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A proof of renormalizability of the theory of the dynamical non-Abelian two-form is given using the
Zinn-Justin equation. Two previously unknown symmetries of the quantum action, different from the BRST
symmetry, are needed for the proof. One of these is a gauge fermion dependent nilpotent symmetry, while the
other mixes different fields with the same transformation properties. The BRST symmetry itself is extended to
include a shift transformation by use of an anticommuting constant. These three symmetries restrict the form
of the quantum action up to arbitrary order in perturbation theory. The results show that it is possible to have
a renormalizable theory of massive vector bosons in four dimensions without a residual Higgs boson.
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[. INTRODUCTION field to close the symmetry algebra and thus avoid the no-go
theorems. The price one has to pay is to have non-
Each and every aspect of the standard model has begmopagating bosonic and ghost fields in the theory, which
tested in recent years, with remarkable agreement witllisappear in the Abelian limit. The no-go theorem of Réf.
theory, except in one sector. The standard model predicts tH@ys only that the non-Abelian model cannot be constructed
existence of the Higgs boson, responsible for making gaug#om the Abelian model, which is known to be quantizable
bosons and fermions massive, as well as breaking thid]. It does not rule out the quantizability of the non-Abelian
SU(2)xU(1) symmetry of the theory down to the(l) of model itself. However that is not in itself a proof that the
electromagnetism. But no elementary scalar has yet been opon-Abelian model is quantizable, and a proof has not been
served in any particle interaction, nor has any experiment sgonstructed as yet. The first step in such a proof is the con-
far detected the Higgs boson, either elementary or Compo§II’UCti0n of a BRST-invariant tree-level action, which was
ite. On the other hand, various theoretical constraints put theone from a geometric point of view {®] andab initio in
upper bound of the Higgs boson mass only a little out of 10].
reach of present day experiments. It is therefore useful to In this paper I construct the quantum action for this model
consider the scenario in which the Higgs boson remains urp to arbitrary order in perturbation theory starting from the
observed as the theoretical bounds are reached. Becchi-Rouet-Stora-Tyutint(BRST)-invariant tree-level ac-
Apart from the Higgs boson and a possible neutrino masgjon. | follow an algebraic procedure along the lines of what
the standard model agrees quite closely with experiment, s done for Yang-Mills theorie$12,13. The construction
it is a good idea to leave most of the theory untouched. Théiself is rather involved as there are different fields with the
role of the Higgs boson may be distributed among possiblygame transformation properties. This suggests that the usual
different mechanisms for generating vector and fermiorBRST symmetry is not sufficient to restrict the operators in
masses, and symmetry breaking. The Higgs mechanism do#e quantum action. Fortunately there are other useful sym-
all this in a renormalizable and unitary wdg], and any metries of the tree-level action and they, together with the
alternative must not affect these good quantum properties d8RST symmetry, are sufficient for the purpose. The starting
the theory. A possible alternative for generating vector bosooint of the paper is the classical action given in Sec. Il. In
masses is to use a dynamical two-form. When an antisymsec. [l 1 list the BRST transformation rules of the theory
metric tensor potentid® is coupled to the field strengfh of and construct another BRST-like nilpotent symmetry. In Sec.
a U(1) gauge field via a “topologicalB/\F coupling and a IV | construct the quantum symmetries corresponding to
kinetic term forB is included, the gauge field develops anthese and other symmetries, and in .Secl find all the
effective mas$2—5]. The mass is equal to the dimensionful dimension four operators allowed by all the symmetries. Fi-
coupling constanin of the interaction term, and there is no nally, Sec. VI carries a small discussion of possible exten-
residual scalatHiggs degree of freedom. If a non-Abelian sions and applications of the results. The main body of the
version of this theory can be consistently quantized, it mayaper sets up the structure of the proof, most of the detailed

be applied to particle interactions. calculations are collected in appendices at the end.
No-go theoremg6,7] based on the consistency of quan-
tum symmetries rule out most, but not all, alternative Higgs Il. TREE LEVEL ACTION

free mechanisms of mass generation for non-Abelian vector In thi tion | shall fi i | shall K
bosons. One useful exception is the topological mass genera-.thn |§Usec lon 1 shall Tix mytﬁonven Ict)ni st'a wor
tion mechanisni8] which has seen renewed interest in re-With an (N) gauge groups, with generators, satisfying

cent yearg9—11]. This mechanism uses an auxiliary vector [t,,t,]=if20%t, 2.1)

with the structure constanf&P® totally antisymmetric in its
*Email address: amitabha@boson.bose.res.in indices. The gauge index, as well as Lorentz indices, will be
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made explicit in general for easier tracking of numerical co-possible to choose some other gauge for Wm'bfp has a
efficients. The background metric is taken to have signatur@on-vanishing(gauge-dependenpropagator, but that does

(—+++). not change the arguments. This is discussed in the last sec-
The classical action for the dynamical non-Abelian two-tion. For the moment let me proceed without a quadratic
form [8] is term for the auxiliary fieldC? .
There is a quadratic coupling term between the vector and
SOZJ d“x( _ EFa Fanv_ iHa L Haw the ant_isymmetric tensqr fields coming from the last term in
4w 12 #» the action, the vertex given by
ab _: b
N %MV,JABZVF?A)_ 22 Ve | =imee,, K-, 2.9

The effective tree-level propagator for the vector field is then
Here F,, is the curvature of a gauge connectiéy with  calculated by summing all insertions of the tree-lezg],
gauge couplingg, propagator into the nee tree-levelA, propagatof4]. The
result is

i a
— — _ bcpab

5% K,k k,.k

~ab_ _ Puhe) b uly
(23) Dlu/_ k2_ 2 ( gp,v k2 ) §a f k4 . (21@
The compensated field strendth, ,, is defined with the help

i~ ) : This shows that there is a pole in the two-point function of
of an auxiliary fieldC,, by the relation

the vector fieIdAZ even at tree-level. On the other hand, the
HZ»A:(D[qux])a“L ig[Fp,,,Cyl? “massive” propagatof)fﬁ falls off as 1k? at high values of
s berb oo b e k?, like in the case of the Higgs mechanism. The ultraviolet
=B T 9T A B\ —9f*F[,,Cy;- (24 behavior of the propagators show that the theory is power-
counting renormalizable in this gauge. The best way to pro-

All the three fieldsA,,, B, andC, belong to the adjoint ceed further is via the BRST method of quantization.
representation of the gauge groGp The action(2.2) there-

fore remains invariant under gauge transformations given by Il BRST INVARIANCE
Quantization of this theory requires gauge-fixing and
therefore the introduction of ghosts. The gauge fixed action,
together with the ghost terms, is BRST invariant. The vector
CM—>UCMU‘1, UeG. (2.5 gauge symmetry requires ghosts of ghosts, and off-shell
nilpotence of the BRST charge requires auxiliary fields. Let
In addition, the actionS, is invariant under vector gauge me write the gauge-fixing functions 48, f2* andf’?2 for
transformations given by gauge transformations, vector gauge transformations and
gauge transformations of ghosts, respectively. In Sec. V, |
A=Ay Bu—Bu, DA, CumCutAy,, shall choose the gauge functions to be of the usual Lorenz
2.8 gauge type,

fa=g, A%, fa=g,BM =9 0 (3.0

i
-1 -1 -1
A—UALUT = 20,007, By, —UB, U,

whereA , is some arbitrary vector field in the adjoint repre-

sentation of the gauge group which vanishes at infinity.
For the purpose of power counting, | need the propagatorgut most of the results in this paper will hold for arbitrary

of t?is theory.a Let me choose the usual Lorenz gaugginear gauge functions. Some discussion about arbitrary
9,A*=0, 9,B¥"=0, with gauge parametegsand  re-  gauges is presented in Sec. VI.

spectively. Then the tree-level propagator A is The tree level quantum action can be written as
D23=—§(gﬂy—(1—§)%), (2.7) S=So+f d*x hafa+$aAa+%ghaha
and that forB?,, is +hi(f3#+gn?) +;2Aa“+ %nhf:ha“— d,0%a?
D20 = k—:( 9urp9r,—(1—7) g“[’i(—k;]kv> . (2.8 +a?f'24 BAA 24 faPa?|. (3.2

There is no quadratic term in the action involving the Here A2, A2* andA’?2 are the BRST variations, as defined
auxiliary field CZ in this gauge, so the tree level propagatorbelow, of f2, f2 andf’?, respectively. The appearance of
for it will vanish. As a result, there are no diagrams with 9,n? in the gauge-fixing condition is usual for two-form
internaICfL lines. This may look very peculiar, but it is also gauge-fields. The gauge-fixing conditiéf**=0 holds upon
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using the equation of motion af? [15]. This action is no  with

longer invariant under gauge or vector gauge transforma- 1 1

tions. But it is invariant under the BRST transformations , _ _ | “afa, — ¢ apa| _ | & fap yupady oy — .. 8pau
(9.10] v (wf +2§wh) (wM(f +9“n%) + 5 pw, h

SAZ: &Mwa+gfab°A2w°, +(Eaf/a+ é«Eaaa)' (3.9

1 In addition to the BRST transformations, there is another
swi=— —gfibCyPuc  swi=—h3 sh=0, BRST-type nilpotent transform_atmn which leaves the_ action
2 invariant. Such a symmetry exists for all gauge theories, not

just the two-form theories, as can be seen from the following

sB:,=gfB’ w°+(Dy,w,)2+gfaF> 6c, argument. The terms in the extended ghost sector of the tree-
level quantum action of a gauge theory are typically of the
sCl=gf3*Clw+ wl+(D,0)?, form

a_ _ ~fabc, b ¢ a 1 —
sw,= =90, 0"+ (D,LB)%, Stx=ATA+ SARANAE 0AAR, (35
swi=—h3, sh’=0, sm=a? sa®=0, — o : ,
where " ,h?) are the trivial pairs. Here the indexstands

sp=gfa°Blwe, for the collection of various indices as well as the space-time
point where the fields are evaluaté@=0 is the correspond-

sBi=a® sa?=0, ing gauge-fixing condition with gauge parameterand A”
=sfA. The sum oveA includes the integration over space-

sH2=—gfaPcePut— B2, (3.3  time. This form of the extended ghost sector is valid for

