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Two-point stress-tensor correlator in =1, (2+1)-dimensional super Yang-Mills theory
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Recent advances in string theory have highlighted the need for reliable numerical methods to calculate
correlators at strong coupling in supersymmetric theories. We present a calculation of the correlator
(O|T**(r)T**(0)|0) in N'=1 super Yang-Mills theory in 21 dimensions. The numerical method we use is
supersymmetric discrete light-cone quantization, which preserves the supersymmetry at every order of the
approximation and treats fermions and bosons on the same footing. This calculation is done M4t laFge
small and intermediate the correlator converges rapidly for all couplings. At smathe correlator behaves
like 1/r®, as expected from conformal field theory. At langthe correlator is dominated by the BPS states of
the theory. There is, however, a critical value of the coupling where the fagerelator goes to zero,
suggesting that the large-correlator can only be trusted to some finite coupling which depends on the
transverse resolution. We find that this critical coupling grows linearly with the square root of the transverse
momentum resolution.
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[. INTRODUCTION lation of correlators in 21 dimensions we consider only
N=1 SYM theory.

Our original motivation to study correlators of the energy A convenient quantity that can be computed on both sides
momentum tensofl,2] was the discovery that certain field of the correspondence is the correlation function of a gauge
theories admit concrete realizations as a string theory on mvariant operatof11,12. We will focus on two-point func-
particular background3]. Attempts to apply these corre- tions of the stress-energy tensor. This turns out to be a very
spondences to study the details of these theories have onf@nvenient quantity to compute for reasons that are dis-
met with limited success so far. The problem stems from th&ussed in1]. Following the procedure that we used in our
fact that this correspondence relates weakly coupled supegalculation in -1 dimensiong1,2], we continue the results
gravity and strongly coupled super Yang-MillsSYm) — t0 Euclidean space. TheT correlator of the energy momentum
theory. Unfortunately we only have firm control of either OP€rator has been studied in conformal field theory 1.2

theory in the weak coupling limit. The objective of our pro- dimensiond13], and this provides a reference point for our
gram is to improve this situation substantially. results. The structure of the correlators in conformal field

Previously we showed that supersymmetric discrete ”gh{heory is particularly simple in the collinear limit 0, and

cone quantizatioiSDLCQ) [4,5] can be used to solve su- V€ therefore find it convenient to work in this limit. From
persymmetric field theories 'in the strong coupling limit results in conformal field theory we expect that correlators

[6—8]. This then allowed us to make a quantitative compari—beha\/e as 1P at smallr, where we are probing deep inside

the bound states. We have confirmed thi€ behavior by an
son between the strongly coupléd=(8,8) SYM theory and analytic calculation of the free-particle correlator in the

