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Interference of spin-2 self-dual modes
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We study the effects of interference between the self-dual and anti-self-dual massive modes of linearized
Einstein-Chern-Simons topological gravity. The dual models to be used in the interference process are care-
fully analyzed with special emphasis on their propagating spectrum. We identify the opposite dual aspects
necessary for the application of the interference formalism on this model. The soldered theory so obtained
displays explicitly massive modes of the Proca type. It may also be written in a form of the Polyakov-Weigman
identity for a better appreciation of its physical contents.
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I. INTRODUCTION mover mode of the Siegel chiral boson the@®g] and in
some structures of the chiral Wess-Zumino-Wit®iZ\W)
This paper is devoted to the analysis and exploration otheory[27]. Extensions of this mechanism to thrgi9] and
the effects of interference between the self- and anti-self-dudpur [20] space-time dimensions have been examined re-
gravitational modes of the linearized Einstein-Chern-Simongently [19]. In particular, interference in three and four
theory put forward by Aragone and Khoudgld as a spin-2  space-time dimensions in the electromagnetic context was
extension of the self-dual models proposed by Townsendlso the object of a recent investigatifsi.
Pilch, and van Nieuwenhuizef2] many years ago. This The object of this work is to investigate certain structures
study is done in the context of the soldering technifgid]  ©of dualities that, as far as we are aware, have not been ex-
that is dimensionally independent and designed to work witiplored before. We clearly show the possibility to fuse or
distinct manifestations of the dual symmefs;6]. solder the self- and anti-self-dual massive degrees of free-
Duality symmetry is currently the focus of intense studydom of the associated self-dual gravity into an effective ac-
both in physics and mathematifg]. The physical meaning tion that naturally contains the two modes in an explicitly
of this well-appreciated concept is being gradually clarifiedmassive form. Through the soldering operation, the self- and
[8-10]. In particular, the study of electromagnetic duality anti-self-dual field operators are then shown to correspond to
has been revive@8,11,19 and a natural self-dual structure the square root of the massive operator.
identified[13—16. Although initially explored in the context ~ The soldering technique is developed in the next section
of the 4D Maxwell theory to provide an explanation to in the context of the spin-1 three-dimensional self-dual
charge quantizatiofL 7], its scope has been considerably en-theory. Section Il contains our main proposal. There the
larged and extended to other dimensions. The idea of selfoldering formalism is applied to the case of spin-2 self-dual
duality has been extended outside the electromagnetic co@ravity generating a new and interesting result. We discuss
text and to all space-time dimensions, both even and odd. Ifhe outcome of our studies in the last section.
the context of the latter, self-dual models in three space-time
dimensions have been studied and their mathematical struc- Il. SOLDERING OF THE SPIN-1 SELF-DUAL MODES
ture closely related to global aspects of anomalies have been __ . L . .
highlightedy. The practi?:al connepction of self-dual models as This section is devoted to the analysis of the soldering

well as topologically massive models with the investigationPr°¢€ss In the spin-1 self-dual theories. This is done o intro-
of planar physics like quantum Hall effect and high su- duce the method and our notation. The three dimensional

perconductivity is well understood. More important to Ourself—dual model, first discussed by Townsend, Pilch, and van

studies, the extension of these theories to gravity has alslgleuwenhwzer[Z], is given by the following action:

been formulated18]. Much effort has been made in the X 1
analysis of several technical aspects of self-dual actions and SX[f]zf d3x<%eﬂmf“a"f"+§fﬂf” , (oh]
analogies among such actions in different dimensions have
been suggested 9,20.

On the other hand, the role of the soldering formalism a
a quantitative technique is being progressively unveiled an
its consequences in diverse dimensions explored. In two
space-time dimensions a new interpretation for the phenom-
enon of dynamical mass generation, known as the Schwinger
mechanisni21], has been proposed that explores the ability We will discuss now the propagating degrees of freedom
of the soldering formalism to embrace interference effectof this model. To this end we use the Hamiltonian reduction
[22,23. The effects of the interference have also been comtechnique put forward i128] and[29]. A first insight is
puted in a study of the chiral diffeomorphism algebra for thegiven by the equations of motion which, in the absence of
W, [24] and W, [25] gravities, in the separation of the no- sources, is given by

where the signature of the topological terms is dictated by
e sign of y. Here the mass parameter is inserted for
imensional reasons areg;,= 1.

