
PHYSICAL REVIEW D, VOLUME 63, 105010
Class of kinks in SU„N…ÃZ2
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In a classical, quartic field theory withSU(N)3Z2 symmetry, a class of kink solutions can be found
analytically for one special choice of parameters. We construct these solutions and determine their energies. In
the limit N→`, the energy of the kink is equal to that of a kink in aZ2 model with the same mass parameter
and quartic coupling@coefficient of Tr(F4)#. We prove the stability of the solutions to small perturbations but
global stability remains unproven. We then argue that the continuum of choices for the boundary conditions
leads to a whole space of kink solutions. The kinks in this space occur in classes that are determined by the
chosen boundary conditions. Each class is described by the coset spaceH/I whereH is the unbroken symmetry
group andI is the symmetry group that leaves the kink solution invariant.
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I. INTRODUCTION

Classical solutions in field theories have been of lon
standing interest and have played an important role in
understanding of a variety of phenomena. The existenc
solutions can be predicted on the basis of topology tho
the actual construction of the solutions is usually quite di
cult and requires a certain amount of guesswork. Even aft
solution is found, one needs to check its perturbative sta
ity. And even after a solution is proved to be perturbative
stable, there is no guarantee that it is the globally sta
solution.

In this paper, we shall construct a class of kink solutio
in purely scalar,SU(N)3Z2 field theories. The analytic con
struction is made possible by a special choice of parame
We then prove the perturbative stability of the kink so
tions. As there is no known extension of the Bogomol’ny
method @1# to this case, global stability will remain un
proven. We will then address the question of whether th
might be other kink solutions in the model. We discuss
possibility that various boundary conditions imposed at s
tial infinity, while topologically equivalent, lead to differen
kink solutions. Each kink solution is continuously degener
with a degeneracy determined by the invariance group of
solution. We describe the problem of mapping the space
kink solutions.

The following few sections deal with the construction a
perturbative stability of the kink solutions that have be
found. The space of kinks is described in Sec. VII and t
can be read with minimal reference to the prior sections.

II. MODEL

We will consider the~111!-dimensional, classical field
theory1

1The addition of gauge fields can easily be accommodated in w
follows as discussed in Sec. VI.
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L5Tr@~]mF!2#2V~F! ~1!

V~F!52m2Tr@F2#1h~Tr@F2# !2

1lTr@F4#1V0 ~2!

whereF transforms in the adjoint representation ofSU(N)
(N52n11) and hence is anN3N Hermitian matrix.F can
also be written in terms of components:

F5 (
a51

N221

FaTa ~3!

whereTa are the~traceless! generators ofSU(N) and will be
taken to be in the Gell-Mann representation@2# and normal-
ized so that

Tr@TaTb#5
1

2
dab . ~4!

The field componentsFa are real. The constantV0 is chosen
so that the minimum of the potential is atV50. Note the
absence of a cubic term in the model.

The center ofSU(N) is ZN and the group elements of th
center transform F by multiplication by factors of
exp(i2p/N). For evenN, the transformationF→2F is in-
cluded in the center ofSU(N). However, for oddN it is not,
and the full symmetry of the model isSU(N)3Z2. We will
only be interested in odd values ofN since it is in this case
that the model admits topological kink solutions.

We will consider parametersh andl such that the sym-
metry breaking is

SU~N!3Z2→
SU~n11!3SU~n!3U~1!

Zn113Zn
~5!

where N52n11 (n is a positive integer!. This symmetry
breaking pattern is achieved if@3#

at
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h

l
.2

N213

N~N221!
. ~6!

In fact, in the next section we will choose

h

l
52

3

N~N21!
. ~7!

This choice is consistent with Eq.~6! as long asN.3.
To fix the constantV0, let the minimum ofV(F) occur at

F5F0[R diag~p1 ,p2 , . . . ,pN! ~8!

whereR is an overall normalization factor and the matrix
normalized so that

(
i 51

N

pi
25

1

2
. ~9!

Then the potential is extremized for

R5
m

Al8
~10!

where

l85h14l(
i 51

N

pi
45h1

N213

N~N221!
l. ~11!

Then,V(F0)50 gives

V052
m4

4l8
. ~12!

The condition thatl8.0 is precisely the condition in
Eq. ~6!.

We shall assume the parameters as constrained by Eq~6!,
in which case the unbroken symmetry is given in Eq.~5! and
the vacuum expectation value ofF is

F05RA 2

N~N221!S n1n11 0

0 2~n11!1n
D ~13!

where1n denotes then3n unit matrix,N52n11, andR is
defined in Eq.~10!.

