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Interference of spin-2 self-dual modes
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We study the effects of interference between the self-dual and anti-self-dual massive modes of linearized
Einstein-Chern-Simons topological gravity. The dual models to be used in the interference process are care-
fully analyzed with special emphasis on their propagating spectrum. We identify the opposite dual aspects
necessary for the application of the interference formalism on this model. The soldered theory so obtained
displays explicitly massive modes of the Proca type. It may also be written in a form of the Polyakov-Weigman
identity for a better appreciation of its physical contents.
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I. INTRODUCTION

This paper is devoted to the analysis and exploration
the effects of interference between the self- and anti-self-d
gravitational modes of the linearized Einstein-Chern-Sim
theory put forward by Aragone and Khoudeir@1# as a spin-2
extension of the self-dual models proposed by Townse
Pilch, and van Nieuwenhuizen@2# many years ago. This
study is done in the context of the soldering technique@3,4#
that is dimensionally independent and designed to work w
distinct manifestations of the dual symmetry@5,6#.

Duality symmetry is currently the focus of intense stu
both in physics and mathematics@7#. The physical meaning
of this well-appreciated concept is being gradually clarifi
@8–10#. In particular, the study of electromagnetic dual
has been revived@8,11,12# and a natural self-dual structur
identified@13–16#. Although initially explored in the contex
of the 4D Maxwell theory to provide an explanation
charge quantization@17#, its scope has been considerably e
larged and extended to other dimensions. The idea of s
duality has been extended outside the electromagnetic
text and to all space-time dimensions, both even and odd
the context of the latter, self-dual models in three space-t
dimensions have been studied and their mathematical s
ture closely related to global aspects of anomalies have b
highlighted. The practical connection of self-dual models
well as topologically massive models with the investigati
of planar physics like quantum Hall effect and highTc su-
perconductivity is well understood. More important to o
studies, the extension of these theories to gravity has
been formulated@18#. Much effort has been made in th
analysis of several technical aspects of self-dual actions
analogies among such actions in different dimensions h
been suggested@19,20#.

On the other hand, the role of the soldering formalism
a quantitative technique is being progressively unveiled
its consequences in diverse dimensions explored. In
space-time dimensions a new interpretation for the phen
enon of dynamical mass generation, known as the Schwin
mechanism@21#, has been proposed that explores the abi
of the soldering formalism to embrace interference effe
@22,23#. The effects of the interference have also been co
puted in a study of the chiral diffeomorphism algebra for t
W2 @24# andW3 @25# gravities, in the separation of the no
0556-2821/2001/63~10!/105013~8!/$20.00 63 1050
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mover mode of the Siegel chiral boson theory@26# and in
some structures of the chiral Wess-Zumino-Witten~WZW!
theory @27#. Extensions of this mechanism to three@19# and
four @20# space-time dimensions have been examined
cently @19#. In particular, interference in three and fou
space-time dimensions in the electromagnetic context
also the object of a recent investigation@5#.

The object of this work is to investigate certain structur
of dualities that, as far as we are aware, have not been
plored before. We clearly show the possibility to fuse
solder the self- and anti-self-dual massive degrees of f
dom of the associated self-dual gravity into an effective
tion that naturally contains the two modes in an explici
massive form. Through the soldering operation, the self-
anti-self-dual field operators are then shown to correspon
the square root of the massive operator.

The soldering technique is developed in the next sec
in the context of the spin-1 three-dimensional self-du
theory. Section III contains our main proposal. There
soldering formalism is applied to the case of spin-2 self-d
gravity generating a new and interesting result. We disc
the outcome of our studies in the last section.

II. SOLDERING OF THE SPIN-1 SELF-DUAL MODES

This section is devoted to the analysis of the solder
process in the spin-1 self-dual theories. This is done to in
duce the method and our notation. The three dimensio
self-dual model, first discussed by Townsend, Pilch, and
Nieuwenhuizen@2#, is given by the following action:

Sx@ f #5E d3xS x

2m
emnl f m]n f l1

1

2
f m f mD , ~1!

where the signature of the topological terms is dictated
the sign ofx. Here the mass parameterm is inserted for
dimensional reasons ande01251.

