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Renormalizability of the dynamical two-form

Amitabha Lahiri*
S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 091, India
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A proof of renormalizability of the theory of the dynamical non-Abelian two-form is given using the
Zinn-Justin equation. Two previously unknown symmetries of the quantum action, different from the BRST
symmetry, are needed for the proof. One of these is a gauge fermion dependent nilpotent symmetry, while the
other mixes different fields with the same transformation properties. The BRST symmetry itself is extended to
include a shift transformation by use of an anticommuting constant. These three symmetries restrict the form
of the quantum action up to arbitrary order in perturbation theory. The results show that it is possible to have
a renormalizable theory of massive vector bosons in four dimensions without a residual Higgs boson.
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I. INTRODUCTION

Each and every aspect of the standard model has b
tested in recent years, with remarkable agreement w
theory, except in one sector. The standard model predicts
existence of the Higgs boson, responsible for making ga
bosons and fermions massive, as well as breaking
SU(2)3U(1) symmetry of the theory down to the U~1! of
electromagnetism. But no elementary scalar has yet been
served in any particle interaction, nor has any experimen
far detected the Higgs boson, either elementary or comp
ite. On the other hand, various theoretical constraints put
upper bound of the Higgs boson mass only a little out
reach of present day experiments. It is therefore usefu
consider the scenario in which the Higgs boson remains
observed as the theoretical bounds are reached.

Apart from the Higgs boson and a possible neutrino ma
the standard model agrees quite closely with experiment
it is a good idea to leave most of the theory untouched. T
role of the Higgs boson may be distributed among poss
different mechanisms for generating vector and ferm
masses, and symmetry breaking. The Higgs mechanism
all this in a renormalizable and unitary way@1#, and any
alternative must not affect these good quantum propertie
the theory. A possible alternative for generating vector bo
masses is to use a dynamical two-form. When an antis
metric tensor potentialB is coupled to the field strengthF of
a U~1! gauge field via a ‘‘topological’’B`F coupling and a
kinetic term forB is included, the gauge field develops a
effective mass@2–5#. The mass is equal to the dimensionf
coupling constantm of the interaction term, and there is n
residual scalar~Higgs! degree of freedom. If a non-Abelia
version of this theory can be consistently quantized, it m
be applied to particle interactions.

No-go theorems@6,7# based on the consistency of qua
tum symmetries rule out most, but not all, alternative Hig
free mechanisms of mass generation for non-Abelian ve
bosons. One useful exception is the topological mass gen
tion mechanism@8# which has seen renewed interest in r
cent years@9–11#. This mechanism uses an auxiliary vect
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field to close the symmetry algebra and thus avoid the no
theorems. The price one has to pay is to have n
propagating bosonic and ghost fields in the theory, wh
disappear in the Abelian limit. The no-go theorem of Ref.@7#
says only that the non-Abelian model cannot be construc
from the Abelian model, which is known to be quantizab
@4#. It does not rule out the quantizability of the non-Abelia
model itself. However that is not in itself a proof that th
non-Abelian model is quantizable, and a proof has not b
constructed as yet. The first step in such a proof is the c
struction of a BRST-invariant tree-level action, which w
done from a geometric point of view in@9# andab initio in
@10#.

In this paper I construct the quantum action for this mo
up to arbitrary order in perturbation theory starting from t
Becchi-Rouet-Stora-Tyutin-~BRST!-invariant tree-level ac-
tion. I follow an algebraic procedure along the lines of wh
is done for Yang-Mills theories@12,13#. The construction
itself is rather involved as there are different fields with t
same transformation properties. This suggests that the u
BRST symmetry is not sufficient to restrict the operators
the quantum action. Fortunately there are other useful s
metries of the tree-level action and they, together with
BRST symmetry, are sufficient for the purpose. The start
point of the paper is the classical action given in Sec. II.
Sec. III I list the BRST transformation rules of the theo
and construct another BRST-like nilpotent symmetry. In S
IV I construct the quantum symmetries corresponding
these and other symmetries, and in Sec. V I find all the
dimension four operators allowed by all the symmetries.
nally, Sec. VI carries a small discussion of possible ext
sions and applications of the results. The main body of
paper sets up the structure of the proof, most of the deta
calculations are collected in appendices at the end.

II. TREE LEVEL ACTION

In this section I shall fix my conventions. I shall wor
with an SU(N) gauge groupG, with generatorsta satisfying

@ ta ,tb#5 i f abc tc , ~2.1!

with the structure constantsf abc totally antisymmetric in its
indices. The gauge index, as well as Lorentz indices, will
©2001 The American Physical Society02-1
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AMITABHA LAHIRI PHYSICAL REVIEW D 63 105002
made explicit in general for easier tracking of numerical c
efficients. The background metric is taken to have signa
(2111).

The classical action for the dynamical non-Abelian tw
form @8# is

S05E d4xS 2
1

4
Fmn

a Famn2
1

12
Hmnl

a Hamnl

1
m

4
emnrlBmn

a Frl
a D . ~2.2!

Here Fmn is the curvature of a gauge connectionAm with
gauge couplingg,

Fmn
a 5S i

g
@Dm ,Dn# D a

5]mAn
a2]nAm

a 1g fabcAm
b An

c .

~2.3!

The compensated field strengthHmnl is defined with the help
of an auxiliary fieldCm by the relation

Hmnl
a 5~D [mBnl] !

a1 ig@F [mn ,Cl] #
a

5] [mBnl]
a 1g fabcA[m

b Bnl]
c 2g fabcF [mn

b Cl]
c . ~2.4!

All the three fieldsAm , Bmn and Cm belong to the adjoint
representation of the gauge groupG. The action~2.2! there-
fore remains invariant under gauge transformations given

Am→UAmU212
i

g
]mUU21, Bmn→UBmnU21,

Cm→UCmU21, UPG. ~2.5!

In addition, the actionS0 is invariant under vector gaug
transformations given by

Am→Am , Bmn→Bmn1D [mLn] , Cm→Cm1Lm ,
~2.6!

whereLm is some arbitrary vector field in the adjoint repr
sentation of the gauge group which vanishes at infinity.

For the purpose of power counting, I need the propaga
of this theory. Let me choose the usual Lorenz gau
]mAam50, ]nBamn50, with gauge parametersj andh re-
spectively. Then the tree-level propagator forAm

a is

Dmn
ab52

dab

k2 S gmn2~12j!
kmkn

k2 D , ~2.7!

and that forBmn
a is

Dmn, rl
ab 52

dab

k2 S gm[rgl]n2~12h!
gm[rkl]kn

k2 D . ~2.8!

There is no quadratic term in the action involving t
auxiliary field Cm

a in this gauge, so the tree level propaga
for it will vanish. As a result, there are no diagrams w
internalCm

a lines. This may look very peculiar, but it is als
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possible to choose some other gauge for whichCm
a has a

non-vanishing~gauge-dependent! propagator, but that doe
not change the arguments. This is discussed in the last
tion. For the moment let me proceed without a quadra
term for the auxiliary fieldCm

a .
There is a quadratic coupling term between the vector

the antisymmetric tensor fields coming from the last term
the action, the vertex given by

Vn, rl
ab 5 imdabemnrlkm. ~2.9!

The effective tree-level propagator for the vector field is th
calculated by summing all insertions of the tree-levelBmn

propagator into the naı¨ve tree-levelAm propagator@4#. The
result is

D̃mn
ab52

dab

k22m2 S gmn2
kmkn

k2 D2dabj
kmkn

k4 . ~2.10!

This shows that there is a pole in the two-point function
the vector fieldAm

a even at tree-level. On the other hand, t

‘‘massive’’ propagatorD̃mn
ab falls off as 1/k2 at high values of

k2, like in the case of the Higgs mechanism. The ultravio
behavior of the propagators show that the theory is pow
counting renormalizable in this gauge. The best way to p
ceed further is via the BRST method of quantization.

III. BRST INVARIANCE

Quantization of this theory requires gauge-fixing a
therefore the introduction of ghosts. The gauge fixed act
together with the ghost terms, is BRST invariant. The vec
gauge symmetry requires ghosts of ghosts, and off-s
nilpotence of the BRST charge requires auxiliary fields. L
me write the gauge-fixing functions asf a, f am and f 8a for
gauge transformations, vector gauge transformations
gauge transformations of ghosts, respectively. In Sec. V
shall choose the gauge functions to be of the usual Lor
gauge type,

f a5]mAam, f am5]nBamn, f 8a5]mvam, ~3.1!

but most of the results in this paper will hold for arbitra
linear gauge functions. Some discussion about arbitr
gauges is presented in Sec. VI.

The tree level quantum action can be written as

S5S01E d4xFhaf a1v̄aDa1
1

2
jhaha

1hm
a ~ f am1]mna!1v̄m

a Dam1
1

2
hhm

a ham2]mv̄amaa

1āaf 8a1b̄aD8a1zāaaaG . ~3.2!

HereDa, Dam andD8a are the BRST variations, as define
below, of f a, f am and f 8a, respectively. The appearance
]mna in the gauge-fixing condition is usual for two-form
gauge-fields. The gauge-fixing conditionf am50 holds upon
2-2
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RENORMALIZABILITY OF THE DYNAMICAL TWO-FORM PHYSICAL REVIEW D 63 105002
using the equation of motion ofna @15#. This action is no
longer invariant under gauge or vector gauge transfor
tions. But it is invariant under the BRST transformatio
@9,10#

sAm
a 5]mva1g fabcAm

b vc,

sva52
1

2
g fabcvbvc, sv̄a52ha, sha50,

sBmn
a 5g fabcBmn

b vc1~D [mvn] !
a1g fabcFmn

b uc,

sCm
a 5g fabcCm

b vc1vm
a 1~Dmu!a,

svm
a 52g fabcvm

b vc1~Dmb!a,

sv̄m
a 52hm

a , shm
a 50, sna5aa, saa50,

sba5g fabcbbvc,

sb̄a5āa, sāa50,

sua52g fabcubvc2ba. ~3.3!

These transformations are nilpotent,s250 on all fields, ifs
has a left action, i.e., the change in any fieldxA is given by
dxA5dlsxA, wheredl is an anticommuting infinitesima
parameter. The tree-level quantum action of Eq.~3.2! is in-
variant unders, with Da5s fa, Dam5s fam and D8a5s f8a.
It is also possible to write this action as the sum of t
classical actionS0 plus a total super-divergence,

S5S01sC,
10500
a-
with

C52S v̄af a1
1

2
jv̄ahaD2S v̄m

a ~ f am1]mna!1
1

2
hv̄m

a hamD
1~ b̄af 8a1zb̄aaa!. ~3.4!

