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Model for SU(3) vacuum degeneracy using light-cone coordinates
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Working in light-cone coordinates, we study the zero modes and the vacuum in-&)¢(@mensional
SU(3) gauge model. Considering the fields as independent of the transverse variables, we dimensionally
reduce this model to+ 1 dimensions. After introducing an appropri&®(3) basis and gauge conditions, we
extract an adjoint field from the model. Quantization of this adjoint field and field equations lead to two
constrained and two dynamical zero modes. We link the dynamical zero modes to the vacuum by writing down
a Schralinger equation and prove the nondegeneracy ofSh#3) vacuum provided that we neglect the
contribution of constrained zero modes.
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INTRODUCTION that we impose a periodicity conditiop(x ™ =—L) = ¢(x~
=L) for every field ¢.
In this paper, we quantize the pure-gauge sector of QCD We will face the problem of gauge fixing. In Abelian
in 2+ 1 dimensions. It is hoped that this is a step towards thgauge theory, gauge fixing is complicated by the problem of
solution of the real world case, which at present seems to§0nstrained zero mod¢8—11]. When studying non-Abelian

: ; auge theories, we also have to deal with the extra compli-
complicated to tackle. More precisely, we study the vacuunﬁé’aﬂon of dynamical zero modd42,13. These are coming

degeneracy. Wor.kmg W'th.a degenerate vacuum, as is thﬁ“"om the fact that we are working with the nontrivial topol-
case when studying QCD in front form, has always been @4y of 4 hypertorus. Roughly speaking, we have to replace
problem in quantum field theory. Actually, the property of ha light-cone gaugeA*=0 by 9_A*=0 and additional
vacuum triviality in light-cone coordinates should give a so-conditions in the zero-mode sector. With our choice of gauge
lution to that problem. In axiomatic field theory, it can be conditions, we will have to deal with 2 constrained zero
shown that the existence of a probability density and of anodes and 2 dynamical ones. While constrained zero modes
complete set of states implies vacuum triviality. With that[14] preserve the vacuum triviality, as, for example,#f
point of view, proving unicity of the QCD vacuum should theory [15-18, dynamical zero modes are susceptible to
constitute another argument for QCD as a coherent quantugjive rise to vacuum degeneracy.
field theory. In order to simplify calculations, we will make the as-
Some work has already been done in this direction. Ongumption that all fields are independent of transverse vari-
of the most interesting is the study of the vacuum degeneracihbles. This allows us to perform a dimensional reduction.
in a (2+1)-dimensional model foBU(2). This model, de- Moreover, we will not solve the constraints on the 2 con-
veloped by Kalloniatis, can be found in Ref4,2]. The first  strained zero modes in this paper. Hence, we simply neglect
steps towards a generalization including fermionic fieldstheir contribution to the vacuum wave function.
have been performed in R¢B]. The present paper is a gen-  The constraints being linear, this model should not lead to
eralization to theSU(3) case of Kalloniatis’s model. In fact, any spontaneous breaking &U(3) symmetry. Writing
it continues in a natural way the evolution of the study of thedown a Schrdinger equation for the light-cone vacuum, we
QCD vacuum degeneracy in light-cone coordinates. All calwill finally conclude to its triviality.
culations will be performed with fields defined i+2L di- In this paper, we follow the conventions introduced by
mensions but our model will be dimensionally reduced to 1Kogut and Sopef19] by introducingx™ = (1#/2)(x°*+x%).
+1 dimensions. Going from 21 dimensions to 31 re-  We considerx™ as our evolution parameter, while is a
places a second order differential equation with a system dbngitudinal variable.
two coupled equations, complicating all calculations. This paper is structured as follows. In Sec. |, we will write
We use light-cone coordinates to perform this study.down field equations in a gener@lU(N) gauge theory and
These coordinates, introduced by Difd¢in 1949, are usual introduce the scalar adjoint fields. Section Il introduces a
in high-energy physics, due to their natural matching withsuitable choice oSU(3) basis. The notion of zero modes
the light cone. Moreover, it is well known that light-cone and normal modes in DLCQ is introduced in Sec. lIl. Section
coordinates are adapted to the study of the vacuum. In orde¥ sets our gauge conditions and rewrites the fields equa-
to work in a Hamiltonian formalism and to avoid boundary tions. DLCQ being easier in a second quantization formal-
condition problems, we adopt the point of view of dis- ism, Sec. V establishes Fock expansions for the adjoint field.
cretized light-cone quantizatioidLCQ) [5-7]. This means The existence of Gribov copies, leading to the choice of a
fundamental domain, is discussed in Sec. VI. Section VIl is
devoted to the resolution of Gauss’s law which allows us to
*Email address: g.soyez@ulg.ac.be impose conditions on the physical states and to associate
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gquantum numbers with the adjoint field. Sections VIII andwhere Jy;= —i[®,D*®] is called the matter current. The
IX study respectively the impact of constrained and of dy-field ® can be seen as the source of the fialdandA. Eq.
namical zero modes on the theory. We conclude in Sec. X.(6) shows that this coupling occurs through the matter cur-
rent. Although these equations holdS$tJ(N), we only con-
I. SU(3) GAUGE THEORY AND LAGRANGE sider them in the special case $1J(3) which is the QCD
EQUATIONS gauge group.