A. Physical spectrum

We will discuss now the propagating degrees of freed
of this model. To this end we use the Hamiltonian reduct
technique put forward in@28# and @29#. A first insight is
given by the equations of motion which, in the absence
sources, is given by
©2001 The American Physical Society13-1
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f m5
x

m
emnl]n f l. ~2!

From there the following relations may be easily verified

]m f m50,

~h1m2! f m50, ~3!

showing that only the transverse sector off m is a propagating
mode. The counting of degrees of freedom can howeve
put in a more formal presentation. Let us rewrite Eq.~1! in a
211 decomposition that reads, after a global change of s

Sx@ f #5E d3x@ab
f ḟ b2V~ f ,] f !#, ~4!

where (a,b51,2) and the overdot means time derivative
usual. Our goal is to construct the symplectic matrix in
iterative fashion. By inspection the symplectic variables
identified as

j$I %5~ f 0 , f 1 , f 2!, ~5!

and the canonical one-form reads

a0
f 50,

ab
f 5

x

2m
eabf a. ~6!

The symplectic potential, playing the role of the Hamiltoni
density is

V~ f ,] f !5
1

2
f m f m1

x

m
eabf 0]af b. ~7!

The symplectic matrix is defined by@28#

F$I %,$J%
(0) ~x,y!5

da$I %~x!

dj$J%~y!
2

da$J%~y!

dj$I %~x!
, ~8!

and its value is given by

F$I %,$J%
(0) ~x,y!5

f 0 f 1 f 2

f 0

f 1

f 2

S F f 0f 0 F f 0f 1 F f 0f 2

F f 1f 0 F f 1f 1 F f 1f 2

F f 2f 0 F f 2f 1 F f 2f 2
D ,

where

F f 0f 0~x,y!5F f 0f j~x,y!5F f j f 0~x,y!50,

F f i f j~x,y!5
x

m
e i j d~x2y!. ~9!

This operator has an obvious zeromode

E d3yF$I %,$J%
(0) ~x,y!V$J%~y!50, ~10!
10501
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with

V$J%~y!5S u~y!

0

0
D

andu(y) being an arbitrary function. This zeromode sele
a true symplectic constraint@29# as

V5E d3y@]$J%H0#TV$J%~y!, ~11!

where T stands for matrix transposition. A simple algeb
shows that

V5 f 01
x

2m
eab]

af b. ~12!

Due to the iterative nature of this procedure, one may in
pret this constraint as a secondary symplectic constraint.
first-iterated action now reads

Sx
(1)@ f #5E d3x@ai

f ḟ i1al~ f !l̇2V~ f ,] f !#, ~13!

wherel is the symplectic multiplier andal( f )5V. Notice
that we have now an enlarged set of symplectic variablej

→ j̄5(j,l) and canonical one-formaI→āI5(aI ,V). The
first-iterated symplectic matrix defined as

F$I %,$J%
(1) ~x,y!5

dā$I %~x!

dj̄$J%~y!
2

dā$J%~y!

dj̄$I %~x!
~14!

now reads

F$I %,$J%
(1) ~x,y!5

f 0 f 1 f 2 l

f 0

f 1

f 2

l
S F f 0f 0 F f 0f 1 F f 0f 2 F f 0l

F f 1f 0 F f 1f 1 F f 1f 2 F f 1l

F f 2f 0 F f 2f 1 F f 2f 2 F f 2l

F l f 0 F l f 1 F l f 2 F ll
D ,

where the new elements are given by

F f 0l~x,y!52F l f 0~x,y!52d~x2y!,

F f 1l~x,y!52F l f 1~x,y!5
x

2m
]yd~x2y!,

F f 2l~x,y!52F l f 2~x,y!52
x

2m
]xd~x2y!,

F ll~x,y!50. ~15!

Since this matrix is now invertible, the associated zeromo
is a trivial one so that the model has no more constra
@28#. The associate Dirac brackets are immediately obtai
taking the inverse elements of Eq.~14!. We are now in a
3-2
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INTERFERENCE OF SPIN-2 SELF-DUAL MODES PHYSICAL REVIEW D63 105013
position to realize the counting of degrees of freedom.
have three symplectic variables (f 0 , f 1, and f 2; recall thatl
is a symplectic multiplier! and one constraint (V) resulting
in two phase-space degrees of freedom or one configura
space degree of freedom. This result confirms our previ
Lagrangian analysis@Eqs.~3!#.

