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Model for SU„3… vacuum degeneracy using light-cone coordinates
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Working in light-cone coordinates, we study the zero modes and the vacuum in a (211)-dimensional
SU(3) gauge model. Considering the fields as independent of the transverse variables, we dimensionally
reduce this model to 111 dimensions. After introducing an appropriateSU(3) basis and gauge conditions, we
extract an adjoint field from the model. Quantization of this adjoint field and field equations lead to two
constrained and two dynamical zero modes. We link the dynamical zero modes to the vacuum by writing down
a Schro¨dinger equation and prove the nondegeneracy of theSU(3) vacuum provided that we neglect the
contribution of constrained zero modes.
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INTRODUCTION

In this paper, we quantize the pure-gauge sector of Q
in 211 dimensions. It is hoped that this is a step towards
solution of the real world case, which at present seems
complicated to tackle. More precisely, we study the vacu
degeneracy. Working with a degenerate vacuum, as is
case when studying QCD in front form, has always bee
problem in quantum field theory. Actually, the property
vacuum triviality in light-cone coordinates should give a s
lution to that problem. In axiomatic field theory, it can b
shown that the existence of a probability density and o
complete set of states implies vacuum triviality. With th
point of view, proving unicity of the QCD vacuum shou
constitute another argument for QCD as a coherent quan
field theory.

Some work has already been done in this direction. O
of the most interesting is the study of the vacuum degene
in a (211)-dimensional model forSU(2). This model, de-
veloped by Kalloniatis, can be found in Refs.@1,2#. The first
steps towards a generalization including fermionic fie
have been performed in Ref.@3#. The present paper is a gen
eralization to theSU(3) case of Kalloniatis’s model. In fact
it continues in a natural way the evolution of the study of t
QCD vacuum degeneracy in light-cone coordinates. All c
culations will be performed with fields defined in 211 di-
mensions but our model will be dimensionally reduced to
11 dimensions. Going from 211 dimensions to 311 re-
places a second order differential equation with a system
two coupled equations, complicating all calculations.

We use light-cone coordinates to perform this stu
These coordinates, introduced by Dirac@4# in 1949, are usua
in high-energy physics, due to their natural matching w
the light cone. Moreover, it is well known that light-con
coordinates are adapted to the study of the vacuum. In o
to work in a Hamiltonian formalism and to avoid bounda
condition problems, we adopt the point of view of di
cretized light-cone quantization~DLCQ! @5–7#. This means
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that we impose a periodicity conditionf(x252L)5f(x2

5L) for every fieldf.
We will face the problem of gauge fixing. In Abelia

gauge theory, gauge fixing is complicated by the problem
constrained zero modes@8–11#. When studying non-Abelian
gauge theories, we also have to deal with the extra com
cation of dynamical zero modes@12,13#. These are coming
from the fact that we are working with the nontrivial topo
ogy of a hypertorus. Roughly speaking, we have to repl
the light-cone gaugeA150 by ]2A150 and additional
conditions in the zero-mode sector. With our choice of gau
conditions, we will have to deal with 2 constrained ze
modes and 2 dynamical ones. While constrained zero mo
@14# preserve the vacuum triviality, as, for example, inf4

theory @15–18#, dynamical zero modes are susceptible
give rise to vacuum degeneracy.

In order to simplify calculations, we will make the as
sumption that all fields are independent of transverse v
ables. This allows us to perform a dimensional reducti
Moreover, we will not solve the constraints on the 2 co
strained zero modes in this paper. Hence, we simply neg
their contribution to the vacuum wave function.

The constraints being linear, this model should not lead
any spontaneous breaking ofSU(3) symmetry. Writing
down a Schro¨dinger equation for the light-cone vacuum, w
will finally conclude to its triviality.

In this paper, we follow the conventions introduced
Kogut and Soper@19# by introducingx65(1/&)(x06x1).
We considerx1 as our evolution parameter, whilex2 is a
longitudinal variable.

This paper is structured as follows. In Sec. I, we will wri
down field equations in a generalSU(N) gauge theory and
introduce the scalar adjoint fields. Section II introduces
suitable choice ofSU(3) basis. The notion of zero mode
and normal modes in DLCQ is introduced in Sec. III. Secti
IV sets our gauge conditions and rewrites the fields eq
tions. DLCQ being easier in a second quantization form
ism, Sec. V establishes Fock expansions for the adjoint fi
The existence of Gribov copies, leading to the choice o
fundamental domain, is discussed in Sec. VI. Section VI
devoted to the resolution of Gauss’s law which allows us
impose conditions on the physical states and to assoc
©2001 The American Physical Society12-1
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GRÉGORY SOYEZ PHYSICAL REVIEW D 63 105012
quantum numbers with the adjoint field. Sections VIII a
IX study respectively the impact of constrained and of d
namical zero modes on the theory. We conclude in Sec.