We consider a gauge vector fiedd* with values insu(N)

and defined id+ 1 dimensions. The covariant derivative is Il SU(3) CONVENTIONS

then given by Having restricted the gauge group $aJ(3), we now fix
our conventions about th®U(3) algebra. In order to sim-
D#=a*+ig[A*,-]. (1) plify the quantization, we will not use the Gell-Mann repre-
] ) sentation. The exact representation for the generators is
As usual, we can define a chromomagnetic tef0t given in Appendix A. That choice of matrices is a new way

The usualSU(N) Yang-Mills Lagrangian can be written tg approach &U(3) gauge model. The matrices constituting
1 1 this representation can be obtained from Gell-Mann matrices
— — “TH(EME )= — — puvEa 2 by transforr_natlons very similar to the ones defining light-
£ 2 r u) 4 2 mv @ cone coordinates. For example, we have

with FAY=F4"72 and FA" = g*AL— 9"AL— g "CALAL . For R 2 1 iy2
convenience, in light-cone coordinates, the Greek indiges A :E()\GM—H)\GM)’ A :E()\GM_”\GM)’
B...., are running ovet and —, while Latin indices take the

values 2,3,..d. Therefore, the stress-energy tensor can be . .
computed. It reads where the GM subscripts refer to Gell-Mann matrices. We

have the same transformations far*(\%) and for (\7,\8).
THY =2 TH(FA<F, ) — gh L. 3) See Apper_1dix A for Qetails and reasons motivating this par-
ticular choice of basis.

Now and in the following, we restrict our model by as-
suming that fields are independent of transverse variables, as [l. ZERO MODES AND NORMAL MODES
done by Kalloniatis in Ref[1] for the SU(2) case. Math-

ematically, this means In order to solve the field equations and to study their

influence over the vacuum structure, we adopt the point of
JAR=0, VYu=+.—2 ... .d Vi=2 ... d. view .o.f DLCQ. This means that we impose Fhe periodicity
: K d @ condition ¢(x~=—L)=¢(x =L) for every field ¢. The

In other words, the field* is assumed to depend only mi ~ 2€r0 mode of such a field is defined by

andx™.

Following a regularization in supersymmetric theories (d)o= (}55 i JL H(x)dx. (®)
[20,21], we introduce the notation 2L J -0

Ar=(AT, A7, AH=(V,AP), In the same way, the normal modes @fare

where the fieldsb' are calledscalar adjoint fields This step n s
is sometimes called “dimensional reduction” because we (D)= Pp=— ¢, 9
are left with a (1+ 1)-dimensional model witld— 1 adjoint
fields. wheren stands for normal. Physically, the zero mafiean

Before writing down fields equations, let us restrict thepe interpreted as the Fourier componentfofiith vanishing
dimension to 2-1 dimensions, reduced to+ll, in such a momentumP™.
way that only one adjoint field® is needed. The Lagrangian

thus becomes IV. GAUGE CONDITIONS

1 We still can use gauge freedom to simplify E¢6) and
=— _ apB @
£ 2 TH(F*F 1) + TH(D*®D,P). (5) (7). Following theSU(2) cas€ 1], we choose the following.
n
A straightforward calculation shows that Euler-Lagrange (1) d-V=0 orV=0. This is the usual light-cone gauge,
equations can be put in the form given that the condition/=A"*=0 cannot be satisfied in
D.F*¥=9J, (6)

1This gauge condition is used, for example, in lattice calculations
D“D,®=0, (7) and to describe light-cone wave functions.
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general. This gauge condition reducésto a zero mode,
depending only onx*.
(2) By performing aSU(3) transformationy can be di-

[ 3=d-03
agonalized and written [Trl—(a +iguvs) ey,

Tg=d_ g’