_ _ _ _ commutingh?, f* and anticommuting®. For example, all
These transformations are nilpotest=0 on all fields, ifS byt the last three terms of the tree-level guantum adod
hai a left action, 1.e., the change in any figitlis given by  can be written in this form, where the indéxincludes the
6x"=06\sx”, whered\ is an anticommuting infinitesimal - gayge indea or the pair @, ) depending on the gauge field
parameter. The tree-level quantum action of EBJ2) is in- (A orB,,). This part of the action remains invariant under

variant unders, with A®=sf? A% =sf* andA’®=sf’®.  BRST transformations
It is also possible to write this action as the sum of the .
classical actior, plus a total super-divergence, so=—-h? sh*=0. (3.9
S=5y+sV, On the other hand, | can rearrangg,, as
|
1 1 1 1 — 1 2 1 2 1 1 —
__ AL T A AL T fA| _ T £AfA ANA_ — AL TeA| T fA Ay TeA| _ T EA|_ T cAfA AAA
Seut 2)\h+)\f (h+)\f) 2)\ff+wA 2A(h+)\f> )\f)(h+)\f> )\f) 2)\ff+wA
1 1 1 1 — 1 —
_ = AL T £A AL T fA| T fAfA AAA_IASA L T\ [/ AR/A AAA
2)\h +)\f)h +)\f> 2xff+wA h f+2)\h h' A+ w”A%, (3.7

where | have defineti’*=—h”—(2/\)fA. So far, | have not actually done anything. The only thing that comes out of this
exercise is the fact th&,, is invariant under a new set of BRST transformations:

_— _— 2 - - 2. -
sw”=—h'"A=se*=h"+ XfA, sh’A=0='sh”=— XSfA’ sfA=AA=sfA (3.9

Therefore, if the action & on w” andh” is as above, ans=s on all other fields, the last equation is identically satisfied, and

it also follows thats is nilpotent on all fieldss?=0 if A* does not contain any auxiliary field, which is usually the case.
When the extended sector corresponds to an anticommuting gauge field, as in the case of gauge-fixing of ghost fields, the
construction is slightly more complicated, since the auxiliary fields have odd ghost number. Typically, for anticommuting

auxiliary fieldsa®, o”, the extended ghost sector can be written as
S = P AT AdA+ fahah BPAA (3.9

e

In this, f'# is the anticommuting gauge-fixing function/*=sf'A, and 8* is the corresponding commuting antighost. The
term f'Aa” is just a rearrangement of the appropriate termef” which appear for the usual gauge symmetries. A term
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such asf’Aa” must appear, since” is the ghost for some field and therefore appears in sateFor example, in the

tree-level quantum action of ECB.Z)?AaA corresponds tEa“o?#aa, which in turn is required to cancel the BRST variation
of h‘;a“na. Just as in the case with commuting auxiliary fields, the term&jncan be rearranged,

— 1 1 1 — — 2 1 2 1 1 —
Sa — A+_frA) A+_f/A)__frAfA+ AArA: (( A+_f!A>__fIA)( A+_fIA)__f/A)__f/AfA+ AArA
e | Tt g TR g P AT e TR N e e ) e TR
— 1 1 1 — — — — —
:éa arA+Zf/A) arA+ZfrA _ZfIAfA+BAAIA:§arAarA+arAf/A+frAarA+ﬂAArA, (31@

where | have now definea’”= — (o™ +(2/£)f'?) and a'? 2 _2p0a
=—(a™+(2/0)f'"). As before, in these coordinat&g,, is Sat=— Z ’
invariant under its own set of BRST transformations,

— — 2 2 2
_— — 2 saf=—s(d,w?) = =3, h**+—g*n2+ —fa+ |,
IBA:a/A:_ a'A-I- _f/A ’ g ( " ) é, M " 7
(3.12
oy SNy S 27 's=s on all other fields.
Since the gauge-fixing functions do not contain antighosts
_ _ 2. or auxiliary fields, and since BRST variations of the remain-
sa'A=0='sa’=— Zsf’A, ing fields also do not contain antighosts or auxiliary fields, a
straightforward calculation shows thatis nilpotent on all
Ef,A:A,AESf’A. (31]) fields,
$2=0. (3.13

Two more things are required for the nilpotencesef-a”

was the result of BRST variation of some figld*=sn®in |5 aqdition, since the classical acti® is invariant under

rA e P ~
Eq. (3.3]—now a’" has to be the variation undsrof the  BRST transformations, and sin@-s on the fundamental
same field, andsf’® must be calculated according to the fields,

rules of Eq.(3.8) for’s acting on the anticommuting ghosts in _

f'A. In addition, the action 0§ must be the same as that of $Sp=0. (3.14

s for the fields contained ifi’A. Thens2=0 on all fields.
| can now gather the results of E(3.8) and Eq.(3.11)

and apply them to the tree-level quantum action of BR)
to construct this symmetry,

The remainder of the tree-level quantum action of 32

can be written as a sum &, and S, as defined above,

and either by the method described above or by an explicit

calculation it can be shown quite easily that this part is also
B 2 invariant undess. So in fact

Sw?=ha+ — {3,

¢ 3S=0. (3.15

shi= — zAa, It should be made clear thatis not special to the dynami-
3 cal two-form, nor even to reducible gauge systems. Usual
gauge theories exhibit invariance under a symmetry analo-
Swd=hd+ E(; na+3fa gous tos. But in those cases, this gauge-fermion dependent
7 invariance is not needed for restricting the form of the quan-
tum action—invariance under the familiar BRST transforma-
Shd= E( 9 al+ E(9 f’a_Aa), tion s is sufficient for that purposglL2,13. However,s be-
comes extremely useful when the theory contains many
different fields in the same representation, as in the case of
ay _f/a)’ the dynamical two-form. | shall make extensive usesdb
construct the quantum effective action for the dynamical
two-form. In order to do that, | need to look at the quantum

"S’Ea__ a_Z 5 pam symmetr@es corresponding E_fs_and some other classi_cal
' symmetries of the theory. This is done in the next section.
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IV. SYMMETRIES OF THE EFFECTIVE ACTION Expandingl’ in a power series in the loop expansion pa-

On the way to a proof of perturbative renormalizability of rameters,

the dynamical non-Abelian two-form, the first thing to note %
is that there is no kinetic term f@, in the tree-level action. lx.Kl= > N0\ XK1, (4.5
Consequentlyci is taken to be dimensionless. The auxiliary N=0
ghost fieldd is taken to be dimensionless for the same rea'vvherel“o[x K]=Ss[ x,K], the Zinn-Justin equation can be
son, and then the theory is power-counting renormalizable, jian ordér—by order’ for, eacN as

The presence of fields with vanishing mass dimension does

not automatically rule out renormalizability of a thedd], N
but it is possible that the theory will be non-renormalizable > (I .In_n)=0. (4.6)
because counterterms may contain arbitrary powers of these N'=0

fields. Therefore, one needs to ensure that the symmetries of . . . .
the theory restrict the number of counterterms to a finite%'s expansion automatically includes counterterms corre-

value. Perturbative renormalizability requires that the qua”igomned,'\,n%ff-ﬁ?r?}q;\sle;geg;ﬁat:&ﬂgéveg:ggf ﬁ;dif IJ(:aren
tum effective action, invariant under the quantum symme- led bl It A tpp Elﬁgogf I Mp<N—1 tk:/ |
tries, contain only those operators which appear in the treezaNceled Dy counterterms or all M= , the only

level action of Eq. (3.2 up to arbitrary numerical remaining infinities in.Eq.(4.6) are inl"y. So the infinite
coefficients. The quantum action can be constructed by us%artr'\"” of this quantity must satisfy

of the Zinn-Justin equation in the following manner. S Tw.)=0 4
The partition functiorz[ J,K] in the presence of external (Sr:Fn)=0. @.7
c-number sourced®(x),KA(x) is For a theory which is renormalizable in the power-

counting sense, this leads to a simple mechanical procedure.
Z[J,K]=f [DXB]GX[<iS+if d4XXAJA+if d*xFAKA For such a theory, the infinite pdri ..[ x,K] must be a sum
of operators of mass dimension four or less. In addition, all
(4. the linear symmetries of the tree-level action are symmetries
of I'[ x,K] and therefore of"\ ..[ x,K].
Let me assume for the moment tHa§ ..[ x,K] is at most
linear in the antisources” for all A,

whereFA(x) =sy”(x), and | have kept the space-time inte-
gration explicit for this section. | shall also referkd' as the
“antisource” corresponding to the fielg”. This partition
function leads to the effective action
FN,x[X,K]=FN,m[X,0]+f d*xFRLXXTKAX).

F[X,K]=—fd4xXAJ;\K—i|nZ[JX,K,K], (4.2 (4.9

A g If I now define the quantities
whereJ}  is the value of the current for whicfx®(x)); k

=xB(x), Lhe expectation value being calculated in the pres- T x]1=Srlx,0]+ €'\ [ x,0], (4.9
ence ofK™.