the supergravity approximation of the string thepty?] in DLCQ formalism([14].
1+1 dimensions. The SDLCQ approach works particularly  the contributions of individual bound states have a char-
well in 1+1 dimensions; however, it can be extended to,cteristic length scale corresponding to the size of the bound
more dimensions. Recently, we solved for the spectrum angiates. On dimensional grounds one can show that the power
wave functions of /=1 SYM theory in 2t1 dimensions pehavior of the correlators is reduced by one power; @o
[9,10]. for individual bound states the correlator behaves like 1/
Aside from our numerical solutions, there has been venyor smallr. It then becomes a nontrivial check to see that at
little work on solving SYM theories using methods that smallr the contributions of the bound states add up to give
might be described as being from first principles. While sethe expected tf behavior. We find this expected result as
lected properties of these theories have been investigatediell as the characteristic rapid convergence of SDLCQ at
one needs the complete solution of the theory to calculate thieoth small and intermediate valuesrof
correlators. By a “complete solution” we mean the spectrum At large r the correlator is controlled by the massless
and the wave functions of the theory in some well-definedstates of the theory. In this theory there are two types of
basis. The SYM theories that are needed for the correspomassless states. At zero coupling all the states of the (1
dence with supergravity and string theory have typically a+1) dimensional theory are massless, and for a non-
high degree of supersymmetry and therefore a large numbeanishing coupling the massless states of thelltheory are
of fields. The number of fields significantly increases the sizesromoted to massless states of the+(R)-dimensional
of the numerical problem, and, therefore, in this first calcu-theory [10]. These states are Bogomol'nyi-Prasad-
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Sommerfield BPS states and are exactly annihilated by onecover the continuum result we must se@ndT to infinity
of the supercharges. This is perhaps the most interesting paahd, as luck would have it, we find that SDLCQ usually
of this calculation because the BPS masses are protected bgnverges faster than ordinary DLCQ. Faster convergence is
the exact supersymmetry of the numerical approximation an@nportant because the size of the matrices and, consequently,
remain exactly zero at all couplings. Commonly in modernthe difficulty of the computation grow as the resolution is
field theory one uses the BPS states to extrapolate from weakcreased.
coupling to strong coupling. While the masses of BPS states Let us now review these ideas in the context of a specific
remain constant as functions of the coupling, their wavesuper-Yang-Mills theory. We start with (21)-dimensional
functions certainly do not. The calculation of the correlatorA/=1 super-Yang-Mills theory defined on a space-time with
at larger provides a window to the coupling dependence ofone transverse dimension compactified on a circle. The ac-
the BPS wave functions. We find, however, that there is aion is
critical coupling where the correlator goes to zero, which | 1
depends on the transverse resolution. A detailed study of this S:f d2xf detr( —ZFME +iWy*D W |. (2.1)
critical coupling shows that it goes to infinity linearly with 0 4 . .
the square root of the transverse resolution. Below the criti-
cal coupling the correlator converges rapidly at larg®ne  After introducing the light-cone coordinates = (1/1/2) (x°
possible explanation is that this singular behavior signals the: x1), decomposing the spino¥ in terms of chiral projec-
breakdown of the SDLCQ calculation for the BPS wavetions
function at couplings larger than the critical coupling. If this 1+9° 1—9°
is correct, calculation of the BPS wave function at stronger = W‘I’, X= W‘I’ (2.2
couplings requires higher transverse resolutions. We note
that above the critical couplin@ee Fig. 3 beloyvwe do find
convergence of the correlator at langeut at a significantly
slower rate.
This paper is organized as follows. In Sec. Il we discuss
f dx*dx” f

and choosing the light-cone gaude =0, we obtain the
action in the form

|
dx, tr

light-cone quantization and SDLCQ. The correlators are dis- S= o

cussed in Sec. Il for the free theory and in Sec. IV for the
full theory. In Sec. V we discuss our numerical results. A i

brief conclusion is given in Sec. VI. +ixd_x+ I_¢DL¢+T¢DJ_¢
2

V2

where we have renamedl,= ¢, to be consistent with the
The technique of DLCQ is reviewed 4], so we willbe  dimensionally reduced notation. Here, howevér,is the

brief here. The basic idea of light-cone quantization is totransverse gauge field.

parametrize space-time using light-cone coordinatesx ™, A simplification of the light-cone gauge is that the non-

x*, and to quantize the theory such tixdt plays the role of ~dynamical fieldsA™ and x may be explicitly solved from

a time. In the discrete light-cone approach, we require théheir Euler-Lagrange equations of motion

momentump_=p™ along thex™ direction to take on dis-

%(a_A‘)2+D+¢a_¢+iwD+w

: (2.3

Il. LIGHT-CONE QUANTIZATION AND SDLCQ

crete values in units oP"/K, whereP™ is the conserved _ Ovm . O . 3 1
total momentum of the system amdis an integer usually A _(9_23_(9_2('[4’"7— b1+249), x=-— 24 D.y.
referred to as the harmonic resolutidi®]. One can think of - - - (2.4)

this discretization as a consequence of compactifyingcthe

coordinate on a circle with a period.2=27K/P". Along These expressions may be used to express any operator in
the directionx™ the transverse momentum is discretized aSerms of the physical degrees of freedom only. In particular,
well; however, it is treated in a fundamentally different way. o light-cone energyP~, and momentum operator®,”,
The transverse resolution 1§ and we think of the theory as P, corresponding to translation invariance in each of the
being compactified on a transverse circle of lenigthihere- 4 qinatesc andx, may be calculated explicitly as
fore, the transverse momentum is cut off &=« T/l and
discretized in units of Z/I. Removal of this transverse mo- |
mentum cutoff therefore corresponds to taking the transverse P+=f dx‘f dx, tr[(d_ )2 +iga_y], (2.5
resolutionT to infinity. 0

