.~45!, the determination of
the energy is now complicated by the presence of the c
formal factorAg andS, which the latter can be expressed
terms of Seeley DeWitt coefficients although not explici
known for general curved space-times. To obtain an insi
about this result, let us consider a specific example.

Example: Complete de Sitter space-time. Consider the fol-
lowing geodesically complete space-time@16#:
8-5



ce

at

nc

tr
ic
e

se
th
e,
ni
th
la

ny

cit
w

ic
-

ch

r

from

d
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ds25S 11
x2

l2Ddt22
dx2

11x2/l2 , ~47!

which represents the full two dimensional de Sitter spa
time, with scalar curvatureR52/l2. By the change of coor-
dinate x→x(r ), where dr25dx2/(11x2/l2)2 or r
5l cos21@l/(x21l2)1/2#, this space takes the conformally fl
form

ds25S 11
x2

l2D ~dt22dr2!

5
1

cos2~r /l!
~dt22dr2!, 2

p

2
,

r

l
,

p

2
. ~48!

On spaces with constant positive curvatureR, Gm(x,y) is
@17#

lim
x→y

Gm~x,y!52
1

4pH 2g1 lnS Re2

2 D
1C~ 1

2 1a!1C~ 1
2 2a!J , ~49!

wherea251/422m2/R andC is the digamma function. As
a consequenceS is

S5
1

p
expFg1 1

2 lnS R

2 D1 1
2 C~ 1

2 1a!1 1
2 C~ 1

2 2a!G .
~50!

The energy of widely separated external charges is then

Eext5mF12cosS 2p
e8

q D GS~b2a!. ~51!

b anda are expressed in terms ofx coordinate. Although the
energy is not linear in terms of charge separation dista
d5*a

bdx/A11x2/l2, but for d→` we haveE→`, hence
the system is in confining phase.

IV. ENERGY OF FINITELY SEPARATED CHARGES

If we consider Eq.~45! for m50, it givesEext50, which
is not right as it does not contain the finite separation con
butions. In this section we want to study the case in wh
the external charges have finite separation, although the
ergy ~45!, is yet the dominant long range term. In this ca
the function h̃ can not be considered as a constant in
whole of the space. As has been mentioned in section on
flat space-time the energy expression, beside the confi
term, consists also of correction terms which are due to
screening behavior of the system. Here we want to calcu
these correction terms for a static curved space-time.

Let us consider the general expression~36!, in which we
must now treath̃ as anx-dependent expression. Before a
calculation, we must say something aboutG(x,x) in Eq.
~36!. As was pointed earlier, we do not know the expli
form of this function for a general curved space-time. So
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will restrict ourselves to a specific condition for the metr
~or the gauge coupling!. We first note that on the confor
mally flat space-time~1!, Gm(x,x8) satisfies

S d2

dx2 1
d2

dt2
2m2AgDGm~x,x8!52d~x,x8!. ~52!

Using the expansion

Gm~x,x8!5
1

2pE Gm~k,x,x8!eik(t2t8)dk, ~53!

we obtain the following equation forGm(k,x,x8)

S d2

dx2 2~k21m2Ag! DGm~k,x,x8!52d~x,x8!. ~54!

Now if we consider the large gauge coupling regime, su
that

dg1/4

dx
!mAg, ~55!

then the solution of Eq.~54! ~at zeroth order of WKB ap-
proximation! is

Gm~k,x,x8!5
1

2@k21m2Ag~x!#1/4@k21m2Ag~x8!#1/4

3expF2U E
x

x8Ak21m2Ag~u!duUG . ~56!

In the limit x→x8, Gm(x,x8) is found to be

lim
x→x8

Gm~x,x8!5
1

2p
lim

(x,t)→(x8,t8)

K0$m
2Ag@~x2x8!2

1~ t2t8!2#%1/2 ~57!

whereds5g1/4(x)@(x2x8)21(t2t8)2#1/2 is the distance be-
tween two points x and x8 when x8→x. Now using
D(x,x8)52(1/2p)ln(ds) and by considering the behavio
of K0 for small arguments,G(x,x) @introduced after Eq.
~31!# is found to be

2pG~x,x!52S g1 ln
mg1/4

2 D . ~58!

Thus Eq.~31! yields

^c†c&m5052
q exp~g!

2p3/2
. ~59!

Note that in this approximation, the metric factor in Eq.~31!
is canceled out by the corresponding term inG(x,x), and the
final result is the same as the flat case as one expects
the results of@18#.