V(x")=va(x)N3+vg(x")NE. (10) m=(d-—igus) ey’

It is very useful for following developments to introduzg ma=(9_+4% vg+igv8)qo4,
=gLvs/m andzg=gLuvg/ .

a_— —i ’
(3) As in QED or inSU(2), replacing the conditio\* 5= 7 Vs~ igug)es

=0 by 9_A*=0 leaves gauge freedom in the zero-mode . )
7762((9—_"51 v3tigusg) @s,
sector. In this sector, we shall s&g—o andAB— _ ) (15)
(4) We must stress the fact that there is still a residual m=(0_+ % v3—igvg) @,
gauge freedom: the one generated by all transformations o _ o
conserving the diagonal form of. We will see later that ~ Quantization ofps and g is at all levels similar to quan-
these redundancies can be eliminated by imposing conditioriization of a single scalar field. Therefore, the Fock expan-
on physical states. sion for these fields is
Let us see what kind of simplifications on fields equations
are implied by these conditions. First of all, E§) becomes a ”
for ,3=p+ Yy 6 ¢j=—t 0, 2 (anj i(nm/L)x~ +a e|(nqr/L)>< ),
! Var =1 4
—D?A=—gJ}. (11 j=3,8 (16)
On the other hand, foB=—, we have with w,=1/\n. Fori, j=3.8 andk,|=1, the only nonvan-
) ) ) ) ishing commutators are
d,d_A—9 V+ig[A,d_A]l—ig[A,d . V]—gTA,[V,A]]
=gdy,. (12) [ay.al 1= 8qd; - (17)

The case of off-diagonal elements @& is much more
complicated 22,23. Actually, it is easy to see from E¢L5)

at we can group the six off-diagonal componentéahto

ree pairs. Each of these three pairs of fields may be quan-
tized separately and directly deduced from 86(2) case
reated in Ref[1]. We summarize here the steps leading to
he quantization ofp; and ¢,. Given the periodicity condi-
tion, our starting point will of course be a Fourier expansion

This last equation gives the time evolution for the fields
anduvg (or, equivalently,z; and zg). These fields are thus
dynamical zero modes. Rather than solving this equation, w
will considerv; anduvg as simple variables. We will come
back later to Eq(7).

Next, we can consider the stress-energy tensor. We d
duce the Hamiltonian and the longitudinal impulsion opera-
tor from Eq.(3)

L L _ tLi(na/L)x™
P’=f dx’T*’=j dx™ Tr[(d,.V—D_A)?], @1—2 Cpe!"mE (18
—-L —-L

L L .
:f dx*T++=f dx 2 T (D_®)?]. g2=2 Cpe (M, (19
-L -L

where the summation runs ovare 7Z and the fact thatp,

We also introduce the following dimensionless quantities: T ) ) !
= ¢, Is used. Calculating conjugate fields through ELp)

. 4P . 4? and inserting the result into the canonical commutation
K=—-P" and H=—-P". (13)  relatiorf
gL gL
i
V. QUANTIZATION Lo-(X), 7 (Y)]=58(x"=y"), (20)

In this section, we shall quantize the adjoint field, con- i
strained by Eq(7). The field conjugate té is found to be ~ We obtain

m=0_®—ig[®,v\>+vg\8]. (14
) i a . “Note that, in generaklr; and, will have a zero mode due to the
Using OU"SU(3) basis,®= <Pa7\ and _hermltICIty, V\_/e_ get  second term in the covariant derivative. Thus, we may use the full
Pr= 901, P5= <p4, and ;= ‘Pe Equation (14) explicitly canonical commutation relation and not the one restricted to normal
becomes modes as it is the case while quantiziag or ¢g.
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FIG. 1. Functionga) [z], (b) st(z), (c) my(z), and(d) £(2).

1 sgrnn+z3)

1‘: =
[Cm.Col 4m(n+z3) "™ 4mn+z

Som- (21)

All the work reside then in transforming the field devel-
opment in order to bring back usual commutation relation
between creation and destruction operators. The trick is to ©r=
transform the sum over all integers into a sum over half-
integers. Thus, we introducB=7+3={=3,=3,...} and

rewrite Eq.(18) as

ol (mom/L)x A

n
%2~ > e
? Vam  mell \|m+zz—mg|

—i(mam/L)x~ ) (22)

This relation is valid for everyny e H and leads to the com-

mutation relatior{ Ay, Al1= 8y, Sgnm+2zz—my).