The advantage of discretizing on the light cone is the fact
that the dimension of the Hilbert space becomes finite. I gom
Therefore, the Hamiltonian is a finite dimensional matrix, P_:f dax— fodxﬂr _TJ
and its dynamics can be solved explicitly. In SDLCQ one
makes the DLCQ approximation to the supercharges, and
these discrete representations satisfy the supersymmetry al- |
gebra. Therefore SDLCQ enjoys the improved renormaliza- pL:f dx*f dx [ d_pa, p+iwd, ¥]. 2.7)
tion properties of supersymmetric theories. Of course, to re- 0

1 i 1
&—QJ—gDuﬁ&—Duﬁ],
- (2.6
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The light-cone supercharge in this theory is a two-where the color indices aigj=1, ... N.. Using these re-
component Majorana spinor, and may be conveniently delations one can check the supersymmetry algebra

composed in terms of its chiral projections

The action(2.3) gives the following canonicalanti-) com-
mutation relations for propagating fields for lafgg at equal

+

X

{Q",Q"}=2\2P", {Q",Q}=2\2P",

{QT.Q }=-4P,. (2.11)

|
Q+=21’4f dx~ fodxitr[cﬁa_ b—yo_dl, (2.8
|
Q‘=23’4j dx‘J dx, tr| 29, g+ gym(i[ &,0_ ¢] In solving for mass eigenstates, we will consider only
0 states which have vanishing transverse momentum, which is
1 possible since the total transverse momentum operator is
+24h) — 1//}. (2.9  kinematical* On such states, the light-cone supercha@és
J- andQ~ anti-commute with each other, and the supersymme-
try algebra is equivalent to th&=(1,1) supersymmetry of
the dimensionally reducee., two-dimensionaltheory[4].
Mgreover, in thel:lzo sector, the mass squared operator
_ _ M? is given byM?=2P"P".
[ij (X7 X1),0— iy y1)] As we mentioned earlier, in order to render the bound-
={i; (X7 X)) (YY)} state equations numerically tractable, the transverse mo-
menta of partons must be truncated. First, we introduce the
Fourier expansion for the field$ and ¢, where the trans-
verse space-time coordinate is periodically identified:

1
=5 O(X™ =y )o(X, —Y1) 66k, (2.10

L + 1
¢,J(0X XL 2 f [alj k+ J_)e—lk X~ —i(2mn “)M-}-a (k+ J.)elk X~ +i(2mn /I)xi]
| nh=—o J2k*t

%(OX X, )=—— \/_ 2 fdk+[b,](k+ )—|k+x’—i(27rnl/I)xJ_+bjTi(k+'nL)eik+x’+i(2wni/I)xJ_]_
n

Substituting these into th@nti-)commutatorg2.10), one finds

[au(p nJ_) aIk(q mj_)] {blj p nJ_) b (q mj_)} 5p —q )5nL mi5I|5jk (2-12)

The supercharges then take the following form:

Qt=i214 > dk\/—[b (k,n")ay; (k,nt) —af (k,n" )by (k,n")], (2.13

Q_:

ntez
27/4,”,
I

2~ 1/4gY

\/G neZ

f dk—[a” (k,n )by (k,n) — b (k,n*)ay (k,n) ]+ J dkydk,dks 8Ky + Ky — Ks)
ntez

l k _kl
><5nl+n [2\/? ks [aiTk(klvni)alj(kzyné)bij(k&né)_biTj(k3ané)aik(klani)akj(kZané)]

1 kytks . . .
+2\/@ K [aik(ks'né)akj(kllni)bij(kzané)_aik(klanf)bkj(kzané)aij(ksiné)]

1 1 1 1
+2\/@ k1 [b k(Kg, “1)ak1(k2 nz)aj(ks,ng) — a”(k3 n3)bik(Ky)ayj(ky,nz) 1+ k_1+k_2_k_3)
X[bf(ky,ny)b} (kz,né)bij(k3,n3)+bT(k3 n3)b|k(k1:n1)bk](kanz)]] (2.14

