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Two-point stress-tensor correlator inNÄ1, „2¿1…-dimensional super Yang-Mills theory
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Recent advances in string theory have highlighted the need for reliable numerical methods to calculate
correlators at strong coupling in supersymmetric theories. We present a calculation of the correlator
^0uT11(r )T11(0)u0& in N51 super Yang-Mills theory in 211 dimensions. The numerical method we use is
supersymmetric discrete light-cone quantization, which preserves the supersymmetry at every order of the
approximation and treats fermions and bosons on the same footing. This calculation is done at largeNc . For
small and intermediater the correlator converges rapidly for all couplings. At smallr the correlator behaves
like 1/r 6, as expected from conformal field theory. At larger the correlator is dominated by the BPS states of
the theory. There is, however, a critical value of the coupling where the large-r correlator goes to zero,
suggesting that the large-r correlator can only be trusted to some finite coupling which depends on the
transverse resolution. We find that this critical coupling grows linearly with the square root of the transverse
momentum resolution.
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I. INTRODUCTION

Our original motivation to study correlators of the ener
momentum tensor@1,2# was the discovery that certain fiel
theories admit concrete realizations as a string theory o
particular background@3#. Attempts to apply these corre
spondences to study the details of these theories have
met with limited success so far. The problem stems from
fact that this correspondence relates weakly coupled su
gravity and strongly coupled super Yang-Mills~SYM!
theory. Unfortunately we only have firm control of eith
theory in the weak coupling limit. The objective of our pr
gram is to improve this situation substantially.

Previously we showed that supersymmetric discrete li
cone quantization~SDLCQ! @4,5# can be used to solve su
persymmetric field theories in the strong coupling lim
@6–8#. This then allowed us to make a quantitative compa
son between the strongly coupledN5(8,8) SYM theory and
the supergravity approximation of the string theory@1,2# in
111 dimensions. The SDLCQ approach works particula
well in 111 dimensions; however, it can be extended
more dimensions. Recently, we solved for the spectrum
wave functions ofN51 SYM theory in 211 dimensions
@9,10#.

Aside from our numerical solutions, there has been v
little work on solving SYM theories using methods th
might be described as being from first principles. While
lected properties of these theories have been investiga
one needs the complete solution of the theory to calculate
correlators. By a ‘‘complete solution’’ we mean the spectru
and the wave functions of the theory in some well-defin
basis. The SYM theories that are needed for the corresp
dence with supergravity and string theory have typically
high degree of supersymmetry and therefore a large num
of fields. The number of fields significantly increases the s
of the numerical problem, and, therefore, in this first calc
0556-2821/2001/63~10!/105017~8!/$20.00 63 1050
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lation of correlators in 211 dimensions we consider onl
N51 SYM theory.

A convenient quantity that can be computed on both si
of the correspondence is the correlation function of a ga
invariant operator@11,12#. We will focus on two-point func-
tions of the stress-energy tensor. This turns out to be a v
convenient quantity to compute for reasons that are
cussed in@1#. Following the procedure that we used in o
calculation in 111 dimensions@1,2#, we continue the results
to Euclidean space. The correlator of the energy momen
operator has been studied in conformal field theory in 211
dimensions@13#, and this provides a reference point for o
results. The structure of the correlators in conformal fie
theory is particularly simple in the collinear limitx'→0, and
we therefore find it convenient to work in this limit. From
results in conformal field theory we expect that correlat
behave as 1/r 6 at smallr, where we are probing deep insid
the bound states. We have confirmed this 1/r 6 behavior by an
analytic calculation of the free-particle correlator in th
DLCQ formalism@14#.

The contributions of individual bound states have a ch
acteristic length scale corresponding to the size of the bo
states. On dimensional grounds one can show that the po
behavior of the correlators is reduced by one power ofr; so
for individual bound states the correlator behaves like 1r 5

for small r. It then becomes a nontrivial check to see that
small r the contributions of the bound states add up to g
the expected 1/r 6 behavior. We find this expected result a
well as the characteristic rapid convergence of SDLCQ
both small and intermediate values ofr.

