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Screened perturbation theory to three loops
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The thermal physics of a massless scalar field with af4 interaction is studied within screened perturbation
theory~SPT!. In this method the perturbative expansion is reorganized by adding and subtracting a mass term
in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation
to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to
two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to
converge even for rather large values of the coupling constant.
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I. INTRODUCTION

If we have a weakly coupled quantum field theory in eq
librium at temperatureT, we should be able to use perturb
tion theory as a quantitative tool to study its properties.
the case of a massless theory with a coupling constantg, the
naive perturbative expansion in powers ofg2 breaks down
because of collective effects such as screening. However
perturbative expansion can be reorganized into a we
coupling expansion in powers ofg either by using resumma
tion methods or alternatively by using effective field theo
It is reasonable to assume that this weak-coupling expan
provides a useful asymptotic expansion for sufficiently sm
values ofg.

Only in recent years has the calculational technology
thermal quantum field theory advanced to the point wh
this assumption can be tested. Unfortunately, the assump
seems to be false. One would expect the thermodyna
functions, such as the pressure, to be among the quan
with the best-behaved weak-coupling expansion, since
lective effects are suppressed by several powers ofg. How-
ever, in recent years, the thermodynamic functions have b
calculated to orderg5 for massless scalar theories@1–3#,
Abelian gauge theories@4,5#, and non-Abelian gauge theo
ries @1,6,7#. The weak-coupling expansions show no sign
converging even for extremely small values ofg. There is
already a hint of the problem in theg3 correction, which has
the opposite sign and is relatively large compared to theg2

coefficient. The large size of theg3 contribution is not nec-
essarily fatal, since it is the first term that takes into acco
collective effects. An optimist might still hope that highe
order corrections would be well behaved. This optimism h
been dashed by the explicit calculation of theg4 and g5

terms.
For a massless scalar field theory with ag2f4/4! interac-

tion, the weak-coupling expansion for the pressure to or
g5 is @1–3#
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m
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2 S log
m

2pT
2

2

3
log a20.72Da5/2

1O~a3 log a!G , ~1!

wherePideal5(p2/90)T4 is the pressure of an ideal gas
free massless bosons,a5g2(m)/16p2, and g(m) is the
modified minimal subtraction scheme (MS) coupling con-
stant at the renormalization scalem. In Fig. 1, we show the
successive perturbative approximations toP/Pideal as a func-
tion of g(2pT). Each partial sum is shown as a band o
tained by varyingm from pT to 4pT. To expressg(m) in

FIG. 1. Weak-coupling expansion to ordersg2, g3, g4, andg5

for the pressure normalized to that of an ideal gas as a functio
g(2pT).
©2001 The American Physical Society08-1
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ANDERSEN, BRAATEN, AND STRICKLAND PHYSICAL REVIEW D63 105008
terms ofg(2pT), we use the numerical solution to the reno
malization group equationm(]/]m)a5b(a) with a five-
loop beta function@8#:

m
]

]m
a53a22

17

3
a3132.54a42271.6a512848.6a6.

~2!

The lack of convergence of the weak-coupling expansio
evident in Fig. 1. The band obtained by varyingm by a factor
of two is not necessarily a good measure of the error, but
certainly a lower bound on the theoretical error. Anoth
indicator of the theoretical error is the deviation betwe
successive approximations. We can infer from Fig. 1 that
error grows rapidly wheng(2pT) exceeds 1.5.

A similar behavior can be seen in the weak-coupling
pansion for the screening mass, which has been calculate
next-to-next-to-leading order ing @3#:

ms
25

2p2

3
aT2H 12A6a1/2

2F3log
m

2pT
22loga26.4341Ga1O~a3/2!J . ~3!

In Fig. 2, we show the screening massms normalized to the
leading order resultmLO5g(2pT)T/A24 as a function of
g(2pT), for each of the three successive approximations
ms

2 . The bands correspond to varyingm from pT to 4pT.
The poor convergence is again evident. The pattern is sim
to that in Fig. 1, with a large deviation between the orderg2

and order-g3 approximations and a large increase in the s
of the band forg4.

There are many possibilities for reorganizing the we
coupling expansion to improve its convergence. One po
bility is to use Pade´ approximants@9#. This method is limited
to observables like the pressure, for which several term
the weak-coupling expansion are known. Its application

FIG. 2. Weak-coupling expansion to ordersg2, g3, andg4 for
the screening mass normalized to the leading-order expression
function of g(2pT).
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further complicated by the appearance of logarithms of
coupling constant in the coefficients of the weak-coupli
expansion. However, the greatest problem with Pade´ ap-
proximants is that, with no understanding of the analytic b
havior of P at strong coupling, it is little more than a nu
merological recipe.

An alternative with greater physical motivation is a se
consistent approach@10#. Perturbation theory can be reorg
nized by expressing the free energy as a stationary point
functional V of the exact self-energy functionP(p0 ,p)
called the thermodynamic potential@11#. Since the exact
self-energy is not known,P can be regarded as a variation
function. The ‘‘F-derivable’’ prescription of Baym@10# is to
truncate the perturbative expansion for the thermodyna
potentialV and to determineP self-consistently as a station
ary point ofV. This gives an integral equation forP which
is difficult to solve numerically, except in cases whereP is
momentum independent. In relativistic field theories, th
are additional complications from ultraviolet divergences.
more tractable approach is to find an approximate solutio
the integral equations that is accurate only in the we
coupling limit. Such an approach has been applied
Blaizot, Iancu, and Rebhan to massless scalar field theo
and gauge theories@12,13#.

Another approach that is also variational in spirit
screened perturbation theory~SPT! introduced by Karsch,
Patkós and Petreczky@14#. This approach is less ambitiou
than the F-derivable approach. Instead of introducing
variational function, it introduces a single variational para
eter m. This parameter has a simple and obvious phys
interpretation as a thermal mass. The advantage of scre
perturbation theory is that it is very easy to apply. High
order corrections are tractable, so one can test wheth
improves the convergence of the weak-coupling expans
Karsch, Patko´s, and Petreczky applied screened perturbat
theory to a massless scalar field theory with af4 interaction,
computing the two-loop pressure and the three-loop pres
in the large-N limit. In both cases, they used a one-loop g
equation as their prescription for the mass. Their three-lo
calculation was not a very stringent test of the method,
cause the large-N limit suppresses self-energy diagrams th
depend on the momentum.

In this paper, we present a thorough study of scree
perturbation theory for a massless scalar field theory wit
f4 interaction. We calculate the pressure and entropy
three loops and the screening mass to two loops using S
We consider several generalizations of the one-loop
equation to two loops. Inserting the solutions to the g
equations form into the SPT expansions, we obtain the SP
improved approximations to the pressure, the screen
mass, and the entropy.

