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In a classical, quartic field theory witBU(N)XZ, symmetry, a class of kink solutions can be found
analytically for one special choice of parameters. We construct these solutions and determine their energies. In
the limit N— oo, the energy of the kink is equal to that of a kink irZa model with the same mass parameter
and quartic couplindicoefficient of Tr@*)]. We prove the stability of the solutions to small perturbations but
global stability remains unproven. We then argue that the continuum of choices for the boundary conditions
leads to a whole space of kink solutions. The kinks in this space occur in classes that are determined by the
chosen boundary conditions. Each class is described by the cosetspagbereH is the unbroken symmetry
group andl is the symmetry group that leaves the kink solution invariant.
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I. INTRODUCTION L=Tr[((?'u(1))2]—V(CD) )
Classical solutions in field theories have been of long- V(D)= —m2TH ®2]+ h(TId2])?
standing interest and have played an important role in our
understanding of a variety of phenomena. The existence of AT P4+ V, 2

solutions can be predicted on the basis of topology though

the actual construction of the solutions is usually quite diffi-where® transforms in the adjoint representation®f(N)
cult and requires a certain amount of guesswork. Even after iN=2n+1) and hence is aN X N Hermitian matrix.® can
solution is found, one needs to check its perturbative stabilalso be written in terms of components:

ity. And even after a solution is proved to be perturbatively

stable, there is no guarantee that it is the globally stable NZ-1
solution. b= T, (3)
In this paper, we shall construct a class of kink solutions a=1

in purely scalarSU(N) X Z, field theories. The analytic con-

struction is made possible by a special choice of parametersthereT, are the(tracelessgenerators 08 U(N) and will be
We then prove the perturbative stability of the kink solu-taken to be in the Gell-Mann representat[@h and normal-
tions. As there is no known extension of the Bogomol'nyi's ized so that

method[1] to this case, global stability will remain un-

proven. We will then address the question of whether there

might be other kink solutions in the model. We discuss the T TaTo]= 5 dan- (4)

possibility that various boundary conditions imposed at spa-

tial infinity, while topologically equivalent, lead to different The field component®? are real. The constaM is chosen

kmk solutions. Each kink splutlon is co_ntlnu_ously degenerateSO that the minimum of the potential is t=0. Note the
with a degeneracy determined by the invariance group of the ) )
bsence of a cubic term in the model.

solution. We describe the problem of mapping the space of The center 0B U(N) is Zy and the group elements of the

kink solutions. center transform® by multiplication by factors of
The following few sections deal with the construction andeprZTr/N). For evenN, the transformationb — —® is in-

perturbative stability of the kink solutions that have been ; .
found. The space of kinks is described in Sec. VIl and this(:luc(jji“;]j |r]1 tne cente;cﬁL%l(tl;l]). Hogelvébfﬁr ?(dzd\l |\t/\;s nqltl,
can be read with minimal reference to the prior sections. and the full symmetry of the mode i ( ) © L2 VWE W
only be interested in odd values Nfsince it is in this case
that the model admits topological kink solutions.
. MODEL We will consider parameteis and \ such that the sym-
' metry breaking is
We will consider the(1+1)-dimensional, classical field
theor SUn+1)XSUn)xU(1
y SUN)XZy (n+1) (n)xU(1)
Zn1XZy

®)

The addition of gauge fields can easily be accommodated in whavhere N=2n+1 (n is a positive integgr This symmetry
follows as discussed in Sec. VI. breaking pattern is achieved|i8]
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h N2+ 3 6

N NN ©
In fact, in the next section we will choose

h 3 3 7

N N(N-1) ™

This choice is consistent with E¢6) as long adN>3.
To fix the constanV, let the minimum ofv(®) occur at

®=dy=Rdiagpy,p2, - - - (8)

Pn)

whereR is an overall normalization factor and the matrix is

normalized so that

. 1
> pi=>. (9)
=1 2
Then the potential is extremized for
m
R=— (10
W
where
N 2
N°+3
' 4_ _
A _h+4>\i§1 pi=h+ N(Nz—l))\' (11)
Then,V(dy)=0 gives
Vv m’ (12
N

The condition that\’>0 is precisely the condition in
Eq. (6).