A. Physical spectrum
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X . with
fM_EGMV)\a f . (2) u(y)
From there the following relations may be easily verified: Vi (y) =
a,f#=0,
(O+m?)f,=0, (3 andu(y) being an arbitrary function. This zeromode selects

) ) a true symplectic constraifif9] as
showing that only the transverse sectof pfis a propagating

mode. The counting of degrees of freedom can however be 3 T
put in a more formal presentation. Let us rewrite Ek}.in a Q:f d°y[d;Hol Via(y), 11
2+1 decomposition that reads, after a global change of sign,

where T stands for matrix transposition. A simple algebra

SX[f]zf d3x[agf®—V(f,af)], (4  Shows that

X
where @,b=1,2) and the overdot means time derivative as Q=fo+ ﬁeabaafb- (12)
usual. Our goal is to construct the symplectic matrix in an
iterative fashion. By inspection the symplectic variables areDue to the iterative nature of this procedure, one may inter-

identified as pret this constraint as a secondary symplectic constraint. The
first-iterated action now reads
§{|}:(f0,f1,f2), (5)
and the canonical one-form reads sg(l)[f]zf d3x[alf +ar(f)N—V(f,af)], (13
ah=0,

where\ is the symplectic multiplier and™(f)= (. Notice
X thzﬂwe have now an enlarged set of sy_mplectic variables
akf):meabfa- (6)  —¢&=(&\) and canonical one-form,—a,=(a,,Q). The
first-iterated symplectic matrix defined as
The symplectic potential, playing the role of the Hamiltonian

ity i say(x)  day
density is fgll}),{J}(X’Y): _{|}( ) _{J}(y) (14)
1 X o&gy(y)  6€m(x)
V(f,0f)= = f fr4+ = e pfod?fP. 7
(1,00)= 51,174 1 €anfod D now reads
The symplectic matrix is defined 28] fo fi f, N
]:fofo ]:fofl ]:fofz ]_‘fo)\
sag(x)  da(y) fo
fg?}),{J}(X,y)Z 55{!}(y) _ 5§{J}(X) , (8) f, Ffifo  rfifi rfafy  pfan
{3} {1} f%ll}),{-]}(x’y)zf ffoO ffol ff2f2 ffZ)\ ,
and its value is given by 2 ‘ ‘ ;
N ]:)\ 0 f)\ 1 ]:)\ 2 f)\)\
fo fq fy
o Flofo  Ffofs Flof2 where the new elements are given by
f1fo fifs fifa
A ooy=fa| 710 I Frey Flo\(x,y) = — FMo(x,y) = — S(x—y),
]_‘fzfo ]:fol ]_‘fzfz
2
X
where FIAxy) == FNXy) =5 dy8(x—y),
Flofo(x,y) = Floli(x,y) = F'i'o(x,y) =0, X
FIMxy)=—FNox,y) == 5~ d8(x=Y),
fif| _X i sx—
F ](va) mf 5()( Y) (9) f)\)\(xyy):(). (15)
This operator has an obvious zeromode Since this matrix is now invertible, the associated zeromode
is a trivial one so that the model has no more constraints
3y, 0) _ [28]. The associate Dirac brackets are immediately obtained
f d yﬁ,},{J}(x,y)V{J}(y) 0, (10 taking the inverse elements of E(L4). We are now in a

105013-2



INTERFERENCE OF SPIN-2 SELF-DUAL MODES PHYSICAL REVIEW 638 105013

position to realize the counting of degrees of freedom. Wewhich will be referred to as soldering symmetry. Under such
have three symplectic variablefy( f1, andf,; recall that\ transformations, the Lagrangians change as

is a symplectic multiplierand one constraint(}) resulting

in two phase-space degrees of freedom or one configuration oL.=3(h,)dpas, h,=f,, g,, (21)

space degree of freedom. This result confirms our previoush th di i tric Neith N
Lagrangian analysitEgs. (3)]. where the corresponding antisymmetric Neither currents are

1
B. Effects of interference J(h,)= €”pohﬂiafy’m€#yy5“hv- (22)
It is useful to clarify the meaning of the self-duality in- ] ) ] ) ]
herent in this action. A field dual tb.. is defined as Next we introduce the soldering field coupled with the anti-
" symmetric currents. In the two-dimensional case this was a
e vector. Its natural extension now is the antisymmetric
uzﬁfuvxa f*. (16) second-rank Kalb-Ramond tensor fied,, transforming in
the usual way,

