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Massive Schwinger model and its confining aspects on curved space-time
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Using a covariant method to regularize the composite operators, we obtain the bosonized action of the
massive Schwinger model on a classical curved background. Using the solution of the bosonic effective action,
the energy of two static external charges with finite and large distance separation on a static curved space-time
is obtained. The confining behavior of this model is also explicitly discussed.

DOI: 10.1103/PhysRevD.63.105018 PACS nuniber11.10.Kk, 04.62+v

[. INTRODUCTION confining or screening nature of the Schwinger model. More
recently, this model has been investigated on a constant

Two dimensional quantum electrodynamics or thenegative curvature space-tinfiee., the Poincardalf-plane
Schwinger mode]1] may serve as a laboratory for studying [7], and it has been found that the confining feature of the
four dimensional gauge theories and important phenomen@chwinger model depends on the geometry of the space-
such as confinement, screening, chiral symmetries, etc. Itime, for example, in different regions of Poincdra!f-plane
flat space-time, it is known that, in the massless Schwingethe system is in different phasése., confining or screening
model via a peculiar two dimensional Higgs phenomenonphaseys which is in contradiction with flat space-time re-
the photon becomes massive and the Coulomb force is results. Also in[8], the confining aspects of the massless
placed by a finite range force, giving rise to the screeningSchwinger model on de Sitter space in different coordinates
phase. When the dynamical fermions are massive, the modBRve been discussed and the results have been extended to a
is not exactly soluble, but a semiclassical analysis reveals Bon-Abelian situation.

. : , — In this paper we want to study the massive Schwinger
linear rise energy for opposite test chargeandd, binding model on a general noncompact Riemann surface, and try to

them into qq pairs [2]. By taking into account the finite optain, as much as possible, information about the confine-
distance corrections, one can show that, in addition to thenent in this background. We consider only the effects of
linear confining term, the potential is also composed of aeometry on confinement phenomena and ignore nontrivial
screening term which is modified with respect to the masstopologies.
less cas¢3]. In the Schwinger model the potential of external charges
One of the interesting questions is, how can a curvedan be obtained using several different methods; for ex-
background modify these effects? We think that this is arample, (i) integrating over the fermionic field&r equiva-
important question, because it can be viewed as a first step Iently over bosonic fields in the bosonized version of the
studying these physical effects in the context of quantunmode) results in an effective action for the gauge fields,
gravity. Moreover, they may have applications in stringfrom which the potential can be extracted by solving the
theory and quantum gravity coupled to nonconformal mattecorresponding equations of motiorfii) integrating over
(note that the kinetic term of the gauge fields spoils the congauge fields in the bosonized action and then obtaining the
formal invariance of the theoyy static solutions of the equation of motion and deducing the
Although the Schwinger model on curved space-time hapotential of the system as the difference between the Hamil-
been studied in several papers the confining aspects of thtenian in the presence and absence of external charges, re-
model is still uncleasfor a discussion about the subtleties in spectively. In this paper we follow the second procedure.
determining the confining phase of the Schwinger model on The plan of the paper is as follows: In Sec. I, our main
curved space segt]). For example, the author ¢b] has task is to obtain the bosonic version of the massive
suggested that the curvature of the space does not change tBehwinger model on a general noncompact curved back-
confining behavior of the massive Schwinger model, and irground. To find this bosonic representation, it is necessary to
[6] it has been claimed that on a particular black hole, theemploy an appropriate normal ordering description in defin-
massless Schwinger model remains in screening phase. Al$og the composite fields, which are always present in the
in [4], by comparing the role of temperature and the curvabosonic representations. As we will see, this needs several
ture, it has been argued that the curvature may modify thehange of field variables in order to reduce our main model
(interacting massive fermionic fields in curved background
to a free massless fermionic field theory in flat space-time.
*Email address: alimohmd@theory.ipm.ac.ir Then using the equivalence of this theory with a massless
"Email address: amohseni@khayam.ut.ac.ir bosonic field theory, we may obtain the appropriate normal
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ordering description from which our bosonic representation ngeieggab' gf‘”:eg’“egéab. (3)
can be found.