At large r the correlator is controlled by the massle
states of the theory. In this theory there are two types
massless states. At zero coupling all the states of the
11) dimensional theory are massless, and for a n
vanishing coupling the massless states of the 111 theory are
promoted to massless states of the (211)-dimensional
theory @10#. These states are Bogomol’nyi-Prasa
©2001 The American Physical Society17-1
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Sommerfield~BPS! states and are exactly annihilated by o
of the supercharges. This is perhaps the most interesting
of this calculation because the BPS masses are protecte
the exact supersymmetry of the numerical approximation
remain exactly zero at all couplings. Commonly in mode
field theory one uses the BPS states to extrapolate from w
coupling to strong coupling. While the masses of BPS sta
remain constant as functions of the coupling, their wa
functions certainly do not. The calculation of the correla
at larger provides a window to the coupling dependence
the BPS wave functions. We find, however, that there i
critical coupling where the correlator goes to zero, wh
depends on the transverse resolution. A detailed study of
critical coupling shows that it goes to infinity linearly wit
the square root of the transverse resolution. Below the c
cal coupling the correlator converges rapidly at larger. One
possible explanation is that this singular behavior signals
breakdown of the SDLCQ calculation for the BPS wa
function at couplings larger than the critical coupling. If th
is correct, calculation of the BPS wave function at stron
couplings requires higher transverse resolutions. We n
that above the critical coupling~see Fig. 3 below! we do find
convergence of the correlator at larger but at a significantly
slower rate.

This paper is organized as follows. In Sec. II we discu
light-cone quantization and SDLCQ. The correlators are d
cussed in Sec. III for the free theory and in Sec. IV for t
full theory. In Sec. V we discuss our numerical results.
brief conclusion is given in Sec. VI.

II. LIGHT-CONE QUANTIZATION AND SDLCQ

The technique of DLCQ is reviewed in@14#, so we will be
brief here. The basic idea of light-cone quantization is
parametrize space-time using light-cone coordinatesx1, x2,
x', and to quantize the theory such thatx1 plays the role of
a time. In the discrete light-cone approach, we require
momentump25p1 along thex2 direction to take on dis-
crete values in units ofP1/K, whereP1 is the conserved
total momentum of the system andK is an integer usually
referred to as the harmonic resolution@14#. One can think of
this discretization as a consequence of compactifying thex2

coordinate on a circle with a period 2L52pK/P1. Along
the directionx' the transverse momentum is discretized
well; however, it is treated in a fundamentally different wa
The transverse resolution isT, and we think of the theory a
being compactified on a transverse circle of lengthl. There-
fore, the transverse momentum is cut off at62pT/ l and
discretized in units of 2p/ l . Removal of this transverse mo
mentum cutoff therefore corresponds to taking the transv
resolutionT to infinity.

The advantage of discretizing on the light cone is the f
that the dimension of the Hilbert space becomes fin
Therefore, the Hamiltonian is a finite dimensional matr
and its dynamics can be solved explicitly. In SDLCQ o
makes the DLCQ approximation to the supercharges,
these discrete representations satisfy the supersymmetr
gebra. Therefore SDLCQ enjoys the improved renormali
tion properties of supersymmetric theories. Of course, to
10501
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cover the continuum result we must sendK andT to infinity
and, as luck would have it, we find that SDLCQ usua
converges faster than ordinary DLCQ. Faster convergenc
important because the size of the matrices and, conseque
the difficulty of the computation grow as the resolution
increased.

Let us now review these ideas in the context of a spec
super-Yang-Mills theory. We start with (211)-dimensional
N51 super-Yang-Mills theory defined on a space-time w
one transverse dimension compactified on a circle. The
tion is

S5E d2xE
0

l

dx'trS 2
1

4
FmnFmn1 iC̄gmDmC D . ~2.1!

After introducing the light-cone coordinatesx65(1/A2)(x0

6x1), decomposing the spinorC in terms of chiral projec-
tions

c5
11g5

21/4
C, x5

12g5

21/4
C ~2.2!

and choosing the light-cone gaugeA150, we obtain the
action in the form

S5E dx1dx2E
0

l

dx'trF1

2
~]2A2!21D1f]2f1 icD1c

1 ix]2x1
i

A2
cD'f1

i

A2
fD'cG , ~2.3!

where we have renamedA2[f, to be consistent with the
dimensionally reduced notation. Here, however,f is the
transverse gauge field.

