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Screened perturbation theory to three loops
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The thermal physics of a massless scalar field with*anteraction is studied within screened perturbation
theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term
in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation
to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to
two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to
converge even for rather large values of the coupling constant.
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I. INTRODUCTION
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If we have a weakly coupled quantum field theory in equi-
librium at temperaturd, we should be able to use perturba- 15\6 w 2
logs— — 3log &= 0.72 a®?

tion theory as a quantitative tool to study its properties. In 2
the case of a massless theory with a coupling consfathie
naive perturbative expansion in powers gif breaks down
because of collective effects such as screening. However, the
perturbative expansion can be reorganized into a weak-

coupling expansion in powers gfeither by using resumma- L 4 .
tion methods or alternatively by using effective field theory.}';/gsr?nzds‘g';s(: b/gg(); 'E ”;e p/rfésgrea(r)]tjan |de§1; gtﬁz of
It is reasonable to assume that this weak-coupling expansion &=0"(p)/1677,_and g(pu) |

provides a useful asymptotic expansion for sufficiently smaIImOd'f'ed minimal suptraf:tlon schemM{S) coupling con-
values ofg, stant at the renormalization scale In Fig. 1, we show the

Vi has th lculational technol fs.ucce:ssive perturbative approximaftionﬂd?idew as a func-
Only in recent years has the calculational technology 0t|on of g(2#T). Each partial sum is shown as a band ob-

this assumption can be tested. Unfortunately, the assumptigﬁmed by varyingu from «rT to 4«rT. To expressg(x) in

seems to be false. One would expect the thermodynamic

+0O(a® log a)|, (1

functions, such as the pressure, to be among the quantities 104 ' ' '
with the best-behaved weak-coupling expansion, since col- 1.02
lective effects are suppressed by several poweig éfow-
ever, in recent years, the thermodynamic functions have been 1
calculated to ordeg® for massless scalar theorig¢s—3), »
Abelian gauge theoriegt,5], and non-Abelian gauge theo- 2 098
ries[1,6,7]. The weak-coupling expansions show no sign of &
converging even for extremely small values @fThere is 0.96
already a hint of the problem in the correction, which has
the opposite sign and is relatively large compared toghe 0.94
coefficient. The large size of thg® contribution is not nec-
essarily fatal, since it is the first term that takes into account 0.92
collective effects. An optimist might still hope that higher-
order corrections would be well behaved. This optimism has 0.9
been dashed by the explicit calculation of th& and g°
g(2nT)

terms.

For a massless scalar field theory witlg%ap*/4! interac- FIG. 1. Weak-coupling expansion to orded g%, g*, andg®
tion, the weak-coupling expansion for the pressure to ordefor the pressure normalized to that of an ideal gas as a function of
g°is[1-3] g(27T).
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1.2 . . . further complicated by the appearance of logarithms of the
coupling constant in the coefficients of the weak-coupling
expansion. However, the greatest problem with ‘Pagde
proximants is that, with no understanding of the analytic be-
havior of P at strong coupling, it is little more than a nu-
merological recipe.

An alternative with greater physical motivation is a self-
consistent approadi0]. Perturbation theory can be reorga-
nized by expressing the free energy as a stationary point of a
functional ) of the exact self-energy functiohl(pg,p)
called the thermodynamic potentigll]. Since the exact
self-energy is not knowr,I can be regarded as a variational
function. The “®-derivable” prescription of Baynml0] is to

truncate the perturbative expansion for the thermodynamic
L 0 1 2 3 4 potential() and to determinél self-consistently as a station-
g(2xT) ary point of (). This gives an integral equation féf which
is difficult to solve numerically, except in cases whéfes

FIG. 2. Weak-coupling expansion to ordey$ g, andg* for =~ momentum independent. In relativistic field theories, there
the screening mass normalized to the leading-order expression asée additional complications from ultraviolet divergences. A
function of g(2#T). more tractable approach is to find an approximate solution to

the integral equations that is accurate only in the weak-
terms ofg(2=T), we use the numerical solution to the renor- coupling limit. Such an approach has been applied by
malization group equatiom(d/du)a=B(a) with a five-  Blaizot, lancu, and Rebhan to massless scalar field theories

mg/m,
o
[o¢]

0.6 |

loop beta functior8]: and gauge theorid42,13.
Another approach that is also variational in spirit is
d 17 screened perturbation theorySPT) introduced by Karsch
o 2_ "3 4 __ 5 6 h v . o
Ko™ 8a’— o+ 32.54" - 271.60°+ 2848.6r". Patkes and Petreczky14]. This approach is less ambitious

(20  than the ®-derivable approach. Instead of introducing a
variational function, it introduces a single variational param-
The lack of convergence of the weak-coupling expansion igter m. This parameter has a simple and obvious physical
evident in Fig. 1. The band obtained by varyiadyy a factor  interpretation as a thermal mass. The advantage of screened
of two is not necessarily a good measure of the error, but it iperturbation theory is that it is very easy to apply. Higher
certainly a lower bound on the theoretical error. Anotherorder corrections are tractable, so one can test whether it
indicator of the theoretical error is the deviation betweenimproves the convergence of the weak-coupling expansion.
successive approximations. We can infer from Fig. 1 that th&arsch, Patks, and Petreczky applied screened perturbation
error grows rapidly wheg(27T) exceeds 1.5. theory to a massless scalar field theory witihsinteraction,
A similar behavior can be seen in the weak-coupling ex-computing the two-loop pressure and the three-loop pressure
pansion for the screening mass, which has been calculated 9 the largeN limit. In both cases, they used a one-loop gap

next-to-next-to-leading order ig [3]: equation as their prescription for the mass. Their three-loop
) calculation was not a very stringent test of the method, be-
m2_277 T2 1— J6a? cause the larg@t limit suppresses self-energy diagrams that
s — o o
3 depend on the momentum.

In this paper, we present a thorough study of screened
3log Lt —2loga—6.434qa+(9(a3/2)}. 3) pertgrbatiop theory for a massless scalar field theory with a
27T ¢* interaction. We calculate the pressure and entropy to
) ) ) three loops and the screening mass to two loops using SPT.
In Fig. 2, we show the screening masg normalized to the e consider several generalizations of the one-loop gap
leading order resuln o=g(27T)T/\/24 as a function of equation to two loops. Inserting the solutions to the gap
g(27T), for each of the three successive approximations tequations fominto the SPT expansions, we obtain the SPT-
mZ. The bands correspond to varyipgfrom «T to 47T.  improved approximations to the pressure, the screening
The poor convergence is again evident. The pattern is similamass, and the entropy.
to that in Fig. 1, with a large deviation between the orgér- The paper is organized as follows. In Sec. Il, we describe
and orderg® approximations and a large increase in the sizethe systematics of screened perturbation theory. In Sec. Ill,
of the band forg*. we discuss the possible prescriptions that can be used to
There are many possibilities for reorganizing the weak-generalize the one-loop gap equation to higher orders. We
coupling expansion to improve its convergence. One possiealculate the free energy to three-loop order in Sec. IV and
bility is to use Pad@pproximant$9]. This method is limited the screening mass to two-loop order in Sec. V. In Sec. VI,
to observables like the pressure, for which several terms iwe study three generalizations of the one-loop gap equation
the weak-coupling expansion are known. Its application igo two-loop order. In Sec. VII, we study the convergence of
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the SPT-improved results for the pressure, screening mass, 1, .1,
and entropy. In Sec. VIII, we summarize and conclude. We Lin==5,9°¢"+ 5mi¢"+ AL+ ALspr. ®
have collected the necessary sum-integrals in the Appendix.