In Sec. lIl, by introducing two external chargggndq in ~ The metric components arg“*=(1/\/g) 5**, where 6*”
the bosonized action and by restricting ourselves to statie- Bﬂv:diag(lyl)-q andm are the charge and the mass of
metrics (so that the static potential between probe chargegynamical fermions respectively. In E), the dimension
becomes meaningfylwe obtain the energy of widely sepa- of q andm is the inverse of the length dimension aads
rated external charges for small dynamical fermions massjimensionless. Thedual field strength F is described
Obviously, the final result depends on the metric. For a SPehrough F=¢#*9 A, in terms of gauge fields\,, where
cific example(the full de Sitter space-timewe will show -~ = andAOlﬂ— Y —1. The partition functil:);‘(Z) can
that one recovers a confining behavior in the above menge v_vr‘ift‘tteyn ase T €0 P
tioned limit. We also show that whesi/q e Z, wheree' (q)
is the charge of externdbdynamica) charges, the external

o0 . K k
charges can not modify the energy. This is the same resultas z_— (=m) f d2x: o) &t () i x: 4
the flat case. Note that in Sec. Il where we use the path k=0 K 11:[1 NI P05 906) @
integral approach, it is more convenient to consider the Eu-

clidean signature, but in Sec. Ill, where we are going towherex=(xt). In Eq.(4), the expectation values are com-
calculate the energy, it is better to work with Minkowskian Puted from the Lagrangian
signature, in which the concept of energy is more natural.
To study the same problem but with external charges with B tougs 5

finite distance separation, in Sec. IV we restrict ourselves to L= \/6(// Y0, |qAM)¢/+2\/§ F. )
the case in which the gauge coupling is very large with re-
spect _to the variation of thg metric. The main reason for_suc.r“1 terms of the new fermionic variablés and 3/,
a choice is that the massive scalar Green function, which is
needed in calculating the energy, is only known for a few &

. ; . =ex ,
number of space-times. But if we restrict ourselves to the v ayse)y
above mentioned metrics, we can use the WKB approxima- ~t % 5
tion to find a general expression for the energy of external ¥ =y expdyse), ©6)
charges. Like the flat case, the energy takes a screening cor- . 170 .
rection term beside the confining term. As a result we shoW/here A,=¢€,,d,¢ and ys=—i%y"y", the Lagrangian(s)
that atm=0, the phase structure of the system depends of@n be rewritten af]
the metric and, in contrast to the flat case, the model can be 2 1
in confining phase in specific casessich as the full de Sitter L= \/aTﬂTY”%T/ﬁL Jg| - '% eAp+ > eAAp|, (7)
space-timgwhich is in agreement with the result [8].

in which A is the Laplace-Beltrami operatax=g**d,d,
II. BOSONIZATION OF THE MASSIVE and

SCHWINGER MODEL

All two dimensional spaces are conformally flat, hence _ 9 ®)
any noncompact Riemann surface is described by the metric K \/;
ds?= \/§(dt2+ dx?), (1) In this way the massless part has become a free field theory

on a curved background with an effective action containing

where \/g is the conformal factor. On this space-time, thean anomalous terni— («?/2)\JgeA¢] coming from the
massive Schwinger model is described by the partition funcdacobian of the transformatiofEq. (6)]. The term

tion (1/2)\JgeA (A — u?) ¢ is the effective Lagrangian density of
the gauge fields. The fermionic part of the Lagrandianis
free and hence is invariant under the Weyl transformation:
Z=f DA,DyDy" ex —f d?x 9,,—Q%g,, andy— Q2. Choosing =g~ one ob-
tains
1 A ~ ~ o~ ~
g
@) Therefore the partition functiof2) can be reduced to
; L
where y#=y®e4 are the curved space counterparts of Her- z=2 k! H f Pxig OGN T09)
mitian Dirac gamma matrices®=o,; y'= o, . o; are Pauli k=0 B NEL
matrices.d,, is the covariant derivative and the zweibeins are
defined through xexd —2qyse(Xj) N (X)) |, (10)
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where the expectation values are computed from one can write Eq(14) in the form
L=\T320 .\ + 2 VgeA(A - ud) . 11 1% « “
Yokt ENgeA(A - - (—) exp 27>, D(x;,%) [exg 27>, D(y; ;)
i=1 =1