B. Effects of interference

It is useful to clarify the meaning of the self-duality in
herent in this action. A field dual tof m is defined as

* f m5
1

m
emnl]n f l. ~16!

Repeating the dual operation, we find that

* ~* f m!5
1

m
emnl]n* f l5 f m ~17!

obtained by exploiting Eq.~3!, thereby validating the defini
tion of the dual field. Combining these results with Eq.~2!,
we conclude that

f m52x* f m . ~18!

Hence, depending on the signature ofx, the theory will cor-
respond to a self-dual or an anti-self-dual model. After t
brief digression on the definition and meaning of self-d
components, we start the discussion regarding the effec
their interference.

The technique of soldering@3# constitutes essentially in
lifting simultaneously the gauging of the dual global symm
try of each component into a local version for the combin
system and in this way defining the effective action. It m
be stressed that the fusing process always needs two opp
aspects of a symmetry to be present and this is indifferen
the space-time dimension. The crucial point is that the co
ponents are considered as functions of distinct variables
naive addition of these~anti-! self-dual actions, if considere
as functions of the same variables, leads to a trivial resul
the same manner a direct sum of the actions also would
lead to anything new. It is exactly the soldering process t
leads to a nontrivial effective action.

Let us consider the self-dual and the anti-self-dual mod
as

S1@ f m#5E d3xS 1

2m
emnl f m]n f l1

1

2
f m f mD ,

S2@gm#5E d3xS 2
1

2m
emnlgm]ngl1

1

2
gmgmD ,

~19!

where f m and gm are the distinct bosonic vector fields. T
effect the soldering we have to consider the gauging of
following symmetry:

d f m5dgm5emrs]ras, ~20!
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which will be referred to as soldering symmetry. Under su
transformations, the Lagrangians change as

dL65J6
rs~hm!]ras , hm5 f m , gm , ~21!

where the corresponding antisymmetric Neither currents

J6
rs~hm!5emrshm6

1

m
egrsemng]mhn. ~22!

Next we introduce the soldering field coupled with the an
symmetric currents. In the two-dimensional case this wa
vector. Its natural extension now is the antisymmet
second-rank Kalb-Ramond tensor fieldBrs transforming in
the usual way,

dBrs5]ras2]sar . ~23!

Then it is easy to see that the modified actions

S6
(1)@hm#5S6@hm#2

1

2E d3xJ6
rs~hm!Brs ~24!

transform as

dS6
(1)52

1

2E d3xdJ6
rsBrs ~25!

under Eqs.~20! and ~23!. The final modification consists in
adding a term to ensure gauge invariance of the solde
Lagrangian. This is achieved by

S6
(2)5S6

(1)1
1

4E d3xBrsBrs . ~26!

A straightforward algebra shows that the following combin
tion:

SS~ f ,g,B!5S1
(2)~ f !1S2

(2)~g!

5S1~ f !1S2~g!2
1

2E d3x

3@Brs$Jrs
1 ~ f !1Jrs

2 ~g!%1BrsBrs#, ~27!

is invariant under the gauge transformations~20! and ~23!.
The gauging of the soldering symmetry is therefore co
plete. To return to a description in terms of the original va
ables, the ancillary soldering field is eliminated from E
~27! by using the equations of motion

Brs5
1

2
@Jrs

1 ~ f !1Jrs
2 ~g!#. ~28!

Inserting this solution in Eq.~27!, the final soldered Lagrang
ian is expressed solely in terms of the currents involving
original fields

Se f f~ f ,g!5S1~ f !1S2~g!2
1

8E d3x@Jrs
1 ~ f !1Jrs

2 ~g!#

3@J1
rs~ f !1J2

rs~g!#. ~29!
3-3
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It is now crucial to note that by using the explicit structur
for the currents, the above Lagrangian is no longer a func
of f m and gm separately, but depends only on the invaria
combination

Am5
1

A2m
~gm2 f m! ~30!

with

Se f f~Am!5E d3xF2
1

4
FmnFmn1

m2

2
AmAmG , ~31!

where

Fmn5]mAn2]nAm ~32!

is the usual field tensor expressed in terms of the basic e
Am . Notice that the effective variable is an invariant com
nation ~under the soldering transformations! of the original
variables. The soldering mechanism has precisely fused
self- and anti-self-dual symmetries to yield a massive M
well theory that accommodates naturally the two degree
freedom corresponding to these symmetries, thus preser
the degrees of freedom counting throughout its formalism
is also interesting to observe that the noninvariant natur
the basic dual components under the ordinary gauge tr
formations has been preserved. Were the original syst
pure gauge invariant systems~like Maxwell-Chern-Simons!,
the resulting soldered action would correspond to
Stueckelberg-Proca action@5#.

