
PHYSICAL REVIEW D, VOLUME 63, 104024
Znajek-Damour horizon boundary conditions with Born-Infeld electrodynamics
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In this work, the interaction of electromagnetic fields with a rotating~Kerr! black hole is explored in the
context of the Born-Infeld~BI! theory of electromagnetism instead of standard Maxwell theory and particularly
BI theory versions of the four horizon boundary conditions of Znajek and Damour are derived. Naturally, an
issue to be addressed is then whether they would change from the ones given in the Maxwell theory context
and if they do, how. Interestingly enough, as long as one employs the same local null tetrad frame as the one
adopted in the works of Damour and of Znajek to read out physical values of electromagnetic fields and a
fictitious surface charge and currents on the horizon, it turns out that one ends up with exactly the same four
horizon boundary conditions despite the shift of the electrodynamics theory from a linear Maxwell one to a
highly nonlinear BI one. Close inspection reveals that this curious and unexpected result can be attributed to
the fact that the concrete structure of BI equations happens to be such that it is indistinguishableat the horizon
to a local observer, say, in Damour’s local tetrad frame from that of standard Maxwell theory.
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I. INTRODUCTION

The idea of using rotating black holes as energy sour
has a long history. To our knowledge, Salpeter@1# and
Zel’dovich @1# were the first to point out that gigantic blac
holes might serve as power engines for quasars or radio
axies. Realistic theoretical models to realize this type of
ergy extraction from rotating black holes also appeared
terwards and they are due to Penrose@2#, Press and
Teukolsky @2#, Ruffini and Wilson @3#, Damour @3#, and
Blandford and Znajek@4#. Among these models, that o
Blandford and Znajek is particularly interesting in its form
lation and looks quite plausible in its operational mechanis
At first, puzzling over the possible explanation for the o
served twin jets pointing oppositely out of a black ho
accretion disk system, Blandford and Znajek conceived o
particular process in which the power going into the j
comes from the hole’s enormous rotational energy. Sc
matically, their mechanism works as follows: suppose t
the rotating hole is threaded by magnetic field lines. As
hole spins, it drags the field lines around, causing them
fling surrounding plasma upward and downward to form t
jets. Then the jets shoot out along the hole’s spin axis
their direction is firmly fixed to the hole’s axis of rotation
The magnetic field lines, of course, come from the accre
disk around the hole. Namely, it is the magnetic fields t
extract the rotational energy of a black hole and then ac
power the jets. According to their careful analysis, on
other hand, as the energy is extracted, electric currents
into the horizon near the hole’s poles~in the form of posi-
tively charged particles falling inward!, and currents flow out
of the horizon near the equator~in the form of negatively-
charged particles falling inward!. It was as though the hole
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were a voltage generator of an electric circuit driving curre
out of the horizon’s equator, then up magnetic field lines t
large distance, then through ‘‘plasma load’’ to other fie
lines near the hole’s spin axis, then down those field lin
and into the horizon. Namely, the magnetic field were
wires of the electric circuits, the plasma was the load t
exerts power from the circuit. And the two pictures, o
schematic and the other analytic, are just two different w
of describing the same phenomenon. This electric circuit
scription was totally unexpected and thus curious eno
although it was resulted from a careful general relativis
treatment of the problem. Right after the post of this n
mechanism, Znajek@5# and, independently, Damour@6# suc-
ceeded in translating the careful general relativistic formu
tion into a surprisingly simple nonrelativistic, flat spacetim
electrodynamics language, the celebrated four hori
boundary conditions. And the assumption of central imp
tance in this new picture is to endow the horizon with so
fictitious surface charge and current as those previou
imagined by Hanni and Ruffini@7#. It is really amusing that
one now has an option to view the situation in terms of fl
spacetime electrodynamics alone at least for rough un
standing.

Speaking of the theory that governs the electromagneti
however, it is interesting to note that historically, there h
been another classical theory that can be thought of a
larger class of theory involving the standard Maxwell theo
just as its limiting case. It is the theory proposed in the 193
by Born and Infeld@9#. In spite of its long history, the Born
Infeld ~BI! theory of electrodynamics has remained alm
unnoticed and hence nearly uncovered in full detail. T
theory may be thought of as a highly nonlinear generali
tion of or a nontrivial alternative to the standard Maxwe
theory of electromagnetism. It is known that Born and Infe
had been led, when they first constructed this theory, by
considerations such as finiteness of the energy in electro
namics, natural recovery of the usual Maxwell theory a
linear approximation and the hope to find solitonlike so
tions representing pointlike charged particles. In the pres
work we would like to explore the interaction of electroma