Therefore the massless fermionic part of the theory is re-

duced to a free fermionic field theory on a flat space-time. k
Using (ys)?"=1, it can be easily shown that xf DqS(x)ex;{Zi \/;( > [q&(xj)—q’)(yj)]”
=1
N exp(—2qyso)h L
_ 2= 2
L 1+ v 1— e Xexy{ fd x2 (d,9(x)) ) (16)
=\ 5 exp—2q¢) + exp(2qe) |\

Hence Eq(13) can be written as

(12
» m2k k
The fermionic part of Eq(11) is chirally invariant, hence the < szx-dz Y g4y
only nonzero terms in Eq10) are those with equal number Z (27)%K(k!)? H Y85,
of o, ando_ [10], whereo. =\T(1+ y5)\/2. Hence
* [10] ==M(1=ys) x exd 27D (x; %)) Jexd 27D (y; y;)]
x K
(= m>** g x extf — 2qe(x,) Jexd 2q¢(y;) JexH 2i V (x))
Z= —\ IL | d3d2y;0™(x)g™(y;) exd —2qe(x;) Jexd 2q¢(y;) Jexd 2i ym¢(X;) ]
k=0 (k!) j=1
X exyl - 2i ﬁ¢><yj)1> : (17)

XeXFIZWP(Yj)]eXF[_ZQ<P(X1)](T+(X1)U(Yj)>-
where the expectation values are calculated from the follow-
13 ing Lagrangiannote thaty/gg*”= 3‘“’):
The expectation values of the fermionic part can be estab-

_1 _ 2 1 v

lished in the same manner as in the flat ciisH: L=3VoeA(A—u)e+3Vgg"d,¢d,¢6.  (18)

k Now if we note that there are the charge conservation law in

f DADA]] a'+(Xj)a'(yj)eXL< _J dZX)\Ta,a(;a)\> contracting the composite fielés*? [10], then the partition
j=1 function (17) can be written as
H ) o m2k k
2k (xi— XJ _yj) Z= 2 (2 2K k1 H j dZdezyjh(Xj)h(yj)
. . (14) =0 (2m)*(k!)?
27 1_[ )
(Xi=yj)
SE T X expl 2i ¢>+ \/_ @ | (X))
But the Green function of the massless scalar fig{d) is
B . iq
() p(y))=—1(4m)In[eX(x—y)?], Xexf{ —2 ﬁ( ¢+ T;@D) WJ')D
where the masg? (e?—0) is introduced to avoid infrared “ 1(m
divergences. This is equivalent to infrared renormalization of = E W —f d?xh(x)cos
exponential of massless scalar field discusseld #} in op- k=0 R 7
erator language. So using k
X ZJE( ¢(x>+—<p<x>) ] >
V

k
f Dd)(x)exp(jEl JD(x], J))
<exp[ dth(x)cos{Z\/—< d(X) +\/—_(p(X))

)

(19

‘ 1
Xexp( 121 i ¢(xj)) ex;{ — EJ (%d)(x))zdzx)

k . .
=5 xR =3 ey D(x.,x,>) (15 N which

1 J i<j

h(x)=g"(x)exd 27D (x,x)]. (20)

. . ""2 . .
In which we have used”—0 limit and By changing the field variablé— ¢ — (iq/7r) ¢, and using