The paper is organized as follows. In Sec. II, we descr
the systematics of screened perturbation theory. In Sec.
we discuss the possible prescriptions that can be use
generalize the one-loop gap equation to higher orders.
calculate the free energy to three-loop order in Sec. IV a
the screening mass to two-loop order in Sec. V. In Sec.
we study three generalizations of the one-loop gap equa
to two-loop order. In Sec. VII, we study the convergence

s a
8-2
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SCREENED PERTURBATION THEORY TO THREE LOOPS PHYSICAL REVIEW D63 105008
the SPT-improved results for the pressure, screening m
and entropy. In Sec. VIII, we summarize and conclude.
have collected the necessary sum-integrals in the Appen

II. SCREENED PERTURBATION THEORY

The Lagrangian density for a massless scalar field wit
f4 interaction is

L5
1

2
]mf]mf2

1

24
g2f41DL, ~4!

whereg is the coupling constant andDL includes counter-
terms. The conventional perturbative expansion in power
g2 generates ultraviolet divergences, and the countertermDL
must be adjusted to cancel the divergences order by ord
g2. If we use dimensional regularization ind5322e spatial
dimensions and minimal subtraction to remove the ultrav
let divergences, the counterterms have the form

DL5
1

2
~Zf21!]mf]mf2

1

24
Dg2f4, ~5!

whereDg25(Zf
2 Zg21)g2, andZf andZg are power series

in g2 whose coefficients have poles ine. At nonzero tem-
perature, the conventional perturbative expansion also ge
ates infrared divergences. They can be removed by res
ming the higher order diagrams that generate a thermal m
of ordergT for the scalar particle. This resummation chang
the perturbative series from an expansion in powers ofg2 to
an expansion in powers of (g2)1/25g.

Screened perturbation theory, which was introduced
Karsch, Patko´s and Petreczky@14#, is simply a reorganiza-
tion of the perturbation series for thermal field theory. It c
be made more systematic by using a framework called ‘‘
timized perturbation theory’’ that Chiku and Hatsuda@15#
have applied to a spontaneously broken scalar field the
The Lagrangian density is written as

LSPT52E01
1

2
]mf]mf2

1

2
~m22m1

2!f2

2
1

24
g2f41DL1DLSPT, ~6!

whereE0 is a vacuum energy density parameter and we h
added and subtracted mass terms. If we setE050 andm1

2

5m2, we recover the original Lagrangian~4!. Screened per-
turbation theory is defined by takingm2 to be of orderg0 and
m1

2 to be of orderg2, expanding systematically in powers o
g2, and settingm1

25m2 at the end of the calculation. Thi
defines a reorganization of perturbation theory in which
expansion is around the free field theory defined by

Lfree52E01
1

2
]mf]mf2

1

2
m2f2. ~7!

The interaction term is
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Lint52
1

24
g2f41

1

2
m1

2f21DL1DLSPT. ~8!

At each order in screened perturbation theory, the effect
the m2 term in Eq.~7! are included to all orders. Howeve
when we setm1

25m2, the dependence onm is systematically
subtracted out at higher orders in perturbation theory by
m1

2 term in Eq.~8!. At nonzero temperature, screened pert
bation theory does not generate any infrared divergen
because the mass parameterm2 in the free Lagrangian~7!
provides an infrared cutoff. The resulting perturbative exp
sion is therefore a power series ing2 and m1

25m2 whose
coefficients depend on the mass parameterm.

This reorganization of perturbation theory generates n
ultraviolet divergences, but they can be canceled by the
ditional counterterms inDLSPT. The renormalizability of the
Lagrangian in Eq.~6! guarantees that the only counterterm
required are proportional to 1,f2, ]mf]mf, andf4. With
dimensional regularization and minimal subtraction, the
efficients of these operators are polynomials ina5g2/16p2

andm22m1
2. The extra counterterms required to remove t

additional ultraviolet divergences are

DLSPT52DE02
1

2
~Dm22Dm1

2!f2. ~9!

The vacuum energy counterterm has the formDE05ZE(m2

2m1
2)2, whereZE is a power series ina whose coefficients

have poles ine. The mass counterterms have the for
Dm25(ZfZm21)m2 and Dm1

25(ZfZm21)m1
2, where Zf

is the same wavefunction renormalization constant that
pears in Eq.~5! and Zm is also a power series ina whose
coefficients have poles ine.

Several terms in the power series expansions of the co
terterms are known from previous calculations at zero te
perature. The countertermsDg2 andDm2 are known to order
a5 @8#. We will need the coupling constant counterterm on
to leading order ina:

Dg25F 3

2e
a1•••Gg2. ~10!

We need the mass countertermsDm2 and Dm1
2 to next-to-

leading order and leading order ina, respectively:

Dm25F 1

2e
a1S 1

2e22
5

24e Da21•••Gm2, ~11!

Dm1
25F 1

2e
a1•••Gm1

2 . ~12!

The counterterm forDE0 has been calculated to ordera4

@16#. We will need its expansion only to second order ina
andm1

2:
8-3
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ANDERSEN, BRAATEN, AND STRICKLAND PHYSICAL REVIEW D63 105008
~4p!2DE05F 1

4e
1

1

8e2 a1S 5

48e3 2
5

72e2 1
1

96e Da2Gm4

22F 1

4e
1

1

8e2 aGm1
2m21

1

4e
m1

4 . ~13!

III. MASS PRESCRIPTIONS

The mass parameterm in screened perturbation theory
completely arbitrary. To complete a calculation in screen
perturbation theory, it is necessary to specifym as a function
of g and T. One of the complications from the ultraviole
divergences is that the parametersE0 , m2, g2, and m1

2 all
become running parameters that depend on a renormaliz
scale m. In our prescription for recovering the origina
theory, we must therefore specify the renormalization sc
m* at which the Lagrangian~6! reduces to Eq.~4!. The pre-
scription can be written

E0~m* !50, ~14!

m2~m* !5m1
2~m* !5m

*
2 ~T!, ~15!

where m* (T) is some prescribed function of the temper
ture. This is the only point where temperature enters i
SPT. We proceed to discuss the possible prescriptions
m* (T).

The prescription of Karsch, Patko´s, and Petreczky for
m* (T) is the solution to the one-loop gap equation:

m
*
2 5

1

2
a~m* !FJ1~m* /T!T22S 2log

m*
m*

11Dm
*
2 G ,

~16!

where the functionJ1(x) is defined in Eq.~A8!. Their choice
for the scale wasm* 5T. In the weak-coupling limit, the
solution to Eq.~16! is m* 5g(m* )T/A24.

There are many possibilities for generalizing Eq.~16! to
higher orders ing. One class of possibilities is to identifym*
with some physical mass in the system. The simplest ch
is thescreening mass ms defined by the location of the pol
in the static propagator:

p21m21P~0,p!50 at p252ms
2 , ~17!

whereP(p0 ,p) is the self-energy function. Another choic
is the rest mass of the quasiparticle:mq5Rev(0), where
v(p) is the quasiparticle dispersion relation which satisfi
2v21p21P„i (v1 i«),p…50. The quasiparticle mass i
more difficult to calculate than the screening mass.

Another mass prescription that generalizes Eq.~16! to
higher orders is to identifym* with the tadpole massdefined
by mt

25g2^f2&. This can also be expressed as a derivat
of the free energy:

mt
252g2

]

]m2 F~T,g,m,m1 ,m!U
m15m

, ~18!
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where the partial derivative is taken before settingm15m.
An advantage of the tadpole mass is that^f2& is easier to
calculate at higher orders than the self-energyP.