PHYSICAL REVIEW D 63 105012

TABLE I. Replacements to perform for obtaining, ¢s5, ¢g,
and g7 from ¢4 and ¢,.

Field Functions

P10 @5 Mg y=Mg=Mg(Z3)— Mg 4= Mo s=Mg[ —(23/2) — Zg]
P2 @y $1=0=0(25) = (4= {s={[ — (25/2) — 23]
Q1 Pp Mg, 1= Mg o= Mg(Z3) — Mg g= Mg 7=Mg[ — (25/2) + 2¢]
@2 @7 01=80=0(25)— {6={7={[—(z3/2) + 2g]

These functions are presented in Fig. 1.

It can easily be checked that they satisfy the following

properties:
Mo(z+1)=my(z)+1,
Mo(—2)=—mo(2),
{(z+1)={(2), (23
{(=2)=-{(2),

1 1
— §<§(Z)<§

Defining

- ~ 1
Pmo=Am, dn=A_, for mzi, (24

we finally have

ei[mo(zs)q-r/L]x’ *° ) B
- 2/2 (um,me,Ze_l<m7r/L)X

N

+vm'2dr':1’zei(mﬂ/L)X7), (25)

wheré up, ,=1/\/m+ {(z3) andv,,=1/m—¢(z3).

Moreover, from

1 if m=3,

sgnm+z=mo)=sgim-<&(z)]=y _ . _
=3

The final step is to kill the unwanted factor sgnfz; ) .
—my) in this commutator. We will of course use the freedom@ direct calculation shows that
related to the choice afy. If [x] denotes the integer part of . .
x, we introduce the following functionisl]: [Bm,2,Pn 2] = [dm 205 2] = Smns (26)
while other commutators vanish.

[X]+1 if x=0,

SI=1 141 i x<o0,

ing fields ¢4, ¢5, ©g, ¢7. Equations(15) teach us that

1 -
Mo(X) = St(X) — > shown in Table I.

quantization:
£(x)=x—mg(x).

“The last property in Eq(23) assures positivity of the arguments

3Introducem=n+m, andA,,,= Cn-m V47| M—mo+23|. of the square roots.
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—i(nm/L)x~ T al(nm/L)x™
e (nm/L) +an’je(77 ) )

_ Wn_
O Jam ™ !

©

2 (um kbm keii(mW/L)Xi

Pk= \/E “~

+ o dh €M7 k=247,

el Mox(7/L) X~

Nl

<P1:<PJ£1
905:‘»01,
(pﬁz()o;!
with
1
Wn:ﬁ,
1
Up k= , k=1,2,45,6,7,
m,k ,7m+§k
1
Vmk=—, k=1,2,45,6,7.
mk Im=¢,

The only non-null commutators, except those involving the
zero modes, are

0

1o
Lakiay j]= o dij
o9
[bm,i ’bn,j]_amnéij ) T
e
Z
T o9_ ta7 —
[dm,i 1dn,j]_5mn5ija e
_ 13 0.6
wherek,=1,2,..., andn,n=3,5, .... 04

VI. BACK TO GAUGE TRANSFORMATIONS 0
0.4
From the quantization results, it can be seen that we are%$
still left with some discrete gauge transformations. These
symmetries are those leaving,={(z3), {4={(—25/2
—2g), and {;={(—z3/2+zg) invariant. Given the property
{(z+1)={(2), the most general form of such a transforma-
tion is

z3

2i—7at a, FIG. 2. Graph for{,, {4, and{; as functions ofz; andzg.

@ Roughly speaking, this situation allows us to choose a

2s—2gt 5+ B, a@Bel. (2D fyndamental domaifi25], for z; and zg, in two different
ways.

The propertymg(z+1)=mg(z)+1 implies a single phase (i) We take 0O<zz<1 and 0O<zg=<1. The domain is

transformation for the adjoint field. The creation and destrucsimple but{, and{; present discontinuities as shown in Fig.

tion operators, and, as a consequence, the Fock vacuum, de

left invariant. These “large gauge transformations” corre- (i) We choose &z;<1 and z3—3<zg<z;+3. This

spond to Gribov copief24]. choice is less “natural” but removes all the discontinuities.
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VII. GAUSS LAW AND THE MATTER CURRENT Ui Ui
. " . 19
We are now in good position for solving the Gauss law o 1 0 gal
(11). Let us start by developing the matter current in Fourier 7@ Fhn 4 ’
series as follows: g 3 ¢
) 3 =T i 1
)= — — —i(nalLX™ = o ‘.
WKO)==7r 2 Idme . k=38, A s,
—17 (pz

‘]k (X)=— el Mok(m/L)x™ 2 J(mye” i(mm/L)x~ k=247,
(28)
J;(X)I 1 e imok(m/L)x” 2 J(m)e” i(mm/L)x~ ’
4L
k=1,5,6.