We shall assume the parameters as constrained b{gEq.
in which case the unbroken symmetry is given in Ex).and
the vacuum expectation value @f is

2
RV N(N?—1)

wherel, denotes the X n unit matrix, N=2n+1, andR is
defined in Eq(10).

r":I-n-*—l

®:
0 0

(13

—(n+1)1,

II. KINK SOLUTION

The model contains the breaking of a discrésesymme-
try wheneverN is odd. Hence kink solutions exist. Across
these kink solutions, the vacuum expectation valuedof
must be related by an element of thg group. Hence, ifb,
denotes the kink solution,

P (x=—0)=—-UP(x=+o)U !

whereU is an element o5 U(N).
Based on the experience with kinks $U(5) [4], we
conjecture the following form for the kink solution:
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O (x)=f(x)M+g(x)P (14)

wheref(x) andg(x) are unspecified functions as yet, dvd
andP areSU(N) generators such that

1
Tr(M?)= §=Tr( P?) (15)
Tr(MP)=0=Tr(M3P)=Tr(MP3).

(16)

Insertion of®, in the potential gives

m? h
V(P )=— 7(f2+ gz)+ Z(f4+ g4)+)\[f4Tr(M4)

+g*Tr(PH ]+

h
§+6)\Tr(M2Pz)}f2g2—Vo.

(17

The important realization that permits an analytic solution to
be found is that the cross-term containing bb#ind g dis-
appears if we choose

h=—12ATr(M?P?). (18

In this case, the energy of the kink will separate into two
pieces, one depending only band the other depending only
on g. So the energy will be a sum of two single field ener-
gies, each of which can be treated directly or by
Bogomol'nyi’'s method.

Let us further choose the matricksandP in such a way
that the kink boundary conditions imply

f(+o)=—f(=), g(+x)=+g(-»). (19
Then, we find thaf andg must satisfy
7+ m?f +4AN[3TH(M?P?) ~Tr(M*)]f*=0 (20
, 1 o1
9T AN 3TH(MZP) T (P @)
The equation foff will have the solution
m
f(x)=fytanh — x (22
V2
where
f5= m ! 23
074N Tr(M#%)—3Tr(M2P?)" (23
The solution forf is valid provided
Tr(M#)>3Tr(M?P?) (24)
and the(constank solution forg is valid provided
Tr(PYH>3Tr(M2P?). (25)

In addition to the properties in Eq$15) and (16), the
conditions in Eqgs(24) and (25, M and P must yield the
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desired vacuum expectation values fbrat spatial infinity.  tation of the generators other than the Gell-Mann represen-
A choice ofM andP that satisfies all these conditions is  tation. The choice of diagonal generators other thiaandP

are
- (1N_1 0
Ao —n-n) 7 00
7= 0 0, O (i=1,...n-1) (32)
1, O 0 0 0 0
P=yNg| O -1, O (26)
0 0 O 0, 0 O
where T=(0 7q:1 O (i=n,...,h—2)
0 0 0
1 (33
B= . (27
V2N(N—1) where 7; (i=1,...n—1) are the normalized, diagonal

. . . SU(n) generators in the Gell-Mann representation. The off-
Straightforward calculation shows that all the conditions OMyiagonal generators are the same as in the Gell-Mann basis
M andP are met provided thal> 3. '

ith this choi f dP. the kink soluti It is easy to check that this basis is complete and the genera-
be\fxvvlrtitt;nisc oice ofM andP, the kink solution can now 45 satisfy the normalization in E¢4).

Now we are interested in checking if there are terms in
m N—1 m
dy(x)=—=1\/ ——| tanl —= x

the potential that are linear in the componentsyofex-
(28) panded in the new basis. It is easy to check that
An alternative, more transparent, form of this solution is

M+ NP

Tr(M3T)=0=Tr(P°T").

ence
1-F(x) 1+F(x) .
cpk(x):( 5 )cp+ 5 )cm (29) Tr(®27)=0
where and there are no linear terms in the component¥ ajccur-
ring in the energy density. The terms linear in the perturba-
m tions along the generatok4 andP will vanish because these
F(x)=tan>—( — x) , (300  have already been chosen to satisfy the equations of motion.
\/5 Therefore there are no linear terms4n in the energy

density and®, in Eq. (28) is indeed a solution.
and® . =d(x= £t x). Note that the alternate form does not Y K a.(28)

work for any chosen boundary condition. For example, if

d,=—->_, the form leads to the embedded kink solution

which is known to be unstablet]. The energy of the kink is
Now that we have shown thdt, is a solution within the