There is another class of prescriptions that is variatio
in spirit. The results of SPT would be independent ofm if
they were calculated to all orders. This suggests choosinm
to minimize the dependence of some physical quantity onm.
Taking that physical quantity to be the free energy, the p
scription is

d

dm2 F~T,g~m!,m,m15m,m!50. ~19!

We will refer to the solutionmv to this equation as thevaria-
tional mass.

One mass prescription that may seem appealing is
choosem* (T) so that the perturbative approximation is the
modynamically consistent@17#. Given a diagrammatic ex
pansion forF, the entropy densityS has a diagrammatic
expansion given by

Sdiag52
]

]T
F~T,g,m,m1 ,m!, ~20!

where the partial derivative]/]T is taken with all the other
variablesg, m, m1, andm held fixed. The entropy density ca
also be defined by the thermodynamic relation

Sthermo52
d

dT
F~T,g~m!,m5m* ,m15m* ,m!. ~21!

The total derivative takes into account the explicit depe
dence onT, the T-dependence ofm* (T), and also the
T-dependence of the running coupling constant if we cho
a scalem that depends onT. If the thermodynamic expan
sions forF andS were known to all orders, there would b
no dependence onm or m, and Eqs.~20! and ~21! would be
equivalent. If the diagrammatic expansion is truncated an
any of the parametersg, m, m1, andm is allowed to depend
on T, thenS may not satisfy Eq.~21!. An approximation is
called thermodynamically consistentif S satisfies Eq.~21!
exactly. This requires

dg

dT

]F
]g

1
dm

dT

]F
]m

1
dm

dT

]F
]m

1
dm1

dT

]F
]m1

50. ~22!

If F were known to all orders, it would be independent ofm
and m1 at m5m1. Thermodynamic consistency could the
be guaranteed by taking the scalem to be any function ofT
and choosingg(m) to be the running coupling constant
that scale. If we only have a perturbative approximation toF,
Eq. ~22! is satisfied only up to higher order corrections. O
way to guarantee thermodynamic consistency is to cho
m5am with a a constant and impose the condition

d

dm2 F„T,g~am!,m,m15m,m5am…50. ~23!

This differs from the variational gap equation~19! only in
that we have setm5am before differentiating. This equation
8-4
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SCREENED PERTURBATION THEORY TO THREE LOOPS PHYSICAL REVIEW D63 105008
does not reduce to the one-loop gap equation~16! at leading
order, so we will not consider it any further. We will b
satisfied by approximations that are thermodynamically c
sistent only up to higher orders in perturbation theory.

IV. FREE ENERGY TO THREE LOOPS

In this section, we calculate the pressure and entropy d
sity to three loops in screened perturbation theory. The
grams for the free energy that are included at this order
those shown in Fig. 3 together with diagrams involvi
counterterms.

A. One-loop free energy

The free energy at leading order ing2 is

F05E01F0a1D0E0 , ~24!

whereD0E0 is the term of orderg0 in the vacuum energy
counterterm~13!. The expression for diagram 0a in Fig. 3

F0a5
1

2XP log@P21m2#. ~25!

The sum-integral in Eq.~25! is over the Euclidean momen
tum P5(vn ,p) and we defineP25p21vn

2 . The sum-
integral includes a sum over Matsubara frequenciesvn
52pnT and a dimensionally regularized integral over t
momentump with a measure that is defined in Appendix A
In dimensional regularization with 322e spatial dimensions
the diagrams forF have dimensions (energy)422e. To obtain
the renormalized free energy density with dimensio
(energy)4, we multiply the diagrams bym2e, wherem is an
arbitrary renormalization scale, before taking the limite
→0. The coupling constant in dimensional regularization
gme, where g is the dimensionless renormalized coupli
constant. Including the overall factor ofm2e and the factor of
me from the coupling constants, there is a factor ofm2e for
each sum-integral. We choose to absorb this factor into
measure of the sum-integral.

The sum-integral in Eq.~25! is expressed as a function o
e in the Appendix. It has a pole ate50. The result for the
diagram is

F0a52
1

4~4p!2 S m

mD 2eH F1

e
1

3

2
1

211p2

12
e

1
4513p214c9~1!

24
e2Gm412J0T4J , ~26!

FIG. 3. Diagrams for the one-loop~0a!, two-loop ~1a and 1b!,
and three-loop~2a, 2b, 2c and 2d! free energy.
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where J0 is the function ofm/T defined in Eq.~A5!. We
have kept all terms that contribute through ordere2, because
they enter into higher order diagrams involving count
terms. The pole ine in Eq. ~26! is canceled by the zeroth
order termD0E0 in the counterterm~13!. The final result for
the one-loop free energy is

~4p!2F05~4p!2E02
1

8
~2L13!m42

1

2
J0T4, ~27!

where L5 log(m2/m2) and J0 can now be replaced by it
value ate50, which is given in Eq.~A8!.

B. Two-loop free energy

The contribution to the free energy of orderg2 is

F15F1a1F1b1D1E01
]F0a

]m2
D1m2, ~28!

whereD1E0 andD1m2 are the terms of orderg2 in the coun-
terterms~11! and ~13!, respectively. The expressions for th
diagrams 1a and 1b in Fig. 3 are

F1a5
1

8
g2SXP

1

P21m2D 2

, ~29!

F1b52
1

2
m1

2
XP

1

P21m2 . ~30!

The results for the diagrams can be expressed as

F1a5
a

8~4p!2S m

mD 4eH F 1

e21
2

e
1

181p2

6

1
121p21c9~1!

3
eGm4

22F1

e
111

121p2

12
eGJ1m2T21J1

2T4J , ~31!

F1b52
m1

2

2~4p!2 S m

mD 2eH 2F1

e
111

121p2

12
eGm2

1J1T2J , ~32!

wherea5g2/16p2. We have kept all terms that contribut
through ordere, because they are needed for counterte
diagrams in the three-loop free energy. The poles ine in Eqs.
~31! and ~32! are canceled by the counterterms in Eq.~28!.
The final result for the two-loop free energy is

~4p!2F15
1

2
@~L11!m22J1T2#m1

2

1
1

8
a@~L11!m22J1T2#2. ~33!
8-5
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C. Three-loop free energy

The contribution to the free energy of orderg4 is

F25F2a1F2b1F2c1F2d1D2E01
]F0a

]m2
D2m21

1

2

]2F0a

~]m2!2
~D1m2!21S ]F1a

]m2
1

]F1b

]m2 D D1m21
F1a

g2
D1g21

F1b

m1
2

D1m1
2,

~34!

where we have included all the appropriate counterterms. The expressions for the diagrams 2a, 2b, 2c, and 2d in F

F2a52
1

16
g4SXP

1

P21m2D 2

XQ

1

~Q21m2!2 , ~35!

F2b52
1

48
g4
XPQR

1

~P21m2!~Q21m2!~R21m2!„~P1Q1R!21m2
…

, ~36!

F2c5
1

4
g2m1

2
XP

1

P21m2XQ

1

~Q21m2!2 , ~37!

F2d52
1

4
m1

4
XP

1

~P21m2!2 . ~38!

The results for these diagrams in the limite→0 are

F2a52
a2

16~4p!2S m

mD 6eH F 1

e3 1
2

e21
121p2

4e
1

81p21c9~1!