Using the definition of]
Jr=—i[®,m],

and the structure constants in o8tJ(3) basis, thel com-
ponents can be written as a functions of the fieddand ;.
We obtain, in a straightforward way,

L 1 1
J3 =~ @172 a1+ 5 9aTs— 5 @5y
1 1
T 5P 59176 K

3i

Jg=— 7 (9475~ @574+ Q67— 77T6)s,

. 1 1
Jo =il e3mo— @omst — @sme— — @75 |
S

V2 V2
( Q34— 2@4773+<P87T4 P4TTg
1
Te— — Qg™ ,
‘/2901 6 ‘/2906 1

( P3m7— §<P7773 pgm7t @77y
1

Q15+ _905771) ) (29
S

Y V2

FIG. 3. SU(3) fundamental representations and adjoint field.

expansions, found in the previous section, into these results
will give the matter current as function of creation and de-
struction operators. One can easily understand that the final
result is quite cumbersome. We send the interested reader to
Appendix B for an overview of the explicit development.
Recall that the matter current can be treated as a source
for the A field as shown by the Gauss la{@1). We can
extractA from this Gauss equation. Formally, we may write

1

Unicity of the solution is ensured by periodicity conditions
and by the gauge condltlorﬁsg A8 0. An important result
can already be derived from E@L1). Projecting Eq.(11)
onto A3 and\® gives

2 Az=—gJ; and 9*Ag=—gJly, (3D

which can be directly verified by using the second gauge
condition and the fact that® and\® are commuting. Taking
zero modes on both sides of these equations allows us to
write

1,=33=0 and Y=J; =0.
These constraints can be realized by imposing that the physi-
cal states satisfy

I3lphy9=0 and Y|phys=0. (32

The operators$; et Y will be called isospin and hypercharge,
respectively, in analogy to the quark-parton model. More-
over, we can continue this analogy a little bit further. Writing

(D_®),=(d_+ignwztigévs) @a,

we can map all thep, on two weight diagrams associated
with the 3 and 3representations i8S U(3) (see Fig. 3.

Expandingl; and Y over creation and destruction opera-
tors gives after some algebra

where thes index means that these expressions are symme-

trized in order to preserve hermiticity. We have similar ex-
Inserting the complete Fock

pressions fod; , J. , andJg .

SFor simplicity, we shall omit thév index for the matter current.

Nm:E:LIZ (b:n,me,Z_ d;,zdm,z)

1 T T 1 T T
- E ( bm,4bm,4_ dm,4dm,4) - E ( bm,7bm,7_ dm,7dm,7) )

105012-6
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TABLE Il. Quantum numbers associated with the adjoint field. 1 1 1 1
; + +
1 5¢s i J4_§<P4 ig Js
I3 Y (7_+EU3+igl)8 6_—303—igv8
©1 b} d, 1 0
®2 dj b, -1 0 1 - +
+ = -
o4 d b, : 1 2% ig U
s 0, s -3 -1 7t g vaTiove
Pe b; d; _% 1 1 1 1
¢7 d; b, % -1 S [ o W/
2907 ig . Js 902(97“91)3‘]1
J_— ?Ug"’ 1Qvg
2
Y~ > _(b;,4bm,4_ dL,4dm,4)+(b;,7bm,7_dxq,7dm,7)- _ 1 I _ Mo 36
m=1/2 Py iquat2 == a3, (36)
(33) -—1gv3 Vamg
0s
We can interpret the former relation by associating quan-
tum numbers to the adjoint field components and the ladder i 1 35 1 3
operators. These quantum numbers are given in Table Il. It ®s ig . 4~ Pa ig . 5
can be directly checked that this is consistent with the pre- J_+ ?US_HQUB J_— S U3 19Uus
vious weight diagrams. 1
— P6 |g ‘];r
VIIl. CONSTRAINED ZERO MODES J—+ 53~ igug
We are now able to deduce the constraints on the two zero 1 Mg 4
_mod_esao_,3 andag g. Our starting point will be Eq(7). Hav- _ + @7 i Jo = §a0,8.
ing in mind theSU(2) model, we add a mass term to this g — Ev3+igvg Vamg
equation which becomes 2 05
(37)