*f

Repeating the dual operation, we find that

6B, ,=d,a,—d (23

po— % p-

*(*fﬂ):%%m&v*fx:fﬂ (17) Then it is easy to see that the modified actions

1
(1) — _ - 3 o
obtained by exploiting Eq.3), thereby validating the defini- Sih,]=S8.[h,] 2J d°xJ57(h,)Byo (24)

tion of the dual field. Combining these results with E2),
we conclude that transform as

- 1
f,=—x*f,. (18 sS=— > j d*x8327B,, (25

Hence, depending on the signaturexgfthe theory will cor- ] o o
respond to a self-dual or an anti-self-dual model. After thisunder Egs(20) and(23). The final modification consists in
brief digression on the definition and meaning of self-dua/@dding a term to ensure gauge invariance of the soldered
components, we start the discussion regarding the effects é9rangian. This is achieved by
their interference. 1

The technique of solderinf] constitutes essentially in S@=s®+ _j d3xBP"Bp,,. (26)
lifting simultaneously the gauging of the dual global symme- 4
try of each c.omp'onent |nto'a' local version for th? comblnedA straightforward algebra shows that the following combina-
system and in this way defining the effective action. It must ion-
be stressed that the fusing process always needs two opposﬁe '
aspects of a sym_metry_to be present. and Fhis_ is indifferent of S«(f,g,B)= S(f)(f)JrS(_z)(g)
the space-time dimension. The crucial point is that the com-

ponents are considered as functions of distinct variables. A 110 5
naive addition of theséanti-) self-dual actions, if considered =S, (H)+S_(9)— 2 d°x
as functions of the same variables, leads to a trivial result. In
the same manner a direct sum of the actions also would not X[B”"{J;U(f)+J;U(g)}+BP"BpU], (27)
lead to anything new. It is exactly the soldering process that ) )
leads to a nontrivial effective action. is invariant under the gauge transformatiq26) and (23).
Let us consider the self-dual and the anti-self-dual modeld he gauging of the soldering symmetry is therefore com-
as plete. To return to a description in terms of the original vari-

ables, the ancillary soldering field is eliminated from Eq.
1 1 (27) by using the equations of motion
S"'[flt]:f dsx(%e’u”)\f“&yf)\-i-if’uf“), 1
— + -
Boo=5[3,0(1)+3p0(9)]- (28)

1 1
— 3y| — vyh 4
S’[g“]_J d X( 2m6"“gﬂa 9 +zg#g“ ' Inserting this solution in Eq27), the final soldered Lagrang-
(29 ian is expressed solely in terms of the currents involving the
original fields
wheref, andg, are the distinct bosonic vector fields. To
effect the soldering we have to consider the gauging of the _ _1 P .
following symmetry: Seri(f,9) =S, (f)+S_(9) 8 d°Xx[J,,(f)+J,,(9)]

8 .= 89,= €,,,50"a°, (20) X[IE7(F)+327(g)]. (29

© upo
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It is now crucial to note that by using the explicit structuresnique put forward if 28] and[29] and briefly discussed for

for the currents, the above Lagrangian is no longer a functiothe spin-1 case in Sec. Il A. Some insight may be obtained

of f, andg, separately, but depends only on the invariantalready at the Lagrangian level allowing us to discuss the

combination (propagating spectrum of this theory. Independent variations
of h,, gives the field equations for the model,

1
A=—=(9,~f,) (30) 1
foom T h*s— ppth= — k@™ g g, (34)
with Taking the divergence and rotational of E84) leads to the
1 2 following expression:
Seii(A,)= | d3 S TR 31
eff( ,u)_ X _Z uv +7 7 ’ ( ) 2
Am=(h"*— p**h)= —20(h*"+h"*)—=26*9"h
where +5’u[(?)\(2h'})\+ h}\V)]

Fr=0,A— 0,A, (32 +aTa\(2h R (@39

is the usual field tensor expressed in terms of the basic entihat only reduces to a Klein-Gordon equation for the sym-
AM: Notice that the effeqnve variable is an invariant _combl-metric, transverse, and traceless secton gf. This gives a
nation (under the soldering transformationsf the original  clear indication of the nonpropagating nature of the antisym-
variables. The soldering mechamsm ha}s preC|ser.fused th@etric sector oh,, . In this case we have(@assive propa-
self- and anti-self-dual symmetries to yield a massive Maxcgation mode(this result was also shown by evaluating the

well theory that accommodates naturally the two degrees ojacuum amplitude in the presence of an external soirbe
freedom corresponding to these symmetries, thus preservinghere the harmonic gauge condition

the degrees of freedom counting throughout its formalism. It

is also interesting to observe that the noninvariant nature of d,(h#*"—n*"h)=0 (36)
the basic dual components under the ordinary gauge trans-

formations has been preserved. Were the original systenis naturally satisfied.