In addition to the BRST transformations, there is anoth
BRST-type nilpotent transformation which leaves the act
invariant. Such a symmetry exists for all gauge theories,
just the two-form theories, as can be seen from the follow
argument. The terms in the extended ghost sector of the t
level quantum action of a gauge theory are typically of t
form

Sext
c 5hAf A1

1

2
lhAhA1v̄ADA, ~3.5!

where (v̄A,hA) are the trivial pairs. Here the indexA stands
for the collection of various indices as well as the space-ti
point where the fields are evaluated,f A50 is the correspond-
ing gauge-fixing condition with gauge parameterl, andDA

5s fA. The sum overA includes the integration over spac
time. This form of the extended ghost sector is valid f
commutinghA, f A and anticommutingv̄A. For example, all
but the last three terms of the tree-level quantum action~3.2!
can be written in this form, where the indexA includes the
gauge indexa or the pair (a,m) depending on the gauge fiel
(Am or Bmn). This part of the action remains invariant und
BRST transformations

sv̄A52hA, shA50. ~3.6!

On the other hand, I can rearrangeSext
c as
this

nd
.
elds, the

muting

he
rm
Sext
c 5

1

2
lS hA1

1

l
f AD S hA1

1

l
f AD2

1

2l
f Af A1v̄ADA5

1

2
lXS hA1

2

l
f AD2

1

l
f ACXS hA1

2

l
f AD2

1

l
f AC2 1

2l
f Af A1v̄ADA

5
1

2
lS h8A1

1

l
f AD S h8A1

1

l
f AD2

1

2l
f Af A1v̄ADA5h8Af A1

1

2
lh8Ah8A1v̄ADA, ~3.7!

where I have definedh8A52hA2(2/l) f A. So far, I have not actually done anything. The only thing that comes out of
exercise is the fact thatSext

c is invariant under a new set of BRST transformations:

s̃v̄A52h8A⇒ s̃v̄A5hA1
2

l
f A, s̃h8A50⇒ s̃hA52

2

l
s̃f A, s̃f A5DA[s fA. ~3.8!

Therefore, if the action ofs̃ on v̄A andhA is as above, ands̃5s on all other fields, the last equation is identically satisfied, a
it also follows thats̃ is nilpotent on all fields,s̃250 if DA does not contain any auxiliary field, which is usually the case

When the extended sector corresponds to an anticommuting gauge field, as in the case of gauge-fixing of ghost fi
construction is slightly more complicated, since the auxiliary fields have odd ghost number. Typically, for anticom
auxiliary fieldsāA, aA, the extended ghost sector can be written as

Sext
a 5āAf 8A1 f̄ 8AaA1zāAaA1b̄AD8A. ~3.9!

In this, f 8A is the anticommuting gauge-fixing function,D8A5s f8A, and b̄A is the corresponding commuting antighost. T
term f̄ 8AaA is just a rearrangement of the appropriate terms inv̄ADA which appear for the usual gauge symmetries. A te
2-3
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such asf̄ 8AaA must appear, sinceaA is the ghost for some field and therefore appears in someDA. For example, in the
tree-level quantum action of Eq.~3.2! f̄ 8AaA corresponds tov̄am]maa, which in turn is required to cancel the BRST variatio
of hm

a ]mna. Just as in the case with commuting auxiliary fields, the terms inSext
a can be rearranged,

Sext
a 5zS āA1

1

z
f̄ 8AD S aA1

1

z
f 8AD2

1

z
f̄ 8Af A1b̄AD8A5zXS āA1

2

z
f̄ 8AD2

1

z
f̄ 8ACXS aA1

2

z
f 8AD2

1

z
f 8AC2 1

z
f̄ 8Af A1b̄AD8A

5zS ā8A1
1

z
f̄ 8AD S a8A1

1

z
f 8AD2

1

z
f̄ 8Af A1b̄AD8A5zā8Aa8A1ā8Af 8A1 f̄ 8Aa8A1b̄AD8A, ~3.10!
e
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where I have now definedā8A52„āA1(2/z) f̄ 8A
… anda8A

52„aA1(2/z) f 8A
…. As before, in these coordinatesSext

a is
invariant under its own set of BRST transformations,

s̃b̄A5ā8A52S āA1
2

z
f̄ 8AD ,

s̃ā8A50⇒ s̃āA52
2

z
s̃f̄ 8A,

s̃a8A50⇒ s̃aA52
2

z
s̃f 8A,

s̃f 8A5D8A[s f8A. ~3.11!

Two more things are required for the nilpotence ofs̃—aA

was the result of BRST variation of some field@aa5sna in
Eq. ~3.3!#—now a8A has to be the variation unders̃ of the
same field, ands̃f̄ 8A must be calculated according to th
rules of Eq.~3.8! for s̃ acting on the anticommuting ghosts
f̄ 8A. In addition, the action ofs̃ must be the same as that
s for the fields contained inf 8A. Then s̃250 on all fields.

I can now gather the results of Eq.~3.8! and Eq.~3.11!
and apply them to the tree-level quantum action of Eq.~3.2!
to construct this symmetry,

s̃v̄a5ha1
2

j
f a,

s̃ha52
2

j
Da,

s̃v̄m
a 5hm

a 1
2

h
]mna1

2

h
f m

a ,

s̃hm
a 5

2

h S ]maa1
2

z
]m f 8a2Dm

a D ,

s̃na52S aa1
2

z
f 8aD ,

s̃b̄a52S āa2
2

z
]mv̄amD ,
10500
s̃aa52
2

z
D8a,

s̃āa5
2

z
s̃~]mv̄am!5

2

z
]mS ham1

2

h
]mna1

2

h
f amD ,

~3.12!

s̃5s on all other fields.

Since the gauge-fixing functions do not contain antigho
or auxiliary fields, and since BRST variations of the rema
ing fields also do not contain antighosts or auxiliary fields
straightforward calculation shows thats̃ is nilpotent on all
fields,

s̃250. ~3.13!

In addition, since the classical actionS0 is invariant under
BRST transformations, and sinces̃5s on the fundamenta
fields,

s̃S050. ~3.14!

The remainder of the tree-level quantum action of Eq.~3.2!
can be written as a sum ofSext

c and Sext
a as defined above

and either by the method described above or by an exp
calculation it can be shown quite easily that this part is a
invariant unders̃. So in fact

s̃S50. ~3.15!

It should be made clear thats̃ is not special to the dynami
cal two-form, nor even to reducible gauge systems. Us
gauge theories exhibit invariance under a symmetry an
gous tos̃. But in those cases, this gauge-fermion depend
invariance is not needed for restricting the form of the qu
tum action—invariance under the familiar BRST transform
tion s is sufficient for that purpose@12,13#. However,s̃ be-
comes extremely useful when the theory contains m
different fields in the same representation, as in the cas
the dynamical two-form. I shall make extensive use ofs̃ to
construct the quantum effective action for the dynami
two-form. In order to do that, I need to look at the quantu
symmetries corresponding tos,s̃ and some other classica
symmetries of the theory. This is done in the next sectio
2-4
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RENORMALIZABILITY OF THE DYNAMICAL TWO-FORM PHYSICAL REVIEW D 63 105002
IV. SYMMETRIES OF THE EFFECTIVE ACTION

On the way to a proof of perturbative renormalizability
the dynamical non-Abelian two-form, the first thing to no
is that there is no kinetic term forCm

a in the tree-level action.
Consequently,Cm

a is taken to be dimensionless. The auxilia
ghost fieldu is taken to be dimensionless for the same r
son, and then the theory is power-counting renormaliza
The presence of fields with vanishing mass dimension d
not automatically rule out renormalizability of a theory@14#,
but it is possible that the theory will be non-renormalizab
because counterterms may contain arbitrary powers of th
fields. Therefore, one needs to ensure that the symmetrie
the theory restrict the number of counterterms to a fin
value. Perturbative renormalizability requires that the qu
tum effective action, invariant under the quantum symm
tries, contain only those operators which appear in the t
level action of Eq. ~3.2! up to arbitrary numerica
coefficients. The quantum action can be constructed by
of the Zinn-Justin equation in the following manner.

The partition functionZ@J,K# in the presence of externa
c-number sourcesJA(x),KA(x) is

Z@J,K#5E @DxB#expS iS1 i E d4xxAJA1 i E d4xFAKAD ,

~4.1!

whereFA(x)5sxA(x), and I have kept the space-time int
gration explicit for this section. I shall also refer toKA as the
‘‘antisource’’ corresponding to the fieldxA. This partition
function leads to the effective action

G@x,K#52E d4xxAJx,K
A 2 i ln Z@Jx,K ,K#, ~4.2!

whereJx,K
A is the value of the current for whicĥxB(x)&J,K

5xB(x), the expectation value being calculated in the pr
ence ofKA.

The effective action satisfies the Zinn-Justin equat
@12,13#

~G,G!50, ~4.3!

where the antibracket (F,G) is defined for any two function-
als F andG as

~F,G!5E d4x
dRF@x,K#

dxA~x!

dLG@x,K#

dKA~x!

2E d4x
dRF@x,K#

dKA~x!

dLG@x,K#

dxA~x!
. ~4.4!

In order to get a proof of perturbative renormalizability
a theory, the total action functionalS@x,K#5S@x#
1*d4xFAKA is written as a sum of the renormalized acti
SR@x,K# plus a termS`@x,K# containing counterterms in
tended to cancel loop infinities. BothSR and S` must have
the same symmetries asS@x,K#, so the infinite contributions
to G can be canceled by the counterterms inS` if they also
have those symmetries.
10500
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ExpandingG in a power series in the loop expansion p
rameter\,

G@x,K#5 (
N50

`

\N21GN@x,K#, ~4.5!

whereG0@x,K#5SR@x,K#, the Zinn-Justin equation can b
written order-by order for eachN as

(
N850

N

~GN8 ,GN2N8!50. ~4.6!

This expansion automatically includes counterterms co
sponding to sub-divergences at any given loop orderN. If for
someN all infinities appearing atM-loop order have been
canceled by counterterms inS` for all M<N21, the only
remaining infinities in Eq.~4.6! are in GN . So the infinite
part GN,` of this quantity must satisfy

~SR ,GN,`!50. ~4.7!

For a theory which is renormalizable in the powe
counting sense, this leads to a simple mechanical proced
For such a theory, the infinite partGN,`@x,K# must be a sum
of operators of mass dimension four or less. In addition,
the linear symmetries of the tree-level action are symmet
of G@x,K# and therefore ofGN,`@x,K#.

Let me assume for the moment thatGN,`@x,K# is at most
linear in the antisourcesKA for all A,

GN,`@x,K#5GN,`@x,0#1E d4xF N
A@x,x#KA~x!.