A simplification of the light-cone gauge is that the no
dynamical fieldsA2 and x may be explicitly solved from
their Euler-Lagrange equations of motion

A25
gYM

]2
2

J5
gYM

]2
2 ~ i @f,]2f#12cc!, x52

1

A2]2

D'c.

~2.4!

These expressions may be used to express any opera
terms of the physical degrees of freedom only. In particu
the light-cone energy,P2, and momentum operators,P1,
P', corresponding to translation invariance in each of
coordinatesx6 andx' may be calculated explicitly as

P15E dx2E
0

l

dx'tr@~]2f!21 ic]2c#, ~2.5!

P25E dx2E
0

l

dx'trF2
gYM

2

2
J

1

]2
2

J2
i

2
D'c

1

]2
D'cG ,

~2.6!

P'5E dx2E
0

l

dx'tr@]2f]'f1 ic]'c#. ~2.7!
7-2
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The light-cone supercharge in this theory is a tw
component Majorana spinor, and may be conveniently
composed in terms of its chiral projections

Q1521/4E dx2E
0

l

dx'tr@f]2c2c]2f#, ~2.8!

Q2523/4E dx2E
0

l

dx'trF2]'fc1gYM~ i@f,]2f#

12cc!
1

]2
cG . ~2.9!

The action~2.3! gives the following canonical~anti-! com-
mutation relations for propagating fields for largeNc at equal
x1:

@f i j ~x2,x'!,]2fkl~y2,y'!#

5$c i j ~x2,x'!,ckl~y2,y'!%

5
1

2
d~x22y2!d~x'2y'!d i l d jk , ~2.10!
10501
-
e-
where the color indices arei , j 51, . . . ,Nc . Using these re-
lations one can check the supersymmetry algebra

$Q1,Q1%52A2P1, $Q2,Q2%52A2P2,

$Q1,Q2%524P' . ~2.11!

In solving for mass eigenstates, we will consider on
states which have vanishing transverse momentum, whic
possible since the total transverse momentum operato
kinematical.1 On such states, the light-cone superchargesQ1

andQ2 anti-commute with each other, and the supersymm
try algebra is equivalent to theN5(1,1) supersymmetry of
the dimensionally reduced~i.e., two-dimensional! theory@4#.
Moreover, in theP'50 sector, the mass squared opera
M2 is given byM252P1P2.

As we mentioned earlier, in order to render the boun
state equations numerically tractable, the transverse
menta of partons must be truncated. First, we introduce
Fourier expansion for the fieldsf and c, where the trans-
verse space-time coordinatex' is periodically identified:
f i j ~0,x2,x'!5
1

A2p l
(

n'52`

` E
0

` dk1

A2k1
@ai j ~k1,n'!e2 ik1x22 i(2pn'/ l )x'1aji

† ~k1,n'!eik1x21 i(2pn'/ l )x'#,

c i j ~0,x2,x'!5
1

2Ap l
(

n'52`

` E
0

`

dk1@bi j ~k1,n'!e2 ik1x22 i(2pn'/ l )x'1bji
† ~k1,n'!eik1x21 i(2pn'/ l )x'#.

Substituting these into the~anti-!commutators~2.10!, one finds

@ai j ~p1,n'!,alk
† ~q1,m'!#5$bi j ~p1,n'!,blk

† ~q1,m'!%5d~p12q1!dn' ,m'
d i l d jk . ~2.12!

The supercharges then take the following form:

Q15 i21/4 (
n'PZ

E
0

`

dkAk@bi j
† ~k,n'!ai j ~k,n'!2ai j

† ~k,n'!bi j ~k,n'!#, ~2.13!