I. SU„3… GAUGE THEORY AND LAGRANGE
EQUATIONS

We consider a gauge vector fieldAm with values insu(N)
and defined ind11 dimensions. The covariant derivative
then given by

Dm5]m1 ig@Am,•#. ~1!

As usual, we can define a chromomagnetic tensorFmn.
The usualSU(N) Yang-Mills Lagrangian can be written

L52
1

2
Tr~FmnFmn!52

1

4
Fa

mnFmn
a , ~2!

with Fmn5Fa
mnta andFa

mn5]mAa
n2]nAa

m2g fa
bcAb

mAc
n . For

convenience, in light-cone coordinates, the Greek indicea,
b,..., are running over1 and2, while Latin indices take the
values 2,3,...,d. Therefore, the stress-energy tensor can
computed. It reads

Tmn52 Tr~FmkFk
n!2gmnL. ~3!

Now and in the following, we restrict our model by a
suming that fields are independent of transverse variable
done by Kalloniatis in Ref.@1# for the SU(2) case. Math-
ematically, this means

] iA
m50, ;m51,2,2, . . . ,d, ; i 52, . . . ,d. ~4!

In other words, the fieldAm is assumed to depend only onx1

andx2.
Following a regularization in supersymmetric theori

@20,21#, we introduce the notation

Am[~A1,A2,A i !5~V,A,Fi !,

where the fieldsFi are calledscalar adjoint fields. This step
is sometimes called ‘‘dimensional reduction’’ because
are left with a (111)-dimensional model withd21 adjoint
fields.

Before writing down fields equations, let us restrict t
dimension to 211 dimensions, reduced to 111, in such a
way that only one adjoint fieldF is needed. The Lagrangia
thus becomes

L52
1

2
Tr~FabFab!1Tr~DaFDaF!. ~5!

A straightforward calculation shows that Euler-Lagran
equations can be put in the form

DaFab5gJM
b , ~6!

DaDaF50, ~7!
10501
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where JM
a 52 i @F,DaF# is called the matter current. Th

field F can be seen as the source of the fieldsV andA. Eq.
~6! shows that this coupling occurs through the matter c
rent. Although these equations hold inSU(N), we only con-
sider them in the special case ofSU(3) which is the QCD
gauge group.

II. SU„3… CONVENTIONS

Having restricted the gauge group toSU(3), we now fix
our conventions about theSU(3) algebra. In order to sim-
plify the quantization, we will not use the Gell-Mann repr
sentation. The exact representation for the generator
given in Appendix A. That choice of matrices is a new w
to approach aSU(3) gauge model. The matrices constitutin
this representation can be obtained from Gell-Mann matri
by transformations very similar to the ones defining ligh
cone coordinates. For example, we have

l15
1

2&
~lGM

1 1 ilGM
2 !, l25

1

2&
~lGM

1 2 ilGM
2 !,

where the GM subscripts refer to Gell-Mann matrices. W
have the same transformations for (l4,l5) and for (l7,l8).
See Appendix A for details and reasons motivating this p
ticular choice of basis.

III. ZERO MODES AND NORMAL MODES

In order to solve the field equations and to study th
influence over the vacuum structure, we adopt the poin
view of DLCQ. This means that we impose the periodic
condition f(x252L)5f(x25L) for every field f. The
zero mode of such a field is defined by

^f&05f̊[
1

2L E
2L

L

f~x!dx2. ~8!

In the same way, the normal modes off are

^f&n5f
n

[f2f̊, ~9!

wheren stands for normal. Physically, the zero modef̊ can
be interpreted as the Fourier component off with vanishing
momentumP1.

IV. GAUGE CONDITIONS

We still can use gauge freedom to simplify Eqs.~6! and
~7!. Following theSU(2) case@1#, we choose the following.

~1! ]2V50 or V
n

50. This is the usual light-cone gauge1

given that the conditionV5A150 cannot be satisfied in

1This gauge condition is used, for example, in lattice calculatio
and to describe light-cone wave functions.
2-2
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general. This gauge condition reducesV to a zero mode,
depending only onx1.

~2! By performing aSU(3) transformation,V can be di-
agonalized and written

V~x1!5v3~x1!l31v8~x1!l8. ~10!

It is very useful for following developments to introducez3
5gLv3 /p andz85gLv8 /p.

~3! As in QED or inSU(2), replacing the conditionA1

50 by ]2A150 leaves gauge freedom in the zero-mo
sector. In this sector, we shall setÅ350 andÅ850.

~4! We must stress the fact that there is still a resid
gauge freedom: the one generated by all transformat
conserving the diagonal form ofV. We will see later that
these redundancies can be eliminated by imposing condit
on physical states.

Let us see what kind of simplifications on fields equatio
are implied by these conditions. First of all, Eq.~6! becomes
for b51,

2D2
2 A52gJM

1 . ~11!