~4.8!

If I now define the quantities

GN
(e)@x#5SR@x,0#1eGN,`@x,0#, ~4.9!

with e infinitesimal, the terms independent ofKA in Eq. ~4.7!
imply @13# thatGN

(e)@x# is invariant under the transformatio

sRxA~x!5FN
(e)A~x!, ~4.10!

where

FN
(e)A~x!5FA~x!1eF N

A~x!. ~4.11!

The terms of first order inKA in Eq. ~4.7! imply that this
transformation is nilpotent,sR

250. SinceGN,` contains only
operators of mass dimension four or less,FN

(e)A(x) cannot be
of higher mass dimension thanFA(x). In addition,FN

(e)A(x)
may not affect the linear symmetries of the action. Therefo
FN

(e)A(x) must have the same Lorentz properties, ghost nu
ber and global gauge transformation properties asFA(x). In
fact FN

(e)A(x) must be the same asFA(x) if it corresponds to
a field which transforms linearly unders. All that remains to
be done is to construct the most general nilpotent trans
mation of the fields under these restrictions, and then to c
struct the most general functionalGN

(e)@x# invariant under
this transformation. If that agrees, up to arbitrary const
2-5
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AMITABHA LAHIRI PHYSICAL REVIEW D 63 105002
numerical coefficients, with the original actionS, the theory
is perturbatively renormalizable.

This entire argument rests on the assumption t
GN,`@x,K# is at most linear in all of the antisourcesKA.
When is this a correct assumption? If a fieldxA has mass
dimensiondA , the correspondingKA must have mass dimen
sion 32dA so as to make*d4xFAKA dimensionless. The
antisourcesKA for Am

a ,va,v̄a,Bmn
a ,vm

a ,v̄m
a ,na,ba,b̄a all

have mass dimension 2. The antisources forCm
a andua each

have mass dimension 3. Also, the theory does not have
external antisourceKA for the fieldsha,hm

a ,aa,āa because
their BRST variations vanish. ThereforeGN,` can be at most
quadratic inKA.

If a field xA has ghost numbergA , the correspondingKA

will have ghost number2gA21. It follows that the ghost
number of the antisource for any ofAm

a ,Bmn
a ,Cm

a ,na is
21. The ghost numbers ofKA corresponding tova,vm

a and

ua is 22, and those ofKA corresponding toba and b̄a are
23 and11, respectively. The remaining antisources cor
spond tov̄a andv̄m

a , they carry ghost number 0. The dime
sions and ghost numbers of all the fields and their a
sources are given in Table I.

Some of the quadratic terms can be eliminated straig
away. The BRST variations of the fieldsv̄a,v̄m

a ,na and b̄a

are linear, so the effective action cannot be quadratic in t
antisources. For example,

sv̄a52ha, ~4.12!

so the quantum transformations are the same,

TABLE I. Mass dimensions and ghost numbers of the fields a
their antisources. A! indicates that the antisourceKA does not
appear in the theory as the BRST variation of the correspond
field xA vanishes.

Field Dimension Ghost number Dimension Ghost numb
xA of KA of KA

Am
a 1 0 2 21

Bmn
a 1 0 2 21

Cm
a 0 0 3 21

va 1 1 2 22

v̄a 1 21 2 0

ha 2 0 ! !

vam 1 1 2 22

v̄am 1 21 2 0

ua 0 1 3 22
ham 2 0 ! !

na 1 0 2 21
ba 1 2 2 23

b̄a 1 22 2 1

aa 2 1 ! !

āa 2 21 ! !

a 0 1 ! !
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^sv̄a&Jx,K ,K52ha. ~4.13!

It follows from Eq. ~4.2! that

dRG@x,K#

dKa@v̄#
52ha, ~4.14!

for the corresponding antisourceKa@v̄#. Since this is inde-
pendent ofKA, it follows that G@x,K# is linear in the anti-
source forv̄a. A similar argument holds forv̄m

a ,na andb̄a.
Let me now look at the antisources for the remaining fie
in the theory. The quantum effective actionG@x,K# must be
linear in the antisources ofua and Cm

a , since these objects
have mass dimension 3 and all other antisources have m
dimension 2. SoG@x,K# is at most quadratic in the anti
sources of only the other fields. It turns out thatG@x,K# is in
fact linear in the remaining antisources as well. The ar
ment involves showing that the coefficients of the quadra
terms are forced to vanish, term by term, by the dimensi
and ghost numbers of the fields which can possibly appea
them. Appendix A contains the details of the argument.

It follows then that the effective action is at most linear
all the antisourcesKA, and the arguments following Eq.~4.7!
hold. But the number of possible terms in the effective act
allowed by the~renormalized! BRST symmetrysR is still
enormous, and it is necessary to invoke other symmetrie
simplify calculations.

Let me now consider the effect of the gauge-depend
symmetrys̃ on the effective action. I take the same partitio
functionZ@J,K# and the same effective actionG@x,K# as in
Eqs.~4.1! and~4.2!, with the same sourcesJx,K

A and the same
antisourcesKA. ~This G@x,K# was shown to be linear in
theseKA in Appendix A.! Let me also denote the minima
fields by fA and non-minimal fields bylA. Then s̃fA

5sfA5FA, and consequentlys̃FA@f#50. The application
of s̃ on the partition function gives~since the tree-level ac
tion S is invariant unders̃),

2E d4xF ^FA&Jx,K ,K

dLG@x,K#

dfA 1^ s̃lA&Jx,K ,K

dLG@x,K#

dlA

1^s̃slA&Jx,K ,KKA@l#G50. ~4.15!

Now, if the gauge-fixing functions are linear in the field
s̃lA as defined in Eq.~3.12! is either linear in the fields or
equals the BRST variation of some linear function of t
fields. Therefore,̂ s̃lA&Jx,K ,K is known in principle from
solving the Zinn-Justin equations. In addition, the effect
action does not contain the antisources corresponding
(ha,hm

a ,aa,āa) and only SR contains the antisources fo

(v̄a,v̄m
a ,na,b̄a). Then I can read off from Eq.~4.15! that

GN
(e)@x# as defined in Eq.~4.9! is invariant unders̃R , which

is just s̃ as calculated in terms ofsR . In other words,GN
(e) is

invariant unders̃R where

d

g

r
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s̃Rv̄a5ha1
2

j
f a,

s̃Rha52
2

j
sRf a[2

2

j
DR

a ,

s̃Rv̄m
a 5hm

a 1
2

h
]mna1

2

h
f m

a ,

s̃Rhm
a 5

2

h S ]maa1
2

z
]m f 8a2sRf m

a D
[

2

h S ]maa1
2

z
]m f 8a2DRm

a D ,

s̃Rna52S aa1
2

z
f 8aD ,

s̃Rb̄a52S āa2
2

z
,]mv̄amD

s̃Raa52
2

z
sRf 8a[2

2

z
DR8

a ,

s̃Rāa5
2

z
]mS ham1

2

h
]mna1

2

h
f amD , ~4.16!

s̃R5sR on all other fields.

Note that I did not fully utilize the nilpotence ofs̃ itself. In
principle, I could have treateds̃ just like s, defining new
antisourcesK̃A and deriving an analogue of Zinn-Just
equation. But that creates a host of other problems. In
ticular, the effective action is not linear in these new an
sourcesK̃A.

These two renormalized symmetries,sR and s̃R are suffi-
cient to uniquely fix the form of the effective action, as w
be shown in the next section. There is a further symme
which helps to pin down the form ofsR . This symmetry
mixes the ghost fields with the same global properties
quantum numbers.

The actionS is invariant under

dv̄a52dl āa,

dvm
a 5dl ~]mva1g fabcAm

b vc!,

dua52dl va,

dba5dl
1

2
g fabcvbvc, ~4.17!

d~all others!50,

where dl is a commuting c-number infinitesimal. It is
straightforward to calculate that
10500
r-
-

y

d

tsua5
1

2
g fabcvbvc, ts~all others!50, ~4.18!

where t is the transformationd/dl. Note that I have taken
dl to be commuting only for convenience. Ifdl is taken to
be anticommuting, the action will still be symmetric und
t5dL /dl provided dLv̄a/dl51āa, other transformation
rules remaining the same. It is easy to see that the actionS is
symmetric undert for a large class of gauge-fixing function
f am.

By applying t on the partition function~4.1!, I get the
Ward identities

E d4xS ^tv̄a&
dLG

dv̄a
1^tvm

a &
dLG

dvm
a 1^tua&

dLG

dua

1^tba&
dLG

dba 2^tsua& Ka@u# D 50, ~4.19!

where the quantum averages^ & are calculated in the pres
ence of the currents and antisourcesJx,K ,K as before, and
Ka@u# is the antisource forua. Since tua52va, tv̄a

52āa are linear in the fields, their quantum averages
the same. As for the other two,tvm

a 5sAm
a and tba5

2sva, so the quantum averages of the quantities on the
hand side are known. I can then write this equation as

E d4x S 2āa
dLG

dv̄a
1

dRG

dKam@A#

dLG

dvm
a 2

3va
dLG

dua2
dRG

dKa@v#

dLG

dba1
dRG

dKa@v#
Ka@u# D 50.

~4.20!

ExpandingG in a power series in\ and using arguments
as before, I can write the divergent part of this equation

E d4xS 2āa
dLGN,`

dv̄a
1

dRSR

dKam@A#

dLGN,`

dvm
a

1
dRGN,`

dKam@A#

dLSR

dvm
a

2va
dLGN,`

dua
2

dRSR

dKa@v#

dLGN,`

dba
2

dRGN,`

dKa@v#

dLSR

dba

1
dRGN,`

dKa@v#
Ka@u# D 50. ~4.21!

The K independent terms of this equation give

E d4xS 2āa
dLG (e)@x#

dv̄a
2Fm

(e)a@A#
dLG (e)@x#

dvm
a

2va
dLG (e)@x#

dua
2F (e)a@v#

dLG (e)@x#

dba D 50,

~4.22!
2-7
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whereG (e)@x# andF (e)@x# are as defined in Eqs.~4.9! and
~4.11! with the indicesN andx suppressed, and I have use
the invariance ofSR under the transformationt. The terms of
first order in the antisources give

E d4xS 2āa
dL

dv̄a
2Fm

(e)a@A#
dL

dvm
a 2va

dL

dua

2F (e)a@v#
dL

dbaD F (e)B@x#50 ~4.23!

for all B except whenB corresponds toua, where I have used
the fact thatts50 on all fields exceptua. For the case of
Ka@u#, this equation is modified,

E d4xH S 2āb
dL

dv̄b
2Fm

(e)b@A#
dL

dvm
b 2vb

dL

dub

2F (e)b@v#
dL

dbbD F (e)a@u#1F (e)a@v#J 50,

~4.24!

upon usingtsua5 1
2 g fabcvbvc[2Fa@v#.