III. KINK SOLUTION

The model contains the breaking of a discreteZ2 symme-
try wheneverN is odd. Hence kink solutions exist. Acros
these kink solutions, the vacuum expectation value ofF
must be related by an element of theZ2 group. Hence, ifFk
denotes the kink solution,

Fk~x52`!52UFk~x51`!U21

whereU is an element ofSU(N).
Based on the experience with kinks inSU(5) @4#, we

conjecture the following form for the kink solution:
10501
Fk~x!5 f ~x!M1g~x!P ~14!

wheref (x) andg(x) are unspecified functions as yet, andM
andP areSU(N) generators such that

Tr~M2!5
1

2
5Tr~P2! ~15!

Tr~MP!505Tr~M3P!5Tr~MP3!.
~16!

Insertion ofFk in the potential gives

V~Fk!52
m2

2
~ f 21g2!1

h

4
~ f 41g4!1l@ f 4Tr~M4!

1g4Tr~P4!#1Fh

2
16lTr~M2P2!G f 2g22V0 .

~17!

The important realization that permits an analytic solution
be found is that the cross-term containing bothf andg dis-
appears if we choose

h5212lTr~M2P2!. ~18!

In this case, the energy of the kink will separate into tw
pieces, one depending only onf and the other depending onl
on g. So the energy will be a sum of two single field ene
gies, each of which can be treated directly or
Bogomol’nyi’s method.

Let us further choose the matricesM andP in such a way
that the kink boundary conditions imply

f ~1`!52 f ~2`!, g~1`!51g~2`!. ~19!

Then, we find thatf andg must satisfy

f 91m2f 14l@3Tr~M2P2!2Tr~M4!# f 350 ~20!

g252
m2

4l

1

3Tr~M2P2!2Tr~P4!
. ~21!

The equation forf will have the solution

f ~x!5 f 0tanhS m

A2
xD ~22!

where

f 0
25

m2

4l

1

Tr~M4!23Tr~M2P2!
. ~23!

The solution forf is valid provided

Tr~M4!.3Tr~M2P2! ~24!

and the~constant! solution forg is valid provided

Tr~P4!.3Tr~M2P2!. ~25!

In addition to the properties in Eqs.~15! and ~16!, the
conditions in Eqs.~24! and ~25!, M and P must yield the
0-2
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desired vacuum expectation values forF at spatial infinity.
A choice ofM andP that satisfies all these conditions is

M5bS 1N21 0

0 2~N21!
D ,

P5ANbS 1n 0 0

0 21n 0

0 0 0
D ~26!

where

b5
1

A2N~N21!
. ~27!

Straightforward calculation shows that all the conditions
M andP are met provided thatN.3.

With this choice ofM andP, the kink solution can now
be written as

Fk~x!5
m

Al
AN21

N23F tanhS m

A2
xD M1ANPG . ~28!

An alternative, more transparent, form of this solution is

Fk~x!5S 12F~x!

2 DF21S 11F~x!

2 DF1 ~29!

where

F~x!5tanhS m

A2
xD , ~30!

andF6[F(x56`). Note that the alternate form does n
work for any chosen boundary condition. For example,
F152F2 , the form leads to the embedded kink soluti
which is known to be unstable@4#.

Now that we have shown thatFk is a solution within the
restricted ansatz in Eq.~14!, we also need to show that it is
solution of the full theory. This is most simply done by wri
ing

F5Fk1C5Fk1( caTa ~31!

and then checking that the energy density does not con
any terms that are linear inC. In the quadratic terms in the
energy density, this will clearly by the case sinceFk satisfies
the equations of motion~20! and ~21! and the generator
satisfy the orthogonality condition in Eq.~4!. The only terms
that can potentially lead to a term linear in theca come from
the quartic term, Tr(F4), in the potential and are of the form

Tr~Fk
3Ta!ca.

For off-diagonalTa, this vanishes sinceFk
3 is diagonal and

the product of a diagonal and an off-diagonal matrix is
diagonal. For diagonalTa, it is better to choose a represe
10501
n

f

in

f

tation of the generators other than the Gell-Mann repres
tation. The choice of diagonal generators other thanM andP
are

T i5S t i 0 0

0 0n 0

0 0 0
D ~ i 51, . . . ,n21! ~32!