2 Gm41F 1

e2 1
2

e
1

181p2

6 GJ2m4

22F 1

e2 1
1

e
1

61p2

6 GJ1m2T222F1

e
11GJ1J2m2T21

1

e
J1

2T41J1
2J2T4J , ~39!

F2b52
a2

48~4p!2S m

mD 6eH F 2

e3 1
23

3e2 1
351p2

2e
1C0Gm42F 6

e2 1
17

e
24C1GJ1m2T21F6

e
112GJ1

2T4

1@6K214K3#T4J , ~40!

F2c5
am1

2

4~4p!2S m

mD 4eH 2F 1

e2 1
1

e
1

61p2

6 Gm22S 1

e
11D J2m21

1

e
J1T21J1J2T2J , ~41!

F2d52
m1

4

4~4p!2S m

mD 2eH 1

e
1J2J . ~42!

The poles ine are canceled by the counterterms in Eq.~34!. The final result for the free energy is

~4p!2F252
1

4
~L1J2!m1

42
a

4
~L1J2!@~L11!m22J1T2#m1

2

2
1

48
a2F X5L3117L21

41

2
L2232

23

12
p22c9~1!1C013~L11!2J2Cm4

2„12L2128L2122p224C116~L11!J2…J1m2T21„3~3L14!J1
213J1

2J216K214K3…T
4G . ~43!

D. Pressure to three loops

The pressureP is given by2F. The contributions to the free energy of zeroth, first, and second order ing2 are given in
Eqs.~27!, ~33!, and~43!, respectively. Adding them and settingE050 andm1

25m2, we get the approximations to the pressu
in screened perturbation theory. The one-loop approximation is obtained by settingE050 in Eq. ~27!:
105008-6
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~4p!2P05
1

8
@4J0T41~2L13!m4#. ~44!

The two-loop approximation is obtained by adding Eq.~33! with m1
25m2:

~4p!2P0115
1

8
@4J0T414J1m2T22~2L11!m4#2

1

8
a@J1T22~L11!m2#2. ~45!

The three-loop approximation is obtained by adding Eq.~43! with m1
25m2:

~4p!2P011125
1

8
@4J0T414J1m2T212J2m42m4#2

1

8
a@J1T22~L11!m2#@J1T212J2m21~L21!m2#

1
1

48
a2F3J2„J1T22~L11!m2

…

21„3~3L14!J1
216K214K3…T

4

2~12L2128L2122p224C1!J1m2T21X5L3117L21
41

2
L2232

23

12
p22c9~1!1C0Cm4G , ~46!

whereL5 log(m2/m2), C0539.429,C1529.8424, theJn’s are the functions ofm/T given in Eq.~A8!, andK2 andK3 are
functions ofm/T given in Ref.@18#. Note that the dependence onL has canceled from the term proportional toa0 in Eq. ~46!.

E. Entropy to three loops

The perturbative expansion for the entropy densityS is defined in Eq.~21!. The one-, two-, and three-loop approximatio
to S are obtained by taking the partial derivatives with respect toT, with a, m, andm fixed, of the expressions for the pressu
in Eqs.~44!, ~45!, and~46!. The partial derivatives of the functionsJn(bm) can be evaluated using the recursion relation~A6!.
The partial derivatives ofKn(bm) can be evaluated numerically.

The one-loop approximation is obtained by differentiating Eq.~44!:

~4p!2TS052J0T41J1m2T2. ~47!

The two-loop approximation is obtained by differentiating Eq.~45!:

~4p!2TS0115@2J0T412J1m2T21J2m4#2
1

2
a@J1T22~L11!m2#@J1T21J2m2#. ~48!

The three-loop approximation is obtained by differentiating Eq.~46!:

~4p!2TS011125
1

2
@4J0T414J1m2T212J2m41J3m6T22#2

1

2
a@~J1T21J2m2!2

2~J1T21J2m2!m21J3„J1T22~L11!m2
…m4T22#1

1

24
a2@3J3„J1T22~L11!m2

…

2m2T22

16J2„J1T22~L11!m2
…~J1T21J2m2!1„6~3L14!J1

2112K218K3…T
4

2~3K2812K38!mT316~3L14!J1J2m2T22~12L2128L2122p224C1!~J1T21J2m2!m2#. ~49!
t

tw
d
m

er
The primes onK2 andK3 denote differentiation with respec
to bm.

V. SCREENING MASS TO TWO LOOPS

In this section, we calculate the screening mass to
loops. The diagrams for the self-energy that are include
this order are those shown in Fig. 3 together with diagra
involving counterterms. The screening massms is the solu-
10500
o
at
s

tion to Eq.~17!. This equation can be solved order-by-ord
in powers ofa andm1

2. The solution at zeroth order ing2 is
simply ms

25m2.

A. One-loop self-energy

The self-energy at first order ing2 is

P15P1a2m1
21D1m2, ~50!
8-7
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ANDERSEN, BRAATEN, AND STRICKLAND PHYSICAL REVIEW D63 105008
whereD1m2 is the mass counterterm of ordera given in Eq.
~11!. The expression for the diagram 1a in Fig. 4 is

P1a5
1

2
g2
XP

1

P21m2 .

The result for the diagram is

P1a5
1

2
aS m

mD 2eH 2F1

e
111

121p2

12
eGm21J1T2J .

~51!

We have kept all terms that contribute to ordere, because
they are needed for counterterm diagrams in the two-l
self-energy. The pole ine in Eq. ~51! is canceled by the
countertermD1m2. The final result for the one-loop self
energy is

P15
1

2
a@J1T22~L11!m2#2m1

2 . ~52!

B. Two-loop self-energy

The contribution to the self-energy of second order ing2

is

P2~P!5P2a1P2b~P!1P2c1
]P1a

]m2
D1m2

1
P1a

g2
D1g21D2m22D1m1

2 . ~53!

The expressions for the diagrams 2a and 2b in Fig. 4 ar

P2a52
1

4
g4
XQ

1

Q21m2XR

1

~R21m2!2 , ~54!

P2b~P!52
1

6
g4
XQR

1

Q21m2

1

R21m2

3
1

~P1Q1R!21m2 , ~55!

P2c5
1

2
g2m1

2
XQ

1

~Q21m2!2 . ~56!

The diagramsP2a and P2c are independent of the momen
tum P. The results for these diagrams in the limite→0 are

FIG. 4. Diagrams for the one-loop~1a! and two-loop~2a, 2b,
and 2c! self-energy.
10500
p

P2a5
1

4
a2S m

mD 4eF S 1

e2 1
1

e
1

61p2

6 Dm2

1S 1

e
11D J2m22S 1

e
1J2D J1T2G , ~57!

P2c5
1

2
am1

2S m

mD 2eF1

e
1J2G . ~58!

The diagramP2b depends on the external momentumP.
Equation ~17! for the screening mass involves the se
energy atp050. To calculate the screening mass to seco
order ing2, we need the analytic continuation ofP(0,p) to
p252m2. This is calculated in the Appendix. The result

P2b~0,p!up252m25
1

6
a2S m

mD 4eH F 3

2e2 1
17

4e
2C1Gm2

23F1

e
J11K̃11K̃2GT2J . ~59!