D(xi,Xj)=—1(4m)In(x; —xj)z, A= EM,,&,,QD, the partition function(19) becomegnote that
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this change of field variable is somehow inverse of B).  whereG%(x,x’) (extracted from DeWitt-Schwinger expan-
and couples the matter and gauge figlds sion) is the counterterm needed to regularize the ultraviolet
divergence of the Green functiga3]

z=J DAMD¢exp[—f dzx\fg(;g“”aﬂ¢r9,,¢

1 1 R(x)
DS, N — _ 2.2y_ - _ V7 2
G, (x,x") yp= 2y+In(uce’) 6 .2 +0(€)|.
. q 1 2
—i—=€""A,d, b+ 2—F2 (27)
NT g R is the scalar curvature of the space and one half of the

proper distance betweenandx’. [Note that in the flat case,
R=0, Eq.(27) coincides with Iin;réxGi'ft(x,x’), and from
Eqg. (26) we obtain the usual regularization which kills out
(21)  the loops] Now if we follow the same steps as in the flat
case, but here using}>(x,x) instead ofG/(x,x), we ob-
wheree/”’=(1/\/§)2“”. By integrating over the gauge fields tain
one can see that the effective Lagrangian of the figli$

’

- 291’4(X)eXF[27TD(X,X)]COS(2\/;¢(X)))

myty(x)=—m exp{ —27[ G 3(x,X)

’7Tg1/4(X)

—D(x\) 1IN, cof2\mh(x)], (28)

1 wu?
Let=5 VOG" 3, bd,b+ 5 g

m
— —gY*exg 27D(x,x)]cog 2 x)]. (22 ~
Wg H2mD(x.x)Jcog \/;d)( - @2 in which we have defined the normal orderiNg as

Now we want to convert the mass term in E82) to a more N cog?2 ) 1= exd 27GPS(x x)1cod 2 X
convenient form, by absorbing covariantly the ultraviolet di- wCo4 \/;(ﬁ( )] H2mG, (xx) Jcod \/;(ﬁ( )]

vergence in the mass or in operator language, by defining (29)
an appropriate normal ordering prescriptioN ) with re-  |n the static curved space-time we can use a normal ordering
spect to the scalg [15]. To do so in the flat case, we write which like the flat case kills the loopghe vacuum is now
exg27D(x,x)] as defined using the global timelike killing vector of the static
space-timg14]). In the same manner as the flat case, we
=exp{— 27 G, (X,X) = D(x,x) [}exd 27G ,(X,X)] m
my’ = — exg2m(D-G,)
M 1/4 s
=exp< y+|n§ exf 27G ,(x,X)], (23 9

X(x XN, co§2\md(x)]. (30
whereG , is the Green function of a massive scalar field with
massu Which for \g=1 is Gi'f“: 1(2m)Ko(u|x=Y]). Ko It is easy to show that E@30) is equal to Eq(28). From Eg.
is the modified Bessel function of the second kind gng ~ (30) [or equivalently Eq(28) for static space-timig we ob-
the Euler constant. We can now absorb [@45,(x,x)] in  t&in
redefinition(renormalization of massm:

gqexpy
277.3/2

1
(TP o= — T exd —27G(x,x)], (31

myTy=—M cog2\m ), (29

whereG(x,x)=G ,(x,x) —D(x,X). So, as we expect, the ex-
where M =m exgd27G™(x,x)]. In operator languaggl0],  Pectation valugy'y) is independent of the method of regu-
lL ) - )

this is equivalent to the well known res(it5]: larization (or normalization of composite fields.
q expy) Ill. QUARK-ANTIQUARK POTENTIAL IN THE MASSIVE
myTy(x)=—m o N, cog2\me(x)]. (25 SCHWINGER MODEL ON STATIC CURVED
aa

SPACES: WIDELY SEPARATED CHARGES

Now let us consider the normal ordering in curved back-
ground. In this case, one can use a covariant point—:splittin%h
method in order to regularize the composite operatofour

regularization method should respect general covarjance

In this section we obtain the energy of two external static
arges introduced into the massive Schwinger model. We
consider an infinite static conformally flat space-time with

trivial topology described by the metric

2 H " _ DS ’
<¢reg(x)>_X|LrQ,[GM(X1X ) G,u (XvX )]1 (26) dszzm(dtz_dxz) (32)
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The bosonized action of the massive Schwinger model, in
the presence of the covariantly conserved external current