T i5S 0n 0 0

0 t i 2n11 0

0 0 0
D ~ i 5n, . . . ,2n22!

~33!

where t i ( i 51, . . . ,n21) are the normalized, diagona
SU(n) generators in the Gell-Mann representation. The o
diagonal generators are the same as in the Gell-Mann b
It is easy to check that this basis is complete and the gen
tors satisfy the normalization in Eq.~4!.

Now we are interested in checking if there are terms
the potential that are linear in the components ofC ex-
panded in the new basis. It is easy to check that

Tr~M3T i !505Tr~P3T i !.

Hence

Tr~Fk
3T i !50

and there are no linear terms in the components ofC occur-
ring in the energy density. The terms linear in the pertur
tions along the generatorsM andP will vanish because thes
have already been chosen to satisfy the equations of mo

Therefore there are no linear terms inC in the energy
density andFk in Eq. ~28! is indeed a solution.

IV. KINK ENERGY

The energy of the kink is

Ek5E dx@Tr~Fk8!21V~Fk!#. ~34!

Insertion ofFk from Eq. ~28! and evaluation yields

Ek52A2

3

m3

l S N21

N23D . ~35!

In the limit thatN→`, this gives

Ek→2A2

3

m3

l
~36!

which is precisely the energy of the kink in theZ2 model:

L5
1

2
~]mf!22

m2

2
f21

l

4
f41

m4

4l
. ~37!

In the largeN limit, the kink solution~28! goes to
0-3
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Fk→
m

A2lS 1n 0 0

0 21n 0

0 0 2tanh~mx/A2!
D . ~38!

Note that this is not traceless because we have discard
large number~N! of small ~order 1/N) terms.

V. PERTURBATIVE STABILITY

The procedure for proving perturbative stability
straightforward though tedious. We consider small dev
tions C from the kink solution as in Eq.~31! and then find
the change in the energy due to the perturbations:

dE@C#5TrE dxCF2
1

2

d2

dx2 1V2~Fk!GC ~39!

where the matrixV2 is obtained by expanding the potentialV
up to quadratic order inC. If the Schrödinger equation

F2
d2

dx2 1V2~Fk!GC5vC ~40!

does not have any negative eigenvalues—i.e. regular s
tions where C→0 at spatial infinity only exist for
v>0—then the solutionFk is perturbatively stable.

The tedious part of this calculation is the evaluation
V2(Fk). Note thatV2 is an (N221)3(N221) matrix since
there areN221 components ofC, one for each generator o
SU(N). Let us write

C5 (
a51

N221

caTa ~41!

and the elements ofV2 asV2ab .
Let us discuss off-diagonal perturbations first. These

into 5 types. The first type is when

T1
a}S rn 0 0

0 0 0

0 0 0
D ~42!

wherern denotes a non-trivial, off-diagonaln3n matrix and
0 the trivial n3n matrix. The second to fifth types of pe
turbations are

T2
a}S 0 rn 0

rn
† 0 0

0 0 0
D ~43!

T3
a}S 0 0 c

0 0 0

c† 0 0
D ~44!
10501
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-
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T4
a}S 0 0 0

0 rn 0

0 0 0
D ~45!

T5
a}S 0 0 0

0 0 c

0 c† 0
D ~46!

wherec is a non-vanishing complexn-dimensional multiplet.
Then the elements ofV2 for type 1 and type 4 perturbation
are

V2aa5m2
N63F

N23
~47!

and for type 3~minus signs! and 5~plus signs! are

V2aa56
m2

2
F~16F ! ~48!

where the functionF(x) is defined in Eq.~30!. The elements
of V2 vanish for type 2 perturbations and there is no mixi
between different off-diagonal perturbations either.

The potentialV2aa for type 1 and 4 perturbations is ev
erywhere non-negative forN.3 and hence the Schro¨dinger
equation will not have any bound states. The situation
type 3 and 5 perturbations is less clear since6F(16F) can
have either sign. However, the Schro¨dinger equation has the
v50 solutionc517F and this solution has no nodes, i.
cÞ0 except at infinity.2 The zero mode solution does not g
to zero at eitherx52` or at x51`. Then, in order for a
solution to go to zero at both spatial infinities,v has to be
chosen to be greater than zero. The reason is that thev50
solution needs to have smaller curvature~i.e. the curvature
needs to be more negative! so that it can vanish at infinity
The curvature is proportional to2v in the region where the
potential is small. Thereforev has to be larger. Hence, onc
again, there are no bound states to the Schro¨dinger equation.
This shows that the solution is stable to off-diagonal pert
bations.