Q25
27/4p i

l (
n'PZ

E
0

`

dk
n'

Ak
@ai j

† ~k,n'!bi j ~k,n'!2bi j
† ~k,n'!ai j ~k,n'!#1

i221/4gYM

Alp
(

ni
'PZ

E
0

`

dk1dk2dk3d~k11k22k3!

3dn
1
'1n

2
' ,n

3
'H 1

2Ak1k2

k22k1

k3
@aik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!2bi j
† ~k3 ,n3

'!aik~k1 ,n1
'!ak j~k2 ,n2

'!#

1
1

2Ak1k3

k11k3

k2
@aik

† ~k3 ,n3
'!ak j~k1 ,n1

'!bi j ~k2 ,n2
'!2aik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!#

1
1

2Ak2k3

k21k3

k1
@bik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!2ai j
† ~k3 ,n3

'!bik~k1!ak j~k2 ,n2
'!#1S 1

k1
1

1

k2
2

1

k3
D

3@bik
† ~k1 ,n1

'!bk j
† ~k2 ,n2

'!bi j ~k3 ,n3
'!1bi j

† ~k3 ,n3
'!bik~k1 ,n1

'!bk j~k2 ,n2
'!#J . ~2.14!

1Strictly speaking, on a transverse cylinder, there are separate sectors with total transverse momenta 2pN' /L; we consider only one of
them,N'50.
7-3
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We now perform the truncation procedure; namely, in
sums over the transverse momentani

' appearing in the above
expressions for the supercharges, we restrict summatio
the following allowed momentum modes:ni

'50,61 . . .
6T. Note that this prescription is symmetric, in the sen
that there are as many positive modes as there are neg
ones. In this way we retain parity symmetry in the transve
direction. The longitudinal momentaki5nip/L are re-
stricted by the longitudinal resolution according toK
5( ini .

There are three commutingZ2 symmetries. One of them
is the parity in the transverse direction,

P:ai j ~k,n'!→2ai j ~k,2n'!, bi j ~k,n'!→bi j ~k,2n'!.
~2.15!

The second symmetry@15# is with respect to the operation

S:ai j ~k,n'!→2aji ~k,n'!, bi j ~k,n'!→2bji ~k,n'!.
~2.16!

SinceP andS commute with each other, we need only o
additional symmetryR5PS to close the group. SinceQ2, P
and S commute with each other, we can diagonalize th
simultaneously. This allows us to diagonalize the sup
charge separately in the sectors with fixedP and S parities
and thus reduce the size of matrices. Doing this one fi
that the roles ofP and S are different. While all the eigen
values are usually broken into non-overlappingS-odd and
S-even sectors@16#, theP symmetry leads to a double dege
eracy of massive states~in addition to the usual boson
fermion degeneracy due to supersymmetry!.

III. FREE PARTICLE CORRELATION FUNCTIONS

Let us now return to the problem at hand. We would li
to compute a general expression of the form

F~x1,x2,x'!5^0uT11~x1,x2,x'!T11~0,0,0!u0&.
~3.1!

Here we will calculate the correlator in the collinear lim
that is, wherex'50. We know from conformal field theory
@13# calculations that this will produce a much simpler stru
ture.

The calculation is done by inserting a complete set
intermediate statesua&,

F~x1,x2,x'50!5(
a

^0uT11~x2,0,x'50!ua&

3e2 iPa
2x1

^auT11~0,0,0!u0&,

~3.2!

with energy eigenvaluesPa
2 . In @17# we found that the mo-

mentum operatorT11(x) is given by
10501
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T11~x!5trF ~]2f!21
1

2
„ic]2c2 i ~]2c!c…G

5TB
11~x!1TF

11~x!. ~3.3!

In terms of the mode operators, we find

T11~x1,x2,0!u0&

5
1

2Ll (
n,m

(
n' ,m'

T~n,m!e2 i (Pn
1

1Pm
1)x2

u0&,

~3.4!

where the boson and fermion contributions are given by

L

p
TB

11~n,m!u0&5
Anm

2
tr@ai j

† ~n,n'!aji
† ~m,m'!#u0&

~3.5!

and

L

p
TF

11~n,m!u0&5
~n2m!