[9%2— u2\Jg—4\/mm3 g cog 27 7)]¢

=—2\/mm3 g sin2m7), (38)
e/
JO(x)= T[— S(x—b)+d(x—a)], JI*=0, (33 inwhich? is defined through
g
describing two opposite point charges’ ande’ located at S(X)= i~ X —27G(x,x)]. (39
x=Db andx=a, respectively, is g T
1 q m The solution of Eq(398) is
Szfdzx =\J9g*"d,¢d,p+ — Fp+ — g*/*
(2@9 SeAIN A AN $=0"12[7ms gsin2\7n), (40)
X exf —27G(x,x) N, cod2\7$(x)) where
1 - __ 2 2
+F F24 7|, (34 O=— 3+ u?\Jg+4maS\Jgcog2\mn). (41
g Now that Eq.(40) can be written as
where 1 .
¢p=[1-0"(O-2VmmE\g)lsin2\my), (42
- e’, a<x<b, . . - 5
n(x)=€'[f(x—a)— 6(x—b)]= the condition| ¢| <1 is satisfied whemX < u*. The energy
0, xe[ab]. a5 of the system is

Equation(34) is the Minkowskian version of Eq21) in the
presence of external curre(®3). In deriving Eq.(34) we
have also used E¢30). Integrating over the field results

1 m
Seff:J dzx( E\/agﬂvﬁp,qs&vd)—i_ ; gl/4

X exf —27G(x,X) N, cos2/m¢(x))

o
q2W9<n+¢>2),

(36)

in which we have definedy=(\/7/q)7. For widely sepa-
rated chargesy is equal to the constarg’ in the whole

space(in the next section we will obtain the necessary cor-
rections for finite charge separation distandtone changes

the variable¢— ¢— 7, one finds
— d2 1\/— v m 1/4
Seff_ X E g9 a,u(bavqs—{_;g
xex —2mG(x,X)IN, co§ 2\m(¢— 7)(x)]

2
)
_7\/5(1)2

. (37

(43

E=fT8dx=—f Ldx,

whereT# is the energy momentum tensor aBds the en-
ergy measured by a static observer with respect to the coor-
dinate(32). By substituting Eq(40) into Eq.(36), we obtain

E(n):—Lb[zmeSinZ(zﬁn)wao*wa

+m3 /g cog 2\ n)]dx.

Up to the first order ofn and by consideringns < u?, one
can arrive at

(44)

b
E(n)z—mcos(zﬁn)fazu)fgdx. (45

Therefore the energy of external charges is

e’ b
1—005(277E)“a2(x)\/§dx.

(46)

Eex=E(7)—E(0)=m

This completes our general result for the energy of widely
separated external chargese’ in a static curved back-
ground. This result coincides exactly with the resulf&jf in

For (e’/q) € Z, the action is not modified by the presence of which the same problem has been discussed using the fermi-
external charges, hence the energy is not changed. In othenic action. As is clear from Ed45), the determination of

words, in this case external probes with chamge are

the energy is now complicated by the presence of the con-

screened by dynamical fermions. The same effect occurs iformal factor\/g and3;, which the latter can be expressed in

flat space-timg2].
Now let us restrict ourselves tap|<1 scalar fields. In

terms of Seeley DeWitt coefficients although not explicitly
known for general curved space-times. To obtain an insight

this regime, the actiofi36) becomes Gaussian and the clas-about this result, let us consider a specific example.

sical solutions of the action coincide with the quantum ones.