The poles in Eqs.~57!–~59! are canceled by the counterterm
in Eq. ~53!. The final result for the two-loop self-energy a
p050 andp252m2 is

P2~0,p!up252m25
1

2
a~L1J2!m1

21
1

24
a2$@12L2128L212

2p224C116~L11!J2#m2

26@~3L1J2!J112K̃112K̃2#T2%. ~60!

C. Screening mass

Since the dependence of the self-energy on the mom
tum enters only at orderg4 and since the leading-order solu
tion to the screening mass isms5m, the solution to Eq.~17!
to orderg4 is simply

ms
25m21P~0,p2!up252m2. ~61!

We proceed to calculate the expression to orderg2 and to
orderg4.

The solution to orderg2 is obtained by inserting the one
loop self-energy~52! into Eq. ~61!. Settingm1

25m2, the re-
sult is

ms
25

1

2
a@J1T22~L11!m2#. ~62!

If we choosem5ms5m* , this is identical to the one-loop
gap equation~16!.

The solution to orderg4 is obtained by inserting the sum
of Eqs. ~52! and ~60! into Eq. ~61!. Setting m1

25m2, the
result is
8-8
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ms
25

1

2
a@J1T21~J221!m2#

2
1

24
a2@6J2„J1T22~L11!m2

…

16~3LJ112K̃112K̃2!T2

2~12L2128L2122p224C1!m2#. ~63!

Note that the dependence onL has canceled in the order-a
terms.

VI. GAP EQUATIONS

In this section, we solve the gap equations that determ
the arbitrary mass parameter in screened perturbation the
We consider the one-loop gap equation and three genera
tions to a two-loop gap equation.

A. One-loop gap equation

The one-loop gap equation is given in Eq.~16!. It is con-
venient to introduce the gap function defined by

G5m22
1

2
a@J1T22~L11!m2#. ~64!

The one-loop gap equation is then G50. For simplicity of
notation, we will often suppress the subscripts * onm andm.

Before solving the one-loop gap equation, we need
choose a value form. It is natural to takem to be propor-
tional to one of the two energy scales in the equation,T and
m. We will consider two possibilities,m5a(2pT) and m
5am, and allow the coefficienta to vary from 1

2 to 2. Given
either of these choices form, the gap equation can be solve
for m as a function ofa(m). The renormalization group
equation~2! can then be used to expressa(m) as a function
of a(2pT).

In the weak-coupling limitg→0, the solution to the gap
equation G5 0 approaches

m
*
2 → 2p2

3
a~m!T2

3F12A6a1/22S log
m

4pT
1g23Da1O~a3/2!G . ~65!

In the strong-coupling limitg→`, the gap equation reduce
to

2 log
m

m
1158E

0

`

dx
x2

A11x2

1

ebmA11x2
21

. ~66!

This has a solution only ifm.e21/2m.
In Fig. 5, the solutionsm* (T) to the one-loop gap equa

tion as a function ofg(2pT) are shown as bands obtained
varying m by a factor of two around the central valuesm
10500
e
ry.
a-

o

52pT andm5m* , respectively. The solutions are norma
ized to the leading-order screening massmLO

5g(2pT)T/A24.

B. Screening gap equation

The screening gap equation is obtained by identifyingm
with ms . The one-loop expression for the screening mas
given in Eq.~62!. Thus the one-loop screening gap equati
is simply G50. The two-loop expression for the screenin
mass is given in Eq.~63!. The two-loop screening gap equa
tion can be written as

F12
1

2
a~J21L !GG1

1

24
a2@12~LJ11K̃11K̃2!T2

2~6L2122L2122p224C1!m2] 50. ~67!

From this expression, it is easy to see that the solutionm to
the gap equation differs from the solution~65! to the one-
loop gap equation by terms of ordera2T2. The weak-
coupling expansion of the solutionm2 must of course agree
through ordera2T2 with the weak-coupling expansion ofms

2

given in Eq.~3!.
The solutions to the screening gap equation form52pT

and m5m* are shown in Fig. 5. In the casem52pT, the
screening gap equation cannot be continued bey
g(2pT)52.60. Form5pT, it terminates atg(2pT)52.31,
while for m54pT, it terminates atg(2pT)53.04. If we
choosem5am* , the solution can be continued to muc
larger values ofg. For m5m* , it lies very close to the
solution to the one-loop gap equation withm5m* .

C. Tadpole gap equation

The tadpole massmt is defined in Eq.~18!. The one-loop
expression is given by differentiating Eq.~27!. The result is
identical to the one-loop expression~62! for the screening

FIG. 5. Solutionsm* (T) to the one-loop gap equation~shaded
bands! and the two-loop gap equations~lines! as functions of
g(2pT).
8-9
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mass. To obtain the two-loop expression for the tadp
mass, we add the one- and two-loop free energies~27! and
~33!, differentiate with respect tom2, and then setm1

25m2.
The result is

mt
25

1

2
a@J1T21~J221!m2#

2
1

4
a2~J21L !@J1T22~L11!m2#. ~68!

The order-a term is identical to that of the screening ma
~63!, but the order-a2 term is much simpler.

The one-loop tadpole equation is simply G50. The two-
loop tadpole gap equation is obtained by settingmt5m in
Eq. ~68!. It can be written in the form

F12
1

2
a~J21L !GG50. ~69!

Thus the two-loop tadpole gap equation is identical to
one-loop gap equation: G50. The solutions form52pT and
m5m* are at the centers of the shaded bands in Fig. 5.

D. Variational gap equation

The variational massmv is the solution to~19!. The one-
loop variational gap equation is obtained by differentiati
the two-loop expression~45! for the pressure with respect t
m2 and setting it equal to zero. This gives (L1J2)m2G50,
which reduces to the one-loop gap equation: G50.

The two-loop variational gap equation is obtained by d
ferentiating the three-loop expression~46! for the pressure. It
can be expressed in the form

05
1

4
a~J21L !2G2

1

4 S J31
1

~bm!2DG2/T2

1
1

48
a2F26

J1
2

~bm!2 212~L12!J1J2

1
3K2812K38

bm
1•••GT2, ~70!

where K28 and K38 are the derivatives ofK2 and K3 with
respect tobm. In the coefficient ofa2T2, we have written
explicitly only the terms that are singular asbm→0. The
1/(bm)2 singularities cancel between theJ1

2 andK28 term. If
we keep the most singular terms in the coefficients of eac
the three terms in Eq.~70!, the equation reduces to

05
p2a

~bm!2G2
p

4~bm!3G2/T22@32p3~L12!

2~3k2812k38!log~bm!23~k21k28!

22~k31k38!#
a2T2

48bm

50, ~71!
10500
le

e

-

of

where k28 log(bm)1k2 and k38 log(bm)1k3 are the coeffi-
cients of bm in the small-bm expansions ofK2 and K3,
which are given in Eqs.~A16! and ~A17!.

The solution to the quadratic equation~71! for G is pro-
portional to abmT2. The solutionm2 to the gap equation
therefore differs from the solution~65! to the one-loop gap
equation by terms of ordera3/2T2. This is a little disturbing,
but even more disturbing is the fact that Eq.~71! has no
real-valued solutions for G unlessL,2.0984 log(bm)
14.1541. If we assume thatm→gT/A24 asg→0, then this
condition is violated for sufficiently smallg whether we set
m5a(2pT) or m5am. Since there are no solutions in th
neighborhood ofg50, we will not consider the two-loop
variational gap equation any further.