The effective action satisfies the Zinn-Justin equatiorwith e infinitesimal, the terms independentkf in Eq. (4.7)
[12,13 imply [13] thatF(NE)[X] is invariant under the transformation

(I',T)=0, (4.3 srx () =F{PA(x), (4.10

where the antibracke(G) is defined for any two function- where

alsF andG as
FOAX) =FAX) + eFR(X). (4.11

(F,G):f d*x 5RF[AX'K] 5LG[AX'K] The terms of first order ifK” in Eq. (4.7) imply that this
Ox"(x)  K(x) transformation is nilpotens§=0. Sincel'y .. contains only
SrF[x, K] 6.G[ x,K] operators of mass dimension four or 1e6§)*(x) cannot be
—f 4 A Ao—. (4.9 - - ion tharf ition F(9A
SKAX)  Sx™(X) of higher mass dlmen5|on th (>.<). In add|t|o_n,FN (x)
may not affect the linear symmetries of the action. Therefore,
In order to get a proof of perturbative renormalizability of F(?A(x) must have the same Lorentz properties, ghost num-
a theory, the total action functionalS[y,K]=S[y] ber and global gauge transformation propertie&2&). In
+ [d*FAKA is written as a sum of the renormalized action fact F{’*(x) must be the same #&(x) if it corresponds to
Skl x,K] plus a termS,[ x,K] containing counterterms in- a field which transforms linearly under All that remains to
tended to cancel loop infinities. Bo®k and S, must have be done is to construct the most general nilpotent transfor-
the same symmetries &y,K], so the infinite contributions mation of the fields under these restrictions, and then to con-
to I' can be canceled by the countertermsSinif they also  struct the most general functionEIf\f)[ x] invariant under
have those symmetries. this transformation. If that agrees, up to arbitrary constant
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TABLE |. Mass dimensions and ghost numbers of the fields and
their antisources. A« indicates that the antisourdé® does not
appear in the theory as the BRST variation of the correspondin
field y* vanishes.

<S;a>JX’K,K: —h? (4.13

?t follows from Eq. (4.2) that

Field Dimension Ghost number Dimension Ghost number orl'[x.K] ——h (4.14

e of KA of KA K w] ’ '

A2 1 0 2 -1 . . — . L

B§ 1 0 > 1 for the corresponding antisour¢€ w]. Since this is inde-

Cg” 0 0 3 1 pendent oﬂ_<A, it follows thatI'[ x,K] is Iingar in the a_nti—

wéf 1 1 2 —9 source forw?. A similar argument holds fo&)‘; ,n? and g2.

—a 1 -1 2 0 Let me now look at the antisources for the remaining fields
a in the theory. The quantum effective actibhy,K] must be

h 2 0 * * . . - a a .

ey 1 1 2 _5 linear in the antisources of* andC,,, since these objects

i 1 1 5 0 have mass dimension 3 and all other antisources have mass
. dimension 2. Sd'[ x,K] is at most quadratic in the anti-

¢ 0 1 3 —2 sources of only the other fields. It turns out théty,K] is in

has 2 0 * * fact linear in the remaining antisources as well. The argu-

n® 1 0 2 -1 ment involves showing that the coefficients of the quadratic

B 1 2 2 -3 terms are forced to vanish, term by term, by the dimensions

B2 1 -2 2 1 and ghost numbers of the fields which can possibly appear in

a? 2 1 * * them. Appendix A contains the details of the argument.

o? 2 -1 * * It follows then that the effective action is at most linear in

@ 0 1 * * all the antisourceK”, and the arguments following E¢#.7)

hold. But the number of possible terms in the effective action
allowed by the(renormalized BRST symmetrysg is still
numerical coefficients, with the original acti® the theory ~€normous, and it is necessary to invoke other symmetries to
is perturbatively renormalizable. simplify calculanons._

This entire argument rests on the assumption that Let me now consider the effect of the gauge-dependent
I'n [ x,K] is at most linear in all of the antisourcés™. symmetrys on the effective action. | take the same partition
When is this a correct assumption? If a figf¢ has mass functionZ[J,K] and the same effective actidij x,K] as in
dimensiond, , the corresponding” must have mass dimen- Egs.(4.1) and(4.2), with the same sourceliK and the same
sion 3—d, so as to makefd*xFAK” dimensionless. The antisourcesk”. (This I'[ x,K] was shown to be linear in

antisourcesk?® for A? 0?02 B? o, 0 n3 B2 6 al theseK” in Appendix A) Let me also denote the minimal
/.L ) ) 1 MV ’ M ’ I‘L 1 ) 1 ) . . . ~
have mass dimension 2. The antisourcesdfyrand ¢ each  fields by ¢” and non-minimal fields byr”. Then s¢”

have mass dimension 3. Also, the theory does not have any s¢”=F”, and consequentigF*[ ¢#]=0. The application

external antisourc&” for the fieldsha,hi,aa,za because of s on the partition function givessince the tree-level ac-
their BRST variations vanish. Therefofg, .. can be at most  tjon Sis invariant undes),
quadratic inKA.

If a field y* has ghost numbey, , the corresponding&” .
will have ghost number- y,— 1. It follows that the ghost —f d*x
number of the antisource for any @& ,B%,,C%,n% is
—1. The ghost numbers &f* corresponding tma,w,‘i and
6% is —2, and those oK” corresponding tg8? and g2 are
—3 and+1, respectively. The remaining antisources corre- ) o ) ] ] )
spond tow? andwf‘“ they carry ghost number 0. The dimen-l\loxv’ i thg gau'ge-ﬁxmg fu.nctpns are Ilngar n the fields,
sions and ghost numbers of all the fields and their antiS\~ as defined in Eq(3.12 is either linear in the fields or
sources are given in Table I. equals the BRST variation of some linear function of the

Some of the quadratic terms can be eliminated straightfields. Therefore,(~S>\A>JxK,K is known in principle from

away. The BRST variations of the fields?,w? ,n® and g  solving the Zinn-Justin equations. In addition, the effective

ol'lx.K] & ~ o' x,K]
A A
(F%3 5" A KA

=0. (4.15

+<§S)\A>JX,<,KKAD\]

are linear, so the effective action cannot be quadratic in theiaction does not contain the antisources corresponding to
antisources. For example, (h?,h7,a®a®) and only Sz contains the antisources for
(0%, 05,0 B%). Then | can read off from Eq4.15 that
sw?=—h? (412 TP x] as defined in Eq(4.9) is invariant undesg, which
is justs as calculated in terms &&. In other wordsI'{ is
so the quantum transformations are the same, invariant undeisg where
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- 2
Srwd=h3+ =8,

3

2 2,
SRh :__SRf =—-A ,

3 3

- 2 2
spwy=hj+ —a,n+—f%,
7 n

o ha 2 a 2 ra a
SRh,u,:; &Ma’ +Z(9Mf _SRf,u,
2 a 2 f/a Aa
ERI’I - aa-l—zf'a)
é‘ 1

SRaa=

'sg=Sg on all other fields.

2 2
—3,| P+ — gind4 —fan |
7 7

PHYSICAL REVIEW D 63 105002

1
tsgazzgfabcwbwc, ts(all others=0, (4.18

wheret is the transformatior/ S\. Note that | have taken
SO\ to be commuting only for convenience. dh is taken to
be anticommuting, the action will still be symmetric under
t= 35, /6N provided 8, w? SN =+ a?, other transformation
rules remaining the same. It is easy to see that the a8tisn
symmetric undet for a large class of gauge-fixing functions
far,

By applyingt on the partition function4.1), | get the
Ward identities

[ o

5T
B 5gm

50a

—(ts6?) K3 4] | =0, (4.19

where the quantum average$ are calculated in the pres-
ence of the currents and antisourcgs ,K as before, and
K& @] is the antisource for6?. Since tf*=—w?, tw?
=—a? are linear in the fields, their quantum averages are
the same. As for the other twaw}=sA] and tB%=
—sw?, so the quantum averages of the quantities on the left
(4.1  hand side are known. | can then write this equation as

—&r s oI
f d4x( S ———
Sw®  SKA[A] dw,

Note that | did not fully utilize the nilpotence &fitself. In

principle, | could have treated just like s, defining new )
antisourcesk” and deriving an analogue of Zinn-Justin

ol AL ol .
5 oK w] 5% oK w] LO1]=

X w

equation. But that creates a host of other problems. In par- (4.20
ticular, the effective action is not linear in these new anti- )

sourcesKA.