The classical equation of motion for the static fiedds

Example: Complete de Sitter space-tir@@nsider the fol-
lowing geodesically complete space-tirfrib]:
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X2 ) dx? will restrict ourselves to a specific condition for the metric
dsz=(1+ F)dt B (47)  (or the gauge coupling We first note that on the confor-

mally flat space-timél), G,(x,x") satisfies
which represents the full two dimensional de Sitter space-
time, with scalar curvatur®=2/\2. By the change of coor-
dinate x—x(r), where dr?=dx?/(1+x?/\?)? or r

=\ cos IM(P+A)Y?], this space takes the conformally flat _
form Using the expansion

d2  d?
a2t W‘MZ\/E)GM(X,X'): -8(xx). (52

2

X N 1 1\ aik(t—t")
d<2= 1+F (dt2—dr?) G, (X,x )_ﬁ Gu(kx,x")e dk, (53

~ 1 , , T or o we obtain the following equation fdg ,(k,x,x")
_—Cos?(r/)\) (dtc—dr*), —E<X<E (48) 42 ) )
e (Ktu Vo)

Gu(kx,x")=—=38(x,x"). (54
On spaces with constant positive curvatireG,(X,y) is

[17] Now if we consider the large gauge coupling regime, such
1 Re2 that
ili‘ﬂy G'u(X,y)Z ~ I 2vy+iIn T) dg1/4
T <mg, (55)

1 1_
(T TY( a)]’ (49) then the solution of Eq(54) (at zeroth order of WKB ap-

. ) ] proximation is
wherea?=1/4—2u?/R andV¥ is the digamma function. As

a consequence is 1

G,(k,x,x")=
g 20K+ NG00 TP+ g (x') 1M

2—1 A L
—;ex y+3in

—I—%\I’(%-I—a)—l—%‘l’(%—a)}

2
(50 Xepo [ wrvoway | 50
X
The energy of widely separated external charges is then
In the limit x—x’, G,(x,x") is found to be
e/
Eexi=M 1—c05< 277—) S (b—a). (51 1
q lim G, (x,x")=2—_ lim Kol Vo[ (x—x")?
b anda are expressed in terms vfoordinate. Although the x—x! ()= (.t
energy is not linear in terms of charge separation distance +(t—t")?]}2 (57)
d=2dx/\1+x?/\?, but for d—~ we haveE—c, hence
the system is in confining phase. whereds= g4 (x)[ (x—x")?+ (t—1t')?]*?is the distance be-
tween two pointsx and x’ when x’—x. Now using
IV. ENERGY OF FINITELY SEPARATED CHARGES D(X,X/): _(1/27T)|n(55) and by ConSidering the behavior

of Ky for small argumentsG(x,x) [introduced after Eq.
If we consider Eq(45) for m=0, it givesE.=0, which  (31)] is found to be
is not right as it does not contain the finite separation contri-
butions. In this section we want to study the case in which
the external charges have finite separation, although the en- 27G(X,X) = _( y+in
ergy (45), is yet the dominant long range term. In this case,

the function7 can not be considered as a constant in thelhus Eq.(31) yields

whole of the space. As has been mentioned in section one, in

flat space-time the energy expression, beside the confining T qexpy)
. . . <¢, ,/,> =

term, consists also of correction terms which are due to the m=0 27302

screening behavior of the system. Here we want to calculate

these correction terms for a static curved space-time. Note that in this approximation, the metric factor in E81)

Let us consider the general express{86), in which we s canceled out by the corresponding tem@ifx,x), and the
must now treaty as anx-dependent expression. Before any final result is the same as the flat case as one expects from
calculation, we must say something abdbix,x) in Eq. the results of18].