III. SOLDERING OF THE GRAVITATIONAL SELF-DUAL
MODELS

Now we pass to consider the higher spin case. Let
begin by examining the following first-order Lagrangia
which describes a spin-2 self-dual model inD5(211)
space-time dimensions@1,30#,

Sx5E d3xF x

2m
emabhnlhmn]ahbl2

1

2
hmnhnm1

1

2
h2G , ~33!

where hmn is a nonsymmetric second-order tensor,h
[hmnhmn , and the mass parameterm is introduced on di-
mensional basis. Our convention ishmn5diag(21,11,
11). The first term is the usual Chern-Simons term, wher
the last two form the Fierz-Pauli mass term. This Lagrang
is linearized about the dreinbein fieldemn as emn5hmn

1khmn . It can be shown@30# that the signature ofx deter-
mines the field’s helicity. So we can think ofS6 as describ-
ing theories of opposite helicities. The equivalence betw
this self-dual model~33! and the so-called~linearized! topo-
logically massive gravity@18# is shown by means of an as
sociated master action@1#.

A. Physical spectrum

In this subsection we discuss the physical content of
theory. To this end we use the Hamiltonian reduction te
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nique put forward in@28# and @29# and briefly discussed fo
the spin-1 case in Sec. II A. Some insight may be obtain
already at the Lagrangian level allowing us to discuss
~propagating! spectrum of this theory. Independent variatio
of hmn gives the field equations for the model,

hnm2hmnh5
1

m
emabhnl]ahbl . ~34!

Taking the divergence and rotational of Eq.~34! leads to the
following expression:

4m2~hnm2hmnh!522h~hmn1hnm!22]m]nh

1]m@]l~2hnl1hln!#

1]n@]l~2hml1hlm!# ~35!

that only reduces to a Klein-Gordon equation for the sy
metric, transverse, and traceless sector ofhmn . This gives a
clear indication of the nonpropagating nature of the antisy
metric sector ofhmn . In this case we have a~massive! propa-
gation mode~this result was also shown by evaluating t
vacuum amplitude in the presence of an external source@1#!
where the harmonic gauge condition

]m~hmn2hmnh!50 ~36!

is naturally satisfied.
To confirm the prediction above we develop next a c

nonical analysis of this theory using the symplectic appro
@28,29#. This will permit a proper counting of the propaga
ing degrees of freedom. Let us start writing Eq.~33! in a
211 decomposition,

Sx5E d3x
1

2m
@22h00~xe i j ] ihj 01mhii !

12h0k~xe i j ] ihjk1mhk0!2xhike i j ḣ jk1xhi0e i j ḣ j 0

1m~hii hj j 2hi j hji !#, ~37!

where (i , j and k51,2) and the dot means time derivativ
Next we introduce the following redefinition@30#:

n5h00,

Ni5hi0 ,

Mi5h0i ,

Hi j 5
1

2
~hi j 1hji !,

V5
1

2
e i j hi j , ~38!

where we have separated the symmetric (Hi j ) and antisym-
metric (V) parts ofhi j . After this, the action~37! assumes
the form
3-4
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Sx5E d3x
1

2m F22xḢ i j H d i j V2
1

4
~e ikHk j1e jkHki!J

2xṄie i j Nj22n~xe i j ] iNj1Hii !

12Mk~xe i j ] iH jk1mNk2x]kV!

2m~Hi j Hi j 2Hii H j j !22mVVG . ~39!

Notice thatn and Mk are not true dynamical variables b
just Lagrangian multipliers enforcing the constraints

c[xe i j ] iNj1mHii ,

ck[xe i j ] iH jk1mNk2x]kV. ~40!