Expandingl’ in a power series ik and using arguments

These two renormalized symmetriag, andsg are suffi-  as before, | can write the divergent part of this equation as
cient to uniquely fix the form of the effective action, as will

be shown in the next section. There is a further symmetry
This symmetry
mixes the ghost fields with the same global properties and

which helps to pin down the form ofy.

guantum numbers.
The actionSis invariant under

Swd=— S\ a?,

S’ =0\ (4,07 +gf2PeAd 0

060%= — O\ w?,

1
SBF= O\ 59 fabCyP e,

S(all otherg=0,

where S\ is a commuting c-number infinitesimal. It is

straightforward to calculate that

oy _ZaaLFN,oc L _%Se Alne  GRIn- 65k
Swd  SKM[A] S0l  SKAM[A] dw

_wa‘SLFN,oc 5RSR 5LFN,OC 5RFN,OC 5LSR

s Kw] spr  sKYw] IB°
5RFNOO a
+— KT o] Ko ]) (4.2

The K independent terms of this equation give

_51TI® re
(4.17 f d*x —aaLT[X] F(f)e‘[A]J
Sw? 5w#
o I s I
_ wa'——[X] _ F(E)a[w]'-—[X] =0,
562 5B°

(4.22
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wherel' () x] and F(9[ x] are as defined in Eq$4.9) and  sible terms. Sinc&? has mass dimension zero as well as

(4.11) with the indicesN andx suppressed, and | have used ghost number zero, it is possible to multiply any other term
the invariance oBg under the transformation The terms of by a scalar polynomial of the foria|_ 1(CaC*), and still

first order in the antisources give maintain the three abovementioned symmetries. Of course,
such terms are natg-invariant by themselves, but one can

j s _;aé__L_F(E)a[A] a8 _wai imagine that their variations cancel against those of some-

Sw? " &oz 802 thing else, and ruling out each such term requires a long and

tedious calculation. And even without this unwanted com-

S, plexity, there are of the order of one hundred terms satisfying
—F(E)a[w]ﬁ—ﬁa FOBx]=0 (4.23  the three linear symmetries. Applyings to a sum of so

many terms, multiplied by unknown scalar polynomials of

for all B except wherB corresponds t@?, where | have used Cp» and then finding the combination which remains invari-
the fact thatts=0 on all fields excep#?. For the case of ant, would require unlimited time and perseverance. Fortu-

K?[ 4], this equation is modified, nately, there is a way out of this quagmire, providedsby
As before, let me denote the minimal fields By and
— 1) 1) non-minimal fields byA”. Let me also defines,=3%(s
f d*x —ab—_L—F(E)b[A]—Lb——wb—LE ! y r=7(SR
Sw? M dw, 60 —sg). Then from Eq.(4.15),

I A 'y A
_F(e)b[w]%ﬁ) F(e)a[ 0]+F(e)a[a)]] :O, SR¢ O, SR)\ +0. (51)
The non-minimal fields\* are (Ja,ﬁa;; ,a?,h? a2,
(4.24 hi ,n?). Let me also choose the gauge fixing functions to be
specifically those in Eq(3.1). Because of my choice of

on usingts#?= g3 P%wPw’=—FY w]. .. . . = Y
upon usindt 2t 0 @ Lo] |gauge-ﬂxmg functions, the action exhibits invariance under

The interpretation of these equations is obvious. Equatio

(4.22 says that"(?[ ] is invariant undetg, where constant shifts ofu® 8% w? andn® Since these are linear

symmetries, | can impose them on the effective action. In

trw?= — a?, other words, these fields must appear in the quantum effec-
tive action only as derivatives, i.e., agw? etc.

trows,=SrAY, Then on dimensional grounds, the effective action will be
at most quadratic in th@”. | can then write the effective

trf?= — w?, action in the generic form

trB%= —sgrw?, 4.2

RE= ~Srw @23 T= MXA+ D, NANBXAS, (5.2

A A,B

tg(all otherg=0.

whereX” and X*B do not contain any of tha”, and have
appropriate transformation properties, dimension and ghost
number. In particularX® and X*B are assumed to include
Qerivative operators as necessary for the constant shift sym-
fnetries mentioned above, and the sum over indices will be
taken to include an integral over space-time unless specified

otherwise. Since boths andsg are symmetries of the effec-
tive action, | have
In this section | shall use brute force methods to show that
the effective action contains the same terms, up to arbitrary sgl'=0, (5.3
multiplicative renormalizations, as the tree-level action of
Eq. (3.2. The proof requires construction of the most gen-and from Eq.(5.1), | have
eral nilpotent transformation of the fieldsy, as discussed in
the previous section. The actual constructiorspfs a rather SpX" =X P=0. (5.4
involved digression, so | have separated it into Appendix B.
The result ofs; on the various fields is given in EgB32).  Therefore using Eq5.2) | can write
Now | need to construct the most general functiofig
symmetric undesg as well as under the linear symmetries of 7y Ay yA 7y Ayy By AB
S. These aréi) Lorentz invariance(ii) global SU(N) invari- ; (SRAT)X +/;B (SRATIAX
ance, and(iii) ghost number conservation. However, it is
obvious that even with the restrictions imposed fayand +2 (—1)°ANA(SEAB)XAB=. (5.5
these three symmetries, there is an enormous number of pos- AB

The first equation following that, Eq4.23, shows that
tgSg=0 on all fields excep®?, and Eq.(4.24 shows that
trSrf?= —srw?. There are no surprises, except perhaps th
fact that these conditions are actually useful in restricting th
form of s to what is shown in Appendix B.

V. THE MOST GENERAL EFFECTIVE ACTION
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Here e, [not to be confused with the, of Eqgs.(A3) and SpA% =3, wd+ grfaPAL 0t
R . . w wYR R wYR>
(A4)] is the Grassmann parity of the fiekd.

SinceX* and X*B do not contain any of tha” by defi-
nition, | can now look at the coefficients of the variouin
the expansion of Eq5.5) and set them to zero in order to get +grfaP%; AP 68+ g2faedreboal AC od)

| . g gr [P ORT OR wH W OR)
an expression for the effective actibh Many of the terms
are thus eliminated, and some algebraic relations appear

SRBZV: ngachsz%'f' ﬁ[#wav] + ngabcAFMw%V]

among some of the rest. The details of the calculation are SRCi:ngabcczw&Jr_“
given in Appendix C. The result is the effective Lagrangian Ne
of EqQ. (C41) which | give here again, X(wgﬂ_l_aﬂaa_}_ngabcAz 0, (5.9

_ ay@ | pay@ | ayAs | Ay | paya payau
Log= o™X+ BT w0, X, +aX Ah"Xp+h, Xy where | have definedgg=g/N;, 0f=2ZN 0% o},
= ZNgw}, andx= ZNsN'1 6. If | now definerenormalized

ayau . _a _byabu | T3 pyab apbyab .
+0,nX 0, a”X )t ata?X AT, field strengths

a b by yabu apbyabur
+h (nh#+aﬂn )th +h,u,hvxh*h* ﬁiV:aMAi_avAi—’_ ngabCAzAIC}
+h33,nPXE08" + ,020,nPXA0 (5.6) _
H2 0= ,B5 + grf2PALBS
The undetermined coefficients satisfy several relations
among themselves as shown in Appendix C. _ Aﬁg fabdgb o (5.10

The number of unknown coefficients can be reduced even N, R [uv™=]
further. Just as the symmetisiI'=0 produced relations
among several of thes¥’s, the quantum BRST symmetry | find that the Zinn-Justin equation just says that the ghost-
itself, sgI'=0, should produce some more relations indepenfree sector is invariant under these gauge transformations.
dent of the previous ones. The expression forgheariation ~ The factorNg /N, can be absorbed either (hj itself or in
is the renormalization of a fiduciary coupling constagt
which always appears in front @“Z.

The procedure described so far can be used to construct
effective actions for different theories involving the non-
Abelian two-form. For example, it may be interesting to ap-
ply it to the recently proposed first-order formulation of
Yang-Mills theory[16]. However, since | have a specific
theory in mind, | will need to invoke another symmetry in
+(— 1)t e \B(spX B)]=0. (5.7 order to eliminate unwanted terms from the non-ghost sector.

) A AB ) A This “symmetry” was an invariance of the classical
SincesgX™ and sgX™" do not contain any of tha”, I can  gquations of motion under

consider the coefficients of* or of A“\B in the above ex-
pression and set them to zero. B® B2 +aF® (5.11)

The calculation is fairly straightforward, but in keeping O mr
with other calculations in this paper, | have again separate
this one into Appendix D. The result is that the functional
forms of all the unknown coefficients become known, and

only two arbitrary constants are needed to write them, a%on. Of course, since the classical action is not invariant but

shown in Eq.(D19). R o )
; changes by a total derivative, it is nontrivial to elevate this to
I can now write down the general form of the ghost sector k L ;
of the theory as a quantum symmetry. Classically this “symmetry” leads to

a conserved current

sRF=§ [(SRA) XA+ (— 1)°ANA(spXP) ]

+ 0 [(SRANMNBXABL (—1)°ANA(SNB)XAB
AB

\%ith a a constant. It was suggested[8] that this symmetry
could play a role in preventing terms of the fornB (
—DC)? or (B—DC)/\(B—DC) from appearing in the ac-

Ly=Z, 0’ AR+ 75 BPAR+Z5 02 AY + 75 a2+ Z,, W22 )
J4=H3HNER 4 menhe AiFip—gfabCAiA;’Ag) :

+Z5h3(f3%# 4 gFn?) — Z 5 0 02 aP+ { Z5 aPa®
B B " B (5.12

& U

+§Zw haha+§zﬁ h;‘lha"- (5.8 But there is no corresponding conserved current for the

BRST-invariant actior§ of Eq. (3.2), which was the starting

It remains to construct the most general non-ghost sector gfoint of quantization. This part of the problem can be cir-

the theory. cumvented quite easily by incorporating the shift into the
The BRST transformations on the bosonic fields as foundRST transformation foB2 , which now readgcf. Eq.

in Eq. (B32) of Appendix B are given by (3.3] "
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SBZV:gfachzychr ‘9[Mw3]+gfabcAFu“’$] tum effective action to the same form as those in the tree-
berb . level action in such gauges.
+of®F 0+ aF),. (5.13 The proof also depends crucially on the nature of the aux-

_ ) ) ] iliary field C%, . There is no quadratic term for this field in the
Herea is an anticommutingonstantwith ghost number-1,  action of Eq.(2.2), and it was mentioned in Sec. Il that as a
andsa=0. Itis trivial to see that the BRST transformatisn result there was no propagator f@* and diagrams with
is still nilpotent,s?>=0. However, the action is still not in- . a : . s . .
mternaICM lines vanished. This seems rather peculiar, but it