Next we consider diagonal perturbations. These can
classified in three types. If we write

Ta5S Ra 0 0

0 Sa 0

0 0 Qa

D ~49!

whereRa andSa aren3n, diagonal matrices, then the thre
types of Ta are ~1! RaÞ0, Sa50, Qa50, ~2! RaÞ0, Sa
Þ0, Qa50, and~3! RaÞ0, SaÞ0, QaÞ0. Then there are
six cases to be treated in finding the elements ofV2.

If both Ta andTb are type~1!, we find

2This zero mode will be of special interest in Sec. VII.
0-4
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V2ab5m2
N13F

N23
dab.0 ~50!

where we note that we are consideringN.3. SinceV2ab is
everywhere non-negative, the Schro¨dinger equation has no
bound states and the solution is stable to these perturbat

If both Ta andTb are type~3!—there is only one genera
tor of type ~3!—we find

V2aa5
m2

2
~3F221!. ~51!

Now the Schro¨dinger equation is precisely that obtaine
when considering fluctuations about aZ2 kink @5#. The com-
plete eigenspectrum of this equation is known@6# and the
lowest eigenvalue isv50 corresponding to the zero mod
which describes translations of the kink. So there are
bound states and no instability to these perturbations.

The only other non-trivial perturbations are whenTa and
Tb are both type~2!. For these perturbations, we have

Ra5aa1n ~52!

whereaa is determined from the normalization ofTa . After
some algebra, we find

caV2abcb5
m2

N23
@~N23F !c'

2 1$~N23F !

26s2~N21!~12F !%c i
2# ~53!

where we have defined the unit vectorâb , decomposedca

parallel (c i5âaca) and perpendicular (c') to the vector
aa , and written

s2[(
a

aaaa .

The coefficient ofc'
2 is positive sinceN.3 and hence this

perturbation cannot cause an instability. The coefficient
c i

2 needs to be checked.
Using the normalization ofTa , we obtain

s25
1

2~N21!
. ~54!

Inserting this into Eq.~53!, we find that the coefficient ofc i
2

is simply1m2. Hence there is no instability to diagonal typ
~2! perturbations.

This explicit analysis shows that the solution is stable
all perturbations but this does not imply that the soluti
minimizes the energy globally.

VI. GAUGE FIELDS

The inclusion of gauge fields,Am5Am
a Ta, has no effect on

the existence of the static solution in Eq.~28!. This can be
seen by noting that the terms in the energy that involve
gauge fields are Tr(E21B2), 2Tr(@Ax ,F#2) and
10501
ns.

o

f

o

e

iTrAx@F,]xF#. The first two terms are quadratic in th
gauge fields while the last one vanishes because@F,]xF#
50 for the solution. HenceAm50 is a solution of the equa
tions of motion.

The presence of gauge fields does not have any effec
the perturbative stability of the solution. To see this one c
check that both the quadratic order terms in the gauge fi
are non-negative. For the first term this is explicit while f
the second term one uses the fact@Ax ,F#52@Ax ,F#† since
Ax and F are Hermitian. Hence the kink solution withAm
50 is stable to perturbations in the gauge fields.

VII. SPACE OF KINKS

Different boundary conditions will, in general, lead to di
ferent kink solutions. Therefore kinks with different boun
ary conditions fall into different classes—kinks belonging
different classes cannot be transformed into one anothe
global SU(N) rotations. Here we would like to find the de
generacy of a kink solution, i.e. the space of boundary c
ditions that lead to degenerate kink solutions. There
clearly an SU(N) global degeneracy but this is not ver
interesting since it applies to any field configuration in t
theory. It is of greater interest to only consider those glo
SU(N) transformations that leaveF2[F(x52`) un-
changed but act non-trivially onF1[F(x51`). If we de-
note the unbroken symmetry groups atx56` by H6 , such
transformations belong toH2 . But the transformations tha
belong toK[H1ùH2 will act trivially on bothF2 and on
F1 . Therefore the space of boundary conditions atx5
1` leading to degenerate kinks is given byH2 /K.

In addition to the degeneracy due to different bound
conditions, any kink solution will have an ‘‘internal’’ sym
metry group, denoted byI. This group will contain all those
transformations that leave unchanged the whole kink so
tion ~including the boundary conditions!. So we haveI #K
and the space of degenerate kinks isH2 /I .