As before we construct the symplectic matrix in an iterat
fashion. Following the prescription of@29# we perform a
further redefinition

n→2ḣ,

Mi→ṁ i , ~41!

to obtain the~zeroth-iterated! action

Sx
(0)@j#5E d3x@ah~j!ḣ1ak

m~j!ṁk1ai j
H~j!Ḣ i j 1ai

N~j!Ṅi

2H0#. ~42!

Here j5Hi j ,Ni ,V are the symplectic variables anda$I %(j)
are the canonical one-form defined by

ah~j!5
1

m
c,

ak
m~j!5

1

m
ck ,

ai j
H~j!5

2x

m Fd i j V2
1

4
~e ikHk j1e jkHki!G ,

ai
N~j!5

2x

2m
e i j Nj ,

aV~j!50, ~43!

and

H052m~Hi j Hi j 2Hii H j j !12m2V2. ~44!

The ~zeroth-order! symplectic matrix defined as@28,29#

F$I %,$J%
(0) ~x,y!5

da$I %~x!

dj$J%~y!
2

da$J%~y!

dj$I %~x!
~45!

gives
10501
F$I %,$J%
(0) ~x,y!5

h m l Hln Nl V

h

m i

Hi j

Ni

V

S F hh F l
hm F ln

hH F l
hN F l

hV

F i
mh F i ,l

mm F i ,ln
mH F i ,l

mN F i ,l
mV

F i j
Hh F i j ,l

Hm F i j ,ln
HH F i j ,l

HN F i j
HV

F i
Nh F i ,l

Nm F i ,ln
NH F i ,l

NN F i ,l
NV

F Vh F l
Vm F ln

VH F l
VN F l

VV

D ,

where the nonvanishing matrix elements read

F ln
hH~x,y!5

1

m
d lnd~x2y!,

F l
hN~x,y!52

x

m
e lp]p

xd~x2y!,

F i ,ln
mH ~x,y!52

x

m
d ine lp]p

xd~x2y!,

F i ,l
mN~x,y!5d i l d~x2y!,

F i
mV~x,y!52

1

m
] i

xd~x2y!,

F i j
Hh~x,y!52

1

m
d i j d~x2y!,

F i j ,l
Hm~x,y!5

x

m
d j l e ip]p

yd~x2y!,

F i j ,ln
HH ~x,y!5

1

4m
@2e i l d jn1e j l d in

2enid l j #d~x2y!,

F i j
HV~x,y!52

1

m
d i j d~x2y!,

F i
Nh~x,y!5

x

m
e ip]p

yd~x2y!,

F i ,l
NN~x,y!52

1

m
e i l d~x2y!,

F l
Vm~x,y!5

x

m
] l

yd~x2y!,

F ln
VH~x,y!5

1

m
d lnd~x2y!, ~46!

and
3-5
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F hh~x,y!5F l
hm~x,y!5F hV~x,y!5F i

mh~x,y!5F i ,l
mm~x,y!

5F i j ,l
HN~x,y!50,

F i ,l
Nm~x,y!5F i ,ln

NH~x,y!5F i
NV~x,y!5F Vh~x,y!5F l

VN~x,y!

5F VV~x,y!50. ~47!

This is a singular matrix. The easiest way of seeing thi
by noticing the presence of a zero mode

E d3yF$I %,$J%
(0) ~x,y!,V$J%~y!50 ~48!

with

V$J%~y!5S V h~y!

V l
m~y!

V ln
H ~y!

V l
N~y!

V V~y!

D ,

whose explicit elements read

V h~y!5V l
m~y!50,

V ln
H ~y!5

2

m
e lnu~y!,

V l
N~y!5

1

m2
] lu~y!,

V V~y!52
1

m
u~y!. ~49!

Hereu(y) is an arbitrary function satisfying proper bounda
conditions. This zero mode signals the presence of ano
constraint given by

V5E d3y@]$J%H0#TV$J%~y!, ~50!

where T stands for matrix transposition. A simple algeb
shows that

V5V. ~51!

Due to the iterative nature of this procedure, one may in
pret this constraint as a secondary symplectic constrain
complete analogy with Dirac’s procedure@30#. The first-
iterated action now reads

Sx
(1)@j#5E d3x@ah~j!ḣ1ak

m~j!ṁk1ai j
H~j!Ḣ i j 1ai

N~j!Ṅi

1al~j!l̇2H0#, ~52!
10501
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wherel is the symplectic multiplier andal(j)5V. Notice
that we have now an enlarged set of symplectic variablej

→ j̄5(j,l) and momenta aI→āI5(aI ,V). The first-
iterated symplectic matrix defined as

F$I %,$J%
(1) ~x,y!5

dā$I %~x!

dj̄$J%~y!
2

dā$J%~y!

dj̄$I %~x!
~53!

now reads

F$I %,$J%
(1) ~x,y!