At each order in screened perturbation theory, the effects of
the m? term in Eq.(7) are included to all orders. However,
The Lagrangian density for a massless scalar field with avhen we semfz m?, the dependence anis systematically
¢* interaction is subtracted out at higher orders in perturbation theory by the
m3 term in Eq.(8). At nonzero temperature, screened pertur-
B 1., bation theory does not generate any infrared divergences,
L=50upd = 5,970 +AL, (4 pecause the mass paramete in the free Lagrangiar?)
provides an infrared cutoff. The resulting perturbative expan-
whereg is the coupling constant antlZ includes counter- Sion is therefore a power series g% and m{=m? whose
terms. The conventional perturbative expansion in powers ofoefficients depend on the mass parameter
g? generates ultraviolet divergences, and the counterfefm This reorganization of perturbation theory generates new
must be adjusted to cancel the divergences order by order iitraviolet divergences, but they can be canceled by the ad-
gz_ If we use dimensional regularization ih=3— 2¢ spatial ditional counterterms ith Lgpt. The renormalizability of the
dimensions and minimal subtraction to remove the ultraviolagrangian in Eq(6) guarantees that the only counterterms

let divergences, the counterterms have the form required are proportional to 1%, d,¢d“¢, and ¢*. With
dimensional regularization and minimal subtraction, the co-

1 1., . efficients of these operators are polynomialsyis g2/1672
AL=5(Z24=1)0uhd" = 540797, () andm?—m2. The extra counterterms required to remove the
additional ultraviolet divergences are

whereAg?=(Z5Z,—1)g?, andZ, andZy are power series
in g? whose coefficients have poles & At nonzero tem-
perature, the conventional perturbative expansion also gener-
ates infrared divergences. They can be removed by resum-
ming the higher order diagrams that generate a thermal ma B 5
of ordergT for the scalar particle. This resummation changessrshezvzacuum energy counterterm h"?‘s the fﬁﬂb_zﬁ(.m
the perturbative series from an expansion in powerg?ab —mj3)*, Wher'eZE is a power series il whose coefficients
an expansion in powers of)Y2=g have poles ine. The mass counterterms have the form
' 2 _ 2 2__ 2

Screened perturbation theory, which was introduced byrM =(Z4Zm—1)m* and Ami=(Z,Z,—1)mj, whereZ,
Karsch, Patks and Petreczky14], is simply a reorganiza- 'S the same wavefunction renormalization constant that ap-
tion of the perturbation series for thermal field theory. It canPears in Eq(5) andZy, is also a power series in whose
be made more systematic by using a framework called “op<£oefficients have poles ia.

Il. SCREENED PERTURBATION THEORY

1 2 2\ 42

timized perturbation theory” that Chiku and Hatsuftb] Several terms in the power series expansions of the coun-
The Lagrangian density is written as perature. The countertermgy? andAm? are known to order

a® [8]. We will need the coupling constant counterterm only
1 1, L, to leading order inx:
Lspr=—Eot 50,00 ¢— 5(M"—my) ¢

- g% (10)

1 2.4
~ 529 ¢ "+ AL+ALgpr, (6)

Ye need the mass countertertaen’ and Am? to next-to-

where&, is a vacuum energy density parameter and we hav ' : : !
leading order and leading order in respectively:

added and subtracted mass terms. If we&get0 andm?
=m?, we recover the original Lagrangidd). Screened per-

turbation theory is defined by takimg? to be of ordeig® and AmPe 1 1 5, )
m? to be of orderg?, expanding systematically in powers of m™ =5 at| 52 ogc)@ T Mm% (12)
g?, and settingm?=m? at the end of the calculation. This
defines a reorganization of perturbation theory in which the 1
expansion is around the free field theory defined by Am?= ZCH .. }mi (12)
=—& 1 " 1 2 42 7
Lree= ~Eot 5 Iudd"P— oM ¢% (" The counterterm for&, has been calculated to ordef

[16]. We will need its expansion only to second orderain
The interaction term is andm?:
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1 5 5 1 where the partial derivative is taken before settmg=m.
(47)?A&= 1e T8 288 a2t @) o?|m* An advantage of the tadpole mass is thaf) is easier to
calculate at higher orders than the self-enery
1 1 s, 1, There is another class of prescriptions that is variational
—2| 7. T gz mimt om;. (13 in spirit. The results of SPT would be independentnoff
they were calculated to all orders. This suggests choasing
to minimize the dependence of some physical quantitynon
lll. MASS PRESCRIPTIONS Taking that physical quantity to be the free energy, the pre-

The mass parameten in screened perturbation theory is SCriPtion is

completely arbitrary. To complete a calculation in screened d

perturbation theory, it is necessary to specifas a function — FAT,g(p),mmy=m,u)=0. (19

of g and T. One of the complications from the ultraviolet dm

divergences is that the parametés m?, g% and mj all " \e will refer to the solutiomm, to this equation as thearia-
become running parameters that depend on a renormalizatiQR 4| mass

scale . In our prescription for recovering the original One mass prescription that may seem appealing is to

theory, we must therefore specify the renormalization scalepgggem, (T) so that the perturbative approximation is ther-
ws @t which the Lagrangiaf6) reduces to Eq(4). The pre-  qqynamically consisterfil7]. Given a diagrammatic ex-

scription can be written pansion forF, the entropy densityS has a diagrammatic

expansion given b
Eol 1) =0, ag P given by

d
M2(0) = M) = M3 (T), (15) Seiag— = 5 FUT.0.M. My p0). 20

wherem, (T) is some prescribed function of the tempera-where the partial derivative/JT is taken with all the other
ture. This is the only point where temperature enters intoariablesg, m, m;, andu held fixed. The entropy density can
SPT. We proceed to discuss the possible prescriptions falso be defined by the thermodynamic relation
m, (T).

The prescription of Karsch, Patkpand Petreczky for

d
S =—— KT, ,m=m, m=m,,u). (21
m, (T) is the solution to the one-loop gap equation: themo™ g (T 9(1) w M=, u). (2D

The total derivative takes into account the explicit depen-

dence onT, the T-dependence oim,(T), and also the
(16) T-dependence of the running coupling constant if we choose

a scaleu that depends ofi. If the thermodynamic expan-
sions forF and S were known to all orders, there would be
no dependence om or «, and Eqs(20) and(21) would be
equivalent. If the diagrammatic expansion is truncated and if
any of the parameterg m, m;, andu is allowed to depend
on T, thenS may not satisfy Eq(21). An approximation is
called thermodynamically consisteiit S satisfies Eq(21)
Sxactly. This requires

1
m2 zza(ﬂ*)[al(m* ITYT2— ( 2|og$—*+ 1|m?
*

where the functiod(x) is defined in Eq(A8). Their choice
for the scale wasu, =T. In the weak-coupling limit, the
solution to Eq.(16) is m, =g(u,)T/\/24.