On the other hand, forb52, we have

]1]2A2]1
2 V1 ig@A,]2A#2 ig@A,]1V#2g2@A,@V,A##

5gJM
2 . ~12!

This last equation gives the time evolution for the fieldsv3
and v8 ~or, equivalently,z3 and z8). These fields are thu
dynamical zero modes. Rather than solving this equation
will consider v3 and v8 as simple variables. We will com
back later to Eq.~7!.

Next, we can consider the stress-energy tensor. We
duce the Hamiltonian and the longitudinal impulsion ope
tor from Eq.~3!

P25E
2L

L

dx2T125E
2L

L

dx2 Tr@~]1V2D2A!2#,

P15E
2L

L

dx2T115E
2L

L

dx22 Tr@~D2F!2#.

We also introduce the following dimensionless quantities

K̂5
4p2

g2L
P1 and Ĥ5

4p2

g2L
P2. ~13!

V. QUANTIZATION

In this section, we shall quantize the adjoint field, co
strained by Eq.~7!. The field conjugate toF is found to be

p5]2F2 ig@F,v3l31v8l8#. ~14!

Using ourSU(3) basis,F5wala, and hermiticity, we get
w25w1

† , w55w4
† , and w75w6

† . Equation ~14! explicitly
becomes
10501
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Hp35]2s3

p85]2w8
,

Hp15~]21 igv3!w1 ,
p25~]22 igv3!w2

,

H p45~]21 ig
2 v31 igv8!w4 ,

p55~]22 ig
2 v32 igv8!w5

,

H p65~]22 ig
2 v31 igv8!w6 ,

p75~]21 ig
2 v32 igv8!w7

. ~15!

Quantization ofw3 andw8 is at all levels similar to quan-
tization of a single scalar field. Therefore, the Fock exp
sion for these fields is

w j5
a0, j

A4p
1 (

n51

`
wn

A4p
~an, je

i ~np/L !x2
1an, j

† ei ~np/L !x2
!,

j 53,8 ~16!

with wn51/An. For i, j 53.8 andk,l>1, the only nonvan-
ishing commutators are

@ak,i ,al , j
† #5dkld i j . ~17!

The case of off-diagonal elements ofF is much more
complicated@22,23#. Actually, it is easy to see from Eq.~15!
that we can group the six off-diagonal components ofF into
three pairs. Each of these three pairs of fields may be qu
tized separately and directly deduced from theSU(2) case
treated in Ref.@1#. We summarize here the steps leading
the quantization ofw1 andw2 . Given the periodicity condi-
tion, our starting point will of course be a Fourier expansi

w15(
n

Cn
†ei ~np/L !x2

, ~18!

w25(
n

Cne2 i ~np/L !x2
, ~19!

where the summation runs overnPZ and the fact thatw2

5w1
† is used. Calculating conjugate fields through Eq.~15!

and inserting the result into the canonical commutat
relation2

@w2~x!,p2~y!#5
i

2
d~x22y2!, ~20!

we obtain

2Note that, in general,p1 andp2 will have a zero mode due to th
second term in the covariant derivative. Thus, we may use the
canonical commutation relation and not the one restricted to nor
modes as it is the case while quantizingw3 or w8 .
2-3



l-
io
s
alf

-

m
f

ng

in-

nts

m

ts

GRÉGORY SOYEZ PHYSICAL REVIEW D 63 105012
@Cm ,Cn
†#5

1

4p~n1z3!
dnm5

sgn~n1z3!

4pun1z3u
dnm . ~21!

All the work reside then in transforming the field deve
opment in order to bring back usual commutation relat
between creation and destruction operators. The trick i
transform the sum over all integers into a sum over h
integers. Thus, we introduceH5Z1 1

2 5$6 1
2 ,6 3

2 ,...% and
rewrite Eq.~18! as3

w25
ei ~m0p/L !x2

A4p
(

mPH

Ãn

Aum1z32m0u
e2 i ~mp/L !x2

. ~22!

This relation is valid for everym0PH and leads to the com
mutation relation@Ãm ,Ãn

†#5dmn sgn(m1z32m0).
The final step is to kill the unwanted factor sgn(m1z3

2m0) in this commutator. We will of course use the freedo
related to the choice ofm0 . If @x# denotes the integer part o
x, we introduce the following functions@1#:

st~x!5H @x#11 if x>0,

@x# if x,0,

m0~x!5st~x!2
1

2
,

z~x!5x2m0~x!.

3Introducem5n1m0 and Ãm5Cm2m0
A4pum2m01z3u.

FIG. 1. Functions~a! @z#, ~b! st(z), ~c! m0(z), and~d! z(z).
10501
n
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These functions are presented in Fig. 1.
It can easily be checked that they satisfy the followi

properties:

m0~z11!5m0~z!11,

m0~2z!52m0~z!,

z~z11!5z~z!, ~23!

z~2z!52z~z!,

2
1

2
,z~z!,

1

2
.