5

h m l Hln Nl V l

h

m i

Hi j

Ni

V

l

S F hh F l
hm F ln

hH F l
hN F hV F hl

F i
mh F i ,l

mm F i ,ln
mH F i ,l

mN F i
mV F i

ml

F i j
Hh F i j ,l

Hm F i j ,ln
HH F i j ,l

HN F i j
HV F i j

Hl

F i
Nh F i ,l

Nm F i ,ln
NH F i ,l

NN F i
NV F i

Nl

F Vh F l
Vm F ln

VH F l
VN F VV F Vl

F lh F l
lm F ln

lH F l
lN F lV F ll

D ,

where the newl elements are given by

F Vl~x,y!52
1

m
d~x2y!,

F lV~x,y!5
1

m
d~x2y!, ~54!

and

F hl~x,y!5F i
ml~x,y!5F i j

Hl~x,y!5F i
Nl~x,y!5F ll~x,y!

50,

F lh~x,y!5F l
lm~x,y!5F ln

lH~x,y!5F l
lN~x,y!50.

~55!

By following the steps above, it can be shown that t
corresponding zero mode is trivial, so that there are no m
constraints. It is now a simple task to perform the count
of degrees of freedom in this system. There are six true s
plectic variables (Hi j , Ni , andV; we recall thath, mk , and
l are just multipliers! and four constraints (c,ck , andV)
totaling two independent phase-space variables or one de
of freedom as discussed above.

B. Effects of interference: Spin 2

Next we discuss the meaning of self- and anti-self-dua
in this model. We define the duality transformation as

!hnm[
1

m
emabhnl]ahbl . ~56!

In order to give a sensible definition for self- and anti-se
duality, this operation must be idempotent. Indeed we
show that
3-6
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!~ !hnm!5hnm ~57!

by using the equations of motion, guaranteeing the existe
of self- and anti-self-dual solutions. Observe that this dua
construction does not depend on consideringhmn as a sym-
metric, transverse, and traceless field. It is valid also fo
nonsymmetrical field. Let us write explicitly the separat
actions leading to these dual solutions in terms of two d
tinct and independent variables,

S1~ f !5E d3xF 1

2m
emabhnl f mn]a f bl2

1

2
f mn f nm1

1

2
f 2G ,
~58!

S2~g!5E d3xF2
1

2m
emabhnlgmn]agbl2

1

2
gmngnm

1
1

2
g2G . ~59!

HereS6 represents the self-dual and anti-self-dual theor
f mn andgmn being their fields, respectively. This separati
will be crucial below, when performing the soldering
these theories. Note that, since we are interested in propa
ing modes, we can safely put bothf [hmn f mn and g
[hmngmn equal to zero.

Let us discuss next the soldering of the above actio
Consider the following local transformation:

dhmn
6 5]mjn ~60!

with j being an infinitesimal parameter. As noted earl
hmn

1 [ f mn andhmn
2 [gmn .

Under the field transformation~60!, the self- (S1) and
anti-self-dual (S2) actions transform as

dS65E d3x]mjnJ6
nm , ~61!

where the associated Neither currents are given by

J6
nm56

1

m
emabhnl]ahbl2hnm . ~62!

Although Eq.~60! is not a symmetry transformation for bot
S1 andS2 , the soldering formalism will enable us to find
nontrivial composite theory, which is invariant by Eq.~60!.
To proceed, we again make use of an iterative Neither p
cedure. Introducing an auxiliary fieldBmn ~the soldering
field!, which is coupled with the currentsJmn

6 so as to act as
a counterterm to establish the invariance, we get the follo
ing iterated Lagrangians,

S6→S6
(1)5S62E d3xBmnJ6

nm . ~63!

If we impose the following transformation forBmn :

dBmn5]mjn , ~64!
10501
ce
y
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then it is possible to find an effective theory invariant
both transformations~60! and ~64!,

Se f f5S1
(1)1S2

(1)1E d3xBmnBnm. ~65!