VII. SPT-IMPROVED OBSERVABLES

In this section, we use the solutions to the gap equatio
Sec. VI to obtain successive approximations to the press
screening mass, and entropy in screened perturbation the

A. Pressure

The two-loop SPT-improved approximation to the pre
sure is obtained by inserting the solution to the one-loop
equation~16! into the two-loop pressure~45!. We can sim-
plify the expression by using Eq.~16! to eliminate the ex-
plicit appearance of logarithms ofm. Remarkably, this elimi-
nates all the terms of ordera and the expression reduce
simply to

~4p!2P0115
1

8
@4J0T412J1m2T21m4#. ~72!

The J0 term in Eq. ~72! is the pressure of an ideal gas
particles of massm. Inserting the solution to the one-loo
gap equation shown in Fig. 5, we obtain the bands show
Fig. 6. The lower and upper bands correspond to varyingm

FIG. 6. Two-loop~shaded bands! and three-loop~lines! SPT-
improved pressure as a function ofg(2pT).
8-10
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FIG. 7. One-, two-, and three
loop SPT-improved pressure as
function of g(2pT) for ~a! pT
,m,4pT and ~b! 1
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by a factor of 2 around the central valuesm52pT and m
5m* , respectively.

The three-loop SPT-improved approximation to the pr
sure is obtained by inserting the solution to a two-loop g
equation into the three-loop pressure~46!. In Fig. 6, we show
the three-loop SPT-improved pressure as a function
g(2pT) for different two-loop gap equations. The solid lin
is the result using the two-loop screening gap equation w
m52pT. It cannot be extended pastg(2pT)52.60. The
dashed line is the result using the two-loop tadpole~or one-
loop! gap equation withm52pT. The dotted line is the re
sult using either the two-loop screening gap equation w
m* 5m* or the two-loop tadpole gap equation withm*
5m* . The two are indistinguishable on the scale of t
figure. The variations among the three-loop SPT-improv
approximations for the pressure are much smaller than
might have expected from the variations among the scre
ing masses. For example, atg(2pT)52, the solutions to the
two-loop gap equations shown in Fig. 5 vary by about 12
while the three-loop approximations to the pressure show
Fig. 6 vary only by about 0.07%.

Since the solution to the screening gap equation am
5a(2pT) cannot be continued beyond a critical value og
and the solution form5am* is close to the solution to the
tadpole gap equation form5am* , we will consider only the
tadpole gap equation from now on. In Fig. 7, we show
one-, two-, and three-loop SPT-improved approximations
the pressure using the tadpole gap equation. The band
obtained by varyingm by a factor of two around the centra
valuesm52pT andm5m* . The one-loop bands in Fig.
lie below the other bands; however, the two- and three-lo
bands all lie within theg5 band of the weak-coupling expan
sion in Fig. 1. The one-, two-, and three-loop approximatio
to the pressure are perturbatively correct up to orderg1, g3,
and g5, respectively; however, we see a dramatic impro
ment in the apparent convergence compared to the w
coupling expansion.

The choicem5am* appears to give better convergen
thanm5a(2pT), with the three-loop band falling within the
two-loop band. The bands form5am* are narrower than
those form5a(2pT) partly becausem5a(2pT) is larger
and therefore closer to the Landau pole of the running c
pling constant. Ifg(2pT)52, the Landau pole associate
with the five-loop beta function is far away atm52.11
10500
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3105(2pT). If g(2pT)54, the Landau pole is rathe
nearby atm55.49(2pT). The coupling constantg(m* ) is
smaller thang(2pT), having the values 1.76 and 3.07
g(2pT)52 and 4, respectively. Choosingm5am* instead
of m5a(2pT) will therefore make the error due to them4

terms in the pressure smaller by factors of about 0.60
0.35 respectively. The bandm* /2,m,2m* may therefore
give an underestimate of the error of SPT.

B. Screening mass

The one-loop SPT-improved approximation to the scre
ing massms is simply the solutionm* (T) to the tadpole gap
equation. A two-loop SPT-improved approximation can
obtained by inserting the solution to the gap equation fom
into Eq. ~63!. In Fig. 8, we show the one-loop and two-loo
SPT-improved approximations to the screening mass
functions ofg(2pT). The bands are obtained by varyingm
by a factor of two around the central valuesm52pT and
m5m* .

The choicem5am* appears again to give better conve
gence thanm5a(2pT), with the two-loop band falling
within the one-loop band. Withm5am* , there is a dramatic
improvement in apparent convergence over the we
coupling approximations, which are plotted on the sa
scale in Fig. 2. However, there is not much improvement
the apparent convergence withm5a(2pT). The conserva-
tive conclusion is that screened perturbation theory is no
effective in improving the prediction for the screening ma
as it is for the pressure.

C. Entropy

The one-, two- and three-loop SPT-improved entrop
are obtained by replacingm in the expressions~47!–~49! for
S0 , S011, andS01112 with the solutionm* to the one-loop
gap equation G50. Using the gap equation to eliminate th
logarithmL, the expression for the two-loop entropy reduc
to

~4p!2TS01152J0T41J1m2T2. ~73!

This is identical to the one-loop expression~47!, which is the
entropy of an ideal gas of particles with massm. In Fig. 9,
we show the two- and three-loop SPT-improved approxim
8-11
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FIG. 8. One-loop and two-loop
SPT-improved screening mass a
a function ofg(2pT) for ~a! pT
,m,4pT and ~b! 1

2 m* ,m
,2m* .
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ce
tions to the entropy as functions ofg(2pT). The entropy
density is normalized to that of an ideal gas:Sideal
5(2p2/45)T3. The bands in Fig. 9 correspond to varyingm
by a factor of two around the central values 2pT andm* .
Once again, the choicem5am* seems to give better con
vergence with the three-loop band lying very close to
two-loop band.

The entropies shown in Fig. 9 are successive approxi
tions to the diagrammatic entropy defined by Eq.~20!. How-
ever, the entropy can also be defined by the thermodyna
relation ~21!. Thus successive approximations toS can be
obtained by differentiating the pressures shown in Fig
with respect toT. In that figure we show the ratio of th
pressure to that of an ideal gas as a function ofg(2pT).
Defining the functionf (g) by
10500
e

a-

ic

7

P~T!5Pideal~T! f „g~2pT!…, ~74!

the thermodynamic entropy is then given by

Sthermo~T!5Sideal~T!F f ~g!1
2p2

g
f 8~g!b~a!G , ~75!

whereg5g(2pT), a5g2/16p2, andb(a) is the beta func-
tion given by the right side of Eq.~2!. In Fig. 10, the black
curves are the two- and three-loop diagrammatic entrop
for m52pT and m5m* . The gray curves are the thermo
dynamic entropies obtained from the one-, two-, and thr
loop SPT-improved pressures. One can see clearly the
proach to thermodynamic consistency as one goes from
two-loop to the three-loop approximation. With the choi
a

c

FIG. 9. Two-loop and three-
loop SPT-improved entropy as
function of g(2pT) for ~a! pT
,m,4pT, and ~b! 1

2 m* ,m
,2m* .