There are many possibilities for generalizing E6) to
higher orders irg. One class of possibilities is to identify,
with some physical mass in the system. The simplest choic

is the screening mass gdefined by the location of the pole

in the static propagator: dg F dw dF dmdiF dm, F

dT 39 "dT au TaT om AT om0 (2
p?+m?+I1(0p)=0 at p?=—m?Z, 17 9 K !

If 7 were known to all orders, it would be independentof
wherell(po,p) is the self-energy function. Another choice and m; at m=m,. Thermodynamic consistency could then
is the rest mass of the quasiparticley=Rew(0), where  be guaranteed by taking the scaleto be any function off
o(p) is the quasiparticle dispersion relation which satisfiesand choosingy(u) to be the running coupling constant at
—w?+p?+1I(i(w+ie),p)=0. The quasiparticle mass is that scale. If we only have a perturbative approximatioffto
more difficult to calculate than the screening mass. Eq. (22) is satisfied only up to higher order corrections. One

Another mass prescription that generalizes Etf) to  way to guarantee thermodynamic consistency is to choose
higher orders is to identifyn, with thetadpole masslefined  , =am with a a constant and impose the condition
by mt2=gz<¢2>. This can also be expressed as a derivative
of the free energy:

d
d—mz]-"(T,g(am),m,m1=m,,u=am)=0. (23

Jd
mf=2g2W AT,g,mmg,u) : (18 This differs from the variational gap equati¢h9) only in
my=m that we have set=am before differentiating. This equation
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where J, is the function ofm/T defined in Eq.(A5). We
have kept all terms that contribute through ore&rbecause
Q they enter into higher order diagrams involving counter-
terms. The pole ire in Eq. (26) is canceled by the zeroth
Oa la 1b 2a 2b 2¢c 2d

order termA &, in the countertern13). The final result for
the one-loop free energy is

FIG. 3. Diagrams for the one-looffa), two-loop (1a and 1, 1 1
and three-loofd2a, 2b, 2c and 2dfree energy. (477_)2]_.0: (477)250_ g(ZL_l_g)mA;_ EJOT41 27)
does not reduce to the one-loop gap equati®) at leading
order, so we will not consider it any further. We will be where L=log(u%n?) and J, can now be replaced by its
satisfied by approximations that are thermodynamically convalue ate=0, which is given in Eq(A8).
sistent only up to higher orders in perturbation theory.

B. Two-loop free energy

IV. FREE ENERGY TO THREE LOOPS The contribution to the free energy of ordgf is
In this section, we calculate the pressure and entropy den-
sity to three loops in screened perturbation theory. The dia- 9% 0a 2
. J fl:fla"']:lb"'AlgO"'_zAl y (28)
grams for the free energy that are included at this order are am
those shown in Fig. 3 together with diagrams involving
counterterms. whereA &, andA;m? are the terms of ordeg® in the coun-
terterms(11) and (13), respectively. The expressions for the
A. One_|00p free energy dlagramS la and lb |n F|g 3 are
The free energy at leading order g3 is 1 1 2
Fia= ggz( ip W) : (29
fo:€0+an+Ao€0, (24) m
where A&, is the term of ordeg® in the vacuum energy P E 2}: 1 30
counterterm(13). The expression for diagram Oa in Fig. 3 is = 9 Mig.p P2+ m2" (30
1 The results for the diagrams can be expressed as
Fou= Ei > log[ P2+ m2]. (25) g P
_a [(p\*[1 2 18+7?
The sum-integral in Eq(25) is over the Euclidean momen- F1a= 8(4m)%\ m 27 e

tum P=(w,,p) and we defineP?=p?+ 2. The sum-

integral includes a sum over Matsubara frequenaigs

2 "
L@

€|/m
=2mnT and a dimensionally regularized integral over the 3
momentump with a measure that is defined in Appendix A. 2

. : o . o . 1 12+
In dimensional regularization with-32 ¢ spatial dimensions, -2l = +1+ €I mPT2+ 3274, (31)
the diagrams forF have dimensions (enerdy)?<. To obtain € 12

the renormalized free energy density with dimensions
2

(energy}f, we multiply the diagrams by.?¢, whereu is an B mi (u\%( 1 12+ 7?
arbitrary renormalization scale, before taking the linait Jup= — 2(4m)2\m Tt 12 €M
—0. The coupling constant in dimensional regularization is

gu€, whereg is the dimensionless renormalized coupling 43,72 32)
constant. Including the overall factor pf€ and the factor of S

€ from the coupling constants, there is a factorudf for

each sum-integral. We choose to absorb this factor into thevhere «=g%/1672. We have kept all terms that contribute

measure of the sum-integral. through ordere, because they are needed for counterterm
The sum-integral in Eq25) is expressed as a function of diagrams in the three-loop free energy. The polesimEqs.

€ in the Appendix. It has a pole &=0. The result for the (31) and(32) are canceled by the counterterms in E2f).

diagram is The final result for the two-loop free energy is

1 (w\?([1 3 21+4? o L 2 2112
anZ_W m z'ﬁ‘ §+ 12 € (4) }'1=§[(L+1)m —J;T7]m3
45+ 3w+ 4y (1 1
+ 7Tz4 LACRE m4+2JoT4]’ (26) +gel(L+1)m?=J,T?)2, (33)
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C. Three-loop free energy

The contribution to the free energy of ordgt is

Fa
g2

Fo= Foat Faut Foct Foqt 8ot —— ApmP+ 5 —— = Am2+
om 2 (gm?)

OF, 1 9°F 0F1a OF
Oa 2 Oa (Alm2)2+ 1a+ 1b
om?  om?

Ag%+ — Aym3,
m
(34)

where we have included all the appropriate counterterms. The expressions for the diagrams 2a, 2b, 2c, and 2d in Fig. 3 are

2

1 4 i 1 i 1 35
fza—_1_69 PP2+m? Q(Qz_,_mz)z, (39
— 1 4$ 1 36
be__ng PQR(P2+m2)(Q2+m2)(R2+mZ)((P+Q+R)2+m2)1 ( )
1,, 1 1
Foc= Zg mliP P2+m2iQ(Q2+m2)2’ 37
de__Zml P(P2+m2)z ( )
The results for these diagrams in the lirait>0 are
o [p\®([1 2 12+7% 8+w*+y"(1) 1 2 18+#?
- _ | = T 4 T 4
F2d 16(4)? m) H 3Pt T4 T 2 }m +Lz+ e e
1 1 6+7? 1 1
-2/ 5+ -+ Jam?T2—2[ = +1{J;J,m?T?+ —J§T4+J§JZT4}, (39
€ € 6 € €
PN R ) VT [ OO P ES L PP
207 48(4m)%\ m e 3¢ 2e¢ o|m € € 1)9am € L
+[6K2+4K3]T4], (40
2 Ade 2
_oamy 1 1 6+7° o 1, )
}-ZC_W(E) | 2T 6 m ;-l—l Jom +;J1T +J.3,T4¢, (41
4 2e
m; [u 1
de__4(4w)2(E> PRk 42
The poles ine are canceled by the counterterms in E2¢). The final result for the free energy is
2 1 4@ 2 27,2
(4) ]—"2=—Z(L+J2)m1— Z(L+J2)[(L+1)m —J3,T7]m]
—iaz (5L3+17LZ+4—1L—23—2—3772—¢"(1)+C +3(L+1)23,)m*
48 2 12 0 2
—(12L%428L— 12— 72— 4C;+6(L+1)J,)I;m?T?+ (3(3L +4)J3+ 3350, + 6K, + 4K 5) T#|. (43