Now let us go back to Eq.~36!. If we restrict ourselves to
the regime~55! in which Eq. ~58! has been obtained, an
8-6
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change the variablef asf→f2h, the effective Lagrangian
~36!, for static fields withuf2hu!1 condition, is reduced to
the following Lagrangian

L5 1
2 f~]1

22m2Ag24pmSAg!f2f~]1
224pmSAg!h

1 1
2 h]1

2h22pmSAgh2. ~60!
.

ld

10501
Using Eqs. ~39! and ~58!, S is obtained as S
5q exp(g)/(2p3/2). The field equation is

f5
2]1

214pmSAg

2]1
21m2Ag 14pmSAg

h. ~61!

Using the following identity which holds at large couplin
limit
Ex @Ag~x!#a

@m2Ag~x!14pmSAg~x!#b
expF2E

a

xAm2Ag~u!14pmSAg~u!duGdx

52
@Ag~x!#a

@m2Ag~x!14pmSAg~x!#b11/2
expF2E

a

xAm2Ag~x!14pmSAg~x!dxG1c, ~62!

in which c is an arbitrary constant, we obtain

f~x!55
Ap

e8

q

m2

2
@F~x,b!2F~x,a!#, x.b,

Ap
e8

q
1Ap

e8

q

m2

2
@2F~x,x!2F~x,a!2F~x,b!#, a,x,b,

2Ap
e8

q

m2

2
@F~x,b!2F~x,a!#, x,a,

~63!
rts:

e to
On
we

ess
where

F~x,y!5
Ag~y!

f 1/4(x) f 3/4(y)
expF2U E

x

y

f 1/2~u!duUG , ~64!

and

f ~x!5~m214pmS!Ag~x!. ~65!

In deriving Eq.~63!, the Green function~56! has been used
For a fix x, F(x,y) is an increasing function ofy in y,x
region and decreasing iny.x. So F(x,y)<F(x,x). But
m2F(x,x)5m2/(m214pmS),1, which is not necessarily
small. Therefore the conditionuf2hu!1 is satisfied only
when the factore8/q is very small. The same arguments ho
whene8/q is close to an integer number.

Putting Eq.~63! back into the Lagrangian~60! gives

Eext5
m2

2 H E
a

bFAgh22m2Agh

3
1

2]1
21m2Ag14pmSAg

AghGdxJ . ~66!

Using Eq.~62! we arrive at
Eext5pS e8

q D 2H S 12
m2

m214pmS Dm2

2 E
a

b
Ag~x!dx

1
m4

4 F g~a!

f 3/2~a!
1

g~b!

f 3/2~b!
2

2Ag~a!g~b!

„f ~a! f ~b!…3/4

3expS 2E
a

b

f 1/2~u!duD G J . ~67!

The energy of external charges is composed of two pa
The first part is proportional to*a

bSAg(x)dx and when
mS!m2 coincides with the confining term~45! ~in the limit
e8!q). On the flat space-time the remaining terms are du
the screening of external charges by dynamical fermions.
the curved space, the problem is more complicated and
can have a confining situation even in the massl
Schwinger model. To see this, assume thatm50. The en-
ergy of external charges is then

Eext5
e82

4m Fg1/4~a!1g1/4~b!22g1/8~a!g1/8~b!

3expS 2mE
a

b

g1/4~u!duD G , ~68!
8-7
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which for largely separated external charges in contras
the flat case, does not tend to a constant and depends o
value of the metric at the position of external charges. T
condition of validity of Eq.~68! is only Eq. ~55!. In other
words, inm50 there is no need to condition (e8/q)!1 ~or
uf2hu!1) in deriving Eq.~68!. For example in the mass
less Schwinger model on de Sitter space~48!, the energy of
largely separated charges~in the coordinatex) is

Eext5
e82

4m SA11
a2

l21A11
b2

l2D . ~69!

Although this energy is not linear in terms of charge sepa
tion distance, but ford→`, E is infinite and the system is in
confining phase.

From Eq.~68!, we can conclude that in contrast to the fl
case, in which the energy of external charges is only a lin
d

nt

10501
to
the
e

-

t
ar

function of charge separation distance, on the curved sp
time the energy depends also on the position of exte
charges. As it is clear, the infinity of the energy in a confi
ing situation is related to the separation of charges, but
increasing rate of the energy with distance is not unique
all regions. For example, in the regionx.xsing, wherexsing

PRø6` is a point at which the metric is singular, tw
external charges located close together can have a finite
ergy but by moving one of the charges, the energy increa
very rapidly.
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