DD, ®+ 5@ =0, (34 N . . o
Again, it is, of course, possible to write the constraints in

terms of creation and destruction operators.
remembering that we are working with a dimensionally re- Following Ref.[2], it is also possible to translate the con-
duced (Z+1)-dimensional model. The introduction of a straints into diagrams by introducing vertex and propagators.
mass term may be justified by an unavoidable renormalizaWe will not go into such a tedious task in the present paper.
tion. Although we will not reach that point in this paper, we If we make the assumption that we can renormalize the con-
always have the freedom to set the renormalized mass to zestraints and if we bring back the constrained zero modes to
at the very end. The mass term can be obtained by subtradhe three-particle sector, we should expect a unique solution
ing Tr(u3®?) to the Lagrangian. for these zero modes. Unicity of the solution is enforced by
We will limit our development to the establishment of the the fact that the constraints are linear in the zero modes. That
constraints without entering into their resolution. The trick isshould mean that th8U(3) symmetry is not broken. This
to expand the relation situation differs from thep* theory where we have a cubic
constraint giving rise to spontaneous symmetry breaking.

, These developments are defered to a future paper.
T{((DD, @+ ug®)\))o]=0, j=38, (39

IX. VACUUM AND DYNAMICAL ZERO MODES
which is a direct consequence of the previous equation. Us-
ing the property thatd_f),=0, true for every periodic func-
tion f, and the structure constants, one can bring B§)
back to the form

In this section, we finally reach the aim of this paper,
which is to study the vacuum degeneracy. It is a well known
result that constrained zero modes are related to symmetry
breaking while dynamical zero modes are related to vacuum
degeneracy. In order to emphasize the contribution of the
ig Tr(([A,D_®I\)o) + u2 Tr(dN)=0, j=3,8. two dynamical zero modes; andzg on the vacuum of our

model, we write it as the product of a Fock part and a zero-

mode part. IfQQ) is the vacuum an¢D) is the Fock vacuum,
Expanding these relations on the chos®d(3) basis and which means that it is annihilated by all destruction opera-
using the Gauss la\ll), two constraints are obtained tors, we have

105012-7
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Psi | ' V
pall «s“l' "m"ll *
i | M ! ﬁ\w,“v,g?ﬂn "llllll,lmmv:,',:,,i',.,,,ﬂ/j lﬁ, H6. 4. Potental(.0).

|Q)=[0)®|W(z3,25)), (39 ” 1

(k n 2§2)2
VO 2; (k m)Z
m:2

(m+2)(k—¢5)

+({—44)

where| W y(z3,2g)) depend only on the two dynamical zero

modes. o o 1 K—2m+ ¢,

We are going to write down a Schiimger equation for + (L= 87 |+ E 72 k—m[((k—g 2(m—2,)
|W). Developing the Hamiltonian from E¢13), leads to m=3 k=m+1 2 2

N L5 T RN g)}
PP KrZ2mein 2= 8a) T (L= 8y
H= =473+ 3 wid3a(0 30+ 340k (k)] (k&) meco)
3 n g (M=n+{7—{4)?
+ 2 Wied J8(K) 4(k) + I5(K) Jg(K)] miZe | | (MmEn+ Gt Mg)Z(m=Ca)(n—2y)

0

Aot )2
+ 3 vkd 303100+ 1003001+ 43500.35(K) (m=n={r+ o)

M= G- Mo 2(m+a(n+4y)
1-5 1-6 _ _

R e ] ) (e

{— > {7— 10,

Defining Ho=(0|H|0), we have to solve the equation . .
In this expression, we have developed thgy, vy, and

W, ¢ coefficients in terms of, |, and {,, and introduced
HolWo(23,25)) = Eo| W o(23,2g))- B9 Mo(zs,25) =Moo+ Mg 4+ Mg 7.
In order to solve Eq(39), we shall work with the funda-
ental domain &z;<1, z;—3<zg<z3+3. Performing

Given that a complete treatment of this equation needs .
e change of variables

solution for the constrained zero modes, we shall restrict
ourselves to the normal-mode sector by simply neglecting

the constrained zero-mode contribution. As shown by Kallo- u=2, .
niatis in Ref[2], this contribution is mich smaller than those
; ’ i . =75+ = X

coming from the other terms. A model including the con- V=25t 523, (Uv)e[0.1x[0.1],

strained zero-mode part is left for future work. In such a

case, we can successively fiddandH in terms of the cre- Eq. (39 becomes

ation and destruction operators and then calcutgge After

some straightforward but tedious calculations, we get [_4(55+ (9uﬂv+6’5)+V0(U,v)]‘1’o(U,v)= Eo¥o(u,v).