This action is written solely in terms of the original field
after the auxiliary fieldBmn is eliminated by its equations o
motion. In fact, by using the explicit structures for the cu
rents~62!, the effective Lagrangian~65! is no longer a func-
tion of the individual dual componentshmn and f mn , but
only a combination, invariant under the soldering transf
mations~60!,

Amn5
1

m
~ f mn2gmn!. ~66!

Indeed after some algebra we find

Se f f5E d3xF2
1

4
F [mn]lF [mn]l1

m2

2
AmnAmnG , ~67!

where

F [sr] t5]sAtr2]rAts ~68!

is the associated field tensor for the basic entityAmn . We
have succeeded in producing the fusion of self- and anti-s
dual massive degrees of freedom into a massive Maxw
like theory for a new entityAmn that naturally contains both
massive propagations.

Let us next rewrite our result into two different forms th
will help to further clarify the physical meaning of the so
dered action. Firstly we observe that the effective Lagrang
~67! can be written in the following factorized form:

Se f f5E d3x@Vmn
1 ~A!V2

mn~A!# ~69!

with

Vmn
6 ~A!5Amn7

1

2m
~hnlemab1hmlenab!]aAlb. ~70!

In this form it becomes clear that the soldered effective
tion indeed contains both the self- and anti-self-dual so
tions, but in terms of the gauge invariant fieldAmn . By solv-
ing the equations of motion for Eq.~69!, we get

Fhmlhnb7
1

2m
~hnlemab1hmlenab!]aGFhmshlr

6
1

2m
~hlsemgr1hmselgr!]gGArs50.

It can be appreciated from the above expression that the
and anti-self-dual operators may be interpreted as the squ
root operators of the massive Maxwell equations very mu
like the Dirac operator is interpreted as the square root of
massive Klein-Gordon operator.
3-7



ha
ov
tha

th
ian
m
nte
is
as

rg
try

be
od
rav
fir
a

ion
d a
be
siv

elf-

is-
o a
ing
nti-
n-
er-
ass
at

ems
ew
i-

p-
m-
in a

o-
the
be
i-

,

A. ILHA AND C. WOTZASEK PHYSICAL REVIEW D 63 105013
Finally, let us display the result in terms of a relation t
includes individual components through a Polyak
Weigman-like relation. Indeed, a simple algebra shows

Se f f~h2 f !5Se f f~h!1Se f f~ f !22E d3xVmn
1 ~h!V2

mn~ f !.

~71!

This identity states that the gauge invariant action on
left-hand side can be written in terms of the gauge var
components on the right-hand side, but a contact ter
necessary to restore the symmetry. This is the basic co
of the ~2D! Polyakov-Weigman identity. As our analys
shows, such identities will always occur whenever dual
pects of a symmetry are being soldered to yield an enla
effective action. In that case it was the chiral symme
while here it is 3D self-duality.

IV. CONCLUSIONS

In this work we studied the effects of interference
tween the self-dual modes of both the spin-1 vector m
and the linearized Einstein-Chern-Simons topological g
ity. We reviewed the physical spectrum of these models,
in a heuristic Lagrangian way and finally at a more form
presentation using the symplectic Hamiltonian reduct
The constraints associated with these models were foun
their propagating degrees of freedom were shown to
massive transverse field for the spin-1 model and a mas
ys

s,

ra

10501
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symmetric, transverse, and traceless spin-2 mode for the s
dual gravity.

The appropriate duality transformations have been d
closed for both models and have been shown to lead t
self-dual structure. The ideas and notions of the solder
formalism, were elaborated by considering the self- and a
self-dual formulations of the models. In particular the co
straint nature of the theory is not modified. Here the sold
ing of second-class self-dual models led to a second-cl
Proca-like theory but we had the opportunity to observe th
the soldering of first-class systems leads to first-class syst
as well. The important point of departure being that the n
group of symmetry is not a mere direct product of the ind
vidual components@24#. The interference between these o
posite duality aspects has led to a nontrivial theory enco
passing and extending the symmetries of both aspects
single effective theory.

Moreover, the effective soldered theory is naturally pr
vided with a discrete set of transformations that swaps
self- and anti-self-dual components. This theory could
recast in a variety of different forms illuminating the phys
cal nature of the interference effects.
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