D. Pressure to three loops

The pressuréP is given by — F. The contributions to the free energy of zeroth, first, and second ordgr ame given in
Egs.(27), (33), and(43), respectively. Adding them and settifig=0 andmi= m?, we get the approximations to the pressure
in screened perturbation theory. The one-loop approximation is obtained by sgtirtyin Eq. (27):

105008-6
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1
(477)2730=§[4J0T4+(2L+3)m4]. (44)
The two-loop approximation is obtained by adding E3B) with m§=m2:
1 1
(417)2730+l=§[4J0T4+ 43;m?T?—(2L+1)m*]— ga[Jsz—(L+1)m2]2. (45)
The three-loop approximation is obtained by adding @8 with m?=m?:

1 1
(47)?Po. 11.2= g[43oTH+43:m* T2+ 20,m* —m*] = 2 o 3T~ (L + 1)m?][I T2+ 2J,m+ (L~ 1)m?]

1 2 2 2\2 2 4
+ 2807 331 T2 = (L+ 1)m?)?+ (3(3L+4) I+ 6Ky +4Ka)T

—(12L24-28L — 12— 72— 4C4)J;m?T2+|5L3+ 1712 4—1L—23—2—3 2" (1)+Com? 46

whereL =log(u?/m?), Cy=39.429,C,= —9.8424, thel,’s are the functions ofn/T given in Eq.(A8), andK, andK; are
functions ofm/T given in Ref[18]. Note that the dependence brhas canceled from the term proportionakidin Eq. (46).

E. Entropy to three loops

The perturbative expansion for the entropy denSiig defined in Eq(21). The one-, two-, and three-loop approximations
to S are obtained by taking the partial derivatives with respedt, teith «, m, andu fixed, of the expressions for the pressure
in Eqs.(44), (45), and(46). The partial derivatives of the functiodg(8m) can be evaluated using the recursion rela{id).
The partial derivatives oK ,(8m) can be evaluated numerically.

The one-loop approximation is obtained by differentiating &d):

(47)°TSy=2JoT*+ I, m?T2, (47)

The two-loop approximation is obtained by differentiating E4p):
1
(4m)2TSy; 1=[23oT*+23,m?T?+ J,m*]— Ea[JlTZ— (L+1)m?][J, T2+ J,m?]. (48)
The three-loop approximation is obtained by differentiating @6):

1 1
(477)2T80+1+2=§[4J0T4+ 43, m?°T2+2J,m*+J;méT2]— Ea[(;llTZJr J,m?)?

1
= (31T 4+ 3,m?)m?+ 353, T2 = (L+ HmAm*T 2]+ o7 2?3353, T2~ (L +1)m?)*m?T 2

+6J,(3;T?— (L+1)m?)(I; T?4 J,m?) + (6(3L +4) I3+ 12K ,+ 8K 5) T*
—(3K,+2K5)mT3+6(3L+4)J;J,m?T2— (12L.2+28L — 12— 7% —4C,) (I, T2+ J,m*)m?]. (49

The primes orK, andK; denote differentiation with respect tion to Eq.(17). This equation can be solved order-by-order
to gm. in powers ofa and mf. The solution at zeroth order oy is
simply m2=m2,

V. SCREENING MASS TO TWO LOOPS

In this section, we calculate the screening mass to two A. One-loop self-energy

loops. The diagrams for the self-energy that are included at The self-energy at first order ig? is
this order are those shown in Fig. 3 together with diagrams 5 5
involving counterterms. The screening massis the solu- =111~ mi+Ams, (50)
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la 2a

2b 2¢

FIG. 4. Diagrams for the one-loofia and two-loop(2a, 2b,
and 29 self-energy.

whereA ;m? is the mass counterterm of ordergiven in Eq.
(11). The expression for the diagram la in Fig. 4 is

1, 1
=50 Yoz -

The result for the diagram is

1 (w\? [1 12+ 72
=gl m) 17| 12

—+1+ €

m2+ JlTZ} .
(51)
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1 m de
M| )

(1 1 6+7T2) )
m

+—+
m e € 6
1
+l=+1]I,m?>—| =+, JlTZ}, (57)
1 w\?q1
I, Eami E) ~+J, (58)

The diagramll,, depends on the external momentun
Equation (17) for the screening mass involves the self-
energy atpp,=0. To calculate the screening mass to second
order ing?, we need the analytic continuation Hf(0,p) to
p?=—m?. This is calculated in the Appendix. The result is

3 17
22" 7¢

.)

m

1 4e
H2b(ovp)|p2—m2:5a’2(_) [ z

m —Cl}m

1 ~ o~

We have kept all terms that contribute to orderbecause
they are needed for counterterm diagrams in the two-loo
self-energy. The pole ire in Eq. (51) is canceled by the
countertermA;m?. The final result for the one-loop self-

q’he poles in Eqs57)—(59) are canceled by the counterterms
in Eq. (53). The final result for the two-loop self-energy at

energy is

M= = [ 3,72 (L+ 1)m?]—m2 52
1=5 [, T°= (L+1)m*]—mi. (52

B. Two-loop self-energy

The contribution to the self-energy of second ordeg#n
is

My,
[T(P) =15+ o5 P) + I+ WAlm

|
+ —2Ag7+ ApmP— Aym?, (53)
9

The expressions for the diagrams 2a and 2b in Fig. 4 are

1 1 1
H2a:_Zg4$QQ2+m2$R(R2+m2)2’ (54

1, 1 1
HalP)==750 ﬁQme
! 55
“P+Q+RZ+m?’ 55
1, 1
=59 mliQm—mZ)Z- (56)

Po=0 andp?=-m? is

1 1
Hz(o,p)|pz=,mz=§a(L +J)m2+ ZlaZ{[12L2+ 28L—12

—m?—4C,+6(L+1)J,]m?

—6[(3L+J,)J;+2K,+2K,] T2} (60)

C. Screening mass

Since the dependence of the self-energy on the momen-
tum enters only at ordeg* and since the leading-order solu-
tion to the screening masstig;=m, the solution to Eq(17)
to orderg* is simply

mZ=m?+11(0,p?)] 2 2. (61)

We proceed to calculate the expression to omgferand to
orderg®.