4
tr@bi j

† ~n,n'!bji
† ~m,m'!#u0&.

~3.6!

Given eachua&, the matrix elements in Eq.~3.2! can then be
evaluated, and the sum computed.

First, however, it is instructive to do the calculation whe
the statesua& are a set of free particles with massm. The
boson contribution is

F~x1,x2,0!B5 (
n,m,s,t

S p

4L2l
D 2

^0utr@a~n,n'!a~m,m'!#

3tr@a†~s,s'!a†~ t,t'!#u0&

3Amnste2 iPn
2x12 iPn

1x22 iPm
2x12 iPm

1x2
,

~3.7!

where the sum overn implies sums over bothn andn' , and

Pn
25

m21~2n'p/ l !2

2np/L
and Pn

15
np

L
. ~3.8!

The sums can be converted to integrals in the standard f
ion,

1

L (
n

→ 1

pE dk and
1

l (
n'

→ 1

2pE dk' ,

which can be explicitly evaluated, and we find

F~x1,x2,0!B5
i

2~2p!3
m5S x1

x2D 2
1

x
K5/2

2 ~mx!, ~3.9!

wherex252x2x1. Similarly for the fermions we find
7-4
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FIG. 1. The log-log plot of the correlation functionf [r 5^T11(x)T11(0)&(x2/x1)2(16p3/105)(K3l /A2 i ) vs r ~a! in units whereg
5gYMANcl /2p3/250.10 forK54 andT51 to 9; ~b! in units whereg5gYMANcl /2p3/251 for K55 andT51 to 9.
2

at

a

d

does

le
F~x1,x2,0!F5 (
n,m,s,t

S p

8L2l
D ^0utr@b~n,n'!b~m,m'!#

3tr@b†~s,s'!b†~ t,t'!#u0&~m2n!~s2t !

3e2 iPn
2x12 iPn

1x22 iPm
2x12 iPm

1x2
. ~3.10!

After doing the integrals we obtain

F~x1,x2,0!F5
i

4~2p!3
m5S x1

x2D 2

3
1

x
@K7/2~mx!K3/2~mx!2K5/2

2 ~mx!#.

~3.11!

We can continue to Euclidean space by takingr 5A2x1x2

to be real, and, finally, in the small-r limit we find

S x2

x1D 2

F~x1,x2,0!5
23i

8~2p!2

1

r 6
, ~3.12!

which exhibits the expected 1/r 6 behavior.

IV. CORRELATION FUNCTION IN SDLCQ

Now let us return to the calculation using the bound-st
solution obtained from SDLCQ. It is convenient to write

F~x1,x2,0!5 (
n,m,s,t

S p

2L2l
D 2

^0u
L

p
T~n,m!

3e2 iPop
2 x12 iP1x2 L

p
T~s,t !u0&, ~4.1!

where Pop
2 is the Hamiltonian operator. We again insert

complete set of bound statesua& with light-cone energies
Pa

25(Ma
21P'

2 )/P1 at resolution K ~and thereforeP1

5pK/L) and with total transverse momentumP'

52N'p/ l . We also define
10501
e

uu&5Nu

L

p (
n,m

dn1m,Kdn'1m' ,N'
T~n,m!u0&, ~4.2!

whereNu is a normalization factor such that^uuu&51. It is
straightforward to calculate the normalization, and we fin

1

Nu
2

5
K3

8 S 12
1

K D ~2T11!. ~4.3!

The correlator~4.1! becomes

F~x1,x2,0!5 (
K,N' ,a

S p

2L2l
D 2

e2 iPa
2x12 iP1x2 1

Nu
2

u^uua&u2.

~4.4!