IV. KINK ENERGY

restricted ansatz in E@l4), we also need to show that it is a o
solution of the full theory. This is most simply done by writ- Ek:j AXTr(Py) +V(Py)]. (34)
ing
Insertion of®, from Eq.(28) and evaluation yields
P=Dt W=Dyt X T (3D i _Z\Fms N-1 5
<2N3% \N—3) (39

and then checking that the energy density does not contain
any terms that are linear iw. In the quadratic terms in the
energy density, this will clearly by the case sinkg satisfies

the equations of motiort20) and (21) and the generators
satisfy the orthogonality condition in E¢4). The only terms Exv—2\/z— (36)
that can potentially lead to a term linear in titg come from

the quartic term, Ti#), in the potential and are of the form

In the limit thatN— <o, this gives

which is precisely the energy of the kink in t&@g model:

Tr(DET?) . ) 4

1 m N m
_ 2 424 44
For off-diagonalT?, this vanishes sinc@ﬁ is diagonal and L= 2(0#@ 2 ¢+ 4 '+ a4\ (37)
the product of a diagonal and an off-diagonal matrix is off

diagonal. For diagonal?, it is better to choose a represen- In the largeN limit, the kink solution(28) goes to
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1, O 0 0 0 O
@kﬁ% 0 -1, 0 . @39 T2 0 py O (45)
0 0 —tanhmx/y2) 0 0O
Note that this is not traceless because we have discarded a 0O O
large numberN) of small (order 1N) terms. T&[ 0 0 (46)
0c o

V. PERTURBATIVE STABILITY

The procedure for proving perturbative stability is Wherecis a non-vanishing complexdimensional multiplet.
straightforward though tedious. We consider small devia-Then the elements of, for type 1 and type 4 perturbations
tions ¥ from the kink solution as in Eq31) and then find are
the change in the energy due to the perturbations:

,N=*3F
2 V2aa: m N _ 3 (47)
5E[‘P]:Trf dxw —EWJFVZ(‘DU N4 (39
and for type 3(minus signy and 5(plus sign$ are

where the matri¥/, is obtained by expanding the potential 5
) . - : m

up to quadratic order if¥’. If the Schralinger equation Voaa= i7F(li F) 48)

2
[_ W“va(q)k)}q’: ¥ (400 where the functior(x) is defined in Eq(30). The elements

of V, vanish for type 2 perturbations and there is no mixing

does not have any negative eigenvalues—i.e. regular Sohp_etween different off-diagonal perturbations either. .
tions where ¥—0 at spatial infinity only exist for The potentialVa,, for type 1 and 4 perturbations is ev-

w=0—then the solutionb, is perturbatively stable. erywhere npn-negative fad>3 and hence the S‘ff“""‘ger
The tedious part of this calculation is the evaluation oféduation will not have any bound states. The situation for
V,(®,). Note thatV, is an (N>—1)X (N2— 1) matrix since type 3 and 5 perturbations is less clear sifdé(1+F) can

there areN?— 1 components o, one for each generator of have either sign. However, the Scinger equation has the
SU(N). Let us write =0 solutiony=1+F and this solution has no nodes, i.e.

# 0 except at infinity’> The zero mode solution does not go
to zero at eithex= — or atx=+c. Then, in order for a
solution to go to zero at both spatial infinities, has to be
chosen to be greater than zero. The reason is thab the
solution needs to have smaller curvature. the curvature
and the elements of , asV;p,. needs to be more negatjveo that it can vanish at infinity.
Let us discuss off-diagonal perturbations first. These falll N€ curvature is proportional to w in the region where the
into 5 types. The first type is when potential is small. Therefore has to be larger. Hence, once
again, there are no bound states to the Stihger equation.
This shows that the solution is stable to off-diagonal pertur-