The solution to ordeg? is obtained by inserting the one-
loop self-energy(52) into Eq. (61). Settingm?=m?, the re-
sult is

m§=%a[JlT2—(L+1)m2]. (62

If we choosem=mg;=m,_, this is identical to the one-loop
gap equatior(16).
The solution to ordeg” is obtained by inserting the sum

The diagramdl,, and IT,, are independent of the momen- of Egs. (52) and (60) into Eq. (61). Settingm?=m?, the

tum P. The results for these diagrams in the lirait-0 are

result is
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1 1 T
m§=§a[JlT2+(Jz—1)m2] S One Loop
L 09l 1ftT <UL A4nT
- ﬂa2[6J2(J1T2—(L+1)m2) sM<p<2m,
o S o8f
+6(3LJ;+2K,+2K,)T =
)
2 2 2 :
—(12L°+28L— 12— 7°—4Cy)m~]. (63 £ o7l
Note that the dependence anhas canceled in the ordes-
terms. 0.6 |
VI. GAP EQUATIONS
0.5 4
In this section, we solve the gap equations that determine 0 1 2 3 4
the arbitrary mass parameter in screened perturbation theory. 9(2nT)
We consider the one-loop gap equation and three generaliza- _ _
tions to a two-loop gap equation. FIG. 5. Solutionam, (T) to the one'-loo_p gap equatldghaded
bands and the two-loop gap equationdnes) as functions of
] g(27T).
A. One-loop gap equation
The one-loop gap equation is given in Ed6). It is con-  =2#T and u=m, , respectively. The solutions are normal-
venient to introduce the gap function defined by ized to the leading-order screening mase, g
=g(27T)T/\/24.

1
G=m?— -z a[J;T?—(L+1)m?]. (64)
2 B. Screening gap equation

The one-loop gap equation is then=®. For simplicity of _The screening gap equation is obtained by identifyimg
notation, we will often suppress the subscripts *roand . vv_|th ms. The one-loop expression for the screening mass is
Before solving the one-loop gap equation, we need t@Ven in EqQ.(62). Thus the one-loop screening gap equapon
choose a value fop. It is natural to takeu to be propor- IS sum_ply G=0 The two-loop expression for_the screening
tional to one of the two energy scales in the equatiband ~ Mass is given in E(63). The two-loop screening gap equa-
m. We will consider two possibilitiesy=a(2=T) and (0N can be written as
=am, and allow the coefficierd to vary from3 to 2. Given
either of these choices fqr, the gap equation can be solved
for m as a function ofae(w). The renormalization group
equation(2) can then be used to expreséu) as a function

1 -
G+ ﬂa2[12(LJ1+ K,+K,)T?

1
1— Za(J,+L)

of a(27T). —(6L%+22L— 12— 72— 4C;)m?] =0. (67)
In the weak-coupling limig— 0, the solution to the gap
equation G= 0 approaches From this expression, it is easy to see that the solutido
the gap equation differs from the soluti@@5) to the one-
, 27 , loop gap equation by terms of order’T?. The weak-
my — - a(w)T coupling expansion of the solutian? must of course agree

through order?T? with the weak-coupling expansion of>
given in Eq.(3).
(65) The solutions to the screening gap equationder 27T
and u=m, are shown in Fig. 5. In the cage=2#T, the
o . screening gap equation cannot be continued beyond
In the strong-coupling limig—ce, the gap equation reduces g(27T)=2.60. Foru= T, it terminates ag(2=T)=2.31,
to while for u=4xT, it terminates ag(27T)=3.04. If we
5 chooseu=am, , the solution can be continued to much
X 1 larger values ofg. For u=m,_, it lies very close to the

0 dxm eﬁmm_ 1' (66) solution to the one-loop gap equation wijth=m, .

This has a solution only if.>e~?m.

In Fig. 5, the solutionsn, (T) to the one-loop gap equa- The tadpole massy, is defined in Eq(18). The one-loop
tion as a function ofj(2=T) are shown as bands obtained by expression is given by differentiating E@®7). The result is
varying u by a factor of two around the central valugs identical to the one-loop expressi@62) for the screening

X a+0(a®?)].

M
_ 1/2__ _
1-6a (log—4ﬂ+y 3

o
2 log—+1=8
m

C. Tadpole gap equation
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mass. To obtain the two-loop expression for the tadpole 1 . .
mass, we add the one- and two-loop free ener(@@s and Two Loop
(33), differentiate with respect tm?, and then sem?=m?, aT < pu< 4nT
The result is M im.<p<2m,
0.98
2 1 2 2 ©
mt =§a[J1T +(J2_1)m ] ﬁ
% Three Loop
1 — u=2nT
= 7970+ D[ TP (L+ 1)), (68) vt I g
m, ---pu=2xT
The ordere term is identical to that of the screening mass —— p=m,
(63), but the ordera? term is much simpler.
The one-loop tadpole equation is simply=@. The two- 0.94 . . .
loop tadpole gap equation is obtained by settng=m in o 1 2 3 4
Eq. (68). It can be written in the form g(2xT)
1 FIG. 6. Two-loop(shaded bandsand three-looplines) SPT-
1= Ea(J2+ L)|G=0. (69 improved pressure as a function @f2=T).

Thus the two-loop tadpole gap equation is identical to thgynere k; log(Bm)+k, and k log(8Bm)+k; are the coeffi-

one-loop gap equation:&0. The solutions fop=2#T and

cients of Bm in the smallgm expansions oK, and K,

n=m, are at the centers of the shaded bands in Fig. 5. \ynich are given in EqS(A16) and (A17).

D. Variational gap equation

The solution to the quadratic equatiénl) for G is pro-
portional to aBmT?. The solutionm? to the gap equation

The variational masm, is the solution to(19). The one-  therefore differs from the solutio(65) to the one-loop gap
loop variational gap equation is obtained by differentiatinggauation by terms of order®T2. This is a little disturbing,
the two-loop expressio5) for the pressure with respect to Put even more disturbing is the fact that 1) has no
m? and setting it equal to zero. This givels{J,)m?G=0, real-valued solutions for G unless <2.0984 logBm)

which reduces to the one-loop gap equatior: @G

+4.1541. If we assume that—gT//24 asg— 0, then this

The two-|oop variational gap equation is obtained by dif- condition is violated for SUﬁlClently Smag Whether We. set
ferentiating the three-loop expressi@t6) for the pressure. It #=2a(27T) or u=am. Since there are no solutions in the

can be expressed in the form

1 1
0=—a(J,+L)°G— ~

4 4 (Bm)?
2
Ll — 66— —12(L+2)J,d
48 (ﬂm)z 1v2
Bm

where K; and K; are the derivatives oK, and K3 with

1
Ja+ —) GIT?

neighborhood ofg=0, we will not consider the two-loop
variational gap equation any further.

VII. SPT-IMPROVED OBSERVABLES

In this section, we use the solutions to the gap equation in
Sec. VI to obtain successive approximations to the pressure,
screening mass, and entropy in screened perturbation theory.