We will calculate the matrix element^uua& at fixed lon-
gitudinal resolutionK and transverse momentumN'50. Be-
cause of transverse boost invariance the matrix element
not contain any explicit dependence onN' . To leading order
in 1/K the explicit dependence of the matrix element onK is
K3; it also contains a factor ofl, the transverse length sca
To separate these dependencies, we writeF as

FIG. 2. Same as Fig. 1~b!, but for g5gYMANcl /2p3/2510.
7-5
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FIG. 3. The large-r limit of the log of the correlation functionf [r 5^T11(x)T11(0)&(x2/x1)2(16p3/105)(K3l /A2 i ) vs 1/T for ~a!
K55 and~b! K56 and for various values of the couplingg5gYMANcl /2p3/2.
-
r
e
t

e
m

u
d

f
in-

and

fore
icle

/

d
r-
t
ll

es
F~x1,x2,0!5
1

2p (
K,N' ,a

1

2L

1

l S pK

L D 3

3e2 iPa
2x12 iP1x2 u^uua&u2

lK 3uNuu2
. ~4.5!

We can now do the sums overK andN' as integrals over
the longitudinal and transverse momentum componentsP1

5pK/L andP'52pN' / l . We obtain

1

A2 i
S x2

x1D 2

F~x1,x2,0!

5(
a

1

2~2p!5/2

Ma
9/2

Ar
K9/2~Mar !

u^uua&u2

lK 3uNuu2
.

~4.6!

In practice, the full sum overa is approximated by a Lanc
zos @18# iteration technique@2# that eliminates the need fo
full diagonalization of the Hamiltonian matrix. For th
present case, the number of iterations required was on
order of 1000.

Looking back at the calculation for the free particle, w
see that there are two independent sums over transverse
mentum, after the contractions are performed. One wo
expect that the transverse dimension is controlled by the
10501
he

o-
ld
i-

mensional scale of the bound state (RB) and therefore the
correlation should scale like 1/r 4RB

2 . However, because o
transverse boost invariance, the matrix element must be
dependent of the difference of the transverse momenta
therefore must scale as 1/r 5RB .

V. NUMERICAL RESULTS

The first important numerical test is the small-r behavior
of the correlator. Physically we expect that at smallr the
bound states should behave as free particles, and there
the correlator should have the behavior of the free part
correlator which goes like 1/r 6. We see in Eq.~4.6! that the
contributions of each of the bound states behaves like 1r 5.
Therefore, to get the 1/r 6 behavior of the free theory, the
bound states must work in concert at smallr. It is clear that
this cannot work all the way down tor 50 in the numerical
calculation. At very smallr the most massive state allowe
by the numerical approximation will dominate, and the co
relator must behave like 1/r 5. To see what happens a
slightly largerr it is useful to consider the behavior at sma
coupling. There, the larger masses go like

Ma.(
i

~ki
'!2

2P1
. ~5.1!

Consequently, as we remove thek' cutoff, i.e., increase the
transverse resolutionT, more and more massive bound stat
FIG. 4. The large-r limit of the correlation functionf [r 5^T11(x)T11(0)&(x2/x1)2(16p3/105)(K3l /A2 i ) vs g5gYMANcl /2p3/2 for
~a! K55 and~b! K56 and for various values of the transverse resolutionT.
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FIG. 5. Critical couplinggcrit

versusAT for ~a! K55 and ~b!
K56.
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will contribute, and the dominant one will take over
smaller and smallerr leading to the expected 1/r 6. This is
exactly what we see happening in Fig. 1 at weak coupl
with longitudinal resolutionK54 and 5.

The correlator converges from below at smallr with in-
creasingT, and in the region20.5< logr<0.5 the plot ofr 5

times the correlator falls like 1/r . In Fig. 2 at resolutionK
55 we see the same behavior for strong couplingg
5gYMANcl /2p3/2510) but now at smallerr (logr.20.5) as
one would expect.

Again at strong coupling we see that the correlator c
verges quickly and from below inT. All indications are that
at smallr the correlators are well approximated by SDLC
converge rapidly, and show the behavior that one would
pect on general physical grounds. This gives us confidenc
go on to investigate the behavior at larger.