Defining

bm,25Ãm , dm,25Ã2m for m>
1

2
, ~24!

we finally have

w25
ei @m0~z3!p/L#x2

A4p
(

m51/2

`

~um,2bm,2e
2 i ~mp/L !x2

1vm,2dm,2
† ei ~mp/L !x2

!, ~25!

where4 um,251/Am1z(z3) andvm,251/Am2z(z3).
Moreover, from

sgn~m1z2m0!5sgn@m2z~z!#5H 1 if m> 1
2 ,

21 if m<2 1
2

a direct calculation shows that

@bm,2 ,bn,2
† #5@dm,2dn,2

† #5dmn , ~26!

while other commutators vanish.
Our last task in this section is to quantize the four rema

ing fields w4 , w5 , w6 , w7 . Equations~15! teach us that
we may quantize them by performing the replaceme
shown in Table I.

Let us now summarize all informations obtained fro
quantization:

4The last property in Eq.~23! assures positivity of the argumen
of the square roots.

TABLE I. Replacements to perform for obtainingw4 , w5 , w6 ,
andw7 from w1 andw2 .

Field Functions

w1→w5 m0,15m0,2[m0(z3)→m0,45m0,5[m0@2(z3/2)2z8#

w2→w4 z15z2[z(z3)→z45z5[z@2(z3/2)2z8#

w1→w6 m0,15m0,2[m0(z3)→m0,65m0,7[m0@2(z3/2)1z8#

w2→w7 z15z2[z(z3)→z65z7[z@2(z3/2)1z8#
2-4
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w j5
a0, j

A4p
1 (

n51

`
wn

A4p
~an, je

2 i ~np/L !x2
1an, j

† ei ~np/L !x2
!,

j 53,8,

wk5
eim0,k~p/L ! x2

A4p
(

m5
1
2

`

~um,kbm,ke
2 i ~mp/L !x2

1vm,kdm,k
† ei ~mp/L !x2

!, k52,4,7,

w15w2
† ,

w55w4
† ,

w65w7
† ,

with

wn5
1

An
,

um,k5
1

Am1zk

, k51,2,4,5,6,7,

vm,k5
1

Am2zk

, k51,2,4,5,6,7.

The only non-null commutators, except those involving t
zero modes, are

@ak,i ,al , j
† #5dkld i j ,

@bm,i ,bn, j
† #5dmnd i j ,

@dm,i ,dn, j
† #5dmnd i j ,

wherek,l 51,2,..., andm,n5 1
2 , 3

2 , ... .

VI. BACK TO GAUGE TRANSFORMATIONS

From the quantization results, it can be seen that we
still left with some discrete gauge transformations. The
symmetries are those leavingz2[z(z3), z4[z(2z3/2
2z8), andz7[z(2z3/21z8) invariant. Given the property
z(z11)5z(z), the most general form of such a transform
tion is

z3→z31a,

z8→z81
a

2
1b, a,bPZ. ~27!

The propertym0(z11)5m0(z)11 implies a single phase
transformation for the adjoint field. The creation and destr
tion operators, and, as a consequence, the Fock vacuum
left invariant. These ‘‘large gauge transformations’’ corr
spond to Gribov copies@24#.
10501
e
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Roughly speaking, this situation allows us to choose
fundamental domain@25#, for z3 and z8 , in two different
ways.

~i! We take 0<z3<1 and 0<z8<1. The domain is
simple butz4 andz7 present discontinuities as shown in Fi
2.

~ii ! We choose 0<z3<1 and z32 1
2 <z8<z31 1

2 . This
choice is less ‘‘natural’’ but removes all the discontinuitie

FIG. 2. Graph forz2 , z4 , andz7 as functions ofz3 andz8 .
2-5
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VII. GAUSS LAW AND THE MATTER CURRENT

We are now in good position for solving the Gauss la
~11!. Let us start by developing the matter current in Four
series as follows:5

Jk
1~x!52

1

4L (
nPZ

Jk~n!e2 i ~np/L !x2
, k53,8,

Jk
1~x!52

1

4L
eim0,k~p/L !x2

(
mPH

Jk~m!e2 i ~mp/L !x2
, k52,4,7,

~28!

Jk
1~x!52

1

4L
e2 im0,k~p/L !x2

(
mPH

Jk~m!e2 i ~mp/L !x2
,

k51,5,6.