The interpretation of these equations is obvious. Equa
~4.22! says thatGN

(e)@x# is invariant undertR , where

tRv̄a52āa,

tRvm
a 5sRAm

a ,

tRua52va,

tRba52sRva, ~4.25!

tR~all others!50.

The first equation following that, Eq.~4.23!, shows that
tRsR50 on all fields exceptua, and Eq.~4.24! shows that
tRsRua52sRva. There are no surprises, except perhaps
fact that these conditions are actually useful in restricting
form of sR to what is shown in Appendix B.

V. THE MOST GENERAL EFFECTIVE ACTION

In this section I shall use brute force methods to show t
the effective action contains the same terms, up to arbit
multiplicative renormalizations, as the tree-level action
Eq. ~3.2!. The proof requires construction of the most ge
eral nilpotent transformation of the fields,sR , as discussed in
the previous section. The actual construction ofsR is a rather
involved digression, so I have separated it into Appendix
The result ofsR on the various fields is given in Eq.~B32!.

Now I need to construct the most general functionalGN
(e)

symmetric undersR as well as under the linear symmetries
S. These are~i! Lorentz invariance,~ii ! globalSU(N) invari-
ance, and~iii ! ghost number conservation. However, it
obvious that even with the restrictions imposed bysR and
these three symmetries, there is an enormous number of
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sible terms. SinceCm
a has mass dimension zero as well

ghost number zero, it is possible to multiply any other te
by a scalar polynomial of the form(k51

n (Cm
a Cam), and still

maintain the three abovementioned symmetries. Of cou
such terms are notsR-invariant by themselves, but one ca
imagine that their variations cancel against those of so
thing else, and ruling out each such term requires a long
tedious calculation. And even without this unwanted co
plexity, there are of the order of one hundred terms satisfy
the three linear symmetries. ApplyingsR to a sum of so
many terms, multiplied by unknown scalar polynomials
Cm

a , and then finding the combination which remains inva
ant, would require unlimited time and perseverance. Fo
nately, there is a way out of this quagmire, provided bys̃.

As before, let me denote the minimal fields byfA and
non-minimal fields bylA. Let me also definesR8[ 1

2 (sR

2 s̃R). Then from Eq.~4.15!,

sR8fA50, sR8lAÞ0. ~5.1!

The non-minimal fields lA are (v̄a,b̄a,v̄m
a ,āa,ha,aa,

hm
a ,na). Let me also choose the gauge fixing functions to

specifically those in Eq.~3.1!. Because of my choice o
gauge-fixing functions, the action exhibits invariance und
constant shifts ofv̄a,b̄a,v̄m

a and na. Since these are linea
symmetries, I can impose them on the effective action.
other words, these fields must appear in the quantum ef
tive action only as derivatives, i.e., as]mv̄a etc.

Then on dimensional grounds, the effective action will
at most quadratic in thelA. I can then write the effective
action in the generic form

G5(
A

lAXA1(
A,B

lAlBXAB, ~5.2!

whereXA and XAB do not contain any of thelA, and have
appropriate transformation properties, dimension and gh
number. In particular,XA and XAB are assumed to includ
derivative operators as necessary for the constant shift s
metries mentioned above, and the sum over indices will
taken to include an integral over space-time unless spec
otherwise. Since bothsR ands̃R are symmetries of the effec
tive action, I have

sR8G50, ~5.3!

and from Eq.~5.1!, I have

sR8XA5sR8XAB50. ~5.4!

Therefore using Eq.~5.2! I can write

(
A

~sR8lA!XA1(
A,B

~sR8lA!lBXAB

1(
A,B

~21!«AlA~sR8lB!XAB50. ~5.5!
2-8
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Here «A @not to be confused with the«A of Eqs. ~A3! and
~A4!# is the Grassmann parity of the fieldlA.

SinceXA andXAB do not contain any of thelA by defi-
nition, I can now look at the coefficients of the variouslA in
the expansion of Eq.~5.5! and set them to zero in order to g
an expression for the effective actionG. Many of the terms
are thus eliminated, and some algebraic relations ap
among some of the rest. The details of the calculation
given in Appendix C. The result is the effective Lagrangi
of Eq. ~C41! which I give here again,

Lg5v̄aXv̄
a

1b̄aXb̄
a
1v̄m

a Xv̄
*

am
1āaXā

a
1haXh

a1hm
a Xh

*

am

1]mnaXn
am1v̄m

a abXv̄
*

a
abm

1āaabXāa
ab

1hahbXhh
ab

1ha~hhm
b 1]mnb!Xhn

abm1hm
a hn

bXh
*

h
*

abmn

1hm
a ]nnbXh

*
n

abmn1]mna]nnbXnn
abmn . ~5.6!

The undetermined coefficients satisfy several relati
among themselves as shown in Appendix C.

The number of unknown coefficients can be reduced e
further. Just as the symmetrysR8G50 produced relations
among several of theseX’s, the quantum BRST symmetr
itself, sRG50, should produce some more relations indep
dent of the previous ones. The expression for thesRvariation
is

sRG5(
A

@~sRlA!XA1~21!«AlA~sRXA!#

1(
AB

@~sRlA!lBXAB1~21!«AlA~sRlB!XAB

1~21!«A1«BlAlB~sRXAB!#50. ~5.7!

SincesRXA andsRXAB do not contain any of thelA, I can
consider the coefficients oflA or of lAlB in the above ex-
pression and set them to zero.

The calculation is fairly straightforward, but in keepin
with other calculations in this paper, I have again separa
this one into Appendix D. The result is that the function
forms of all the unknown coefficients become known, a
only two arbitrary constants are needed to write them,
shown in Eq.~D19!.

I can now write down the general form of the ghost sec
of the theory as

Lg5Zv v̄aDR
a1Zb b̄aDR8

a1Zb v̄m
a DR

am1Zb āaf 8a1Zv haf a

1Zb hm
a ~ f am1]mna!2Zb ]mv̄m

a aa1z Zb āaaa

1
j

2
Zv haha1

h

2
Zb hm

a ham. ~5.8!

It remains to construct the most general non-ghost secto
the theory.

The BRST transformations on the bosonic fields as fou
in Eq. ~B32! of Appendix B are given by
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sRAm
a 5]mvR

a1gRf abcAm
b vR

c ,

sRBmn
a 5gRf abcBmn

b vR
c 1] [mvRn]

a 1gRf abcA[m
b vRn]

c

1gRf abc] [mAn]
b uR

c 1gR
2 f aedf ebcAm

b An
cuR

d),

sRCm
a 5gRf abcCm

b vR
c 1

N4

N6

3~vRm
a 1]muR

a1gRf abcAm
b uR

c !, ~5.9!

where I have definedgR5g/N1 , vR
a5ZN 1va, vRm

a

5ZN 6vm
a anduR

a5ZN6N 1ua. If I now definerenormalized
field strengths

F̃mn
a 5]mAn

a2]nAm
a 1gRf abcAm

b An
c

H̃mnl
a 5] [mBnl]

a 1gRf abcA[m
b Bnl]

c

2
N6

N4
gRf abcF̃ [mn

b Cl]
c , ~5.10!

I find that the Zinn-Justin equation just says that the gho
free sector is invariant under these gauge transformati
The factorN6 /N4 can be absorbed either inCm

a itself or in
the renormalization of a fiduciary coupling constantgC

which always appears in front ofCm
a .

The procedure described so far can be used to cons
effective actions for different theories involving the no
Abelian two-form. For example, it may be interesting to a
ply it to the recently proposed first-order formulation
Yang-Mills theory @16#. However, since I have a specifi
theory in mind, I will need to invoke another symmetry
order to eliminate unwanted terms from the non-ghost sec

This ‘‘symmetry’’ was an invariance of the classic
equations of motion under

Bmn
a →Bmn

a 1aFmn
a ~5.11!

with a a constant. It was suggested in@8# that this symmetry
could play a role in preventing terms of the form (B
2DC)2 or (B2DC)`(B2DC) from appearing in the ac
tion. Of course, since the classical action is not invariant
changes by a total derivative, it is nontrivial to elevate this
a quantum symmetry. Classically this ‘‘symmetry’’ leads
a conserved current

JT
m5HamnlFnl

a 1memnlrS An
aFlr

a 2
2

3
f abcAn

aAl
bAr

cD .

~5.12!

But there is no corresponding conserved current for
BRST-invariant actionSof Eq. ~3.2!, which was the starting
point of quantization. This part of the problem can be c
cumvented quite easily by incorporating the shift into t
BRST transformation forBmn

a , which now reads@cf. Eq.
~3.3!#
2-9



-

d
nd
a
r

fo
t

ra
y
e
s
ra
er
sh

m

u
tu

ai
n-
g
tw

t
cto

a
s.
in

rti
S
s

m
th
b
er
f

S
an

ee-

ux-
e
a

t it
as
il-

ree
on

y
ion
ot
be

he
as

he

rt
s of
to
hat
of
be
pa-
ting
that
de-
ds.
s in

inte-
di-
su-
r
n

ge

ath
-

o
with

is
ions

ble.

o-
y
n
ode

AMITABHA LAHIRI PHYSICAL REVIEW D 63 105002
sBmn
a 5g fabcBmn

b vc1] [mvn]
a 1g fabcA[m

b vn]
c

1g fabcFmn
b uc1aFmn

a . ~5.13!

Herea is an anticommutingconstantwith ghost number11,
andsa50. It is trivial to see that the BRST transformations
is still nilpotent,s250. However, the action is still not in
variant, but is shifted by (ma/4)*d4xemnlrFmn

a Flr
a . So it

seems that I have not gained anything, but only recovere
symmetry of the equations of motion. On the other ha
since I am now dealing with the quantum theory rather th
the classical action principle, I can also generate this te
through quantum effects.

For example, this term could be canceled by the trans
mation of the fermion measure if fermions are coupled
the gauge field. Under a chiral transformation with a pa
meter 4p2ma, the effective action changes b
2(ma/4)*d4xemnlrFmn

a Flr
a , which cancels the effect of th

shift transformation of Eq.~5.11!. The action then become
invariant under the combination of the shift and global chi
transformations. There are other ways of canceling the t
generated by the shift. In any case, symmetry under the
transformation rules out terms involving products of (Bmn

2D [mCn] ). I can then write down the most general quantu
effective action consistent with the quantum symmetries,

Geff5E d4x ~ZAF̃mn
a F̃amn1ZBH̃mnl

a H̃amnl

1ZBFmemnlrBmn
a F̃lr

a 1Lg!. ~5.14!