The behavior for larger is governed by the massles
states. From earlier work@9,10# on the spectrum of this
theory we know that there are two types of massless sta
At g50 the massless states are a reflection of all the state
the dimensionally reduced theory in 111. In 211 dimen-
sions these states behave asg2M111

2 . We expect therefore
that forg.0 there should be no dependence of the correla
on the transverse momentum cutoffT at larger. In Fig. 1~a!
this behavior is clearly evident.

At all couplings there are exactly massless states wh
are the BPS states of this theory, which has zero cen
charge. These states are destroyed by one superchargeQ2,
and not the other,Q1. From earlier work@9# on the spectrum
we saw that the number of BPS states is independent o
transverse resolution and equal to 2K21. Since these state
are exactly massless at all resolutions, transverse and lo
tudinal convergence of these states cannot be investig
using the spectrum. These states do have a complicated
pendence on the couplingg through their wave function
however. This is a feature so far not encountered in DL
@14#. In previous DLCQ calculations one always looked
the convergence of the spectrum as a measure of the co
gence of the numerical calculation. Here we see that it is
correlator at larger that provides a window to study th
convergence of the wave functions of the BPS states. In
2 we see that the correlator converges from above at larr
as we increaseT.

We also note that the correlator at larger is significantly
smaller than at smallr, particularly at strong coupling. In ou
10501
g

-

,
x-
to

s.
of

r

h
al

he

gi-
ed
de-

er-
e

g.

initial study of the BPS states@10# we found that at strong
coupling the average number of particles in these BPS st
is large. Therefore the two particle components, which
the only components theT11 correlator sees, are small.

The coupling dependence of the large-r limit of the cor-
relator is much more interesting than we would have
pected based on our previous work on the spectrum. To
this behavior we study the large-r behavior of the correlator
at fixedg as a function of the transverse resolutionT and at
fixed T as a function of the couplingg. We see a hint that
something unusual is occurring in Fig. 3. For values of
coupling up to aboutg51 we see the typical rapid conve
gence in the transverse momentum cutoff; however, at la
coupling the convergence appears to deteriorate, and we
that forg55 the correlator is smaller than atg510. We see
this same behavior at bothK55 andK56.2 In Fig. 4 we see
that the correlator does not in fact decrease monotonic
with g but rather has a singularity at a particular value of t
coupling which is a function ofK andT. Beyond the singu-
larity the correlator again appears to behave well.

If we plot the ‘‘critical’’ couplings, at which the correlato
goes to zero, versusAT, as in Fig. 5, we see that they lie o
a straight line, i.e., this coupling is a linear function ofAT in
both cases,K55 and 6. Consequently, the ‘‘critical’’ cou
pling goes to infinity in the transverse continuum limit.
appears as though we have encountered a finite transv
cutoff effect. The most likely conclusion is that our nume
cal calculation of the BPS wave function is only valid fo
g,gcrit(T). While the large-r correlator does converg
above the critical coupling, it is unclear at this time if it ha
any significance. It might have been expected that one wo
need larger and larger transverse resolution to probe
strong coupling region, the occurrence of the singular beh
ior that we see is a surprise, and we have no detailed ex
nation for it at this time. We see no evidence of a singu
behavior at small or intermediater. This indicates, but does
not prove, that our calculations of the massive bound state
valid at all g.

We do not seem to see a region dominated by the mas
bound states, that is, a region wherer is large enough that we

2We do not see this behavior atK54, but it is not unusual for
effects to appear only at a large enough resolution in SDLCQ.
7-7
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see the structure of the bound states but small enough
the correlator is not dominated by the massless states o
theory. Such a region might give us other important inform
tion about this theory.

VI. CONCLUSION

In this work we calculate the correlato
^0uT11(x)T11(0)u0& in N51, SYM theory in 211 dimen-
sion at largeNc in the collinear limit. We find that the free
particle correlator behaves like 1/r 6, in agreement with re-
sults from conformal field theory. The contribution from a
individual bound state is found to behave like 1/r 5, and at
small r such contributions conspire to reproduce the conf
mal field theory result 1/r 6. We do not seem to find an in
termediate region inr where the correlator behaves as 1/r 5,
reflecting the behavior of the individual massive bou
states.