H H H 4., puvipga Ea H
variant, but is shifted by ra/4)Jd"xe FlvFy,. Soit is actually not a problem for perturbation theory as long as

seems that | have not gained anything, but only recovered ) . .
symmetry of the equations of motion. On the other handﬁ‘]ere are other fields which propagate freely. The free Hamil-

since | am now dealing with the quantum theory rather tha’ipnian can always be written in terms of the propagating free

the classical action principle, | can also generate this ternic/dS: and gtheraterms can be thought of as perturbation on
through quantum effects. top of it, with C;, being a non-dynamical field. One may

For example, this term could be canceled by the transforguestion whether perturbation theory is valid for an action
mation of the fermion measure if fermions are coupled tofor which the operator in the matrix of quadratic terms is not
the gauge field. Under a chiral transformation with a parainvertible, as in this case. In general, perturbation can be
meter 4r’mea, the effective action changes by done only if a free Hamiltonian can be constructed for the
—(ma/4)fd4Xe‘”"PFwai‘p, which cancels the effect of the theory. | have assumed that this is a sufficient condition as
shift transformation of Eq(5.11). The action then becomes well, as long as all thephysical fields appear in the free
invariant under the combination of the shift and global chiralHamiltonian and their quadratic matrix can be inverted. The
transformations. There are other ways of canceling the terrfree Hamiltonian is a sum of terms likg(I1?+®2) only
generated by the shift. In any case, symmetry under the shitiver the physical degrees of freedom, and this is the part
transformation rules out terms involving products &,  which gives the propagators. So if the number of degrees of
—D(,C,)). | can then write down the most general quantumfreedom in the theory is known, it is strictly necessary to
effective action consistent with the quantum symmetries, have only that many propagators, and therefore only that
many quadratic pieces in the theory. The quadratic matrix of
the physical fields in this theory can be inverted, as can be
seen from the fact that perturbatively there are three propa-
- gating degrees of freedom, as there should be from counting
+Zgeme* MBS FR + Lg). (5.19  constraints. In other words, the assumption made here is that

for a perturbation series to be constructed, only physical de-

This is the same as the tree-level action up to arbitrary mulgrees of freedom need to be identified with quantum fields.
tiplicative constants, which means that the theory is perturThe non-propagating degrees need not be quantum fields in

P [ 0% (ZaF 3P 25, o

batively renormalizable. the sense of canonical quantization as long as the path inte-
gral can be formally constructed for them. This is not a radi-
VI. DISCUSSION OF RESULTS cal assumption, it is made for all gauge theories, but is usu-

ally associated with unphysical objedtsuch as the scalar

It is time to gather the results. | have given an algebraianode of a vector fiel[dwhich are not Lorentz covariant. On
proof of perturbative renormalizability of the dynamical non- the other hand, it is clear thé}i by itself is not a physical
Abelian two-form gauge theory, also known as the topologi-ield, as it can be completely removed by a vector gauge
cal mass generation mechanism. It follows that just as in tw@ransformation.
and three dimensions, it is possible in four dimensions to Therefore | can try to choose a gauge in which the path
have a I’ehormalizabl_e theory of maS-Sive non-Abelian Vectorntegraj Overcz can be forma”y calculated in the Lagrang_
bosons without a residual Higgs particle. __ian formalism and in which there is a propagator ©f .

The calculations were done in a specific set of linearp,q gauge chosen in Sec. Ili wa§= &”Bfw which did not

gauges, so that antighosts appeared only as derivatives. Hi\/e a propagator fo€2 . For convenience, let me keep to
we )

other linear gauges, the calculations would be more MNMinear gauges so that the proof given above can be used with

volved, in particular there would be terms cubic and quartic_.~. e ; a . .
in the antighosts, but even in such cases the methods of sdginimal modifications. Smceg# ean be Sh'fted. awayé t

V should go through. Two other symmetries appeared as gouzld Seem that the gauge, =0, i.e. the choice off,
result of using linear gauges—these aedefined in Eq. =m"C, could provide .the necessary term. However, th's. IS
(3.12, andt, defined in Eq.(4.17). These two symmetries not a good gauge choice. The vect_or gauge transformations
were greatly useful for constructing the quantum BRST sym €t fixed completely, but now there is no propagatorBfy,
metry and for reducing the number of possible terms in thé®S the corresponding quadratic operator is non-lnve;lrnble.
quantum effective action. These symmetries would bd”N€ Possible alternative is to choose Rptype gaugef,
present in other linear gauges as well, but not in a generar "B}, + 7m°C,. In this gauge there is no canonical mo-
nonlinear gauge. The calculations are extremely tedious fomentum for C5 (which was true for the classical theory
nonlinear gauges, and it is not clear if the quantum BRSTalso, so C% terms do not appear in the free Hamiltonian
symmetry alone is sufficient to restrict the terms in the quan{unlike the apparently analogous case of a Goldstone mode

105002-10



RENORMALIZABILITY OF THE DYNAMICAL TWO-FORM PHYSICAL REVIEW D 63 105002

in broken gauge theorigsBut formally the Lagrangian path lematic even in the Lagrangian path integral formalism is
integral overCZ can be done, and formallgli will have a  brought out by the fact that the calculations above remain the
propagator as well as a two-point vertex \MBlj,, after using same even in the absence of a propagatocﬁ)r However,

the equations of motion fdnz andn?. The total tree-level the essential point of this paper is the following—despite
propagator will be a sum over insertions of these vertices agpparent problems with perturbative expansion of this
well as vertices betweeA’ andBf,. This propagator will ~theory, application of standard algebraic techniques to it

be gauge-dependent, leads to a quantum action which contains the same operators
as the classical action, which would be a proof of renormal-
- 50 k?—m? izability in any other theory. This result was completely un-
A%l,)w: - F m (6.9 expected on the grounds of the problems with perturbative

expansion, already mentioned above anfi7in
The use of the anticommuting constantcan potentially
te problems because it has vanishing mass dimension,
ut ghost numbet-1, by Eq.(5.13. The fact that there is an
anticommuting constant in the theory is not in itself a prob-

o lem, similar objects appear in supersymmetric quantum me-
not very good for proofs of renormalizability, although be- chanics[17]. But the fact that it has vanishing mass dimen-

cause of the gauge dependence of the poladh), ItMay  gjon can cause problems of its own. One place where
not be relevant. However, in this gauge the action is N0} 5piems can arise is the argument in Sec. IV and particu-
invariant under a constant shift @, so the proof given |arly in Appendix A that the quantum effective action is at
above will not be applicable directly but will have to be most linear in the antisourcdé®. The argument relied on
redone after including cubic and quadratic termsof. the fact that the coefficients of these quadratic terms had
Another possibility for anR; type gauge choice i§2 vanishing mass dimension but non-vanishing ghost number,

= "B+ nJC?% . The gauge-fixed theory in this gauge also SO they must contaim?. Now 6* can be replaced by the

does not have a canonical momentum@ﬁ and therefore constanta. But there is no reason to worry, because the
terms involvingC% do not appear in the free Hamiltonian. relevant objects have ghost numbeg or more, so at least

P
But again the Lagrangian path integral Oféf[ can be done one 6% will be needed _to construct any of them, and_the rest

. : : of the argument remains unchanged. Another possible place
formally, and after summing over all two-point vertex inser-

: . . for a problem is in the calculation of the general nilpotent
tions, the total tree-level propagator will again be gauge- . : ) . )
dependent transformatiorsg, given in Appendn_( B. Some of j[he fields
: X" could have a term likexx” in their transformation rules
5ab K2 m2 iq principle. O'gh_er similarl_y cons_tructed terms are also pos-
A‘éb —_———— . (6.2) sible. An explicit calculation using the symmetry shows
okt (p— Dk gm that such terms do not arise.
| have not touched on the issue of anomalies, or the in-
This (formal) propagator also has a gauge dependent polgjusion of fermions, in detail. Fermions will couple to the
and therefore cannot represent a real particle. On the othfang-Mills gauge field in the usual way, but there is no
hand, A2, falls off as O(k~“) in the ultraviolet regime. gauge-invariant coupling of mass dimension four between
SinceC? has been assumed to have a vanishing mass dimethe two-form and fermions because of the shift symmetry
sion, A?;E’W therefore satisfies the criterion for power- mentioned in Eq(5.11). The Yang-Mills theory will have
counting renormalizability that given a field of mass dimen-the usual SUN) anomaly of TrF/AF. This can be removed
sion d, its propagator should fall off a®(k™ %), where 4 by use of the shift symmetry. Gauge anomalies will be ab-
— 5=<2d [14]. Therefore it can be safely used in algebraicsent if the gauge group is the standard model gauge group.
proofs of renormalizability. And because of this particular The two-form brings with it a vector gauge symmetry, as
choice of gauge, the antighoa_ii still appears only with ~9iven in Eq.(2.6). This is an Abelian symmetry, but there is
derivatives, and the action is still symmetric under a constarff© fiéld carrying the charge corresponding to it. So there is

. — . LT ._no anomaly involving this transformation.
shift of w,, , and the effective action is still at most quadratic 1, original motivation for the theory was to find a pos-

in w},. Because this is a linear gauge, the rest of the argusiple alternative for the Higgs sector of the Salam-Weinberg
ments of the paper go through without modification, and wemodel of electroweak interactions. What | have shown in this
recover the same proof in thB.-type gauge. In both these paper is that it is possible to have massive vector bosons
gauges, the propagators for the ghosts of the vector symmeyithout spontaneous symmetry breaking. But the problem
try also have gauge-dependent poles. with applying this mechanism to electroweak interactions is
Although the Lagrangian path integral ovef, can be precisely that there is no symmetry breaking, whereas the
formally done in the above gauges, the nature and the role @fbserved world has broken SU(2)J(1) symmetry. If |
the auxiliary field remain obscure. Even then this is somewrite the Lagrangian for the Salam-Weinberg model without
what better than a canonical analysis of the system, where ihe Higgs field, and add an $2) two-form with an action as
is not possible to identif;C‘; with a quantum field because in Eq. (2.2), all the SU2) gauge bosons get the same mass,
its canonical momentum vanishes. That quantization is probeontrary to experiment. All othesbservedevents would re-