pure gauge invariant systerfikke Maxwell-Chern-Simons To confirm the prediction above we develop next a ca-
the resulting soldered action would correspond to thenonical analysis of this theory using the symplectic approach
Stueckelberg-Proca actidb]. [28,29. This will permit a proper counting of the propagat-
ing degrees of freedom. Let us start writing E§3) in a
Ill. SOLDERING OF THE GRAVITATIONAL SELF-DUAL 2+1 decomposition,
MODELS

1
Now we pass to consider the higher spin case. Let us szf dgxﬁ[_ZhOO(Xfijaith_"mhii)
begin by examining the following first-order Lagrangian,
which describes a spin-2 self-dual model M= (2+1) + 2N x € 3+ M) — xhiceii e+ xhioeiihio
space-time dimensior4,30],

szf d®x

where h,, is a nonsymmetric second-order tensdr,

+m(h;ihj;—hiih;) ], (37

X « 2N 1 v, 1 2
ome PN ud e — Shu™+5h% (33 where §,j and k=1,2) and the dot means time derivative.
Next we introduce the following redefinitior80]:

=»""h,,, and the mass parameteris introduced on di- n=hoo,
mensional basis. Our convention ig*"=diag(—1,+1,

+1). The first term is the usual Chern-Simons term, whereas N;=hio,
the last two form the Fierz-Pauli mass term. This Lagrangian

is linearized about the dreinbein field,, ase,,=7,, M;=hg;,

+«h,, . It can be showri30] that the signature of deter-

mines the field’s helicity. So we can think 8f. as describ- 1

ing theories of opposite helicities. The equivalence between Hij = 5 (hij +hji),

this self-dual mode(33) and the so-calledinearized topo-

logically massive gravity 18] is shown by means of an as- 1

sociated master actidi]. V= Eeijhij , (38)

A. Physical spectrum where we have separated the symmetHg; Y and antisym-

In this subsection we discuss the physical content of thisnetric (V) parts ofh;; . After this, the action37) assumes
theory. To this end we use the Hamiltonian reduction techthe form

105013-4
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s—fd3 !
X om

_XNieiij_Zn(XﬁijaiNj+Hii)

. 1
_ZXHiJ[5 V- (elkaj+EJkal)]

+2M k(XEI] (9|ij+ me—)(&kV)

—m(H;;Hj; —H;iHj) - 2mVV} (39

H HV
Aoy =Hy| T’ Filt Pl Pyl 7
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7 wm Hp NV
Fono Fpe o FFN o FY
FeroFEt Fa FYOFW

n
Mi

N | FTOFRE Fie AR
v\ FYome By BN R

just Lagrangian multipliers enforcing the constraints
= xeijdiNj+mH; ,

= x€j0iH - MNe— xd, V. (40)

As before we construct the symplectic matrix in an iterative

fashion. Following the prescription d29] we perform a
further redefinition

nﬂ—ﬁ,
Mi— ui, (41)

to obtain the(zeroth-iterategaction

SRR f d3x[a”(€) n+af (&) wt ajf (E)Hij +al (N
—Hol. (42)

Here £&=H;;,N;,V are the symplectic variables amag,(£)
are the canonical one-form defined by

1
a”(&)=—y,

1
V- Z(fikaj+ €ikHki) |,

a’(¢§)=0, (43
and
Ho=2m(H;;H;; —H;iH;;) +2m?V2. (44)
The (zeroth-order symplectic matrix defined d£8,29

dayy(x)  dag(y)
o&ay(y)  6&1y(X)

FY 5y (x.y) = (45)

gives

and

105013-5

nH 1
NY) = Snd(x=y),
X
FN(xy) == —eipdyd(x=y),

X
i In(x y)= E5in6|pr9);§5(X—Y),

FENXY) =8 8(x—y),
A% 1 X
FIxy) == —dio(x=y),
Hn 1
Fij'(xy) == =i o(x—y),
X
]|6Ipa o(X—=y),

|] I(X y)

1
IJ |n(X y)= [26|I5]n+6jl5|n

— €ni9j]6(x=Y),

1
FIxy) == —8;8(x=y),
N X
Fixy)= —e.pa a(xX—y),
NN 1
Fil (X,y):—afnts(x_)’),
]:V/L _K y _
| (x,y)—mﬁ. a(x—y),

1
(%)= 8 8(x =), (46)
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FIxy) = FI(xy)=FNV(x,y)=FF(x,y)=F (x,y)  Where\ is the symplectic multiplier and*(£)=0. Notice