(36). As was pointed earlier, we do not know the explicit  Now let us go back to Eq36). If we restrict ourselves to
form of this function for a general curved space-time. So wethe regime(55) in which Eg. (58) has been obtained, and

1/4
s ) . (58)

(59
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change the variablé as¢— ¢ — 7, the effective Lagrangian
(36), for static fields with ¢ — 7| <1 condition, is reduced to
the following Lagrangian

L=3¢(52— u2\Jg—4mmI\g)p— ¢(d5—4mmS\g)
+ipa2p—2mwms NV (60

fx [Va(x)]*
[1*Ng(X)+4mmEVg(x)]?
[Va(x)]*

exp{ - fx\/,uzx/g(u)+47rm2 Vg(u)du

Vg0 +4mmS Vg(x) 112

in which c is an arbitrary constant, we obtain

r r 2

P (X)= S

where
F(X,y) =f—1,%é)4(?exr{ - ‘ nyfl’z(u)du , (64
and
f(X)=(u?+47m2)\Vg(x). (65)

In deriving Eq.(63), the Green functiori56) has been used.
For a fixx, F(x,y) is an increasing function of in y<x
region and decreasing ig>Xx. So F(x,y)<F(x,x). But
w2F(x,X) = u?/(u?+47m3)<1, which is not necessarily
small. Therefore the conditiohp— 7|<1 is satisfied only

V7 o IR D) - Fixa)l,
’ r .2
JE%+ J7 % C[2F(x X ~F(x,2)~F(xb)], a<x<b,

’ 2
- ﬁ%%[p(x,b)—F(x,a)],

PHYSICAL REVIEW 63 105018

Using Egs. (399 and (58, X is obtained as 3
=q exp)/(27°?). The field equation is

— 93+ 4mm3 Vo
- —(9§+M2\/§+47Tm2\/§7].

Using the following identity which holds at large coupling
limit

(61)

dx

eXF{—fX\/Mz\/g(X)'FAHTmE g(x)dx|+c, (62)
x>Db,
(63
x<a,
|
e’\2 P u? (b
Eextzﬂ-(E [ 1_,%2"“‘-—7”7]2)7,[51 \/g(X)dX
©4 g@  g(b) 2VJg(a)g(b)
413%2(a)  132(b) (F(a)f(b))*™
b
xex;{—f fl’z(u)du>H. (67)

The energy of external charges is composed of two parts:
The first part is proportional tquzx/g(x)dx and when
m2, < u? coincides with the confining terité5) (in the limit
e’ <q). On the flat space-time the remaining terms are due to

when the factoe’/q is very small. The same arguments hold the screening of external charges by dynamical fermions. On

whene’/q is close to an integer number.
Putting Eq.(63) back into the Lagrangiaf60) gives
2( rb
)

o
Eex= 7[ Von?— gy

1
X
-+ u?\Jg+4mm3 g

L

dx] . (66

Using EQ.(62) we arrive at

the curved space, the problem is more complicated and we
can have a confining situation even in the massless
Schwinger model. To see this, assume timat 0. The en-
ergy of external charges is then

12

Eex= E

xexp{ —,ufbgl"‘(u)du)

[g““(a) +g"(b)—29"%(a)g""*(b)

: (68)
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which for largely separated external charges in contrast téunction of charge separation distance, on the curved space-
the flat case, does not tend to a constant and depends on ttiee the energy depends also on the position of external
value of the metric at the position of external charges. Theharges. As it is clear, the infinity of the energy in a confin-
condition of validity of Eq.(68) is only Eq.(55). In other ing situation is related to the separation of charges, but the
words, inm=0 there is no need to conditio®’/q)<1 (or increasing rate of the energy with distance is not unique in
|¢—#|<1) in deriving Eq.(68). For example in the mass- gl regions. For example, in the region=Xgyg, WhereXging

less Schwinger model on de Sitter spa48), the energy of < RU+ o is a point at which the metric is singular, two
largely separated chargés the coordinatex) is external charges located close together can have a finite en-

o2 2 b2 ergy but by moving one of the charges, the energy increases
Eextzn 1+ F'f’ 1+ F

. (69)  very rapidly.
Although this energy is not linear in terms of charge separa-
tion distance, but fod— o, E is infinite and the system is in ACKNOWLEDGMENTS
confining phase.
From Eq.(68), we can conclude that in contrast to the flat M. Alimohammadi would like to thank the research coun-
case, in which the energy of external charges is only a lineagil of the University of Tehran for partial financial support.
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