Using the definition ofJ

J152 i @F,p#,

and the structure constants in ourSU(3) basis, theJ com-
ponents can be written as a functions of the fieldsw i andp i .
We obtain, in a straightforward way,

J3
152 i S w1p22w2p11

1

2
w4p52

1

2
w5p4

1
1

2
w6p72

1

2
w7p6D

s

,

J8
152

3i

4
~w4p52w5p41w6p72w7p6!s ,

J2
15 i S w3p22w2p31

1

&
w5p62

1

&
w6p5D

s

,

J4
152 i S 1

2
w3p42

1

2
w4p31w8p42w4p8

1
1

&
w1p62

1

&
w6p1D

s

,

J7
152 i S 1

2
w3p72

1

2
w7p32w8p71w7p8

2
1

&
w1p51

1

&
w5p1D

s

, ~29!

where thes index means that these expressions are sym
trized in order to preserve hermiticity. We have similar e
pressions forJ1

1 , J5
1 , andJ6

1 . Inserting the complete Foc

5For simplicity, we shall omit theM index for the matter current
10501
r
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-

expansions, found in the previous section, into these res
will give the matter current as function of creation and d
struction operators. One can easily understand that the
result is quite cumbersome. We send the interested read
Appendix B for an overview of the explicit development.

Recall that the matter current can be treated as a so
for the A field as shown by the Gauss law~11!. We can
extractA from this Gauss equation. Formally, we may wri

A52g
1

D2
2 J1. ~30!

Unicity of the solution is ensured by periodicity condition
and by the gauge conditionsÅ35Å850. An important result
can already be derived from Eq.~11!. Projecting Eq.~11!
onto l3 andl8 gives

]2
2 A352gJ3

1 and ]2
2 A852gJ8

1 , ~31!

which can be directly verified by using the second gau
condition and the fact thatl3 andl8 are commuting. Taking
zero modes on both sides of these equations allows u
write

I 3[ J̊3
150 and Y[ J̊8

150.

These constraints can be realized by imposing that the ph
cal states satisfy

I 3uphys&50 and Yuphys&50. ~32!

The operatorsI 3 et Y will be called isospin and hypercharge
respectively, in analogy to the quark-parton model. Mo
over, we can continue this analogy a little bit further. Writin

~D2F!a5~]21 ighav31 igjav8!wa ,

we can map all thewa on two weight diagrams associate
with the 3 and 3̄representations inSU(3) ~see Fig. 3!.

ExpandingI 3 andY over creation and destruction oper
tors gives after some algebra

I 3; (
m51/2

`

~bm,2
† bm,22dm,2

† dm,2!

2
1

2
~bm,4

† bm,42dm,4
† dm,4!2

1

2
~bm,7

† bm,72dm,7
† dm,7!,

FIG. 3. SU(3) fundamental representations and adjoint field.
2-6
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Y; (
m51/2

`

2~bm,4
† bm,42dm,4

† dm,4!1~bm,7
† bm,72dm,7

† dm,7!.

~33!

We can interpret the former relation by associating qu
tum numbers to the adjoint field components and the lad
operators. These quantum numbers are given in Table I
can be directly checked that this is consistent with the p
vious weight diagrams.

VIII. CONSTRAINED ZERO MODES

We are now able to deduce the constraints on the two z
modesa0,3 anda0,8. Our starting point will be Eq.~7!. Hav-
ing in mind theSU(2) model, we add a mass term to th
equation which becomes

DaDaF1m0
2F50, ~34!

remembering that we are working with a dimensionally
duced (111)-dimensional model. The introduction of
mass term may be justified by an unavoidable renormal
tion. Although we will not reach that point in this paper, w
always have the freedom to set the renormalized mass to
at the very end. The mass term can be obtained by subt
ing Tr(m0

2F2) to the Lagrangian.
We will limit our development to the establishment of th

constraints without entering into their resolution. The trick
to expand the relation

Tr@^~DaDaF1m0
2F!l j&0#50, j 53,8, ~35!

which is a direct consequence of the previous equation.
ing the property that̂]2 f &050, true for every periodic func-
tion f, and the structure constants, one can bring Eq.~35!
back to the form

ig Tr~^@A,D2F#l j&0!1m0
2 Tr~Fl j !50, j 53,8.

Expanding these relations on the chosenSU(3) basis and
using the Gauss law~11!, two constraints are obtained

TABLE II. Quantum numbers associated with the adjoint field

I 3 Y

w1 b2
† d2 1 0

w2 d2
† b2 21 0

w4 d4
† b4

1
2 1

w5 b4
† d4 2

1
2 21

w6 b7
† d7 2

1
2 1

w7 d7
† b7

1
2 21
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ro
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s-

2 i K 1

2
w5

1

]21
ig

2
v31 igv8

J4
12

1

2
w4

1

]22
ig

2
v32 igv8

J5
1

1
1

2
w6

1

]21
ig

2
v32 igv8

J7
1

2
1

2
w7

1

]22
ig

2
v31 igv8

J6
11w2

1

]21 igv3
J1

1

2w1

1

]22 igv3
J2

1L
0,s

5
m0

2

A4pg2
a0,3, ~36!