(70)
A. Pressure

The two-loop SPT-improved approximation to the pres-

respect toBm. In the coefficient ofa®T?, we have written  sure is obtained by inserting the solution to the one-loop gap
explicitly only the terms that are singular #sn—0. The equation(16) into the two-loop pressuréls). We can sim-
1/(Bm)? singularities cancel between t¢ andK) term. If  plify the expression by using Eq16) to eliminate the ex-
we keep the most singular terms in the coefficients of each oflicit appearance of logarithms pf. Remarkably, this elimi-

the three terms in E(q70), the equation reduces to

’772(1 w

= (Bm?° a(pm)
— (3ké+ 2k§)|og([5’m) —3(k,+ ké)
2T2

~2(ka+ k) I ggpm

0

=0,

3G/ T?—[32m3(L+2)

nates all the terms of order and the expression reduces
simply to

1
(477)2730+1=§[4J0T4+ 2J,m?T?+m?]. (72

The J, term in Eq.(72) is the pressure of an ideal gas of

particles of massn. Inserting the solution to the one-loop

gap equation shown in Fig. 5, we obtain the bands shown in
(71 Fig. 6. The lower and upper bands correspond to varying
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(a) nT<p< 4nT (b) zM.<H<2m,

0.98} 098}
- _ FIG. 7. One-, two-, and three-
g 096 g o%6r loop SPT-improved pressure as a
& & functi fg(27T) f T
& el ] one Loop B saal ] one Loop unction of g(2=T) for (&) =

<u<4xT and (b) M, <u

] Two Loop <om
.

092 [ Three Loop

] Two Loop
0.92f [ Three Loop

0.9 " * * 0.9

g(2nT) g(enT)

by a factor of 2 around the central valugs=2#T and X10°(27T). If g(2#T)=4, the Landau pole is rather
=m, , respectively. nearby atu=5.49(27xT). The coupling constarg(m, ) is

The three-loop SPT-improved approximation to the pressmaller thang(2+#T), having the values 1.76 and 3.07 if
sure is obtained by inserting the solution to a two-loop gapmy(2#T)=2 and 4, respectively. Choosing=am, instead
equation into the three-loop pressé). In Fig. 6, we show of u=a(2=T) will therefore make the error due to tme*
the three-loop SPT-improved pressure as a function oferms in the pressure smaller by factors of about 0.60 and
g(2=T) for different two-loop gap equations. The solid line 0.35 respectively. The bam, /2<u<2m, may therefore
is the result using the two-loop screening gap equation witlgive an underestimate of the error of SPT.
u=2mT. It cannot be extended pag{(2#T)=2.60. The
dashed line is the result using the two-loop taddoleone-

loop) gap equation withu=2=T. The dotted line is the re- . o
sult using either the two-loop screening gap equation with The one-loop SPT-improved approximation to the screen-
w,=m, or the two-loop tadpole gap equation wih, NG Massms is simply the solutiorm, (T) to the tadpole gap
=m, . The two are indistinguishable on the scale of thequation. A two-loop SPT-improved approximation can be
figure. The variations among the three-loop SPT-improvedbtained by inserting the solution to the gap equationnfor
approximations for the pressure are much smaller than on@to Ed.(63). In Fig. 8, we show the one-loop and two-loop
might have expected from the variations among the screensF I-improved approximations to the screening mass as
ing masses. For example, @27 T) =2, the solutions to the functions ofg(2#T). The bands are obtained by varyipg
two-loop gap equations shown in Fig. 5 vary by about 129 Py a factor of two around the central valups=2=T and
while the three-loop approximations to the pressure shown ist =My - . ]
Fig. 6 vary only by about 0.07%. The choiceu=am, appears again to give better conver-
Since the solution to the screening gap equationwat 9ence thanu=a(27T), with the two-loop band falling
=a(27T) cannot be continued beyond a critical valuegof Within the one-loop band. With.=am, , there is a dramatic
and the solution fow=am, is close to the solution to the iMprovement in apparent convergence over the weak-
tadpole gap equation far=am, , we will consider only the C€oupling approximations, which are plotted on the same
tadpole gap equation from now on. In Fig. 7, we show thescale in Fig. 2. However, there is not much improvement in
one-, two-, and three-loop SPT-improved approximations tdh€ apparent convergence with=a(27T). The conserva-
the pressure using the tadpole gap equation. The bands dfée conclusion is that screened perturbation theory is not as
obtained by varying: by a factor of two around the central effe_cpve in improving the prediction for the screening mass
valuesu=27T and u=m, . The one-loop bands in Fig. 7 @S itis for the pressure.
lie below the other bands; however, the two- and three-loop
bands all lie within theg® band of the weak-coupling expan- C. Entropy
sion in Fig. 1. The one-, two-,_and three-loop approxim?tions The one-, two- and three-loop SPT-improved entropies
to the5pressure.are perturbatively correct up to o'gigrg , are obtained by replacing in the expression&7)—(49) for
andg £ respectively; however, we see a dramatic improvess, - S.. . andS,, ., with the solutionm, to the one-loop
ment in the apparent convergence compared to the wealgay equation & 0. Using the gap equation to eliminate the

coupling expansion. _ logarithmL, the expression for the two-loop entropy reduces
The choiceu=am, appears to give better convergence,

thanu=a(27T), with the three-loop band falling within the

two-loop band. The bands fqu=am, are narrower than (47)°T Sy 1=23o T4+ I m?T2. (73
those foru=a(2#T) partly becauseu=a(2#T) is larger

and therefore closer to the Landau pole of the running couThis is identical to the one-loop expressi@), which is the
pling constant. Ifg(2#T)=2, the Landau pole associated entropy of an ideal gas of particles with massiIn Fig. 9,
with the five-loop beta function is far away at=2.11  we show the two- and three-loop SPT-improved approxima-

B. Screening mass
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(@) AT < U< 4aT (b) M<K <2m,
1 - " 1 ' .
08f 1 08}
= S FIG. 8. One-loop and two-loop
E E SPT-improved screening mass as
» 06T w 06T a function ofg(2=T) for (@ =T
£ [ one Loop £ [[] One Loop <u<4xT and (b) 3m, <p
oat [ Two Loop ] o4} [ TwoLoop ] <2m, .
0.2 . : . 0.2 . . .
0 1 2 3 4 0 1 2 3 4
g(@nT) g(2xT)
tions to the entropy as functions gf(2+#T). The entropy P(T)=Pgeal T F(@(27T)), (74)

density is normalized to that of an ideal @ga&ijea

= (27%/45)T3. The bands in Fig. 9 correspond to varying the thermodynamic entropy is then given by
by a factor of two around the central valueg® andm,,_ .
Once again, the choice=am, seems to give better con-
vergence with the three-loop band lying very close to the
two-loop band.

The entropies shown in Fig. 9 are successive approximavhereg=g(2=T), a=g?/167?, andB(«) is the beta func-
tions to the diagrammatic entropy defined by E2f)). How-  tion given by the right side of Eq2). In Fig. 10, the black
ever, the entropy can also be defined by the thermodynamicurves are the two- and three-loop diagrammatic entropies
relation (21). Thus successive approximations $ocan be for u=2#T andu=m, . The gray curves are the thermo-
obtained by differentiating the pressures shown in Fig. 7ynamic entropies obtained from the one-, two-, and three-
with respect toT. In that figure we show the ratio of the loop SPT-improved pressures. One can see clearly the ap-
pressure to that of an ideal gas as a functiong@=«T). proach to thermodynamic consistency as one goes from the

2?2
Sthermd T) = Sigeal T) f(g)""Tf,(g)ﬁ(a’) , (79

Defining the functionf(g) by two-loop to the three-loop approximation. With the choice
(8) mT<p< 4aT (b) sm.<p<2m,
1 . . . 1 . .