' thzﬁ we have now an enlarged set of symplectic variables
—&=(&,N) and momentaa,—a,=(a,,{2). The first-
iterated symplectic matrix defined as

=7i(x,y)=0,

FN Gy =FNr oGy =FNVx,y) = FV(xy) = FYNxy)

sag(x)  Sagy(y)
= FYV(x,y)=0. (47) ALY (xy)= TR (53)
i) = o ) St

This is a singular matrix. The easiest way of seeing this is
by noticing the presence of a zero mode now reads

Fi (%)

d®y AR 1 (6Y), Vg (y) =0 (48)

f A% {3 . " Hy N v N

with 7 Frno Fom }-mH }-Iy,N FN o Em
v1y) N A
e T e L e
1y _

L T B A i S 2 A bV I
Viy(y)= V'N”(y) , v | FoRr By BN N
Vl (y) N f}\n fl)\,u ]:'l)\H ]:l)\N f)\V ij')\)\
n
V¥(y)

where the new\ elements are given by
whose explicit elements read

VA 1
V() =VI(y)=0, FYNxy) == - 8(x-y),

H 2 AV 1
V.n(y)=ae|nU(y), F (x,y)=55(x—y), (54)

and

1
YNy)=—4 ,
=gy FNxy) = FINxy) = FR ) = FIN(xy) = P x,y)

1 =0,
VV(y)=——u(y). (49
m FAxy)=FLHxy)=Fiy'(xy) =FN(x,y) =0.
Hereu(y) is an arbitrary function satisfying proper boundary (55
conditions. This zero mode signals the presence of another By following the steps above, it can be shown that the
constraint given by corresponding zero mode is trivial, so that there are no more
constraints. It is now a simple task to perform the counting
Q= f A3Vl dr nHATTV, , 50 of de'grees. of freedom in this system. There are six true sym-
YL Hol Vigy(y) 0 plectic variablesi;; , N;, andV; we recall thatp, u, and

) N ) \ are just multipliers and four constraints, ¢, , and ()
where T stands for matrix transposition. A simple algebra otaling two independent phase-space variables or one degree
shows that of freedom as discussed above.

Q=v. (5D B. Effects of interference: Spin 2
Due to the iterative nature of this procedure, one may inter- Next we discuss the meaning of self- and anti-self-duality

pret this constraint as a secondary symplectic constraint iin this model. We define the duality transformation as
complete analogy with Dirac’'s proceduf80]. The first-

i i 1
iterated action now reads *hvi= Eé“aﬁﬂm&ahm- (56)
N : : W Ny o
s )[§]=f d*x[a”(&) n+af (&) it aj(E)H; +a (ON; In order to give a sensible definition for self- and anti-self-
duality, this operation must be idempotent. Indeed we can

+aM(&)N—Hy], (520 show that
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*(*h"#)=h"# (570  then it is possible to find an effective theory invariant by
both transformation$60) and (64),
by using the equations of motion, guaranteeing the existence
of self- and anti-self-dual solutions. Observe that this duality
construction does not depend on consideting as a sym-
metric, transverse, and traceless field. It is valid also for a
nonsymmetrical field. Let us write explicitly the separatedThis action is written solely in terms of the original fields
actions leading to these dual solutions in terms of two disafter the auxiliary field,,, is eliminated by its equations of
tinct and independent variables, motion. In fact, by using the explicit structures for the cur-
rents(62), the effective Lagrangiaf65) is no longer a func-
B 3 B 1 o tion of the individual dual components,, and f,,, but
S+(f)_f d*x ﬁfﬂ 7" udal pr = §fwf “+§f ’ only a combination, invariant under the soldering transfor-
mations(60),

Setr=S{+ S(_l)+f d°xB,,,B"". (65)

(58)
- A== (1= G) (66
1 1 wr = ,u,v_g/u; .
S.(9)= f O = 5 P70, 009~ 59,09 m
1 ) Indeed after some algebra we find

1 N m?
_ZF[}LV])\F mr +7A/.LVAMV ’ (67)

Seff: J dSX
Here S.. represents the self-dual and anti-self-dual theories,

f,, andg,, being their fields, respectively. This separationwhere
will be crucial below, when performing the soldering of

these theories. Note that, since we are interested in propagat- Frop1»=96Ar = pA10 (68)
ing modes, we can safely put both=»*"f,, and g ) ) ) ) _
=7""g,,, equal to zero. is the associated field tensor for the basic endity,. We
Let us discuss next the soldering of the above actionshave succeeded in producing the fusion of self- and anti-self-
Consider the following local transformation: dual massive degrees of freedom into a massive Maxwell-
like theory for a new entityA,,, that naturally contains both
5hfw: €, (60)  massive propagations.