2 i K w5

1

]21
ig

2
v31 igv8

J4
12w4

1

]22
ig

2
v32 igv8

J5
1

2w6

1

]21
ig

2
v32 igv8

J7
1

1w7

1

]22
ig

2
v31 igv8

J6
1L

0,s

5
m0

2

A4pg2

4

3
a0,8.

~37!

Again, it is, of course, possible to write the constraints
terms of creation and destruction operators.

Following Ref.@2#, it is also possible to translate the co
straints into diagrams by introducing vertex and propagat
We will not go into such a tedious task in the present pap
If we make the assumption that we can renormalize the c
straints and if we bring back the constrained zero mode
the three-particle sector, we should expect a unique solu
for these zero modes. Unicity of the solution is enforced
the fact that the constraints are linear in the zero modes. T
should mean that theSU(3) symmetry is not broken. This
situation differs from thef4 theory where we have a cubi
constraint giving rise to spontaneous symmetry breaki
These developments are defered to a future paper.

IX. VACUUM AND DYNAMICAL ZERO MODES

In this section, we finally reach the aim of this pape
which is to study the vacuum degeneracy. It is a well kno
result that constrained zero modes are related to symm
breaking while dynamical zero modes are related to vacu
degeneracy. In order to emphasize the contribution of
two dynamical zero modesz3 andz8 on the vacuum of our
model, we write it as the product of a Fock part and a ze
mode part. IfuV& is the vacuum andu0& is the Fock vacuum,
which means that it is annihilated by all destruction ope
tors, we have
2-7
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FIG. 4. PotentialV0(u,v).
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uV&5u0& ^ uC0~z3 ,z8!&, ~38!

whereuC0(z3 ,z8)& depend only on the two dynamical ze
modes.

We are going to write down a Schro¨dinger equation for
uC0&. Developing the Hamiltonian from Eq.~13!, leads to

H524
]2

]z3
223

]2

]z8
2 1 (

k50

`

wk,3
4 @J3~k!J3

†~k!1J3
†~k!J3~k!#

1
3

4
wk,8

4 @J8~k!J8
†~k!1J8

†~k!J8~k!#

1 (
k51/2

`

vk,2
4 @J1~k!J1

†~k!1J1
†~k!J1~k!#1uk,2

4 @J2~k!J2
†~k!

1J2
†~k!J2~k!#1S 1→5

2→4D1S 1→6
2→7D .

Defining H05^0uHu0&, we have to solve the equation

H0uC0~z3 ,z8!&5E0uC0~z3 ,z8!&. ~39!

Given that a complete treatment of this equation need
solution for the constrained zero modes, we shall rest
ourselves to the normal-mode sector by simply neglec
the constrained zero-mode contribution. As shown by Ka
niatis in Ref.@2#, this contribution is mich smaller than thos
coming from the other terms. A model including the co
strained zero-mode part is left for future work. In such
case, we can successively findJ andH in terms of the cre-
ation and destruction operators and then calculateH0 . After
some straightforward but tedious calculations, we get

H0524
]2

]z3
223

]2

]z8
2 1V0 , ~40!
10501
a
ct
g
-

-

V05 (
k,m5

1
2

`
1

~k1m!2 F ~k2m22z2!2

~m1z2!~k2z2!
1~z2→z4!

1~z2→z7!G1 (
m5

1
2

`

(
k5m11

`
1

k2m F S k22m1z2

~k2z2!2~m2z2!

1
k22m2z2

~k1z2!2~m1z2! D1~z2→z4!1~z2→z7!G
1 (

m,n51/2

` F S ~m2n1z72z4!2

~m1n1z21M0!2~m2z4!~n2z7!

1
~m2n2z71z4!2

~m1n2z22M0!2~m1z4!~n1z7! D
1S z2→z4

z4→z7

z7→z2

D 1S z2→z7

z4→z2

z7→z4

D G .

In this expression, we have developed theum,k , vm,k , and
wm,k coefficients in terms ofm, l, and zk , and introduced
M0(z3 ,z8)5m0,21m0,41m0,7.

In order to solve Eq.~39!, we shall work with the funda-
mental domain 0<z3<1, z32 1

2 <z8<z31 1
2 . Performing

the change of variables

H u5z3 ,

v5z81
1

2
z3 , ~u,v !P@0,1#3@0,1#,

Eq. ~39! becomes

@24~]u
21]u]v1]v

2!1V0~u,v !#C0~u,v !5E0C0~u,v !.
~41!

Numerically, we are able to calculate the potentialV0(u,v)
and thus to solve this equation. The result is shown in Fig
2-8
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FIG. 5. Fundamental stateC0(u,v) and first excited stateC1(u,v).
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One can see thatV0 presents discontinuities at the boun
aries of the domain.6 Given the form of the potentialV0 , we
may assimilate it to a two-dimensional square well a
solve. It has a minimum atu5v50.5.