This is the same as the tree-level action up to arbitrary m
tiplicative constants, which means that the theory is per
batively renormalizable.

VI. DISCUSSION OF RESULTS

It is time to gather the results. I have given an algebr
proof of perturbative renormalizability of the dynamical no
Abelian two-form gauge theory, also known as the topolo
cal mass generation mechanism. It follows that just as in
and three dimensions, it is possible in four dimensions
have a renormalizable theory of massive non-Abelian ve
bosons without a residual Higgs particle.

The calculations were done in a specific set of line
gauges, so that antighosts appeared only as derivative
other linear gauges, the calculations would be more
volved, in particular there would be terms cubic and qua
in the antighosts, but even in such cases the methods of
V should go through. Two other symmetries appeared a
result of using linear gauges—these ares̃, defined in Eq.
~3.12!, and t, defined in Eq.~4.17!. These two symmetries
were greatly useful for constructing the quantum BRST sy
metry and for reducing the number of possible terms in
quantum effective action. These symmetries would
present in other linear gauges as well, but not in a gen
nonlinear gauge. The calculations are extremely tedious
nonlinear gauges, and it is not clear if the quantum BR
symmetry alone is sufficient to restrict the terms in the qu
10500
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tum effective action to the same form as those in the tr
level action in such gauges.

The proof also depends crucially on the nature of the a
iliary field Cm

a . There is no quadratic term for this field in th
action of Eq.~2.2!, and it was mentioned in Sec. II that as
result there was no propagator forCm

a and diagrams with
internalCm

a lines vanished. This seems rather peculiar, bu
is actually not a problem for perturbation theory as long
there are other fields which propagate freely. The free Ham
tonian can always be written in terms of the propagating f
fields, and other terms can be thought of as perturbation
top of it, with Cm

a being a non-dynamical field. One ma
question whether perturbation theory is valid for an act
for which the operator in the matrix of quadratic terms is n
invertible, as in this case. In general, perturbation can
done only if a free Hamiltonian can be constructed for t
theory. I have assumed that this is a sufficient condition
well, as long as all thephysical fields appear in the free
Hamiltonian and their quadratic matrix can be inverted. T
free Hamiltonian is a sum of terms like12 (P21F2) only
over thephysical degrees of freedom, and this is the pa
which gives the propagators. So if the number of degree
freedom in the theory is known, it is strictly necessary
have only that many propagators, and therefore only t
many quadratic pieces in the theory. The quadratic matrix
the physical fields in this theory can be inverted, as can
seen from the fact that perturbatively there are three pro
gating degrees of freedom, as there should be from coun
constraints. In other words, the assumption made here is
for a perturbation series to be constructed, only physical
grees of freedom need to be identified with quantum fiel
The non-propagating degrees need not be quantum field
the sense of canonical quantization as long as the path
gral can be formally constructed for them. This is not a ra
cal assumption, it is made for all gauge theories, but is u
ally associated with unphysical objects~such as the scala
mode of a vector field! which are not Lorentz covariant. O
the other hand, it is clear thatCm

a by itself is not a physical
field, as it can be completely removed by a vector gau
transformation.

Therefore I can try to choose a gauge in which the p
integral overCm

a can be formally calculated in the Lagrang
ian formalism and in which there is a propagator forCm

a .
The gauge chosen in Sec. III wasf m

a 5]nBmn
a which did not

give a propagator forCm
a . For convenience, let me keep t

linear gauges so that the proof given above can be used
minimal modifications. SinceCm

a can be shifted away, it
would seem that the gaugeCm

a 50, i.e. the choice off m
a

5m2Cm
a could provide the necessary term. However, this

not a good gauge choice. The vector gauge transformat
get fixed completely, but now there is no propagator forBmn

a

as the corresponding quadratic operator is non-inverti
One possible alternative is to choose anRj type gauge,f m

a

5]nBmn
a 1hm2Cm

a . In this gauge there is no canonical m
mentum for Cm

a ~which was true for the classical theor
also!, so Cm

a terms do not appear in the free Hamiltonia
~unlike the apparently analogous case of a Goldstone m
2-10
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in broken gauge theories!. But formally the Lagrangian path
integral overCm

a can be done, and formallyCm
a will have a

propagator as well as a two-point vertex withBmn
a after using

the equations of motion forhm
a and na. The total tree-level

propagator will be a sum over insertions of these vertices
well as vertices betweenAm

a andBmn
a . This propagator will

be gauge-dependent,

D̃Cmn
ab 52

dab

m4

k22m2

~h21!k22hm2 . ~6.1!

This propagator clearly does not represent a real particle
cause it has a gauge dependent pole, as is expected be
of the Goldstone-like nature ofCm

a . This propagator also ha
the ultraviolet behavior ofDCmn

ab ;O(1) askm→`, which is
not very good for proofs of renormalizability, although b
cause of the gauge dependence of the pole inDCmn

ab it may
not be relevant. However, in this gauge the action is
invariant under a constant shift ofv̄m

a , so the proof given
above will not be applicable directly but will have to b
redone after including cubic and quadratic terms inv̄m

a .
Another possibility for anRj type gauge choice isf m

a

5]nBmn
a 1hhCm

a . The gauge-fixed theory in this gauge al
does not have a canonical momentum forCm

a and therefore
terms involvingCm

a do not appear in the free Hamiltonian
But again the Lagrangian path integral overCm

a can be done
formally, and after summing over all two-point vertex inse
tions, the total tree-level propagator will again be gau
dependent,

DCmn
ab 52

dab

k4

k22m2

~h21!k22hm2 . ~6.2!

This ~formal! propagator also has a gauge dependent p
and therefore cannot represent a real particle. On the o
hand, DCmn

ab falls off as O(k24) in the ultraviolet regime.
SinceCm

a has been assumed to have a vanishing mass dim
sion, DCmn

ab therefore satisfies the criterion for powe
counting renormalizability that given a field of mass dime
sion d, its propagator should fall off asO(k2d), where 4
2d<2d @14#. Therefore it can be safely used in algebra
proofs of renormalizability. And because of this particu
choice of gauge, the antighostv̄m

a still appears only with
derivatives, and the action is still symmetric under a cons
shift of v̄m

a , and the effective action is still at most quadra

in v̄m
a . Because this is a linear gauge, the rest of the ar

ments of the paper go through without modification, and
recover the same proof in thisRj-type gauge. In both thes
gauges, the propagators for the ghosts of the vector sym
try also have gauge-dependent poles.

Although the Lagrangian path integral overCm
a can be

formally done in the above gauges, the nature and the rol
the auxiliary field remain obscure. Even then this is som
what better than a canonical analysis of the system, whe
is not possible to identifyCm

a with a quantum field becaus
its canonical momentum vanishes. That quantization is pr
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lematic even in the Lagrangian path integral formalism
brought out by the fact that the calculations above remain
same even in the absence of a propagator forCm

a . However,
the essential point of this paper is the following—desp
apparent problems with perturbative expansion of t
theory, application of standard algebraic techniques to
leads to a quantum action which contains the same opera
as the classical action, which would be a proof of renorm
izability in any other theory. This result was completely u
expected on the grounds of the problems with perturba
expansion, already mentioned above and in@7#.

The use of the anticommuting constanta can potentially
create problems because it has vanishing mass dimen
but ghost number11, by Eq.~5.13!. The fact that there is an
anticommuting constant in the theory is not in itself a pro
lem, similar objects appear in supersymmetric quantum m
chanics@17#. But the fact that it has vanishing mass dime
sion can cause problems of its own. One place wh
problems can arise is the argument in Sec. IV and part
larly in Appendix A that the quantum effective action is
most linear in the antisourcesKA. The argument relied on
the fact that the coefficients of these quadratic terms
vanishing mass dimension but non-vanishing ghost num
so they must containua. Now ua can be replaced by the
constanta. But there is no reason to worry, because t
relevant objects have ghost number12 or more, so at leas
oneua will be needed to construct any of them, and the r
of the argument remains unchanged. Another possible p
for a problem is in the calculation of the general nilpote
transformationsR , given in Appendix B. Some of the field
xA could have a term likeaxA in their transformation rules
in principle. Other similarly constructed terms are also p
sible. An explicit calculation using thet symmetry shows
that such terms do not arise.

I have not touched on the issue of anomalies, or the
clusion of fermions, in detail. Fermions will couple to th
Yang-Mills gauge field in the usual way, but there is n
gauge-invariant coupling of mass dimension four betwe
the two-form and fermions because of the shift symme
mentioned in Eq.~5.11!. The Yang-Mills theory will have
the usual SU~N! anomaly of TrF`F. This can be removed
by use of the shift symmetry. Gauge anomalies will be a
sent if the gauge group is the standard model gauge gr
The two-form brings with it a vector gauge symmetry,
given in Eq.~2.6!. This is an Abelian symmetry, but there
no field carrying the charge corresponding to it. So there
no anomaly involving this transformation.

The original motivation for the theory was to find a po
sible alternative for the Higgs sector of the Salam-Weinb
model of electroweak interactions. What I have shown in t
paper is that it is possible to have massive vector bos
without spontaneous symmetry breaking. But the probl
with applying this mechanism to electroweak interactions
precisely that there is no symmetry breaking, whereas
observed world has broken SU(2)3U(1) symmetry. If I
write the Lagrangian for the Salam-Weinberg model witho
the Higgs field, and add an SU~2! two-form with an action as
in Eq. ~2.2!, all the SU~2! gauge bosons get the same ma
contrary to experiment. All otherobservedevents would re-
2-11
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main uncontradicted. It has been suggested@11# that by also
adding a U~1! two-form, which would make the photon ma
sive, it may be possible to get the correct mass ratio of Z
W6 particles. However, agreement with experiment requ
an infinite parameter in the classical Lagrangian, correspo
ing to an infinite mass for the photon. Another way is to a
an explicit symmetry breaking term to the Lagrangian,
that the mass term reads

m

4
emnrl~Bmn

a Frl
a 2tanu

W
Bmn

3 Frl!, ~6.3!

whereFrl is the field strength of the U~1! gauge field, and
u

W
is the Weinberg angle. Then by defining the Z and pho

fields as usual, I can write the quadratic part of this m
term as

emnrl

4
~mBmn

1 ] [rAl]
1 1mBmn

2 ] [rAl]
2 1m secu

W
Bmn

3 ] [rZl] !.

~6.4!