This propagator clearly does not represent a real particle be-
cause it has a gauge dependent pole, as is expected beca
of the Goldstone-like nature @‘Z. This propagator also has
the ultraviolet behavior oA’ ,~0O(1) ask*—c, which is
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main uncontradicted. It has been sugge$ied that by also At first order inK”, | get the equation

adding a 1) two-form, which would make the photon mas- A A

sive, it may be possible to get the correct mass ratio of Z and iyl 78 oF e oLF N N 26LSR[X10] FAB|_g

W= particles. However, agreement with experiment requires XN 5x° 5xB 5xB N

an infinite parameter in the classical Lagrangian, correspond- (A3)

ing to an infinite mass for the photon. Another way is to add

an explicit symmetry breaking term to the Lagrangian, soHere | have used the fact thaty”=(—1)°°e 7{® where

that the mass term reads ea,ep are the Grassmann parities &* and KB, 0 for
bosonicK” and 1 for fermionick®. The terms of second

m- . order in the antisources lead to the equation
2N BLFS —tand BLF ), (6.3 q
SLFRY)
whereF ,, is the field strength of the (1) gauge field, and ; f d*x FC(x)Té“(y—z)
0, is the Weinberg angle. Then by defining the Z and photon X~(X)
fields as usual, | can write the quadratic part of this mass 5. FB(z
term as ; P +2> [(—1)*’“88*80*”f‘N‘C(y)—L c( )+A<—>B =0.
C ox-(y)
et (A4)

(MB,,d,A\+mB;,3,A%) + msech, BS,5,Z,)).
6.4 The coefficientF{ ™[ x,x] has mass dimensiod,+dg—2,
and ghost numbey,+ yg+ 2, whered, and y, are respec-
It follows from this that the Z is heavier than the Wby a tively the mass dimension and ghost number of the fi€ld
factor of sed,, (and the photon is masslgssiowever, be-  Since#? has ghost numbet 1 and mass dimension zero, it
cause of the explicit symmetry breaking term, the proof ofiS POSsible to construct functions of arbitrary positive ghost
renormalizability given here is not applicable. So the queslumber and mass dimension zero by taking products”of

tion of applicability of this model to electroweak interactions Since the guagraticasu;n runs only over the ggtisources for
remains open. the fleldSAM,BMV,w ,(,L),u,ﬂ , it follows that ‘FN can de-
pendonly on #* andC, for all A,B, and ¢ must be present
ACKNOWLEDGMENTS in FR? to take care of its ghost number, which is always

_ . _ __positive. So the first term of EqA4), F€ 6, F{®/ 5xC, must
It is a pleasure to acknowledge long discussions with Fugntain for allA,B,

Barbero and E. Sanchez about the nature of the auxiliary

4

vector field. 5. FAB 5 FAB
(56%) ———=(—gfPu’— g ———.  (A5)
APPENDIX A: ANTISOURCE DEPENDENCE OF I'y . g 60

As was argued in Sec. IV, the quantum effective action isThe first term on the right hand side will always appear in
at most quadratic in the antisources. In fact, several of thé"® 8 F®/ 8x© becauseF”¢ contains6® for all A,B, but
quadratic terms were eliminated just by looking at the mas¢he second will appear only F* containsg®. (The indexN
dimensions and BRST transformation properties of thdS suppressed from now on.
fields. In order to see the dependence of the effective action In the sumFA€ 5 F®/5x©, the only terms that contribute

on the rest of the antisources, let me write the general exa 32 are forx© corresponding td\i wheny?® is wZ, andy®
pression ofl"y ..[ x,K] as corresponding ta?® when B is 2. This implies, first of all,
that at least one of the indicésB in F”B must correspond

FN,w[X,K]=FN,m[X,0]+f dx FALx . xIKAX) to either w?, or B2 In other words, when neithex”, x®

corresponds ta?, or 82, the sumZF*¢ 5, F®/ 5x© does not

containB? even afteranti-)symmetrization oveA,B, while
+f d*x FRE X . XIKAXKB(x). (A1)  the sumFC 8 F*B 8y must containB?. Therefore 7AB

=0 for all such pairsA,B. So for exampleF3*(w,w)=0.

Now, the only A which contribute ag? to the sum

In this there is nok” corresponding td?,h2 ,a® and o? AC & B/ o C : .
1 # L L
and the quadratic sum also does not run over the antisourcés o F"/ 5x~ are those for which one index corresponds to

“a Y one of (w?,8%), and the other index t&2 or w? and all
for 6%,C% 0% 0} ,n* and B* for reasons described in Sec. @ £ p oL@

1

. . ) theseFAC contain only products 062 andC? . Looking at
IV. The relation Sg,1"y ) =0, when applied to this expres- yp # g
sion, gives at zeroth order i

FAB of this type, | find that each term which can contribute
a 82 to the sum has a factdfAC of the type that vanishes by
the previous argument. For example, X,B) correspond to
_J dx FA 5LSR[/)§'O] _f dx FA SN[ X, 0] —0. (0?,8%), the only term in the sum that could contribute a
Noox Sx™ factor of B2 is F3%w,w) 6, F°(B)/8w®, which vanishes
(A2)  sinceF?(w,w)=0. Explicitly, for this case Eq(A4) reads
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f Fow w)—(SLFb(’B )y f Fow,B) AFB) di°°=Z 2, (B6)
[l C 1 C
ow o8 while the coefficient o, w°w® gives
S Fb S fab ’
+J Fo(w0,B) =5 P R AL U bPfoed=fabehie, (B7)
w 5XC

(A6) which implies

ab__ b
The first term vanishes becau$&‘(w,w)=0 by the previ- bi"=ZN} 5, (B8)
ous argument, the second and the third terms cannot contajph, N, again an arbitrary constant.

a B2, while the fourth term must contain only one factor of Let me now write the rules fog? and 62
B2. Since this is impossibleF2°(w, 8) must also vanish. It '

follows by a similar argument thaf*8=0 when both indi- srB2=gd3*°BPwC,
ces correspond te? or B2,
So the sumFAC 5, FB/5xC vanishes for all A,B), and Spf2= —gdaP°e°w°—baPBP. (B9)

therefore 7°B=0 for all pairs @A,B). It follows that

2 _ .. d . .
I'y.[x.K], and hence the quantum effective action, is at'n SrB*=0, the coefficient of3w°w® gives as in Eq(BS),

most linear in the antisourcé€®, so that the arguments fol- dabe= z fabc (B10)
lowing Eq.(4.7) can be used towards a proof of renormaliz- 3 ’
ability. In s362=0, the coefficient o9w®w® gives as in Eq(BS),
APPENDIX B: RENORMALIZED BRST dib°=Zfab°, (B11)
TRANSFORMATION

) ) while the coefficient of3°w? gives as in Eq(B7),
| need to construct a generalized BRST transformation of

the fields. This is a nilpotent transformation which affects the b3P= ZN\, 5. (B12)
Lorentz properties, ghost numbers and global gauge transfor-

mation properties of the fields in exactly the same wag as For the fieldsw?, andC%, the rules are

of Eq. (3.3 and is identical with the latter where it is linear.

: . . _ b b, b bcpb
Let me calculate the generalized nilpotent transformagipn SR“’,?L_ —gds Cwiwc+bg 9uB +9ds CAMBC,
for one field at a time. For the fields which transform linearly a abeb . vab b vab. b abeab ac
under BRST, this is the same as the origisal srC,=0d7" C 0°+by w, +b5"d,0°+gdg"A , 6°.
_ (B13)

SRwa:_ha, SRhaZO, SRZZI_hz, SRhZ:O,
L - In szw3=0, the coefficient Ofuiwewc gives as in Eq(B5),
sgh?=a?, sra?=0, sgpB2=a? sra?=0. (Bl

d3e= z fabe, (B14)
For the gauge fiel\’, and the associated ghast, | can o ) _
write the coefficient o, 5°w? gives as in Eq(B7)
SeAS = b2, 0+ GRS, b3P= 2N &, (B15
1 with A arbitrary, the coefficient oBdﬁ#we gives upon us-
Spw?= — Egdgb%bw? (B2)  ing Eq.(B1Y),
ZN.
The nilpotence conditiosw?=0 implies dgm:TgfabC, (B16)
1
d3°°d5 e+ d5*°d5 O+ d5°d5 = 0. (B3)

and the coefficient oAﬂBewc vanishes identically as a re-

Therefored‘;1bC must be proportional to the structure con- sult. ) o p ] ]
stantsfabc In sgC%,=0, the coefficient ofC, w°w® gives as in Eq.