Unfortunately the crossed term24]u]vC(u,v) in Eq.
~41! distinguishes our eigenvalue problem from the tra
tional ‘‘square well’’ one. No analytic solution of this equa
tion has been found.

Unicity of the minimum of V0 suggests us that th
vacuum is nondegenerate. A numerical diagonalization
Eq. ~41! allows us to obtain the wave functionsuC& and their
energy levels. The ground state and the first excited state
given in Fig. 5. The numerical results for the energy lev
confirm that if we neglect the constrained zero modes,
vacuum is nondegenerate.

SettingV(u5 1
2 ,v5 1

2 )50, we haveE0'138.3. This can
be seen as a zero-point energy. More precisely, the phy
zero-point energy is given by (g2L/4p2)E0 . It is the mini-
mum energy of any physical system described by Lagrang
~2!.

Note that vacuum degeneracy is not definitively impo
sible. Renormalization and constraint zero-modes contr
tion should lead to vacuum degeneracy. As shown in R
@26#, a supersymmetric calculation of this model leads to
SUSY potential in Eq.~40! canceling parts ofV0 and giving
rise to vacuum degeneracy.

X. CONCLUSIONS

In this paper, we have seen that, under some assumpt
we were able to study the impact of zero modes on a n
Abelian theory and especially on its vacuum. As in ma
light-cone quantization models, we have seen the simplifi
tions coming from the use of creation and annihilation o
erators.

The aim of this paper was to study vacuum degenera
We thus neglected constrained zero modes and turned to
namical zero modes. We arrived at a Schro¨dinger-like equa-

6Working with a fundamental domain in which discontinuities a
at the boundaries is more explicit and is easier from a numer
point of view.
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tion, neglecting contribution from the constrained ze
modes. Numerical resolution of this equation leads to
conclusion that, under our approximations, theSU(3) light-
cone vacuum is nondegenerate.

This model is a first step in our quest to reach the QC
case. The remaining work will involve the elimination of th
approximations of this model: fields independent of t
transverse variable and solution for the constrained z
modes. If fields are dependant of the transverse variable
have a full (211)-dimensional model and we cannot dime
sionally reduce it to 111 dimensions anymore. A solution o
the constraints, even if not exact, should have an impac
the vacuum degeneracy, modifying the potential in t
Schrödinger equation.

We then may hope to be able to establish a model in
11 dimensions. Practically, this introduces two adjo
fields and coupling between these. Such a generaliza
should again lead to more tedious calculations, especi
during the quantization of adjoint fields.

The final step is to add quark fields. A
(211)-dimensionalSU(2) model coupled to a fermion field
has been introduced by Tachibana@3#. This is, in fact, a
difficult application of the Dirac-Bergman quantizatio
method.

All these points are thus far away from being trivia
Some new techniques or approximations are certainly nee
if we want to reach finally the full QCD case.
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APPENDIX A: SU„3… CONVENTIONS

This appendix contains a description of the conventio
used for the gauge groupSU(3). The generators basis we
used can be defined inSU(N). It is a direct generalization o
the basis associated with the light-cones studies of
SU(2) gauge group. We define the matricesl i j for 1< i , j
<N and (i , j )Þ(N,N) as

al
2-9
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~l i j !ab5H 1
i 11 (

k51

i

dakdbk2 ida,i 11db,i 11 if i 5 j ,

1
& daidb j otherwise.

~A1!

TheseN221 matrices are traceless and linearly independ
Particularly, forN53 they can be written as

l115 1
2 S 1 . .

. 21 .

. . .
D , l125 1

& S . 1 .
. . .
. . .

D ,

l135 1
& S . . 1

. . .

. . .
D , l215 1

& S . . .
1 . .
. . .

D ,

~A2!

l225 1
3 S 1 . .

. 1 .

. . 22
D , l235 1

& S . . .
. . 1
. . .

D ,

l315 1
& S . . .

. . .
1 . .

D , l325 1
& S . . .

. . .
. 1 .

D .

In analogy with the Gell-Mann matrices and in order
simplify index manipulations, we setl1[l12, l2[l21, l3

[l11, l4[l13, l5[l31, l6[l23, l7[l32, l8[l22.
With this convention, we can calculate the structure c

stants andSU(3) metric. Taking as a convention that

@l i ,l j #5 f i j
kl

k and Tr~l il
j !52d i

j , ~A3!

we have

f i jk52 Tr~@l i ,l j #lk!, ~A4!

Gi j 52 Tr~l il j !. ~A5!