5 0.98f 5 0.98f FIG. 9. Two-loop and three-
v? Vjﬁ loop SPT-improved entropy as a
&= A function of g(2=#T) for (@) T
“ [] Two Loop “ ] Two Loop g(2mT) ;( )

ssal soal <wu<4xwT, and (b) sm,<u
‘ [ Three Loop ‘ [ Three Loop <2m, .
0.94 » A L 0.94 L
0 0 1 2 3 4
g(@nT)
() p=m,
1.0 ;
0.98}
FIG. 10. SPT-improved en-

3 096} | Su \\\\ ] 3 096 | S " tropy as a function ofg(2#T)
% —— TwoLoop N %) s TV GOP compared to the thermodynamic
Y 0.4 | T Threeloop ™ . D gy | S Thee Lo L entropy for obtained from the

Shrems S SPT-improved pressure fds) u
092 | T Qe loop 092 | T Sneteop . =27T and(b) u=m, .
——— Three Loop ——— Three Loop
0.90 - . . 0.90 . . .
0 1 2 3 4 0 1 2 3 4
g(2xT) g(2nT)

105008-12



SCREENED PERTURBATION THEORY TO THREE LOOPS PHYSICAL REVIEW@3 105008

wn=2xT, the two-loop entropy is almost perfectly thermo- w=m, . This suggests that the SPT-improved prediction for
dynamically consistent. However, this is probably an acci-u=m, is more accurate than that far=2#T. All this evi-
dent because the deviations from thermodynamic entropy amence indicates that SPT improvement is most successful if
evident in the three-loop entropy. Wigh=am, , deviations u is taken to be much smaller thanrZ.
from thermodynamic consistency are very small for both the To remove the additional ultraviolet divergences intro-
two- and three-loop entropies. This is another indication thatluced by SPT, we have chosen to use dimensional regular-
SPT improvement is more effective if we take the sqal®  ization with modified minimal subtraction. This choice is of
be much lower than 2T. course not unique. For example, we could have also chosen
to subtract the piece of the free energy that is independent of
T for fixed m, i.e., Fr=F(T,g,m,u)—FT=00g,m,u).
This would result in a different reorganization of the pertur-
We have studied the effectiveness of screened perturbdation series that would also agree with the exact result if
tion theory in reorganizing the perturbation series for a thersummed to all orders. We take into account the theoretical
mal scalar field theory. We applied it to the pressure and th&ncertainty associated with the choice of subtraction scheme
entropy calculated to three loops and to the screening mady allowing variation of the renormalization scale For
calculated to two loops. example, by examining Eq$44) and (45), we can see that
We considered three alternatives for generalizing the onethe alternative described above correspondk +0—3/2 or
loop gap equation to two-loop order. The most useful turnedhe one-loop approximation and to some value in the range
out to be the tadpole gap equation, which at two loops is—3<L<—1 for the two-loop approximation. Setting
identical to the one-loop gap equation proposed by Karschs=am, with 3<<a<2 corresponds to varying in the range
Patkes, and Petreczky. The solution to the two-loop varia-—1.4<L <1.4. Therefore, this variation gf does take into
tional gap equation does not match onto the one-loop gapccount the ambiguity associated with the subtraction
equation in the weak-coupling limit. The solution to the two- scheme af =0 It would of course be preferable to separate
loop screening gap equation cannot be extended abowbe ambiguity from the SPT subtractions from the ambiguity
g(27T)=2.60 if we choose the scale to he=2#T. from renormalization of the original theory by allowing
The predictions of SPT depend on an arbitrary sqale separate renormalization scales and w, as mentioned
that arises both from the renormalization of the couplingabove.
constant and from the renormalization of ultraviolet diver-  Our results demonstrate the effectiveness of screened per-
gences introduced by screened perturbation theory. Thegerbation theory in providing stable and apparently converg-
two effects could be separated by introducing two renormaling predictions for the thermodynamic functions of a mass-
ization scalesus and u,. These scales would be associatedless scalar field theory. An essential ingredient of this
with contributions from soft and hard modes respectively asapproach is using the solution to a gap equation as the pre-
in Ref.[19]. One way disentangle the dependence on thesscription for the mass parameter This success of screened
scales would be to evaluate the integrals as expansions ferturbation theory adds support to the proposal of Ref
m/T. We evaluated our integrals by integrating numericallyto use HTL perturbation theory to reorganize the weak-
over all momenta, which precluded any separation of theoupling expansions for the thermodynamic functions of
scales. Instead, we considered two possibilities for the scalQCD. In Ref.[19], the free energy was computed only to
n=m, andu=27T, which correspond to the central values one-loop order, so there was little alternative to using a
expected forus; and u,, respectively. We allowed for varia- weak-coupling expression for the thermal gluon mass param-
tions of u around these central values by factors of two toeter. However, our experience with SPT indicates that the
provide a lower bound on the theoretical uncertainty. Thestability of the predictions is greatly improved by using a
choice u=m, gives smaller bands from varying the scale, solution to a gap equation for the mass parameter. A gap
but this is largely due to the fact that the coupling constanequation can be derived from the free energy calculated to
g(m,) is smaller tharg(27T). Thus the size of the bands is two-loop order in HTL perturbation theory. Until that calcu-
not a good indicator of the success of the SPT improvementation is carried out, quantitative comparisons of the predic-
A better indication of the success of SPT improvement igions of HTL perturbation theory with the nonperturbative
the stability of the predictions as you go to higher order inresults of lattice gauge theory are probably premature.
the loop expansion. The choige=27T gives a significant
improvement in stability for the pressure compared to the ACKNOWLEDGMENTS
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for the entropy are also very close to thermodynamic consis-
tency if we chooseu=m, . If we setu=27T, then going
from the two-loop to the three-loop approximations to the In the imaginary-time formalism for thermal field theory,
pressure or entropy moves the prediction closer to that foa boson has Euclidean four-momentuen=(pg,p), with

VIIl. CONCLUSIONS AND DISCUSSION

APPENDIX: SUM-INTEGRALS
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P2=p2+p?. The Euclidean energp, has discrete values: xJL(X)=2€J(X) — 2x25 4 1(X). (AB)
po=2mnT, wheren is an integer. Loop diagrams involve

sums ovep, and integrals ovep. We use dimensional regu- The temperature-independent terms in Ed&2)—(A4) can
larization to regularize ultraviolet or infrared divergences.be expanded as a Laurent series aroerd by using

Our choice for the measure in the sum-integrals is 2

T (14 €)= 1+ o 4 Ly (1) S+ 0(eh). (A7)
eyMZ € d3—26p 12 6 ’
T [ W | .
po J (2) The functions],, have Taylor expansions arouie: 0. They
often appear multiplied by poles ig, but it is counterpro-
ductive to expand, in powers ofe, because the poles al-
ways cancel in physical quantities.
If we sete=0, the integrals], for n=0,1,2 reduce to

where 3-2e¢ is the dimension of space apdis an arbitrary
momentum scale. The factoe¥/4)€ is introduced so that,
after minimal subtraction of the poles indue to ultraviolet
divergencesu coincides with the renormalization scale of

the MS renormalization scheme. 1
ar3) )
1. One-loop sum-integrals Jo(Bm)= 5—’34—2n dk
0
The one-loop sum-integrals that appear in the free energy F<§ - n)
can be separated into a temperature-independent term and a
term that depends explicitly of: K4—2n 1
1 o 2e X (k2+ m2)1/2 eﬁ(k2+m2)1/2_ 1 . (A8)
Flog(P+me) == &
(4m)°\m