(41)
&2 (92
Hi=—4——3 +V 40 umerically, we are able to calculate the potentig{u,v
0 5—3—+V,, (40) N Iy ble t Iculate the potentigl

dzz  JZg and thus to solve this equation. The result is shown in Fig. 4.
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FIG. 5. Fundamental stat¥(u,v) and first excited stat&,(u,v).

One can see that, presents discontinuities at the bound- tion, neglecting contribution from the constrained zero
aries of the domaifi Given the form of the potential,, we  modes. Numerical resolution of this equation leads to the
may assimilate it to a two-dimensional square well andconclusion that, under our approximations, g(3) light-
solve. It has a minimum ai=v=0.5. cone vacuum is nondegenerate.

Unfortunately the crossed term 44,4,V (u,v) in EQ. This model is a first step in our quest to reach the QCD
(41) distinguishes our eigenvalue problem from the tradi-case. The remaining work will involve the elimination of the
tional “square well” one. No analytic solution of this equa- approximations of this model: fields independent of the
tion has been found. transverse variable and solution for the constrained zero

Unicity of the minimum of V, suggests us that the modes. If fields are dependant of the transverse variable, we
vacuum is nondegenerate. A numerical diagonalization ohave a full (2+ 1)-dimensional model and we cannot dimen-
Eq. (41) allows us to obtain the wave functioh) and their ~ sionally reduce it to 1 dimensions anymore. A solution of
energy levels. The ground state and the first excited state atbe constraints, even if not exact, should have an impact on
given in Fig. 5. The numerical results for the energy levelsthe vacuum degeneracy, modifying the potential in the
confirm that if we neglect the constrained zero modes, th&chralinger equation.
vacuum is nondegenerate. We then may hope to be able to establish a model in 3

SettingV(u=3,0=3)=0, we haveE,~138.3. This can +1 dimensions. Practically, this introduces two adjoint
be seen as a zero-point energy. More precisely, the physicéields and coupling between these. Such a generalization
zero-point energy is given bygfL/47?)E,. It is the mini-  should again lead to more tedious calculations, especially
mum energy of any physical system described by Lagrangiaduring the quantization of adjoint fields.

(2). The final step is to add quark fields. A

Note that vacuum degeneracy is not definitively impos-(2+ 1)-dimensionaSU(2) model coupled to a fermion field
sible. Renormalization and constraint zero-modes contribuhas been introduced by Tachibaf@. This is, in fact, a
tion should lead to vacuum degeneracy. As shown in Refdifficult application of the Dirac-Bergman quantization
[26], a supersymmetric calculation of this model leads to amethod.

SUSY potential in Eq(40) canceling parts 0¥/, and giving All these points are thus far away from being trivial.
rise to vacuum degeneracy. Some new techniques or approximations are certainly needed
if we want to reach finally the full QCD case.

X. CONCLUSIONS

In this paper, we have seen that, under some assumptions, ACKNOWLEDGMENTS
we were able to study the impact of zero modes on a non-
Abelian theory and especially on its vacuum. As in manypn
light-cone quantization models, we have seen the simplifica].-n
tions coming from the use of creation and annihilation op-
erators.

The aim of this paper was to study vacuum degeneracy.
We thus neglected constrained zero modes and turned to dy- APPENDIX A: SU(3) CONVENTIONS
namical zero modes. We arrived at a Schinger-like equa- This appendix contains a description of the conventions

used for the gauge groupU(3). The generators basis we
used can be defined BIU(N). It is a direct generalization of
8Working with a fundamental domain in which discontinuities are the basis associated with the light-cones studies of the
at the boundaries is more explicit and is easier from a numericabU(2) gauge group. We define the matrices for 1<i,]
point of view. <N and (,j)#(N,N) as