Istrictly speaking, on a transverse cylinder, there are separate sectors with total transverse matNeritz 2ve consider only one of
them,N, =0.
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We now perform the truncation procedure; namely, in all 1

sums over the transverse momentaappearing in the above T () =tr| (0 ¢)*+ S (o-y=i(a-)y)
expressions for the supercharges, we restrict summation to

the following allowed momentum modest =0,+1... =Ta "(X)+TE (). (3.3

+T. Note that this prescription is symmetric, in the sense
that there are as many positive modes as there are negatilreterms of the mode operators, we find
ones. In this way we retain parity symmetry in the transverse

direction. The longitudinal moment&;=n;#/L are re- TH(x",x7,0)|0)
stricted by the longitudinal resolution according % 1
:Eini. - T(n.m e*i(P:JrPrT,])X_O

There are three commuting, symmetries. One of them 2L nzm ngm (n,m) 0.
is the parity in the transverse direction, (3.4

P:ajj(k,n")— —aj(k,—n"), bij(kynL)_’bij(kr_?L)- where the boson and fermion contributions are given by
2.1
H ; . L ++ nm T t
The second symmetiyl5] is with respect to the operation —Ts (n,m)[0)= Ttr[aij(n.m)aji(m,mﬁ]m)
(3.9

S:aij(k,nl)ﬂ_aji(k,nl), bij(k,ni)ﬁ_bji(k,ni).
(2.16 and

SinceP and S commute with each other, we need only one L _, _(h—m) . +

additional symmetr\R= P Sto close the group. Sind®@ , P ETF (n,m)|0)= 4 trLbyj (n.n, )bji(m,m,)][0).

and S commute with each other, we can diagonalize them (3.6)

simultaneously. This allows us to diagonalize the super-

charge separately in the sectors with fixednd S parities ~ Given eacH ), the matrix elements in E¢3.2) can then be

and thus reduce the size of matrices. Doing this one findsvaluated, and the sum computed.

that the roles of and S are different. While all the eigen- First, however, it is instructive to do the calculation where

values are usually broken into non-overlappi@@dd and the statega) are a set of free particles with mass The

S-even sectorfl6], theP symmetry leads to a double degen- boson contribution is

eracy of massive state@n addition to the usual boson-

fermion degeneracy due to supersymmetry (

F(x*,x™,0g= >

,m,s,t

2
IWZI) (Oltrfa(n,n; )a(m,m,)]

Ill. FREE PARTICLE CORRELATION FUNCTIONS
Let us now return to the problem at hand. We would like e
to compute a general expression of the form X ymnste Pa X" TP x —iPpx T =iPpx
+ oy oyl et iyt y— VT F 3.7
F(x™,x7,x5)=(0|T""(x",x~,x*)T"(0,0,00).
(3D where the sum over implies sums over both andn, , and

Here we will calculate the correlator in the collinear limit, ~ m?+(2n, 7/1)? N

that is, wherex" =0. We know from conformal field theory R Ty and Py =——. (3.8

[13] calculations that this will produce a much simpler struc-

ture. The sums can be converted to integrals in the standard fash-

The calculation is done by inserting a complete set ofjyy
intermediate statelsy),

1 1 1 1
R o LS ]k and 3 o f ke,
F(x*,x™,xt=0)=2, (0|T**(x~,0x* =0)|a) N

. which can be explicitly evaluated, and we find
xe PaX (| TT7(0,0,0)|0),
2

1.,
;K5,2(mx), (3.9

+

3.2 i m5(—
202m)% |\ x~

F(x*,x",0g=

with energy eigenvalueB, . In [17] we found that the mo-
mentum operatol * " (x) is given by wherex?=2x"x". Similarly for the fermions we find
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l0g4o f

logqo r

(b)

FIG. 1. The log-log plot of the correlation functidr=r(T**(x)T**(0))(x /x*)?(167°/105)(K°I/\/—=i) vsr (@) in units whereg
=gym VN I/27%2=0.10 forK =4 andT=1 to 9; (b) in units whereg=gyy VN I/27¥?=1 for K=5 andT=1 to 9.