FIG. 10. SPT-improved en-
tropy as a function ofg(2pT)
compared to the thermodynami
entropy for obtained from the
SPT-improved pressure for~a! m
52pT and ~b! m5m* .
8-12
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SCREENED PERTURBATION THEORY TO THREE LOOPS PHYSICAL REVIEW D63 105008
m52pT, the two-loop entropy is almost perfectly therm
dynamically consistent. However, this is probably an ac
dent because the deviations from thermodynamic entropy
evident in the three-loop entropy. Withm5am* , deviations
from thermodynamic consistency are very small for both
two- and three-loop entropies. This is another indication t
SPT improvement is more effective if we take the scalem to
be much lower than 2pT.

VIII. CONCLUSIONS AND DISCUSSION

We have studied the effectiveness of screened pertu
tion theory in reorganizing the perturbation series for a th
mal scalar field theory. We applied it to the pressure and
entropy calculated to three loops and to the screening m
calculated to two loops.

We considered three alternatives for generalizing the o
loop gap equation to two-loop order. The most useful turn
out to be the tadpole gap equation, which at two loops
identical to the one-loop gap equation proposed by Kars
Patkós, and Petreczky. The solution to the two-loop var
tional gap equation does not match onto the one-loop
equation in the weak-coupling limit. The solution to the tw
loop screening gap equation cannot be extended ab
g(2pT)52.60 if we choose the scale to bem52pT.

The predictions of SPT depend on an arbitrary scalem
that arises both from the renormalization of the coupl
constant and from the renormalization of ultraviolet dive
gences introduced by screened perturbation theory. Th
two effects could be separated by introducing two renorm
ization scales,m3 andm4. These scales would be associat
with contributions from soft and hard modes respectively
in Ref. @19#. One way disentangle the dependence on th
scales would be to evaluate the integrals as expansion
m/T. We evaluated our integrals by integrating numerica
over all momenta, which precluded any separation of
scales. Instead, we considered two possibilities for the sc
m5m* andm52pT, which correspond to the central value
expected form3 andm4, respectively. We allowed for varia
tions of m around these central values by factors of two
provide a lower bound on the theoretical uncertainty. T
choicem5m* gives smaller bands from varying the sca
but this is largely due to the fact that the coupling const
g(m* ) is smaller thang(2pT). Thus the size of the bands
not a good indicator of the success of the SPT improvem

A better indication of the success of SPT improvemen
the stability of the predictions as you go to higher order
the loop expansion. The choicem52pT gives a significant
improvement in stability for the pressure compared to
weak-coupling expansion. However the SPT improvem
seems to be much more effective usingm5m* than m
52pT. The three-loop band lies within the two-loop ban
for the pressure and it lies very close for the entropy. T
two-loop band also lies within the one-loop band for t
screening mass. The two-loop and three-loop approximat
for the entropy are also very close to thermodynamic con
tency if we choosem5m* . If we setm52pT, then going
from the two-loop to the three-loop approximations to t
pressure or entropy moves the prediction closer to that
10500
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m5m* . This suggests that the SPT-improved prediction
m5m* is more accurate than that form52pT. All this evi-
dence indicates that SPT improvement is most successf
m is taken to be much smaller than 2pT.

To remove the additional ultraviolet divergences intr
duced by SPT, we have chosen to use dimensional regu
ization with modified minimal subtraction. This choice is
course not unique. For example, we could have also cho
to subtract the piece of the free energy that is independen
T for fixed m, i.e., FR5F(T,g,m,m)2F(T50,g,m,m).
This would result in a different reorganization of the pertu
bation series that would also agree with the exact resu
summed to all orders. We take into account the theoret
uncertainty associated with the choice of subtraction sche
by allowing variation of the renormalization scalem. For
example, by examining Eqs.~44! and ~45!, we can see tha
the alternative described above corresponds toL523/2 or
the one-loop approximation and to some value in the ra
2 1

2 ,L,21 for the two-loop approximation. Settingm
5am* with 1

2 ,a,2 corresponds to varyingL in the range
21.4,L,1.4. Therefore, this variation ofm does take into
account the ambiguity associated with the subtract
scheme atT50 It would of course be preferable to separa
the ambiguity from the SPT subtractions from the ambigu
from renormalization of the original theory by allowin
separate renormalization scalesm3 and m4 as mentioned
above.

Our results demonstrate the effectiveness of screened
turbation theory in providing stable and apparently conve
ing predictions for the thermodynamic functions of a ma
less scalar field theory. An essential ingredient of t
approach is using the solution to a gap equation as the
scription for the mass parameterm. This success of screene
perturbation theory adds support to the proposal of Ref.@19#
to use HTL perturbation theory to reorganize the wea
coupling expansions for the thermodynamic functions
QCD. In Ref. @19#, the free energy was computed only
one-loop order, so there was little alternative to using
weak-coupling expression for the thermal gluon mass par
eter. However, our experience with SPT indicates that
stability of the predictions is greatly improved by using
solution to a gap equation for the mass parameter. A
equation can be derived from the free energy calculated
two-loop order in HTL perturbation theory. Until that calcu
lation is carried out, quantitative comparisons of the pred
tions of HTL perturbation theory with the nonperturbativ
results of lattice gauge theory are probably premature.
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APPENDIX: SUM-INTEGRALS

In the imaginary-time formalism for thermal field theor
a boson has Euclidean four-momentumP5(p0 ,p), with
8-13
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P25p0
21p2. The Euclidean energyp0 has discrete values

p052pnT, wheren is an integer. Loop diagrams involv
sums overp0 and integrals overp. We use dimensional regu
larization to regularize ultraviolet or infrared divergence
Our choice for the measure in the sum-integrals is

XP[S egm2

4p D e

T(
p0

E d322ep

~2p!322e
, ~A1!

where 322e is the dimension of space andm is an arbitrary
momentum scale. The factor (eg/4p)e is introduced so that
after minimal subtraction of the poles ine due to ultraviolet
divergences,m coincides with the renormalization scale
the MS renormalization scheme.

1. One-loop sum-integrals

The one-loop sum-integrals that appear in the free ene
can be separated into a temperature-independent term a
term that depends explicitly onT:

XPlog~P21m2!5
1

~4p!2 S m

mD 2e

3F2
egeG~11e!

e~12e!~22e!
m42J0T4G ,

~A2!

XP

1

P21m2
5

1

~4p!2 S m

mD 2e

3F2
egeG~11e!

e~12e!
m21J1T2G , ~A3!

XP

1

~P21m2!2
5

1

~4p!2 S m

mD 2e

3FegeG~11e!

e
1J2G . ~A4!

The thermal terms can be expressed as integrals invol
the Bose-Einstein distribution function:

Jn~bm!5

4egeGS 1

2D
GS 5

2
2n2e D b422nm2eE

0

`

dk
k422n22e

~k21m2!1/2

3
1

eb(k21m2)1/2
21

. ~A5!

These integrals satisfy the recursion relation
10500
.

y
d a

g

xJn8~x!52eJn~x!22x2Jn11~x!. ~A6!