The integralJ; requires a subtraction to remove a linear
e’I'(1+¢€) infrared divergence:

N Tdi—az—eom

4 J0T4:| ,

o7 L
(A2) J3(Bm)=—-2p8 fo dkp

j: 11 (e 2 1 1 1 1
Pp2im?2 (472 \m X (K2+m2)12 eB(KZ+mAZ_ 4 m efm_q |
e’I'(1+e A9
- —1(_ ) )m2+J1T2}, (A3) (A9)
€(l-e In the limit Bm— 0, these integrals reduce to
i 1 1 (M)ZE 1674
PPPrmey? (4m?im Yoo g5 (A10)
eVEF(l-}— 6) 47T2 Bm 1
X|———+7,|. (A4) -7 _ _Z 2
€ 2 Ji— 3 47 8m 2<Iogﬂ 2+y)(,8m) ,
. . . (A11)
The thermal terms can be expressed as integrals involving
the Bose-Einstein distribution function: 20 Bm
L J,— %+ 2| logz—+7|, (A12)
de7el’ _) - K4—2n—2e
Jn(ﬂm)=—ﬂ4‘2“m25f dk——— ™ 1
5 2, 2\172 J3— ——=— ——+ —{(3). A13
1 2. Basketball sum-integral
><eﬁ(k2+m2)”2_ 1 (AS) The only nontrivial sum-integral required to calculate the
free energy to three loops is the massive basketball sum-
These integrals satisfy the recursion relation integral:
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1
Iballzi POR(PZ{ m2)(QZ4 m?) (RE+ md)[(P+ Q+ R)Z+ 2" (A14)
This sum-integral was evaluated in RE20] and the result is
1 [w\%([2 23 35+72 4 6 17 b (6 2—a 4
IbaII:(‘]_T)B E ?—’_?_FT_FCO m*+ —?—?+4Cl Jlm T+ ;4—12 JlT +(6K2+4K3)T ,
(A15)

whereCy=39.429,C, = —9.8424, anK, andK; are functions ofsm. They are expressed in R¢18] as three-dimensional
integrals that can be evaluated numerically. Their behavior in the Bmit-0 is

3274

9

Ky— [log(8m)—0.04597 —372.6%log(Bm) + 1.4658 Sm, (A16)

K3— 453.51+ 1600.0log( 8m) + 1.3045 4m. (A17)

The leading terms are given analytically in REE8]. The terms proportional t@m were determined numerically.

3. Sunset sum-integral
The only nontrivial sum-integral required to calculate the self-energy to two loops is the sunset sum-integral, which depends
on the external four-momentuf=(pgy,p):

1 1 1
Toud P):iQRQZ-f— m? RZ+m? (P+Q+R)Z+m?’

(A18)

This sum-integral can be separated into terms with zero, one, and two thermal distributions, resfg@diivAlyp,=0, it can
be written as

Toud 0.p) =Z0Y p?) + 34N p?) + 3L N p?), (A19)
where
1 1 1
0) _
Zg”“(pz)_J'QRQZerZ R*+m? (P+Q+R)?+m? b0 (A20)
1 1
1)/ 12 —
Zg“'{pz)_Refqnﬁ(q)fRRermz (P+Q+R)%2+m? ’ (A21)

(P+Q)?=~[EZ—(p+a)2+i]

(-1
(p+q+r)°—m’+ie

(A22)

Iéi%(p2>=Ref n5<q)fn5<r> .
q ' p=(0p)

The integral [, denotes the dimensionally regularized integral over the Minkowski momentggng), and nd(q)
=n(go)275(q*~m?).

a. Zero thermal factors

To calculate the screening mass to two loops, we need the analytic continuation of the ii&20x6A22) to the point

p?=—m?. The integral(A20) was evaluated in Ref18]:

70N —m?) =

(4m)*

w4 3 17 )
E —F—E+Clm, (A23)

whereC,;=—9.8424,
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b. One thermal factor

The integral(A21) can expressed as

4ef 1 = g2n(E,) (1 m2—x(1—x)(E2—k2
—JlTZ—Sf aqd (q)fdx<|og' ( 2)( Gk
€ 0 Eq 0

m

1
TG p?) = (477)4(%) , (A24)

wherek=|p+q| and({- - -) denotes the angular average. After averaging over angle$AE24) can be analytically continued
to p?=—m?. The result is

4e
78— m?) (41) (”) %J1T2+R1T2}, (A25)

whereK ;, which is a function of8m only, is defined by

8 (= n(Ey) (1 -
—2J dg- ( q)J dxty(x,q). (A26)
2], Eq Jo

The functionf(x,q) in the integrand is

x2+(1—x)? I_<2x(1—x)q/m

fi.x,q)= ata —1+ 1Iog([x2+(1—x)2]2+4x2(1—x)2q2/m2) (A27)
BB 2x(1—x)g/m x>+ (1—x)? 2 '

c. Two thermal factors

The integral(A22) can be expressed as

32 (= qn(Eq) rn(E
TSP ~(4n )‘J f z e<E2 —m? +|e> (A28)

whereE,=Eq+oE,, k—|p+q+r| and o is summed overt 1. After performing the angular average, E428) can be
analytlcally contlnued t@?=—m?. The result is

1 _
2\ — 2
TN —m?)= g akaT? (A29)
whereK,, which is a function of8m only, is defined by
~ 4 (= n(E » rn(E ~
K2=—2f dg ™", q)f ar S T, an. (A30)
TJ)o Eq Jo E, <

The function in the integrand is
[E*—(q+1)?*+4m’(q+1)® 2(gq+r) — 2m(g+r)  2|g—r] 2m|q—r|
[E2—(q-n7P+4m’(q-1)2 m - CE—(q+n?  m COE—(q-r)

8mqryE2—m?

E*—2(E*-2m*)(g°+r%)+(g°—1%)*

T,(E,q,r)=log

2
+ o E“—m-“atan (A31)

If E2<m?, the last term in Eq.A31) should be replaced by a manifestly real-valued expression using the identity
2ix atanfx/y)— xlog[|y—x|/|y+x{].

Our final result for the sunset sum-integral evaluatepyat0 andp?= —m? is obtained by combining Eq§A23), (A25),
and(A29) as in Eq.(A19):

3

ﬁﬁ‘z m2+3

_Cl

1 -

1 de

The behavior of the function&; andK, in the limit Bm—0 is
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~ 4w Bm ['(—1)

K1—>T Iogﬂ+3+ §(—1)}’ (A33)
~ 1 "(—-1
K,— —4m? Iog’i—:— §+4I092+ i“((fl))} (A34)

PHYSICAL REVIEW@3 105008

The result (A33) was computed analytically. The result
(A34) was guessed by comparing the expres$@s) for the
screening masB) in screened perturbation theory with the
weak-coupling expression fang which is given in analytic
form in Ref.[3]. It was then verified numerically.
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