From the relationGi j Gjk5d i
k , we deduceGjk by simply in-

verting Gi j .
With the matricesl j introduced before, we find

TABLE III. Nonvanishing structure constants.

i j k f k
i j i j k f k

i j i j k f k
i j

1 2 3 1 3 4 4 1
2 6 7 3 2

1
2

1 6 4 1
& 3 6 6 À 1

2
6 7 8 2

3
4

2 4 6 1
& 3 7 7 1

2 8 4 4 1
2 7 5 2

1
& 4 5 3 1

2 8 5 5 À1
3 1 1 1 4 5 8 3

4 8 6 6 1
3 2 2 À1 4 7 1 1

& 8 7 7 À1
10501
t.

-

Gi j 5S . 1 . . . . . .
1 . . . . . . .
. . 1 . . . . .
. . . . 1 . . .
. . . 1 . . . .
. . . . . . 1 .
. . . . . 1 . .

. . . . . . .
4

3

D . ~A6!

The nonvanishing structure constants are7 shown in Table
III.

The boldfaced results in Table III show that commuting
nondiagonal matrixl i with a diagonal matrix (l3 or l8)
gives a result proportional tol i . This property is very usefu
while quantizingSU(3) gauge fields. Mathematically, w
can put it into the form

f i j
k50 if i 53,8 and j ,k51,2,4,5,6,7, j Þk.

~A7!

APPENDIX B: MATTER CURRENT IN SU„3…

We want to show some of the results we arrive at, wh
we expand components of the matter current in terms
creation and annihilation operators.

For diagonal components, we have

J35 (
m,n51/2

` H dm1k
n Fbm,2

† bn,2S um,2

un,2
1

un,2

um,2
D2

1

2
bm,4

† bn,4

3S um,4

un,4
1

un,4

um,4
D2

1

2
bm,7

† bn,7S um,7

un,7
1

un,7

um,7
D G

2dm1k
2n Fbm,2

† dn,2
† S um,2

vn,2
2

vn,2

um,2
D2

1

2
bm,4

† dn,4
† S um,4

vn,4
2

vn,4

um,4
D

2
1

2
bm,7

† dn,7
† S um,7

vn,7
2

vn,7

um,7
D G2dm1k

n Fdm,2
† dn,2S vm,2

vn,2

1
vn,2

vm,2
D2

1

2
dm,4

† dn,4S vm,4

vn,4
1

vn,4

vm,4
D2

1

2
dm,7

† dn,7

3S vm,7

vn,7
1

vn,7

vm,7
D G2dm1n

k Fbm,2dn,2S um,2

vn,2
2

vn,2

um,2
D

2
1

2
bm,4dn,4S um,4

un,4
2

vn,4

um,4
D2

1

2
bm,7dn,7

3S um,7

vn,7
2

vn,7

um,7
D G J

and

7We have taken into account the antisymmetry of the struct
constants under permutation of the first two indices.
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J85 (
m,n51/2

` H dm1k
n Fbm,7

† bn,7S um,7

un,7
1

un,7

um,7
D2bm,4

† bn,4S um,4

un,4
1

un,4

um,4
D G2dm1k

2n Fbm,7
† dn,7

† S um,7

vn,7
1

vn,7

um,7
D2bm,4

† dn,4
† S um,4

vn,4
2

vn,4

um,4
D G

2dm1k
n Fdm,7

† dn,7S vm,7

vn,7
1

vn,7

vm,7
D2dm,4

† dn,4S vm,4

vn,4
1

vn,4

vm,4
D G2dm1n

k Fbm,7dn,7S um,7

vn,7
2

vn,7

um,7
D2bm,4dn,4S um,4

vn,4
2

vn,4

um,4
D G J .

The off-diagonal components may be written as the sum of a term depending only on normal modes, and a term
zero modes. For example, forJ1 , the first part is found to be

Q1~k!5 (
m51/2

`

(
n51

` S um,2

wm,3
2

wm,3

um,2
Dan,3

† bm,2
† dm1n

2k 2S vm,2

wm,3
2

wm,3

vm,2
Dan,3dm,2dm1n

k 2S um,2

wm,3
1

wm,3

um,2
Dan,3bm,2

† dm1k
n

1S vm,2

wm,3
2

wm,3

vm,2
Dan,3

† dm,2dk1n
m 1

1

&
(

m51/2

`

(
n51

` S un,4

um,7
2

um,7

un,4
Dbm,7bn,4dm1n2m0,42m0,7

k1m0,2 1S vn,4

um,7
1

um,7

vn,4
D

3bm,7dn,4
† dm2n2m0,42m0,7

k1m0,2 2S un,4

vm,7
1

vm,7

un,4
Ddm,7

† dn,4dm2n2m0,42m0,7

k1m0,2 2S vn,4

um,7
2

um,7

vn,4
Ddm,7

† dn,4
† d

2m2n2m0,42m0,7

k1m0,2 .

It is interesting to see that the four last terms in this sum are not present in theSU(2) case. They are independent of thea-type
particles.
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