It follows from this that the Z is heavier than the W6 by a
factor of secu

W
~and the photon is massless!. However, be-

cause of the explicit symmetry breaking term, the proof
renormalizability given here is not applicable. So the qu
tion of applicability of this model to electroweak interactio
remains open.
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APPENDIX A: ANTISOURCE DEPENDENCE OF GN,`

As was argued in Sec. IV, the quantum effective action
at most quadratic in the antisources. In fact, several of
quadratic terms were eliminated just by looking at the m
dimensions and BRST transformation properties of
fields. In order to see the dependence of the effective ac
on the rest of the antisources, let me write the general
pression ofGN,`@x,K# as

GN,`@x,K#5GN,`@x,0#1E d4x F N
A@x,x#KA~x!

1E d4x F N
AB@x,x#KA~x!KB~x!. ~A1!

In this there is noKA corresponding toha,hm
a ,aa and āa,

and the quadratic sum also does not run over the antisou
for ua,Cm

a ,v̄a,v̄m
a ,na and b̄a for reasons described in Se

IV. The relation (SR ,GN,`)50, when applied to this expres
sion, gives at zeroth order inKA

2E d4x F N
A dLSR@x,0#

dxA 2E d4x FA
dLGN,`@x,0#

dxA
50.

~A2!
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At first order inKA, I get the equation

E d4xFF N
B dLFA

dxB 1FB
dLF N

A

dxB 12
dLSR@x,0#

dxB F N
ABG50.

~A3!

Here I have used the fact thatF N
BA5(21)«A«B F N

AB where

«A ,«B are the Grassmann parities ofKA and KB, 0 for
bosonicKA and 1 for fermionicKA. The terms of second
order in the antisources lead to the equation

(
C

E d4x FC~x!
dLF N

AB~y!

dxC~x!
d4~y2z!

1(
C

F ~21!«A(«B1«C11)F N
AC~y!

dLFB~z!

dxC~y!
1A↔BG50.

~A4!

The coefficientF N
AB@x,x# has mass dimensiondA1dB22,

and ghost numbergA1gB12, wheredA andgA are respec-
tively the mass dimension and ghost number of the fieldxA.
Sinceua has ghost number11 and mass dimension zero,
is possible to construct functions of arbitrary positive gh
number and mass dimension zero by taking products ofua.
Since the quadratic sum runs only over the antisources
the fieldsAm

a ,Bmn
a ,va,vm

a ,ba, it follows that F N
AB can de-

pendonly on ua andCm
a for all A,B, andua must be presen

in F N
AB to take care of its ghost number, which is alwa

positive. So the first term of Eq.~A4!, FC dLF N
AB/dxC, must

contain for allA,B,

~sua!
dLF N

AB

dua
5~2g fabcubvc2ba!

dLF N
AB

dua
. ~A5!

The first term on the right hand side will always appear
F AC dLFB/dxC becauseF AC containsua for all A,B, but
the second will appear only ifFA containsba. ~The indexN
is suppressed from now on.!

In the sumF AC dLFB/dxC, the only terms that contribute
a ba are forxC corresponding toAm

a whenxB is vm
a , andxC

corresponding tova whenxB is ba. This implies, first of all,
that at least one of the indicesA,B in F AB must correspond
to either vm

a or ba. In other words, when neitherxA,xB

corresponds tovm
a or ba, the sumF AC dLFB/dxC does not

containba even after~anti-!symmetrization overA,B, while
the sumFC dLF AB/dxC must containba. ThereforeF AB

50 for all such pairsA,B. So for exampleF ab(v,v)50.
Now, the only F AC which contribute aba to the sum

F AC dLFB/dxC are those for which one index corresponds
one of (vm

a ,ba), and the other index toAm
a or va and all

theseF AC contain only products ofua andCm
a . Looking at

F AB of this type, I find that each term which can contribu
a ba to the sum has a factorF AC of the type that vanishes b
the previous argument. For example, if (A,B) correspond to
(va,ba), the only term in the sum that could contribute
factor of ba is F ac(v,v) dLFb(b)/dvc, which vanishes
sinceF ac(v,v)50. Explicitly, for this case Eq.~A4! reads
2-12
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E F ac~v,v!
dLFb~b!

dvc 1E F ac~v,b!
dLFb~b!

dbc

1E F ac~v,b!
dLFb~v!

dvc 1E Fc~x!
dLF ab~v,b!

dxc
50.

~A6!

The first term vanishes becauseF ac(v,v)50 by the previ-
ous argument, the second and the third terms cannot con
a ba, while the fourth term must contain only one factor
ba. Since this is impossible,F ab(v,b) must also vanish. It
follows by a similar argument thatF AB50 when both indi-
ces correspond tovm

a or ba.
So the sumF AC dLFB/dxC vanishes for all (A,B), and

therefore F AB50 for all pairs (A,B). It follows that
GN,`@x,K#, and hence the quantum effective action, is
most linear in the antisourcesKA, so that the arguments fol
lowing Eq. ~4.7! can be used towards a proof of renormal
ability.

APPENDIX B: RENORMALIZED BRST
TRANSFORMATION

I need to construct a generalized BRST transformation
the fields. This is a nilpotent transformation which affects
Lorentz properties, ghost numbers and global gauge trans
mation properties of the fields in exactly the same way as
of Eq. ~3.3! and is identical with the latter where it is linea
Let me calculate the generalized nilpotent transformationsR
for one field at a time. For the fields which transform linea
under BRST, this is the same as the originals,

sRv̄a52ha, sRha50, sRv̄m
a 52hm

a , sRhm
a 50,

sRna5aa, sRaa50, sRb̄a5āa, sRāa50. ~B1!

For the gauge fieldAm
a and the associated ghostva, I can

write

sRAm
a 5b1

ab]mvb1gd1
abcAm

b vc,

sRva52
1

2
gd2

abcvbvc. ~B2!

The nilpotence conditionsR
2va50 implies

d2
abcd2

cde1d2
adcd2

ceb1d2
aecd2

cbd50. ~B3!

Therefored2
abc must be proportional to the structure co

stantsf abc,

d2
abc5Z f abc, ~B4!

whereZ is an arbitrary constant. InsR
2Am

a 50, the coefficient
of Am

d vevc gives

d1
abcd1

bde2d1
abed1

bdc5Z d1
adbf bec, ~B5!

which has the unique solution
10500
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abc5Z f abc, ~B6!

while the coefficient of]mvcvd gives

b1
abf bcd5 f abdb1

bc, ~B7!

which implies

b1
ab5ZN1 dab, ~B8!

with N1 again an arbitrary constant.
Let me now write the rules forba andua,

sRba5gd3
abcbbvc,

sRua52gd4
abcubvc2b2

abbb. ~B9!

In sR
2ba50, the coefficient ofbdvevc gives as in Eq.~B5!,

d3
abc5Z f abc. ~B10!

In sR
2ua50, the coefficient ofudvevc gives as in Eq.~B5!,

d4
abc5Z f abc, ~B11!

while the coefficient ofbcvd gives as in Eq.~B7!,

b2
ab5ZN 2dab. ~B12!

For the fieldsvm
a andCm

a the rules are

sRvm
a 52gd5

abcvm
a vc1b3

ab]mbb1gd6
abcAm

b bc,

sRCm
a 5gd7

abcCm
b vc1b4

abvm
b 1b5

ab]mub1gd8
abcAm

b uc.

~B13!

In sR
2vm

a 50, the coefficient ofvm
d vevc gives as in Eq.~B5!,

d5
abc5Z f abc, ~B14!

the coefficient of]mbcvd gives as in Eq.~B7!

b3
ab5ZN3 dab, ~B15!

with N3 arbitrary, the coefficient ofbd]mve gives upon us-
ing Eq. ~B15!,

d6
abc5

ZN3

N1
f abc, ~B16!

and the coefficient ofAm
d bevc vanishes identically as a re

sult.
In sR

2Cm
a 50, the coefficient ofCm

d vevc gives as in Eq.
~B5!,

d7
abc5Z f abc, ~B17!

the coefficients ofvm
d vc and]mudvc give as in Eq.~B7!,

b4
ab5ZN4 dab,

b5
ab5ZN5 dab, ~B18!
2-13
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whereN4 andN5 are arbitrary constants. The coefficient
]mbb then gives

N3N45N2N5 , ~B19!

the coefficient ofAm
b bc gives

d8
abc5

ZN5

N1
f abc, ~B20!

and the coefficients ofAm
d uevc and ub]mvc vanish identi-

cally as a result.
Finally, Bmn

a transforms as

sRBmn
a 5gd9

abcBmn
b vc1b6

ab] [mvn]
b 1gd10

abcA[m
b vn]

c

1gd11
abc] [mAn]

b uc1g2eabcdAm
b An

cud. ~B21!

The constanteabcd is antisymmetric in two indices,eacbd5
2eabcd. The coefficient ofBmn

d vevc in sR
2Bmn

a 50 gives as
in Eq. ~B5!

d9
abc5Z f abc, ~B22!

the coefficient of] [mvn]
d vc gives as in Eq.~B7!,

b6
ab5ZN6 dab, ~B23!

the coefficient of (] [mvd)vn]
c gives upon using Eq.~B23!

d10
abc5

ZN6

N1
f abc, ~B24!

the coefficient of] [mAn]
c bd gives upon using Eq.~B23!

d11
abc5

ZN3N6

N1N2
f abc, ~B25!

the coefficient ofAm
b ]nvcud gives upon using Eq.~B25!

eabcd5
ZN3N6

N 1
2N2

f aedf ebc. ~B26!

All other coefficients in the expression ofsRBmn
a vanish iden-

tically as a result.
Note that it is possible to consider other terms insR which

obey the Zinn-Justin equation at first order in the antisourc
I have ignored such terms because they vanish upon u
the symmetryt. Let me consider one example, that ofva.
The Zinn-Justin equation says that

sF a@v#2g fabcF b@v#vc50. ~B27!

On the other hand, from Eq.~4.23! for va, I have

tF a@v#50. ~B28!

The only allowed possibility forF a@v# is then
10500
s.
ng

F a@v#52
1

2e
g~d2

abc2 f abc!vbvc

1eabc~vm1Dmu!b~vm1Dmu!c, ~B29!

whered2
abc andeabc are now arbitrary. Equation~4.24! gives

tF a@u#12F a@v#50, ~B30!

which immediately shows thateabc50, and I can write Eq.
~B2! for the transformation ofva.

Another byproduct of this equation is the somewhat u
expected relation

Z N251. ~B31!

Similarly, I can use Eq.~4.23! to relate some of the constan
previously found. FromtRsRvm

a 50, I find N15N3, and
from tRsRCm

a 50, I find N55Z N1N4. No other new relation
can be found this way.