- 2
F(x*,x*,O)an;St on (0|t{b(n,n, )b(m,m, )]

xtrb'(s,s,)b'(t,t;)]]0)(m—n)(s—t)

Xe—iP;er—iP:x’—iP;qx+—iPr;x’.

(3.10
After doing the integrals we obtain
. 2
i x"
F(x",x",00g= m°| —
42m)°  \x~

1
X< K7 MY K g(mx) —KE(mx)].

(3.1)

We can continue to Euclidean space by takingy2x" x~
to be real, and, finally, in the smalllimit we find

~3 1
8(2m)2 8’ (312

_\ 2
X —
(x_*) F(x",x™,00=
which exhibits the expectedrf/ behavior.

IV. CORRELATION FUNCTION IN SDLCQ

Now let us return to the calculation using the bound-state

solution obtained from SDLCQ. It is convenient to write

w

F(x",x7,00= —
( )= 2, o7

,m,s,t

2L
<O|;T(n,m)

L
X @ 1Popx’ —iP X —T(s[0), (4.1

where P
complete set of bound statéa) with light-cone energies
P, =(M2+P?)/P" at resolution K (and thereforeP™

=mK/L) and with total transverse momentuni®
=2N, 7/l. We also define

op IS the Hamiltonian operator. We again insert a

L
u)=Ny— Em Snsmin, +m, n, T(N,M)[0), (4.2

whereN,, is a normalization factor such thanju)=1. It is
straightforward to calculate the normalization, and we find

3

1 _K ( l)
——g 1_E (2T+1).

v 4.3

The correlator(4.1) becomes

2
F(x* x~,00= > (L> e

- e -1
—iP xT—iPTx 2
— (U .
KN o | 212 ’ z|(ul)

u

(4.9

We will calculate the matrix elemert|a) at fixed lon-
gitudinal resolutiork and transverse momentus) =0. Be-
cause of transverse boost invariance the matrix element does
not contain any explicit dependenceldn. To leading order
in 1/K the explicit dependence of the matrix elementois
K3; it also contains a factor df the transverse length scale
To separate these dependencies, we ViFites

logiof

0g4o 1

FIG. 2. Same as Fig.(t), but for g=gyy VNI/27%?=10.
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> ] o » =) ]
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g 4 foo . " g 4 g ] “
jo jo 1 o
E 6] w" * go E 6] . * g0
] v g=1.0 y v g=1.0
1 m =50 m =50
'8': . o g=1vo -8 1 o g=1vo
10+ MmN+
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1T 1T

(a) (b)

FIG. 3. The large- limit of the log of the correlation functiofi=r>(T**(x)T**(0))(x /x*)?(167%/105)(K3I/\/=i) vs 1IT for (@)
K=5 and(b) K=6 and for various values of the couplig= gy VNl/27%2.
1 1/7K\3 mensional scale of the bound stateg] and therefore the
F(x",x™,00= 7 KNE ST\ T correlation should scale like iR3. However, because of

transverse boost invariance, the matrix element must be in-
e ula))? dependent of the difference of the transverse momenta and

xe Px —iPixr T (45  therefore must scale asriRg.
IK3IN[?
We can now do the sums ovrandN, as integrals over V- NUMERICAL RESULTS

the longitudinal and transverse momentum componexits The first important numerical test is the smalbehavior
=7K/L andP*=27N, /I. We obtain of the correlator. Physically we expect that at snrathe
) bound states should behave as free particles, and therefore
1 [x™ - the correlator should have the behavior of the free particle
\/?i XT) F(x",x7,0) correlator which goes like 1. We see in Eq(4.6) that the
contributions of each of the bound states behaves lik& 1/
1 M2 |<u|a>|2 Therefore, to get the 49 behavior of the free theory, the
=2 T o Kg(M RYTTINET] bound states must work in concert at snrallt is clear that
@ 2(2m> \r 'K Ny this cannot work all the way down to=0 in the numerical