At larger the correlator is dominated by the massless B
states of the theory. We find that as a function ofg the large-
r correlator has a critical value ofg where it abruptly drops
to zero. We have investigated this singular behavior and
that at fixed longitudinal resolution the critical couplin
grows linearly withAT. We conjecture that this critical cou
pling signals the breakdown of SDLCQ at sufficiently stro
coupling at fixed transverse resolution,T. While this might
not be surprising in general, it is surprising that the behav
appears in the BPS wave functions and that we see no sig
this behavior in the massive states. We find that above
critical coupling the correlator still converges but signi
gh

tt.
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n
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n,

10501
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cantly slower. It is unclear at this time if we should atta
any significance to the correlator in this region.

This calculation emphasizes the importance of BPS w
functions which carry important coupling dependence, ev
though the mass eigenvalues are independent of the
pling. We will discuss the spectrum, the wave functions a
associated properties of all the low energy bound state
N51 SYM theory in 211 dimensions in a subsequent pap
@19#.

A number of computational improvements have be
implemented in our code to allow us to make these deta
calculations. The code now fully utilizes the three know
discrete symmetries of the theory, namely supersymme
transverse parityP, Eq. ~2.15!, and theZ2 symmetryS, Eq.
~2.16!. This reduces the dimension of the Hamiltonian mat
by a factor of 8. Other, more efficient storage techniqu
allow us to handle on the order of 2 000 000 states in t
calculation, which has been performed on a single proce
Linux workstation. Our improved storage techniques sho
allow us to expand this calculation to include higher sup
symmetries without a significant expansion of the code
computational power. We remain hopeful that porting to
parallel machine will allow us to tackle problems in full 311
dimensions.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Departm
of Energy.
tt.

ji-

t-
@1# F. Antonuccio, O. Lunin, S. Pinsky, and A. Hashimoto, J. Hi
Energy Phys.07, 029 ~1999!.

@2# J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittmann, Phys. Le
B 482, 409 ~2000!.

@3# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@4# Y. Matsumura, N. Sakai, and T. Sakai, Phys. Rev. D52, 2446

~1995!.
@5# A. Hashimoto and I. R. Klebanov, Nucl. Phys.B434, 264

~1995!.
@6# F. Antonuccio, O. Lunin, and S. Pinsky, Phys. Lett. B429, 327

~1998!.
@7# F. Antonuccio, O. Lunin, and S. Pinsky, Phys. Rev. D58,

085009~1998!.
@8# O. Lunin and S. Pinsky, inProceedings of 11th Internationa

Light-Cone School and Workshop: New Directions in Qua
tum Chromodynamics and 12th Nuclear Physics Sum
School and Symposium (NuSS 99), Seoul, Korea, 1999~AIP,
New York, 1999!, p. 140, hep-th/9910222.

@9# P. Haney, J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittman
Phys. Rev. D62, 075002~2000!.
-
er

@10# F. Antonuccio, O. Lunin, and S. Pinsky, Phys. Rev. D59,
085001~1999!.

@11# S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Le
B 428, 105 ~1998!.

@12# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
@13# H. Osborn and A. C. Petkou, Ann. Phys.~N.Y.! 231, 311

~1994!.
@14# S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep.301,

299 ~1998!.
@15# D. Kutasov, Phys. Rev. D48, 4980~1993!.
@16# G. Bhanot, K. Demeterfi, and I. R. Klebanov, Phys. Rev. D48,

4980 ~1993!.
@17# F. Antonuccio, O. Lunin, H.-C. Pauli, S. Pinsky, and S. Tsu

maru, Phys. Rev. D58, 105024~1998!.
@18# C. Lanczos, J. Res. Natl. Bur. Stand.45, 255~1950!; J. Cullum

and R. A. Willoughby,Lanczos Algorithms for Large Symme
ric Eigenvalue Computations~Birkhauser, Boston, 1985!,
Vols. I and II.

@19# J. R. Hiller, S. Pinsky, and U. Trittmann~in preparation!.
7-8