®5),

bc_ b
dg ‘=zfa 5 (B4) d‘;‘bc=ZfabC (B17)

whereZ is an arbitrary constant. IsﬁAi=O, the coefficient

of A% w%w® gives the coefficients of»),w® andd, 8%° give as in Eq(B7),

b_ b
dsibcdkl)de_ drilbedkl)dc:Zdzlidbfbec, (B5) bi —ZN4 52 ,
which has the unique solution b2°= ZN; 5%, (B18)
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where N, and A5 are arbitrary constants.
d,B° then gives

N3Ny=NoNs, (B19)
the coefficient ofAZﬁc gives
ZN
dgbe="_2fabc (B20)

1

and the coefficients oAiaewC and HbaMwC vanish identi-
cally as a result.
Finally, B}, , transforms as

_ bcpb b b bcab
SrB},=9d5" B, 0+ bg ) ;) +gdig AL, 0
+gd3s %, AY 0°+ g2 AP ASHY. (B21)

The constane®?® is antisymmetric in two indiceg®¢d=
—e?*¢d The coefficient ofBY,w°w® in s3B3,=0 gives as
in Eq. (B5)

d3be= z fabe, (B22)
the coefficient Of&[ﬂwglwc gives as in Eq(B7),
b2P= Z N 5°°, (B23

the coefficient of 6[#wd)wf}] gives upon using EqB23)

ZNg

dabc:

10 Nl

fabe, (B24)

the coefficient ofa[MAﬁ],Bd gives upon using EqB23)

ZN3./\[6
NN,

fabc

dir’= (B25)

the coefficient ofAZa,,wcad gives upon using EqB25)

ZN3N6
NN,

abcd_ faedfebc

e (B26)

All other coefficients in the expression Q{Bfw vanish iden-
tically as a result.
Note that it is possible to consider other termsgwhich

The coefficient of

PHYSICAL REVIEW D 63 105002

1
]_-a[w] — _ Z_Eg(dazlbc_ fabc)wbwc

+e%(w,+D,0)°(w*+D"0)°, (B29

Whered‘;lbc ande?° are now arbitrary. Equatiof#.24) gives

tF 0]+ 2F Y w]=0, (B30)

which immediately shows tha&?*’°=0, and | can write Eq.
(B2) for the transformation of»?.

Another byproduct of this equation is the somewhat un-
expected relation

Similarly, | can use Eq(4.23 to relate some of the constants
previously found. Fromigsge$ =0, | find N;=Aj, and
from tgsgC5, =0, | find Ns= Z N1N;. No other new relation
can be found this way.

The transformation rules can now be collected,

SRA2 = Z (N9, 07+ g faPA °),

1 _
Spw?=— Engabcwbwc, spw®=—h?, sgh?=0,

Ne
— bcpb bcpb
SRBZV_Z gfa CBMV(UC‘FNGO?[#(D?/]‘F j\_/lgfa CA[MU)?}]

ZNg
+ Z NG gfabea; AD 6+ N g?facdfebeAP ACHd |,

SrCa=Z(gf¥°Chw+ N 0l + ZN; N, 9, 60°
+Z N, gfaPA? 6%,
sl =2 (—gf3%0 0+ N 9,82+ gfaPeAD 5°),

Ta_ a a__ a_ _a a_
Sgw,=—h,, sgh,=0, sgn®=a? sga®=0,

spB2=Z2gfPBwC  spBi=a?, Sspa?=0,

obey the Zinn-Justin equation at first order in the antisources.

| have ignored such terms because they vanish upon using

the symmetryt. Let me consider one example, that ®f.
The Zinn-Justin equation says that

sF w]—gfR*Flw]wt=0. (B27)
On the other hand, from E¢4.23 for w?, | have
tF w]=0. (B28)

The only allowed possibility fotF?[ w] is then

sr0?=— Z g2 w’— 2. (B32)
APPENDIX C: DERIVATION OF EQ. (5.6
The generic form of the effective action is
I'=2 MXA+ D NAABXAB, (CD
A A,B

whereX* and X”B do not contain any of tha”®. Therefore
as mentioned in Sed | can write the effect oy onT' as

D (SEAXAE D (SEAA)NBXAB
A AB

+A§‘é (—1)°A\A(spAB)XAB=0. (C2)
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SinceX” andX”B do not contain any of the”, | can look at
the coefficients of the various” in the expansion of Eq. A
(C2) and set them to zero in order to get an expression fopnear in * (and containing no othex ) come from
the effective actiod”. The effect ofsy on \* is, for quick

while the coefficient ofw?a® gives Xab“ = nXab" Terms

reference, aX2 + 0 X2+ (7wt + w?a,n?) X2 . (C6)
1 — (= 1 — The coefficient ofw? in syl is therefore
spwi=—| h?+—f?|  siB%=|a?——4d,0w? |, R
R g R g "
1 1
1byab b gb b b abu
_ZAR Xwa—EARth { d,f"°—Ag ) =0.
spwp=—|h5+ —aﬂna+—fa), 7
Each of theX’s in this equation must contain at least one
Slal=— la“ h + Ea na+ _fa) derivative operator to allow for the constant shift symmetry
R M M i) JR—
¢ n of w® Therefore, theX’s must be constructed only out of
fields of mass dimension zero. Since the factors multiplying
/ a_} a / a_} ra the X’s are all different, and have fields of non-vanishing
sgh®=—AR, spa®=-Ag", . X . . . :
13 14 mass dimension, the only choice for which this equation can
be satisfied is
Iha 1 a 2 ra__ Ad ab ab ab,
SRh,=— e +§%f Ru | X230 = X230 = X3k = X2 . (C8)
1 Thus, all terms containin@a)\B are excluded from the ef-
(Y- ay —¢fra '
Spn"=| e+t ) (€3 fective action.

. ) . Terms containing3®\® arise from the terms
In this appendix, | will construct the most genefabbey-

ing Eq.(C2). For each\* | will first consider coefficients of B ﬁbx ,Ba_bX

terms containing\”\ B in the expansion of E¢(C2). There

can be no term of third or higher order it in the effective

action because of the constant shift symmetries, and there-

fore t,t'e left hand _3|ele of E_(QCZ) can be at most quadra’uc N As before, | set the coefficients of the quadratic terms in the

the \™. The coefficients will have as many ghost fields and _ - — b Hanb

derivative operators as necessary. Setting the coefficients fxPansion to zero. The coefficients ¢a”, g%, and

zero will eliminate some of the terms from the effective ac-Ba%nb give

tion and produce relations among some others. Following the

same procedure for the terms lineanifi will produce some X

more relations. There will also be a few terms not containing

any power ofA” in the expansion of EqC2). The sum of

these should also vanish. ) =
| will consider \A in the order (2 8% o o2, Terms linear ing® appear from thesy variation of

h?, a ,hz,a n?). Terms containing products of the form

»*\B in the expansion o$.I" come from thes;, variation of

B B X

+ Eaaﬂnbx%’;" . (C9)

ab_yab _ab_
= X5, =X5.=0, (C10

while the coefficient of32a” glvesxab"— nxab”.

,BahbX + Ba bx (nlgahb Ba[? nb)xabli )

(C1)
~a_ byab | Taobyab | T pyab _
@@ X St X gt et X, The coefficient of3? in the variation of this is
+ R XEE + 0D XEN + w0, nPXE Ab ( o ) o o1

= X + A ! A =0. C12
(cay ¢ { ¢ Ou
where the subscriptew etc. indicate the quadratic combi- Again each of theX's in this equation has mass dimension
nation which couples to a givex, and an asterisk indicates Z&r0 after excluding the derivative operator they must con-
the presence of a Lorentz index on the subscript. In the firstain to allow a constant shift iB2. It is easy to see that the
term,XE has to be antisymmetric ifa,b]. Therefore, the ©nly solution is

» “apb ; T A ab _
coefficient of w®h |_nihe_expan3|02 o$gl’ gives X° -=0. X%?]:X%t;:le;u Xab,u 0. (C13
The coefficients ofv?a®, w?h’, and w?3,n® give
This, together with the previous result rules out all terms
X232 — X230 — x20 —q, (CH el P
B 00, containing B\ °.
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Next are the terms containin@ixB, which come from
the variation of

~a_ byabur | TaThyabu | Tapbyabur | Ta byabuv
w, X Tw,a’X "+ o, hX +w,d,n Xw*n .
(C149
As before, looking at thes’R variation of this | find that the

- apb b “a_b;
coefficients ofw,h,, @ and o, a” imply

abuv _ Xab,u

. o, XIh =X (C1H

* K * *

Terms linear in;fl come from varying

Rayd  apbyd@bu A pyabu | g b by ye@buv

Baxﬂ—i— wyh Xw*h-i- w,a Xw*a-i- o’ (7h,+4d,n )Xw*n .
(C10

The coefficient ofw®
rivative &, / Sw? o

-, or more precisely the functional de-
in thesy, variation of this gives the relation

1 ab 1 by ab,
Z&“X‘EA l:]—zA X=H

1
+(Z(9Vf’b—A%,,>X

This equation containg(% which has non-vanishing mass

dimension, so it an contain fields other th&handci, and

abuv_ .

w*n

(C17

PHYSICAL REVIEW D 63 105002

W OXEY + aPh®X )+ hhD XA+ h?a,nXERe,
(C22

the other possibilities being known to vanish from the above
analysis. The coefficients dh’, h®n® and h?a® in the
variation of this lead to

xab" X2 =0, Xapt= mXane. (C23

Terms linear inh? come from

X%+ h3hPX3P+ h2aPX20+h3(7hl +9,n) X3
(C24)

Of these X2° has vanishing mass dimension and ghost num-
ber—1. Slnce it is not possible to construct such a function
with the fields in the theory, it follows thaX3=0. The
coefficient ofh?, in the terms linear im?, in the variation of
the rest satisfies the equation

2

byab
EARXﬁh g ,u
These terms will also be left for later scrutiny, as this equa-
tion is insufficient to determine them.

Terms containingr®\B come from thesy; variation of

- X2+

9,f'P— AR ) abu—p, (C25

Z bxab,u+ a bX +hahbxabMV+ ha& nbxab/.w

buv
+3,n29,nPXE0A" (C26)

the argument used in previous cases cannot be applied here.
Therefore, theX’s appearing here must remain undeterminedwhere I have excluded terms that have already been shown to

for the moment.