(4.6) calculation. At very small the most massive state allowed
by the numerical approximation will dominate, and the cor-
In practice, the full sum oves is approximated by a Lanc- relator must behave like Y. To see what happens at
zos[18] iteration techniqu¢2] that eliminates the need for slightly largerr it is useful to consider the behavior at small
full diagonalization of the Hamiltonian matrix. For the coupling. There, the larger masses go like
present case, the number of iterations required was on the L
order of 1000. ~2 (ki)
Looking back at the calculation for the free particle, we = opt
see that there are two independent sums over transverse mo-
mentum, after the contractions are performed. One woulConsequently, as we remove tke cutoff, i.e., increase the
expect that the transverse dimension is controlled by the ditransverse resolutiol, more and more massive bound states

(5.9

0 1 0] ®
] . e ® © o o so
] ) ° s m H B U
2 44 ® T=1 .‘%a TFEEL 2 -4 4 u :A.AlA.A. .
g 1| rlisiitooaey 5 7] TS
A =
E 81| v Li i (8: 8 I
15 1| & T1=5 £ o T-1
BEETEI = P ‘i
12| o 17 4 =
1| o 71=8 I ; v I=4
1 & 10 |® a3} @Eg 1 * TS
-16 ——— T -16 e
0 2 4 6 8 0 2 4 6 8
g g

FIG. 4. The large- limit of the correlation functiorf=r3(T* " (x)T* " (0))(x /x*)2(1673/105) K31/ /=) vs g=gym VNcI/27%? for
(a) K=5 and(b) K=6 and for various values of the transverse resolufion
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Dorit
w
1

FIG. 5. Critical couplinggei
versus+T for (a) K=5 and (b)
K=6.

0.5379 + 1.8116 * T2

0.0923 +1.8016 * T

will contribute, and the dominant one will take over at initial study of the BPS statg<0] we found that at strong
smaller and smaller leading to the expected rfl This is  coupling the average number of particles in these BPS states
exactly what we see happening in Fig. 1 at weak couplings large. Therefore the two particle components, which are
with longitudinal resolutiorK =4 and 5. the only components thE** correlator sees, are small.

The correlator converges from below at snrallith in- The coupling dependence of the langdimit of the cor-
creasingT, and in the region-0.5<logr=0.5 the plot ofr®  rejator is much more interesting than we would have ex-
times the correlator falls like ﬂ./ln Flg 2 at rESO|UtiO.rK pected based on our previous work on the Spectrum_ To see
=5 we_see the same behavior for strong coupli@ ( this behavior we study the largebehavior of the correlator
= gymNI/2m¥?=10) but now at smaller (logr=—0.5) as gt fixedg as a function of the transverse resolutiband at
one would expect. . fixed T as a function of the coupling. We see a hint that

Again at strong coupling we see that the correlator conggmething unusual is occurring in Fig. 3. For values of the
verges quickly and from below ii. All indications are that coupling up to aboug=1 we see the typical rapid conver-

at smallr the correlators are well approximated by SDLCQ, gence in the transverse momentum cutoff; however, at larger

converge rapidly, anq show the behe}wor that one W.OUId ex6oupling the convergence appears to deteriorate, and we see
pect on qenera! physical grounds. This gives us confidence tt‘%at forg=>5 the correlator is smaller than g 10. We see
go on to investigate the behavior at lange '

. . _ _ 2 .

The behavior for larger is governed by the massless this same behavior at bot= 5_ andK=6."In Fig. 4 we see
states. From earlier work9,10] on the spectrum of this that the correlator does not in fact decrease monotonically
theory we know that there are two types of massless state@ith g but rather has a singularity at a particular value of the
At g=0 the massless states are a reflection of all the states GPUP!iNG which is a function oK andT. Beyond the singu-
the dimensionally reduced theory int1L. In 2+1 dimen- @ity the correlator again appears to behave well.
sions these states behave g2, ,. We expect therefore If we plot the “critical” couplings, at which the correlator

1+1- . . .
that forg=0 there should be no dependence of the correlatoP©€S t© Zero, v'ersuéf, as in Fig. 5, we see that they lie on
on the transverse momentum cutdfat larger. In Fig. (@) a straight line, i.e., this coupling is a linear function\6F in
this behavior is clearly evident. both casesK=5 and 6. Consequently, the “critical” cou-