The temperature-independent terms in Eqs.~A2!–~A4! can
be expanded as a Laurent series arounde50 by using

egeG~11e!511
p2

12
e21

1

6
c9~1!e31O~e4!. ~A7!

The functionsJn have Taylor expansions arounde50. They
often appear multiplied by poles ine, but it is counterpro-
ductive to expandJn in powers ofe, because the poles a
ways cancel in physical quantities.

If we sete50, the integralsJn for n50,1,2 reduce to

Jn~bm!5

4GS 1

2D
GS 5

2
2nD b422nE

0

`

dk

3
k422n

~k21m2!1/2

1

eb(k21m2)1/2
21

. ~A8!

The integralJ3 requires a subtraction to remove a line
infrared divergence:

J3~bm!522b22E
0

`

dk
1

k2

3S 1

~k21m2!1/2

1

eb(k21m2)1/2
21

2
1

m

1

ebm21
D .

~A9!

In the limit bm→0, these integrals reduce to

J0→
16p4

45
, ~A10!

J1→
4p2

3
24pbm22S log

bm

4p
2

1

2
1g D ~bm!2,

~A11!

J2→
2p

bm
12S log

bm

4p
1g D , ~A12!

J3→
p

~bm!32
1

~bm!2 1
1

4p2z~3!. ~A13!

2. Basketball sum-integral

The only nontrivial sum-integral required to calculate t
free energy to three loops is the massive basketball s
integral:
8-14
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Iball5X PQR

1

~P21m2!~Q21m2!~R21m2!@~P1Q1R!21m2#
. ~A14!

This sum-integral was evaluated in Ref.@20# and the result is

Iball5
1

~4p!6 S m

mD 6eH F 2

e3 1
23

3e2 1
351p2

2e
1C0Gm41F2

6

e2 2
17

e
14C1GJ1m2T21S 6

e
112D J1

2T41~6K214K3!T4J ,

~A15!

whereC0539.429,C1529.8424, andK2 andK3 are functions ofbm. They are expressed in Ref.@18# as three-dimensiona
integrals that can be evaluated numerically. Their behavior in the limitbm→0 is

K2→
32p4

9
@ log~bm!20.04597#2372.65@ log~bm!11.4658#bm, ~A16!

K3→453.5111600.0@ log~bm!11.3045#bm. ~A17!

The leading terms are given analytically in Ref.@18#. The terms proportional tobm were determined numerically.

3. Sunset sum-integral

The only nontrivial sum-integral required to calculate the self-energy to two loops is the sunset sum-integral, which d
on the external four-momentumP5(p0 ,p):

Isun~P!5XQR

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 . ~A18!

This sum-integral can be separated into terms with zero, one, and two thermal distributions, respectively@21#. At p050, it can
be written as

Isun~0,p!5Isun
(0)~p2!13Isun

(1)~p2!13Isun
(2)~p2!, ~A19!

where

Isun
(0)~p2!5E

QR

1

Q21m2

1

R21m2

1

~P1Q1R!21m2 U
P5(0,p…

, ~A20!

Isun
(1)~p2!5ReE

q
nd~q!E

R

1

R21m2

1

~P1Q1R!21m2 U
(P1Q)252[E

q
22(p1q)21 i e]

, ~A21!

Isun
(2)~p2!5ReE

q
nd~q!E

r
nd~r !

~21!

~p1q1r !22m21 i e U
p5(0,p…

. ~A22!

The integral *q denotes the dimensionally regularized integral over the Minkowski momentum (q0 ,q), and nd(q)
5n(q0)2pd(q22m2).

a. Zero thermal factors

To calculate the screening mass to two loops, we need the analytic continuation of the integrals~A20!-~A22! to the point
p252m2. The integral~A20! was evaluated in Ref.@18#:

Isun
(0)~2m2!5

1

~4p!4 S m

mD 4eF2
3

2e2 2
17

4e
1C1Gm2, ~A23!

whereC1529.8424.
105008-15
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b. One thermal factor

The integral~A21! can expressed as

Isun
(1)~p2!5

1

~4p!4S m

mD 4eF1

e
J1T228E

0

`

dq
q2n~Eq!

Eq
E

0

1

dxK log
um22x~12x!~Eq

22k2!u
m2 L G , ~A24!

wherek5up1qu and^•••& denotes the angular average. After averaging over angles, Eq.~A24! can be analytically continued
to p252m2. The result is

Isun
(1)~2m2!5

1

~4p!4S m

mD 4eF1

e
J1T21K̃1T2G , ~A25!

whereK̃1, which is a function ofbm only, is defined by

K̃152
8

T2E
0

`

dq
q2n~Eq!

Eq
E

0

1

dx f̃1~x,q!. ~A26!

The function f̃ 1(x,q) in the integrand is

f̃ 1~x,q!5
x21~12x!2

2x~12x!q/m
atanS 2x~12x!q/m

x21~12x!2 D211
1

2
log„@x21~12x!2#214x2~12x!2q2/m2

…. ~A27!

c. Two thermal factors

The integral~A22! can be expressed as

Isun
(2)~p2!5

32

~4p!4E
0

`

dq
q2n~Eq!

Eq
E

0

`

dr
r 2n~Er !

Er
(
s

ReK ~21!

Es
22k22m21 i e

L , ~A28!

whereEs5Eq1sEr , k5up1q1r u, ands is summed over61. After performing the angular average, Eq.~A28! can be
analytically continued top252m2. The result is

Isun
(2)~2m2!5

1

~4p!4K̃2T2, ~A29!

whereK̃2, which is a function ofbm only, is defined by

K̃25
4

T2E
0

`

dq
qn~Eq!

Eq
E

0

`

dr
rn~Er !

Er
(
s

f̃ 2~Es ,q,r !. ~A30!

The function in the integrand is

f̃ 2~E,q,r !5 log
@E22~q1r !2#214m2~q1r !2

@E22~q2r !2#214m2~q2r !22
2~q1r !

m
atan

2m~q1r !

E22~q1r !21
2uq2r u

m
atan

2muq2r u
E22~q2r !2

1
2

m
AE22m2atan

8mqrAE22m2

E422~E222m2!~q21r 2!1~q22r 2!2. ~A31!

If E2,m2, the last term in Eq.~A31! should be replaced by a manifestly real-valued expression using the ide
2ix atan(ix/y)→xlog@uy2xu/uy1xu#.

Our final result for the sunset sum-integral evaluated atp050 andp252m2 is obtained by combining Eqs.~A23!, ~A25!,
and ~A29! as in Eq.~A19!:

Isun~0,p!up252m25
1

~4p!4S m

mD 4eH 2F 3

2e2 1
17

4e
2C1Gm213F1

e
J11K̃11K̃2GT2J . ~A32!

The behavior of the functionsK̃1 and K̃2 in the limit bm→0 is
105008-16
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K̃1→
4p2

3 F log
bm

4p
131

z8~21!

z~21! G , ~A33!

K̃2→24p2F log
bm

4p
2

1

3
14log21

z8~21!

z~21! G . ~A34!
10500
The result ~A33! was computed analytically. The resu
~A34! was guessed by comparing the expression~63! for the
screening massms in screened perturbation theory with th
weak-coupling expression forms which is given in analytic
form in Ref. @3#. It was then verified numerically.
. D
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