Terms containing products of the forat\ B appear in the
si variation of

“a_byab | —3 byabu | T3 bycabu
a®a’X +a hMXah*-i—a d,n°X"" . (C18

The coefficients otTahz and a?a® in the variation give

abu_ abp

an -’

(C19

Terms linear ina® come from

a?aPX +aa(77hb+(? nb)X2>%,
(C20

BaXE— 42hPX3P +
,Baxﬁ a®h’X7, +a

The coefficient ofa? in the s, variation of this satisfies

1
Ab ———A’bx

Xo~ gAXan 7

+(9,f0= AB,)X2¥ =0,
(€21

This equation is again insufficient to determine Xis in it
and will have to be reexamined later.
Terms containindh®\B come from the variation of

vanish, and set

Xha= X3 =X =X5)

ce=0, (C27)
because thes¢’s have negative ghost number and vanishing
mass dimension, so cannot be constructed out of fields
present in the theory. The terms containing products of the
form «®\B in the sy, variation of of this can be set to zero to
give the equation

1 2
_|haL & al byabu a, = al| byab
(hﬂ-i— 77(9”” )a Xw*a 5(9# h#-i— ﬂ&”n )a Xw
2 1
b b b b,
- ;ﬁﬂaahVXﬁ*ﬁ:— ;&Maa&,,n xﬁ*ﬁ”
+h59,a”X}0h" +24,a%9,n°X 0 =0, (C28

where | have used the fact that bat{>” and X;>“” are

symmetric under the exchanfg,a]«[ »,b]. This equation
will also be put aside for later use. Terms linearif come
from

2 bx—” +a? bX +haxa”+a n3X3 + aX?2
(C29
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Of these, X2 has ghost number 1, and must satisfgiX2

=0 by definition[Eq. (5.4)], which cannot happen unless

X&=0. The terms linear im? in the s; variation of the rest
Iead to the equation

1 1
by bau by ab _
- ; R o™ aﬁﬂf ana-i- ;ﬁMXﬁi"—aMX%U'—O.
(C30

The terms containinga)\B come from thesy variation of
ahbxa‘b’“r a bxab"“ ‘+ (7 02h+ wda,nP) X204
*

ahb + aa& n )Xab#

+af abX LT (7 on

+hEhOXEoh” +h9,nP xRk (€31

The coefficient oﬂw""hb in the variation of this g|ve9(ab”

=0, and the remaining terms wﬁhﬁ)\B in them sat|sfy

E 9, harabx3P

_ @ byabu apb a by 8bur
h’a Xw*a (nhihy+2h7d,n )Xw*n 7%

2 Ui
bysab
- ;(9MaahVXﬁ*ﬁ:— Z

2
d, haV+;aVna) h?

(C32

1
+70,0%9,n° XE+h2a,aPXEor =0,

ab,uv_ X

It follows from this thatX® ab“ =0 (essentially be-

cause there is no linear comblnatlonl:t}sia and &#w,, which
is s invariany. Then the remaining terms satisfy

b,
_haabxa_.l’- _

1 2
byab bysab,
—ﬂ#hap“a X;a— ;ﬁﬂa’ah]}Xﬁ*’ﬁ:

+h5d,a®X}h"=0. (C33
Terms linear irhi appear from thesy variation of

axa" +a®X5+h3( 7 hb +9,n?) X3

+hEhOXR%Y + 3 9,n°X30h ", (C34
giving the following equation:
a,u 1 “w b ba,u 4 b ab,uv
2 b ysabuv 1 rbyabuv
+ ;ARVXh* h, t zﬁyf Xhon =0. (C3H

Finally, terms containing’ﬂn"")\B come from the variation of

a bxabM+ a bx +ha(9 nbxabyv_’_aﬂnaﬁynbxﬁgﬂv,
(C36

and satisfy the equation

PHYSICAL REVIEW D 63 105002

1 ab 2 ab b
——3,n%aPX ] e n*aPXg, — = d,a%d,n°Xp°h"
+23,n%3,aPX32+ =0, (C37)

while terms linear im? appear from the variation of
W X3+ @)+ 023, nPXE+ b, n XA

+3,n%9,n°X30e" (C38

and gives the equation

2Dax+
nax2-
{n ¢

1
— ;aﬂnaxi“ ARé' nbxab"
*

2

-—a,f'%, nbxab’”+ Aa L9, NPXR0RY
{n * v NN
2 ’ byabuv__

+ 20,810 0K =0. (C39

There is one more equation that can be obtained fsgin
=0, the one involving terms which do not contain any of the
A\, This equation is

1 2 2
— —faxd— f X3 — g faxd4z Aaxa — g, fraxar
& o gy rTe, plreTal g Iy H h,
+ 1Aa xfw+1 f/axX3#=0 C40
7 9ut "X =0, (C40

I can now write the effective Lagrangian for the ghost
sector of the theory, after setting to zero all X's that were
found to vanish in the analysis so far,

— ay@ | payd | anaAu | ayd | paya ) payd
Lg=w®X"+ B XE—H"#Xw +a®X A+ hXE+hy X
+ 9K+ Wl aXE + a?aPXE) + hehPXE
+h3(7hp,+3,n°) Xk +hEhOXERY +he a,nPX¢0%

+3,n%9,n°X30HT (C41

APPENDIX D: DERIVATION OF EQ. (5.8

In this appendix, | shall try to calculate the functions
which remained undetermined in E.6) [equivalently, Eq.
(C41)]. | start from the expression for ttsg variation of[,
which can be written as

sRF=§ [(SRMY)XA+ (= 1)°ANA(spXM)]

+ 0 [(SRA)NBXABL (—1)eANA(sAB)XAB
AB

+(—1)*aTeB\ANB(szXAB)]=0. (D1)
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SincesgX” and sgX”B do not contain any of tha”, | can .

consider the coefficients of* or of \*\B in the above ex- X5~ 7A§a=0- (D7)
pression and set them to zero one at a time. | will first set to

zc;:‘\ro the coefficients ok*\®, and then the terms linear in |n keeping with standard notation, let me rewrite

A

. . b b . ’
The coefficient ofd,,n%J,a” andh®3 ,a” give K, = gZﬁ:X%= Z,BARa' (D8)
buv _ bu _ .
Xan"=Xpn=0, (D2)  Equation(C25 now becomes
while the coefficients ofr®a®,hh®,h2h> andh2a,n® give a 2 .
# —X;-t— EKZAR:O' (D9)
SRX2 = spXah= SeXph =SpXioh'=0. (D3

As in the above, let me redefine the constant,
Now, each of theX’s in this equation has zero mass dimen-
sion, zero ghost number andsg invariant, so each must be
a (possibly differenk constant. Let me define four constants
Ki,K5, K3 andK, as

K2=§Zw = X=Z,A3%. (D10)

Equation(C17) becomes
X%?,:Kl@ab, X2P=K,5%, Xﬁfﬁ::ngwﬁabl

1 1
X KA, AR (D11)
XAOAY= Ky 5%, (D4) ¢ ¢

o T p——— _ which gives upon using EqD8) that
The coefficients oh?,a%h} ,a® 0% 8% w, andn® give the

equations Ky'=Zgg"". (D12
— X2+ 5XR=0, Using this and Eq(D8) | can rewrite Eq(C33) as
X%_SRX%:O’ d,h*a?=750,h%a? —%K3 h39,a®+Zzh%49,a®
=X +5eXR =0, =0, (D13)
auxﬁﬂzo, from which it follows that
SrX, = SrX 5= SgX,, =Srd,X3*=0.  (D5) Kazgzﬁ. (D14)

The last equation in this list is redundant as it can be ob-
tained by applyingsg to the previous equatlons and remem- This automatically satisfies EC28). With these redefini-

tions | get from Eq(C30) that
bering thats3=0. The coefficient ofw?a® gives sRXab" 9 q(C30

=0, but Xab“ must contain a derivative operator to allow Xt =250, T2, (D19

—fa
for the constant shlft symmetry Qf . So as with the func- The right hand side vanishes upon usfii§=d,B2. Also,
tions in Eq.(D3), X ¥ must be a constant times a derivative gq, (C35) can be written as

operator. The coefﬁment dﬁi ® in SrLy shows that this

ggnstant iK4”, so | can write the ghost sector Lagrangian _X%M+ %MXQ_EZﬁ T ZBA%,L:OI (D16)
L‘g=ZaXa;+EaX%+ ;axa_ﬂ+;ax%+ hax2+ hixﬁi‘ Using Egs.(D5), (D8), (D10) and(D16), | can define some

new functions and write
_KZLV(}’Va)Zaa-F Klaaaa+ thaha+ K3hihi XﬁZZ fa+Ya Xa_: Zﬁf’a-l-ii
+ Kﬁf"hiayna. (D6)

1
.
Now | can use the unused equations from Appendix C. These Xa;’: =ZpA%+ Zﬁ“xg, Xp=Zpf ™ +— { 8“Xh ,
were Egs.(C17), (C21), (C25, (C28), (C30, (C35, and
(C40. S
Equation(C221) now reads SRXh* =Xe (D17)
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Then Eq.(D15) implies, becausé?ﬁ1 is a function of the now write down the general form of the ghost sector of the
fields and not an arbitrarily chosen function, that theory as
ﬁg:ZwEaA?Q-i- ZﬁEaAlr?a—i_ ZﬁEZAEP«_i_Z'B;af /a+ Z(,) hafa

Xj, =0, and hencex;=0. (D18) +Zhd (%4 9#n?) = Z d* 0l a®+ { Z5 aPa®
- +£7 et 27, napen (D19)
Putting these into Eq.C40), | get X;=0. Therefore, | can 27 2°B
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