At all couplings there are exactly massless states whicR!iNg goes to infinity in the transverse continuum limit. It
are the BPS states of this theory, which has zero centr@PPears as though we have encountered a finite transverse
charge. These states are destroyed by one superci@rge, cutoff effect_. The most likely conclusmr_\ is _that our numeri-
and not the othelQ . From earlier wor{9] on the spectrum cal calculation Qf the BPS wave function is only valid for
we saw that the number of BPS states is independent of tH&<9ci(T). While the larger correlator does converge
transverse resolution and equal t2 1. Since these states a00Vve the critical coupling, it is unclear at this time if it has
are exactly massless at all resolutions, transverse and longiy Significance. It might have been expected that one would
tudinal convergence of these states cannot be investigatétf®d larger and larger transverse resolution to probe the
using the spectrum. These states do have a complicated gifong coupling region, the occurrence of the singular behav-
pendence on the coupling through their wave function, OF that we see is a surprise, and we have no detailed expla-
however. This is a feature so far not encountered in DLCation for it at this time. We see no evidence of a singular
[14]. In previous DLCQ calculations one always looked to ehavior at small or |ntern_1ed|ate This mdu_:ates, but does _
the convergence of the spectrum as a measure of the convélot prove, that our calculations of the massive bound states is

gence of the numerical calculation. Here we see that it is th¥@lid at allg. _ _ ,
correlator at larger that provides a window to study the e donotseem to see a region dominated by the massive

convergence of the wave functions of the BPS states. In Fig?0Und states, that is, a region wheiie large enough that we
2 we see that the correlator converges from above at large
as we increas@.

We also note that the correlator at langés significantly 2We do not see this behavior t=4, but it is not unusual for
smaller than at smatl, particularly at strong coupling. In our effects to appear only at a large enough resolution in SDLCQ.
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see the structure of the bound states but small enough thaantly slower. It is unclear at this time if we should attach
the correlator is not dominated by the massless states of trany significance to the correlator in this region.
theory. Such a region might give us other important informa-  This calculation emphasizes the importance of BPS wave

tion about this theory. functions which carry important coupling dependence, even
though the mass eigenvalues are independent of the cou-
VI. CONCLUSION pling. We will discuss the spectrum, the wave functions and

N this work we calculate the correlator associated properties of all the low energy bound states of
. . . N=1 SYM theory in 21 dimensions in a subsequent paper
(O]T**(x)T**(0)[0) in V=1, SYM theory in 2-1 dimen- |1 y quent pap
sion at largeN.. in the collinear limit. We find that the free- A number of computational improvements have been
particle correlator behaves liker}/ in agreement with re- implemented in our code to allow us to make these detailed
sults from conformal field theory. The contribution from an -5/ lations. The code now fully utilizes the three known
individual bound state is found to behave like*}/and at  giscrete symmetries of the theory, namely supersymmetry,
smallr such contributions conspire to reproduce the confory,ansverse paritp, Eq. (2.15, and theZ, symmetryS, Eq.
mal field theory result tP. We do not seem to find an - (2.16). This reduces the dimension of the Hamiltonian matrix
termediate region im where the correlator behaves a1/ py g factor of 8. Other, more efficient storage techniques
reflecting the behavior of the individual massive boundgjiow us to handle on the order of 2000000 states in this

states. _ _ calculation, which has been performed on a single processor
Atlarger the correlator is dominated by the massless BPS j,yx workstation. Our improved storage techniques should

states of the theory. We find that as a functiomohe large-  5jj0w us to expand this calculation to include higher super-
r correlator has a critical value gfwhere it abruptly drops  symmetries without a significant expansion of the code or
to zero. We have investigated this singular behavior and findompuytational power. We remain hopeful that porting to a

that at fixed longitudinal resolution the critical coupling parallel machine will allow us to tackle problems in ful-3
grows linearly with\T. We conjecture that this critical cou- dimensions.

pling signals the breakdown of SDLCQ at sufficiently strong
coupling at fixed transverse resolutioh, While this might

not be surprising in general, it is surprising that the behavior
appears in the BPS wave functions and that we see no sign of
this behavior in the massive states. We find that above the This work was supported in part by the U.S. Department
critical coupling the correlator still converges but signifi- of Energy.
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