The transformation rules can now be collected,

sRAm
a 5Z ~N1]mva1g fabcAm

b vc!,

sRva52
1

2
Z g fabcvbvc, sRv̄a52ha, sRha50,

sRBmn
a 5Z S g fabcBmn

b vc1N6] [mvn]
a 1

N6

N1
g fabcA[m

b vn]
c

1Z N6 g fabc] [mAn]
b uc1

Z N6

N1
g2f aedf ebcAm

b An
cudD ,

sRCm
a 5Z ~g fabcCm

b vc1N4 vm
a 1Z N1 N4 ]mua

1Z N4 g fabcAm
b uc!,

sRvm
a 5Z ~2g fabcvm

b vc1N1 ]mba1g fabcAm
b bc!,

sRv̄m
a 52hm

a , sRhm
a 50, sRna5aa, sRaa50,

sRba5Z g fabcbbvc, sRb̄a5āa, sRāa50,

sRua52Z g fabcubvc2ba. ~B32!

APPENDIX C: DERIVATION OF EQ. „5.6…

The generic form of the effective action is

G5(
A

lAXA1(
A,B

lAlBXAB, ~C1!

whereXA andXAB do not contain any of thelA. Therefore
as mentioned in Sec. V I can write the effect ofsR8 on G as

(
A

~sR8lA!XA1(
A,B

~sR8lA!lBXAB

1(
A,B

~21!«AlA~sR8lB!XAB50. ~C2!
2-14
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SinceXA andXAB do not contain any of thelA, I can look at
the coefficients of the variouslA in the expansion of Eq
~C2! and set them to zero in order to get an expression
the effective actionG. The effect ofsR8 on lA is, for quick
reference,

sR8 v̄a52S ha1
1

j
f aD , sR8 b̄a5S āa2

1

z
]mv̄amD ,

sR8 v̄m
a 52S hm

a 1
1

h
]mna1

1

h
f m

a D ,

sR8 āa52
1

z
]mS hm

a 1
2

h
]mna1

2

h
f m

a D ,

sR8ha5
1

j
DR

a , sR8aa5
1

z
DR8

a ,

sR8hm
a 52

1

hS ]maa1
2

z
]m f 8a2DRm

a D ,

sR8na5S aa1
1

z
f 8aD . ~C3!

In this appendix, I will construct the most generalG obey-
ing Eq. ~C2!. For eachlA I will first consider coefficients of
terms containinglAlB in the expansion of Eq.~C2!. There
can be no term of third or higher order inlA in the effective
action because of the constant shift symmetries, and th
fore the left hand side of Eq.~C2! can be at most quadratic i
the lA. The coefficients will have as many ghost fields a
derivative operators as necessary. Setting the coefficien
zero will eliminate some of the terms from the effective a
tion and produce relations among some others. Following
same procedure for the terms linear inlA will produce some
more relations. There will also be a few terms not contain
any power oflA in the expansion of Eq.~C2!. The sum of
these should also vanish.

I will consider lA in the order (v̄a,b̄a,v̄m
a ,āa,

ha,aa,hm
a ,]mna). Terms containing products of the form

v̄alB in the expansion ofsR8G come from thesR8 variation of

v̄av̄bXv̄v̄
ab

1v̄ab̄bXv̄b̄
ab

1v̄aābXv̄ā
ab

1v̄av̄m
b Xv̄v̄

*

abm
1v̄ahm

b Xv̄h
*

abm
1v̄a]mnbXv̄n

abm ,

~C4!

where the subscriptsv̄v̄ etc. indicate the quadratic comb
nation which couples to a givenX, and an asterisk indicate
the presence of a Lorentz index on the subscript. In the
term, Xv̄v̄

ab has to be antisymmetric in@a,b#. Therefore, the

coefficient ofv̄ahb in the expansion ofsR8G givesXv̄v̄
ab

50.

The coefficients ofv̄aāb,v̄ahm
b and v̄a]mnb give

Xv̄b̄
ab

5Xv̄ā
ab

5Xv̄v̄
*

abm
50, ~C5!
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while the coefficient ofv̄aab gives Xv̄h
*

abm
5hXv̄n

abm . Terms

linear in v̄a ~and containing no otherlA) come from

v̄aabXv̄a
ab

1v̄ahbXv̄h
ab

1~hv̄ahm
b 1v̄a]mnb!Xv̄n

abm . ~C6!

The coefficient ofv̄a in sR8G is therefore

2
1

z
DR8

bXv̄a
ab

2
1

j
DR

bXv̄h
ab

1S 1

z
]m f 8b2DRm

b DXv̄n
abm

50.

~C7!

Each of theX’s in this equation must contain at least on
derivative operator to allow for the constant shift symme
of v̄a. Therefore, theX’s must be constructed only out o
fields of mass dimension zero. Since the factors multiply
the X’s are all different, and have fields of non-vanishin
mass dimension, the only choice for which this equation c
be satisfied is

Xv̄a
ab

5Xv̄h
ab

5Xv̄n
abm

5Xv̄h
*

abm
50. ~C8!

Thus, all terms containingv̄alB are excluded from the ef
fective action.

Terms containingb̄alB arise from the terms

b̄ab̄bXb̄b̄
ab

1b̄av̄m
b Xb̄v̄

*

ab
1b̄aābXb̄ā

ab
1b̄ahm

b Xb̄h
*

abm

1b̄a]mnbXb̄n
abm . ~C9!

As before, I set the coefficients of the quadratic terms in
expansion to zero. The coefficients ofb̄aāb,b̄ahm

b and

b̄a]mnb give

Xb̄b̄
ab

5Xb̄v̄
*

ab
5Xb̄ā

ab
50, ~C10!

while the coefficient ofb̄aāb givesXb̄h
*

abm
5hXb̄n

abm .

Terms linear inb̄a appear from thesR8 variation of

b̄ahbXb̄h
ab

1b̄aabXb̄a
ab

2~hb̄ahm
b 1b̄a]mnb!Xb̄n

abm .
~C11!

The coefficient ofb̄a in the variation of this is

1

j
DR

bXb̄h
ab

1
1

z
DR8

bXb̄a
ab

2S 1

z
]m f 8b2DRm

b DXb̄n
abm

50. ~C12!

Again each of theX’s in this equation has mass dimensio
zero after excluding the derivative operator they must c
tain to allow a constant shift inb̄a. It is easy to see that the
only solution is

Xb̄h
ab

5Xb̄a
ab

5Xb̄n
abm

5Xb̄h
*

abm
50. ~C13!

This, together with the previous result rules out all term
containingb̄alB.
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Next are the terms containingv̄m
a lB, which come from

the variation of

v̄m
a v̄n

bXv̄
*

v̄
*

abmn
1v̄m

a ābXv̄
*

ā
abm

1v̄m
a hn

bXv̄
*

h
*

abmn
1v̄m

a ]nnbXv̄
*

n
abmn .

~C14!

As before, looking at thesR8 variation of this I find that the

coefficients ofv̄m
a hn

b , v̄m
a nb and v̄m

a ab imply

Xv̄
*

v̄
*

abmn
5Xv̄

*
ā

abm
50, Xv̄

*
h
*

abmn
5hXv̄

*
n

abmn . ~C15!

Terms linear inv̄m
a come from varying

b̄aXb̄
a
1v̄m

a hbXv̄
*

h
abm

1v̄m
a abXv̄

*
a

abm
1v̄m

a ~hhn
b1]nnb!Xv̄

*
n

abmn .

~C16!

The coefficient ofv̄n
a , or more precisely the functional de

rivativedL /dv̄m
a , in thesR8 variation of this gives the relation

1

z
]mXb̄

a
2

1

j
DR

bXv̄
*

h
abm

2
1

z
DR8

bXv̄
*

a
abm

1S 1

z
]n f 8b2DRn

b DXv̄
*

n
abmn

50. ~C17!

This equation containsXb̄
a which has non-vanishing mas

dimension, so it an contain fields other thanua andCm
a , and

the argument used in previous cases cannot be applied
Therefore, theX’s appearing here must remain undetermin
for the moment.

Terms containing products of the formāalB appear in the
sR8 variation of

āaābXāā
ab

1āahm
b Xāh

*

abm
1āa]mnbXān

abm . ~C18!

The coefficients ofāahm
b and āaab in the variation give

Xāā
ab

50, Xāh
*

abm
5hXān

abm . ~C19!

Terms linear ināa come from

b̄aXb̄
a
2āahbXāh

ab
1āaabXāa

ab
1āa~hhm

b 1]mnb!Xān
abm .

~C20!

The coefficient ofāa in the sR8 variation of this satisfies

Xb̄
a
2

1

j
DR

bXāh
ab

2
1

z
DR8

bXāa
ab

1~]m f 8b2DRm
b !Xān

abm
50.

~C21!

This equation is again insufficient to determine theX’s in it
and will have to be reexamined later.

Terms containinghalB come from the variation of
10500
re.
d

v̄m
a hbXv̄

*
h

abm
1āahbXāh

ab
1hahm

b Xhh
*

abm1ha]mnbXhn
abm ,

~C22!

the other possibilities being known to vanish from the abo
analysis. The coefficients ofhahm

b , hanb and haab in the
variation of this lead to

Xv̄
*

h
abm

5Xāh
ab

50, Xhh
*

abm5hXhn
abm . ~C23!

Terms linear inha come from

v̄aXv̄
a

1hahbXhh
ab1haabXha

ab1ha~hhm
b 1]mnb!Xhn

abm .
~C24!

Of these,Xha
ab has vanishing mass dimension and ghost nu

ber 21. Since it is not possible to construct such a functi
with the fields in the theory, it follows thatXha

ab50. The
coefficient ofha, in the terms linear inha, in the variation of
the rest satisfies the equation

2Xv̄
a

1
2

j
DR

bXhh
ab2S 1

z
]m f 8b2DRm

b DXhn
abm50. ~C25!

These terms will also be left for later scrutiny, as this equ
tion is insufficient to determine them.

Terms containingaalB come from thesR8 variation of

v̄m
a abXv̄

*
a

abm
1āaabXāa

ab
1hm

a hn
bXh

*
h
*

abmn 1hm
a ]nnbXh

*
n

abmn

1]mna]nnbXnn
abmn , ~C26!

where I have excluded terms that have already been show
vanish, and set

Xha
ab5Xah

*

abm5Xan
abm5Xaa

ab 50, ~C27!

because theseX’s have negative ghost number and vanishi
mass dimension, so cannot be constructed out of fie
present in the theory. The terms containing products of
form aalB in thesR8 variation of of this can be set to zero t
give the equation

2S hm
a 1

1

h
]mnaDabXv̄

*
a

abm
2

1

z
]mS hm

a 1
2

h
]mnaDabXāa

ab

2
2

h
]maahn

bXh
*

h
*

abmn 2
1

h
]maa]nnbXh

*
n

abmn

1hm
a ]nabXh

*
n

abmn12]maa]nnbXnn
abmn50, ~C28!

where I have used the fact that bothXh
*

h
*

abmn and Xnn
abmn are

symmetric under the exchange@m,a#↔@n,b#. This equation
will also be put aside for later use. Terms linear inaa come
from

v̄m
a abXv̄

*
a

abm
1āaabXāa

ab
1hm

a Xh
*

am1]mnaXn
am1aaXa

a .