N2-1

V= Zl YAT? (42)

pn 0 O ;
bations.
Tix[ 0 0 0 (42) Next we consider diagonal perturbations. These can be
0O 0 O classified in three types. If we write
wherep,, denotes a non-trivial, off-diagonalx n matrix and R, 0 O
0 the trivial nXn matrix. The second to fifth types of per- T.=| 0 S O (49)
turbations are
0 0 Q,
O pn O whereR, andS, arenxn, diagonal matrices, then the three
Tax| pl 0 O (43)  types of T, are (1) R;#0, S,=0, Q,=0, (2) R,#0, S,
0 0 0 #0, Q,=0, and(3) R,#0, S,#0, Q,#0. Then there are
six cases to be treated in finding the element¥ gf
0 0 c If both T, andT, are type(1), we find
Tax| 0 0 0 (44)
ct 00 2This zero mode will be of special interest in Sec. VII.
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,N+3F iTrA [ D,0,P]. The first two terms are quadratic in the

N—_35ab>o (50 gauge fields while the last one vanishes becddsg), ® |

=0 for the solution. Hencé ,=0 is a solution of the equa-
where we note that we are consideriNg-3. SinceV,,, is  tions of motion.
everywhere non-negative, the ScHimger equation has no The presence of gauge fields does not have any effect on
bound states and the solution is stable to these perturbatiorifie perturbative stability of the solution. To see this one can
If both T, and T, are type(3)—there is only one genera- check that both the quadratic order terms in the gauge field

tor of type (3)—we find are non-negative. For the first term this is explicit while for
the second term one uses the fiag}, ®]=—[A,,®]" since

Voap=m

2

m A, and ® are Hermitian. Hence the kink solution with
- 2_ X "
V2aa 2 (3F"—1). (51) =0 is stable to perturbations in the gauge fields.
Now the Schrdinger equation is precisely that obtained VIl. SPACE OF KINKS
when considering fluctuations abouZa kink [5]. The com-
p|ete eigenspectrum of this equation is knom and the Different boundary conditions will, in general, lead to dif-

lowest eigenva|ue i®=0 Corresponding to the zero mode ferent kink solutions. Therefore kinks with different bound-
which describes translations of the kink. So there are n@ry conditions fall into different classes—kinks belonging to

bound states and no instability to these perturbations. different classes cannot be transformed into one another by
The only other non-trivial perturbations are whepand  global SU(N) rotations. Here we would like to find the de-
T, are both type2). For these perturbations, we have generacy of a kink solution, i.e. the space of boundary con-
ditions that lead to degenerate kink solutions. There is
R.=aal, (52 clearly anSU(N) global degeneracy but this is not very

interesting since it applies to any field configuration in the
wherea, is determined from the normalization @f, . After  theory. It is of greater interest to only consider those global
some algebra, we find SU(N) transformations that leave_=®(x=—=) un-
changed but act non-trivially ol , =® (x= + ). If we de-
_ 2 _ note the unbroken symmetry groupsxat = by H.. , such
[(N=3F) g7 +H{(N=3F) transformations belong tbl _ . But the transformations that
belong toK=H , NH _ will act trivially on bothd _ and on

m2
‘paVZab'pb: N _ 3

_6‘72(N_1)(1_F)}¢ﬁ] (53 @, . Therefore the space of boundary conditionsxat
) . - + o |eading to degenerate kinks is given By /K.
where we have defined the unit vectog, decomposed), In addition to the degeneracy due to different boundary
parallel (=aa¥,) and perpendicular, ) to the vector conditions, any kink solution will have an “internal” sym-
a,, and written metry group, denoted bly This group will contain all those
transformations that leave unchanged the whole kink solu-
0252 e tion (including the boundary conditionsSo we havd CK
. o and the space of degenerate kinksis/I.