The kink classification problem can be described in m
detail as follows. Suppose we fix the boundary condition
x52` to beF2 ; then the only constraint on the bounda
condition atx51` is that it should be in the distinct topo
logical sector. There is a full vacuum manifold~mod Z2)
worth of choices forF(x51`)[F1 . For certain choices
of F1 we can solve the equations of motion and obtain a
~described by the spaceK/I ) of kink solutions that extremize
the energy. Let the value of this energy beU@F1 ;F2#
where we have explicitly indicated that different choices
boundary conditions can lead to kink solutions of differe
energy. We are interested in the space of minima of
‘‘potential’’ U@F1 ;F2# with respect toF1 . The global
minima of this potential will describe the lowest energy kin
solutions in the model and may be termed the ‘‘kink vacuu
manifold.’’ Other local minima will describe kink solution
that are separated from the lightest kink by an energy bar
In this way it might be possible to obtain ‘‘generations’’ o
stable kinks having the same topological charge but differ
in their energies.

The existence of the kink solution found in the previo
sections does not tell anything about whether it is a m
0-5
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mum of U@F1 ;F2#. To examine if the solution is a loca
minimum we can do a perturbative analysis where the p
turbations are required to vanish atx52`—so as to hold
F2 fixed—but are not required to vanish atx51` –since
we want to find changes in the energy when the bound
conditions are varied. Going back to Sec. V we find that
but one of the non-trivial Schro¨dinger potentials are positiv
~for N.3) at both spatial infinities. This means that a p
turbation that does not vanish at both spatial infinities give
divergent contribution to the energy. Hence the kink solut
is stable under these perturbations of the boundary co
tions. The only exceptional case is the off-diagonal pertur
tion of the type in Eq.~44!. The potential@Eq. ~48!# goes to
a positive value atx52` but vanishes from below atx5
1`. In fact, as described below Eq.~48!, there is a zero
mode for this perturbation that vanishes atx52` but goes
to a non-vanishing constant atx51`. So this mode is a
‘‘dangerous’’ one and needs to be examined further.

A closer inspection of this mode shows that it correspo
to gauge rotations of the fieldF which leaveF2 invariant
but rotateF1 . In other words, the zero mode rotates t
kink within its own class described by the spaceH/I . Hence,
the perturbation under consideration is not an instability
a gauge rotation. Therefore the class of kinks that has b
found describes a set of local minima ofU@F1 ;F2#.

There is a subtlety in the discussion above which we h
glossed over. To obtain the Schro¨dinger equation in Eq.~39!
we have to perform an integration by parts and assume
the boundary contributions vanish. However, here we
considering perturbations that do not vanish at infinity. T
fact means that there is an extra contribution todE` in Eq.
~39! given by

dE`5
1

2
TrFC dC

dx G
2`

1`

. ~55!

The contribution atx52` vanishes because we are choo
ing C(2`)50 but the contribution atx51` does not ob-
viously vanish and depends on the derivative of the per
bation at infinity. However, since we are only interested
finite energy field configurations and the energy density c
,

10501
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tains the term Tr(]xC)2, we must require that the derivativ
of the perturbations vanish at spatial infinity. So it is rigoro
to take dE`50 even if the perturbations do not vanish
infinity.

A more extensive discussion of the kink classificati
problem is left for future work.

VIII. SUMMARY

We have consideredSU(N)3Z2 models. On the basis o
topology, the model will contain topological kink solution
A general technique for constructing the solutions is n
known. Here, by using some guesses and by choosing a
cial relation between parameters@Eq. ~7!#, we have analyti-
cally constructed a class of kink solutions@see Eq.~28!#. The
energy of the solutions is

E5
2A2

3 S N21

N23D m3

l
. ~56!

The limiting value for largeN is equal to the energy of aZ2
kink with mass parameterm and coupling constantl. We
have explicitly checked that these kink solutions are per
batively stable. It is not known if the solutions are globa
stable and this remains an interesting open problem.

We have then described the space of kinks as partition
into distinct classes. All members have the same topolo
yet elements of different classes are not expected to have
same energy. The solutions constructed above describe
one of the~unknown number of! classes of kinks and migh
lie on the ‘‘kink vacuum manifold’’—the manifold consist
ing of the least energetic kinks in the model.

We hope that the solutions found here can be used
guide to the construction of other topological defect so
tions in complicated field theories.
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