This work was supported by National Fund for Scientific
esearch, Belgium. | would like to thank A. Burnel for guid-
g me during both development and writing of this paper.
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TABLE Ill. Nonvanishing structure constants. 1.
i kRS0 kR0 kR 1'1' """
1 2 3 1 3 4 4 L 6 7 3 -1 L
i _3 N : '
164,12366_1%6784 Gii— 1 (A6)
2 4 6 il 3 7 7 5 8 4 4 r 1 1
2 7 5 -5 4 5 3 1 8 5 5 -1 1
3 1.1 1 4 5 8 2 8 6 6 1 | e
3 2 2 -1 4 7 1 X 8 7 7 41 4
....... 3
i The nonvanishing structure constants’asBown in Table
; 1 2 Oakdok— 1 0ais1dpic1 I I=], . _ _
(A ap= k=1 The boldfaced results in Table Il show that commuting a
. 5.8 Otherwise. npndiagonal matrixki. with a diagonal matri>_< X3 Or \g)
gives a result proportional to; . This property is very usefu
(A1) It 1 | to;. Th T ful
while quantizingSU(3) gauge fields. Mathematically, we
TheseN?— 1 matrices are traceless and linearly independent(.:an put it into the form
Particularly, forN=3 they can be written as i L i i
f'.=0 if i=3,8 andj,k=1,2,45,6,7,j#k.
(A7)
(I 1.
Ai=1 -1 A12=1L
2 ' V2 ’ APPENDIX B: MATTER CURRENT IN SU(3)
We want to show some of the results we arrive at, when
1 we expand components of the matter current in terms of
51 : o 1 |4 creation and annihilation operators.
A= ;oAM= For diagonal components, we have
(A2) ” u u 1
Jg= n bb(m2 ”’2)— bl b
1 . 3 m,n21/2{ mEk Tm2Tn2 g Uy, 2 mAn
2_1 1 8oL 1
A 3 . y A V2 o ’ X(um’4 M)_Eb_‘_ b (Um’7 Un]7)
Upa Umg 2 m7nt Up7 Unz
bt d um,2_ Un2 _E gt um,4_ Ung
7\31=% , )\32_% m+k m.2 Un,2 Um,2 2 "mATnd4 Unsa Umga
1 1 u v v
m7 n,7 m,2
7dn7<v u ”_ nm+k dmzdn,2<v
In analogy with the Gell-Mann matrices and in order to 7 mm7 n.2
simplify index manipulations, we sat'=\1% \2=)\?1 \3 v v v 1
=ML MI=AB A=A AO=A T\, NE=N2 + o2 dIn4dn4 S 22 S
With this convention, we can calculate the structure con- m2 n4 m4
stants andSU(3) metric. Taking as a convention that U7 n7 « Un2 Upa
X ' + 5m+n bm Zdn2 —— :
S . ) . Un7 Umz Un2 Ump2
INA]=fI Kk and T(WN)=261, (A3)
1 Un4 Una
—2bm4dn4(u u ) b 7dn7
we have 4 Tmd
. o Um,7 Un,7)”
ijk — IR NS X -
fllk=2 Tr([ A, ANk (Ad) (Um Un s
G =2 Tr(\'\)). (A5)  and

From the relatlorg”gjk— 5, we deducegj, by simply in-
verting G'.
With the matrices\; introduced before, we find

"We have taken into account the antisymmetry of the structure
constants under permutation of the first two indices.
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u
bl ., ( +U”7) bl (m"‘—mﬂ

Un7 Umz Una Uma

|

The off-diagonal components may be written as the sum of a term depending only on normal modes, and a term with the
zero modes. For example, fdi, the first part is found to be

m+k

- u u u u
_ n m,7 n,7 t m,4 n4
~]8_ E m+k bm 7bn 7( + ) - bm,Abn,4( + )
m,n=1/2 Un7 Unz Una Umg

d;,7dn,7<zl'7+ on ) d Ay 4(Um4+ Un’4>

n7 Um7 Un4a Umga

. an
m+k

Un7 Unz Una Una

bm 7dn 7( -

Un7 Umz7

5k

m+n

) - bm,zldn,4

Unga Uma

- - Un2 Wm3s Um2 Wm3 Un2 Wp, Wm,3
Quk)= > > (——— bl 6% = == —"=|a, 5dm 26K — an 3b Hon
e Wm,3 um, n3 m,29m+n—" Wm3 Um2 n,3Ym,2%m+n" Wm,3 um,2 n,3%m,2Ym+k
o] o]
Um2 Wmg3 Unsa Umz k+mg 5 Ung  Umz
- n3dm 26k+n - bm,7bn,45m+nim —m + +
W3 Um,2 1/_ 2m=12n=1 \Umn7 Un4 04 Mo7 \Um7 Una
u v v
k+m n4 m7| + k+m n4 t k+m
X by 707 48 702 dl Ay a8, 702 T df i 6t moa :
m7n40m—n M4~ Mo7 vm7 Upg/ ™7 MA%Mm—n—mg M7 Um,7 vn4 m.7 *m*”*mo,fmoy

It is interesting to see that the four last terms in this sum are not present$1®) case. They are independent of tag/pe
particles.
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