~C29!
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Of these,Xa
a has ghost number21, and must satisfysR8Xa

a

50 by definition @Eq. ~5.4!#, which cannot happen unles
Xa

a50. The terms linear inaa in thesR8 variation of the rest
lead to the equation

2
1

h
f m

b Xv̄
*

a
bam

2
2

zh
]m f bmXāa

ab
1

1

h
]mXh

*

am2]mXn
am50.

~C30!

The terms containinghm
a lB come from thesR8 variation of

v̄m
a hbXv̄

*
h

abm
1v̄m

a abXv̄
*

a
abm

1~h v̄m
a hn

b1v̄m
a ]nnb!Xv̄

*
n

abmn

1āaabXāa
ab

1~h āahm
b 1āa]mnb!Xān

abm

1hm
a hn

bXh
*

h
*

abmn 1hm
a ]nnbXh

*
n

abmn . ~C31!

The coefficient ofhm
a hb in the variation of this givesXv̄

*
h

abm

50, and the remaining terms withhm
a lB in them satisfy

2hm
a abXv̄

*
a

abm
2~h hm

a hn
b12hm

a ]nnb!Xv̄
*

n
abmn

2
1

z
]mhamabXāa

ab

2
2

h
]maahn

bXh
*

h
*

abmn 2Fhz ]nS han1
2

h
]nnaDhm

b

1
1

z
]nhan]mnbGXān

abm
1hm

a ]nabXh
*

n
abmn50. ~C32!

It follows from this that Xv̄
*

n
abmn

5Xān
abm

50 ~essentially be-

cause there is no linear combination ofbaa and]mv̄n
a which

is sR8 invariant!. Then the remaining terms satisfy

2hm
a abXv̄

*
a

abm
2

1

z
]mhamabXāa

ab
2

2

h
]maahn

bXh
*

h
*

abmn

1hm
a ]nabXh

*
n

abmn50. ~C33!

Terms linear inhm
a appear from thesR8 variation of

v̄m
a Xv̄

*

am
1āaXā

a
1ha~h hm

b 1]mnb!Xhn
abm

1hm
a hn

bXh
*

h
*

abmn 1hm
a ]nnbXh

*
n

abmn , ~C34!

giving the following equation:

2Xv̄
*

am
1

1

z
]mXā

a
1

h

j
DR

bXhn
bam2

4

zh
]n f 8bXh

*
h
*

abmn

1
2

h
DRn

b Xh
*

h
*

abmn 1
1

z
]n f 8bXh

*
n

abmn50. ~C35!

Finally, terms containing]mnalB come from the variation of

v̄m
a abXv̄

*
a

abm
1āaabXāa

ab
1hm

a ]nnbXh
*

n
abmn1]mna]nnbXnn

abmn ,

~C36!

and satisfy the equation
10500
2
1

h
]mnaabXv̄

*
a

abm
2

2

zh
hnaabXāa

ab
2

1

h
]maa]nnbXh

*
n

abmn

12]mna]nabXnn
abmn50, ~C37!

while terms linear inna appear from the variation of

v̄m
a Xv̄

*

am
1āaXā

a
1ha]mnbXhn

abm1hm
a ]nnbXh

*
n

abmn

1]mna]nnbXnn
abmn , ~C38!

and gives the equation

2
1

h
]mnaXv̄

*

am
2

2

zh
hnaXā

a
1

1

j
DR

a]mnbXhn
abm

2
2

zh
]m f 8a]nnbXh

*
n

abmn1
1

h
DRm

a ]nnbXh
*

n
abmn

1
2

z
]m f 8a]nnbXnn

abmn50. ~C39!

There is one more equation that can be obtained fromsR8G
50, the one involving terms which do not contain any of t
lA. This equation is

2
1

j
f aXv̄

a
2

1

h
f m

a Xv̄
*

am
2

2

zh
]m f m

a Xā
a
1

1

j
DR

aXh
a2

2

zh
]m f 8aXh

*

am

1
1

h
DRm

a Xh
*

am1
1

z
]m f 8aXn

am50. ~C40!

I can now write the effective Lagrangian for the gho
sector of the theory, after setting to zero all theX’s that were
found to vanish in the analysis so far,

Lg5v̄aXv̄
a

1b̄aXb̄
a
1v̄m

a Xv̄
*

am
1āaXā

a
1haXh

a1hm
a Xh

*

am

1]mnaXn
am1v̄m

a abXv̄
*

a
abm

1āaabXāa
ab

1hahbXhh
ab

1ha~hhm
b 1]mnb!Xhn

abm1hm
a hn

bXh
*

h
*

abmn 1hm
a ]nnbXh

*
n

abmn

1]mna]nnbXnn
abmn . ~C41!

APPENDIX D: DERIVATION OF EQ. „5.8…

In this appendix, I shall try to calculate the function
which remained undetermined in Eq.~5.6! @equivalently, Eq.
~C41!#. I start from the expression for thesR variation ofG,
which can be written as

sRG5(
A

@~sRlA!XA1~21!«AlA~sRXA!#

1(
AB

@~sRlA!lBXAB1~21!«AlA~sRlB!XAB

1~21!«A1«BlAlB~sRXAB!#50. ~D1!
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SincesRXA andsRXAB do not contain any of thelA, I can
consider the coefficients oflA or of lAlB in the above ex-
pression and set them to zero one at a time. I will first se
zero the coefficients oflAlB, and then the terms linear i
lA.

The coefficient of]mna]nab andha]mab give

Xnn
abmn5Xhn

abm50, ~D2!

while the coefficients ofāaab,hahb,hm
a hn

b andhm
a ]nnb give

sRXāa
ab

5sRXhh
ab5sRXh

*
h
*

abmn 5sRXh
*

n
abmn50 . ~D3!

Now, each of theX’s in this equation has zero mass dime
sion, zero ghost number and issR invariant, so each must b
a ~possibly different! constant. Let me define four constan
K1 ,K2 ,K3 andK4 as

Xāa
ab

5K1dab, Xhh
ab5K2dab, Xh

*
h
*

abmn 5K3gmndab,

Xh
*

n
abmn5K4

mndab. ~D4!

The coefficients ofha,āa,hm
a ,aa,v̄a,b̄a,v̄m

a andna give the
equations

2Xv̄
a

1sRXh
a50,

Xb̄
a
2sRXā

a
50,

2Xv̄
*

am
1sRXh

*

am50,

]mXn
am50,

sRXv̄
a

5sRXb̄
a
5sRXv̄

*

a
5sR]mXn

am50. ~D5!

The last equation in this list is redundant as it can be
tained by applyingsR to the previous equations and remem
bering thatsR

250. The coefficient ofv̄m
a ab gives sRXv̄

*
a

abm

50, but Xv̄
*

a
abm must contain a derivative operator to allo

for the constant shift symmetry ofv̄m
a . So as with the func-

tions in Eq.~D3!, Xv̄
*

a
abm must be a constant times a derivati

operator. The coefficient ofhm
a ab in sRLg shows that this

constant isK4
mn , so I can write the ghost sector Lagrangi

as

Lg5v̄aXv̄
a

1b̄aXb̄
a
1v̄m

a Xv̄
*

am
1āaXā

a
1haXh

a1hm
a Xh

*

am

2K4
mn]nv̄m

a aa1K1āaaa1K2haha1K3hm
a hm

a

1K4
mnhm

a ]nna. ~D6!

Now I can use the unused equations from Appendix C. Th
were Eqs.~C17!, ~C21!, ~C25!, ~C28!, ~C30!, ~C35!, and
~C40!.

Equation~C21! now reads
10500
o

-

se

Xb̄
a
2

K1

z
DR8

a50. ~D7!

In keeping with standard notation, let me rewrite

K15zZb⇒Xb̄
a
5ZbDR8

a . ~D8!

Equation~C25! now becomes

2Xv̄
a

1
2

j
K2DR

a50. ~D9!

As in the above, let me redefine the constant,

K25
j

2
Zv ⇒ Xv̄

a
5ZvDR

a . ~D10!

Equation~C17! becomes

1

z
]mXb̄

a
2

1

z
K4

mn]nDR8
a50, ~D11!

which gives upon using Eq.~D8! that

K4
mn5Zb gmn. ~D12!

Using this and Eq.~D8! I can rewrite Eq.~C33! as

Zb ]mhamaa2Zb ]mhamaa2
2

h
K3 ham]maa1Zb ham]maa

50, ~D13!

from which it follows that

K35
h

2
Zb . ~D14!

This automatically satisfies Eq.~C28!. With these redefini-
tions I get from Eq.~C30! that

]mXh
*

am5Zb]m f am. ~D15!

The right hand side vanishes upon usingf am5]nBamn. Also,
Eq. ~C35! can be written as

2Xv̄
*

am
1

1

z
]mXā

a
2

1

z
Zb ]m f 8a1Zb DR

am50. ~D16!

Using Eqs.~D5!, ~D8!, ~D10! and ~D16!, I can define some
new functions and write

Xh
a5Zv f a1X̄h

a , Xā
a
5Zb f 8a1X̄ā

a ,

Xv̄
*

am
5ZbDam1

1

z
]mX̄ā

a , Xh
*

am5Zb f am1
1

z
]mX̄h

*

a ,

sRX̄h
*

a 5X̄ā
a . ~D17!
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Then Eq.~D15! implies, becauseX̄h
*

a is a function of the

fields and not an arbitrarily chosen function, that

X̄h
*

a 50, and henceX̄ā
a
50. ~D18!

Putting these into Eq.~C40!, I get X̄h
a50. Therefore, I can
s

10500
now write down the general form of the ghost sector of t
theory as

Lg5Zv v̄aDR
a1Zb b̄aDR8

a1Zb v̄m
a DR

am1Zb āaf 8a1Zv haf a

1Zb hm
a ~ f am1]mna!2Zb ]mv̄m

a aa1z Zb āaaa

1
j

2
Zv haha1

h

2
Zb hm

a ham. ~D19!
a

n
n-

-
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