Let us next rewrite our result into two different forms that
with ¢ being an infinitesimal parameter. As noted earlierwill help to further clarify the physical meaning of the sol-
hfwsfw andh,,=g,,. dered action. Firstly we observe that the effective Lagrangian

Under the field transformatiof60), the self- §,) and  (67) can be written in the following factorized form:
anti-self-dual §_) actions transform as

S~ | 0L A04 )] (69
85 = f d3xd,£,9%, (61)
with
where the associated Neither currents are given by 1
QiV(A) =A,U,V:ﬁ( nv)\E;LaB+ 7],41,)\61/01[3) aaAAB' (70)

JV#—+£ raBpvhg R —h
+ —_mE n (96, BN v (62)

In this form it becomes clear that the soldered effective ac-
Although Eq.(60) is not a symmetry transformation for both tion indeed contains both the self- and anti-self-dual solu-

S, andS_, the soldering formalism will enable us to find a tions, but in terms of the gauge invariant fiélg,, . By solv-

nontrivial composite theory, which is invariant by E§0).  ing the equations of motion for E¢69), we get

To proceed, we again make use of an iterative Neither pro- L

cedure. Introducing an auxiliary fiel,, (the soldering _ o N
i X K X Ly JR— + J MmO P
field), which is coupled with the currents,, so as to act as Tun 1™ 5 (Tn €pap Tun€vap) 0 || 170

a counterterm to establish the invariance, we get the follow-

ing iterated Lagrangians, i%(,?weumr 7]‘“’6”")@ A,,=0.
Si_>S(i1): S:— J dsXBwJ«V:’L- (63 It can be appreciated from the above expression that the self-
and anti-self-dual operators may be interpreted as the square-
If we impose the following transformation f@MV: root operators of the massive Maxwell equations very much
like the Dirac operator is interpreted as the square root of the
oB,,=3d,&,, (64)  massive Klein-Gordon operator.
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Finally, let us display the result in terms of a relation thatsymmetric, transverse, and traceless spin-2 mode for the self-
includes individual components through a Polyakov-dual gravity.
Weigman-like relation. Indeed, a simple algebra shows that The appropriate duality transformations have been dis-
closed for both models and have been shown to lead to a
Seff(h_f):Seff(h)+Seff(f)_Zf d3XQ;V(h)QIiV(f)_ self-dual structure. The ideas and notions of the soldering
formalism, were elaborated by considering the self- and anti-
(71) self-dual formulations of the models. In particular the con-
This identity states that the gauge invariant action on thétraint nature of the theory is not modified. Here the solder-
left-hand side can be written in terms of the gauge variantng of second-class self-dual models led to a second-class
components on the right-hand side, but a contact term i®roca-like theory but we had the opportunity to observe that
necessary to restore the symmetry. This is the basic contethie soldering of first-class systems leads to first-class systems
of the (2D) Polyakov-Weigman identity. As our analysis as well. The important point of departure being that the new
shows, such identities will always occur whenever dual asgroup of symmetry is not a mere direct product of the indi-
pects of a symmetry are being soldered to yield an enlargedidual component§24]. The interference between these op-
effective action. In that case it was the chiral symmetry,posite duality aspects has led to a nontrivial theory encom-

while here it is 3D self-duality. passing and extending the symmetries of both aspects in a
single effective theory.
IV. CONCLUSIONS Moreover, the effective soldered theory is naturally pro-

_ . . vided with a discrete set of transformations that swaps the
In this work we studied the effects of interference be-self- and anti-self-dual components. This theory could be

tween the self-dual modes of both the spin-1 vector modefecast in a variety of different forms illuminating the physi-
and the linearized Einstein-Chern-Simons topological gravcal nature of the interference effects.

ity. We reviewed the physical spectrum of these models, first
in a heuristic Lagrangian way and finally at a more formal
presentation using the symplectic Hamiltonian reduction.
The constraints associated with these models were found and
their propagating degrees of freedom were shown to be a This work is partially supported by CAPES, CNPq,
massive transverse field for the spin-1 model and a massivEAPERJ, and FUJB.
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