The kink classification problem can be described in more
The coefficient ofwf is positive sinceN>3 and hence this detail as follows. Suppose we fix the boundary condition at
perturbation cannot cause an instability. The coefficient oik=—« to be® _ ; then the only constraint on the boundary

zpﬁ needs to be checked. condition atx= + is that it should be in the distinct topo-
Using the normalization of ,, we obtain logical sector. There is a full vacuum manifolchod Z,)
worth of choices ford(x=+x)=®, . For certain choices
o2 1 (54) of @, we can solve the equations of motion and obtain a set

(described by the spa¢€/1) of kink solutions that extremize

the energy. Let the value of this energy hg®d, ;& _]

Inserting this into Eq(53), we find that the coefficient Qpﬁ where we have explicitly indicated that different choices of

is simply +m?. Hence there is no instability to diagonal type boundary conditions can lead to kink solutions of different

(2) perturbations. energy. We are interested in the space of minima of the
This explicit analysis shows that the solution is stable to‘potential” U[® ;& _] with respect to®, . The global

all perturbations but this does not imply that the solutionminima of this potential will describe the lowest energy kink

T2(N=1)°

minimizes the energy globally. solutions in the model and may be termed the “kink vacuum
manifold.” Other local minima will describe kink solutions
VI. GAUGE FIELDS that are separated from the lightest kink by an energy barrier.

In this way it might be possible to obtain “generations” of
The inclusion of gauge fieIdAM=AiTa, has no effect on stable kinks having the same topological charge but differing
the existence of the static solution in E@8). This can be in their energies.
seen by noting that the terms in the energy that involve the The existence of the kink solution found in the previous

gauge fields are TH?+B?), -—Tr([A,,®]?) and sections does not tell anything about whether it is a mini-
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mum of U[®, ;® _]. To examine if the solution is a local tains the term Tr¢,¥)?, we must require that the derivative
minimum we can do a perturbative analysis where the perof the perturbations vanish at spatial infinity. So it is rigorous
turbations are required to vanish xat ——so0 as to hold to take SE..=0 even if the perturbations do not vanish at

® _ fixed—but are not required to vanish at +c—since infinity.

we want to find changes in the energy when the boundary A more extensive discussion of the kink classification
conditions are varied. Going back to Sec. V we find that allproblem is left for future work.

but one of the non-trivial Schdinger potentials are positive

(for N>3) at both spatial infinities. This means that a per- VIII. SUMMARY

turbation that does not vanish at both spatial infinities gives a

divergent contribution to the energy. Hence the kink solution We have considere8U(N) X Z, models. On the basis of

is stable under these perturbations of the boundary condtopology, the model will contain topological kink solutions.
tions. The only exceptional case is the off-diagonal perturbaA general technique for constructing the solutions is not
tion of the type in Eq(44). The potentia[Eq. (48)] goes to  known. Here, by using some guesses and by choosing a spe-
a positive value ak= —o but vanishes from below at= cial relation between parametdigg. (7)], we have analyti-

+. In fact, as described below E8), there is a zero cally constructed a class of kink solutiojsee Eq(28)]. The
mode for this perturbation that vanishesxat —« but goes energy of the solutions is

to a non-vanishing constant at= +«. So this mode is a

“dangerous” one and needs to be examined further. 2V2(N-1} m?

A closer inspection of this mode shows that it corresponds T3 \N=3)/ N (56)
to gauge rotations of the field which leave® _ invariant
but rotate®, . In other words, the zero mode rotates theThe limiting value for largeN is equal to the energy of &,
kink within its own class described by the spatd . Hence, kink with mass parametem and coupling constant. We
the perturbation under consideration is not an instability buhave explicitly checked that these kink solutions are pertur-
a gauge rotation. Therefore the class of kinks that has bedsatively stable. It is not known if the solutions are globally
found describes a set of local minimaGf® . ;o _]. stable and this remains an interesting open problem.

There is a subtlety in the discussion above which we have We have then described the space of kinks as partitioning
glossed over. To obtain the Sclinger equation in E¢(39) into distinct classes. All members have the same topology,
we have to perform an integration by parts and assume thgiket elements of different classes are not expected to have the
the boundary contributions vanish. However, here we argame energy. The solutions constructed above describe only
considering perturbations that do not vanish at infinity. Thisone of the(unknown number ofclasses of kinks and might

fact means that there is an extra contributiorst, in Eq.  lie on the “kink vacuum manifold”—the manifold consist-
(39 given by ing of the least energetic kinks in the model.
o We hope that the solutions found here can be used as a
SE =£Tr \Ifﬂ (55) guide to the construction of other topological defect solu-
© 2 dx | tions in complicated field theories.
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