-
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netic fields with a rotating~Kerr! black hole but in the con-
text of BI theory of electromagnetism instead of Maxw
theory. And our particular concern is to derive BI theo
versions of the four horizon boundary conditions to see h
they would change from the ones derived originally by Zn
jek and by Damour in the context of Maxwell theory. No
the motivation for shifting the theory of electromagnetis
from that of standard Maxwell to that of BI to study th
physics of interaction between ‘‘test’’ electromagnetic fie
and ‘‘background’’ rotating black hole geometry can
stated as follows. The BI theory, although appeared a
‘‘classical’’ theory long before the advent of quantum ele
trodynamics~QED! theory, may be viewed as some kind
an effective low-energy theory of QED in that its high
nonlinear structure plays the role of eliminating the sho
distance divergences. Normally, the strong magnetic fi
believed to be anchored in the central black holes of typ
gamma-ray bursters, is regarded as being originated,
from that of neutron stars that has collapsed to form
black hole. A number of various observations indicate tha
young neutron stars, the surface magnetic field strengths
of order 1011–1013 (G) and in some extreme cases such
magnetars, magnetic field strengths are estimated to b
large as>531014 (G) @8#. Then the magnetic field of this
ultra strength, in turn, stimulates our curiosity and leads u
ask questions such as what would happen if we choos
employ the BI theory that, as stated, can be thought of a
effective theory of QED, instead of linear Maxwell theory,
study the physics in the vicinity of rotating hole’s horizon
And in doing so, we anticipate that perhaps the highly n
linear nature of the BI theory may serve to uncover so
hidden interplay between the strong electromagnetic fi
and ultra strong gravity near the hole’s horizon. Since
main concern is the derivation of the four horizon bound
conditions in BI theory, we now recall some of the bas
ingredients of these boundary conditions obtained in the c
ventional Maxwell theory.

The four ‘‘horizon boundary conditions’’ first derived i
the works of Znajek@5# and of Damour@6# and reformulated
later in the literature can be briefly described as follow
They may be called radiative ingoing boundary conditio
Ohm’s law, Gauss’ law and Ampere’s law, respectively. A
in order to represent each boundary condition properly,
need to introduce in advance some quantities that will
derived carefully in the text shortly. They are electric a
magnetic fields at the horizon (EW H ,BW H) as seen by a loca
observer in a null tetrad frame which has been made to
well behaved at the horizon by the amount of boost t
becomes suitably infinite at the horizon and thefictitious

charge and current densities (s,kW ) that have been assigne
at the horizon in such a way that the sum of real curr
4-vector outside the horizon and this fictitious curre
4-vector on the horizon together is conserved. Firstly, th
the radiative ingoing boundary condition first derived
Znajek@5# takes the formBW H5EW H3n̂ with n̂ being the outer
unit normal to the horizon. Evidently, it states that the el
tric and magnetic fields tangential to the horizon are equa
magnitude and perpendicular in direction and hence t
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Poynting energy flux isinto the hole. Secondly, the Ohm’

law readsEW H54pkW . It has been derived rigorously in th
work by Damour@6# and pointed out in the work by Znaje
@5#. Clearly, this relation takes on the form of a nonrelat
istic Ohm’s law for a conductor and hence implies that if w
endow the horizon with some charge and current dens
~which are to be determined by the surrounding exter
electromagnetic fieldFmn as we shall see in the text!, then
the horizon behaves as if it is a conductor with finite surfa
resistivity of r54p.377(ohms). Actually these two rela
tions are the ones that have been explicitly derived in
works by Znajek and by Damour and play the central role
justifying that the introduction of fictitious charge and cu
rent densities on the horizon indeed provides a s
consistent picture. That is, one might wonder what wo
happen to the Joule heat generated when those surface
rents work against the surface resistance and how it would
related to the electromagnetic energy going down the h
through the horizon. In their works, Znajek and Damour p
vided a simple and natural answer to this question. Nam
they showed in an elegant manner that the total electrom
netic energy flux~i.e., the Poynting flux! into the rotating
Kerr hole through the horizon is indeed precisely the same
the amount of Joule heat~Ohmic dissipation! produced by
the surface currents when they work against the surface
sistivity of 4p. As a result, one may think of the rotatin
hole as a conducting sphere that absorbs the incident ele
magnetic energy flux as a form of Joule heat that the surf
current~driven by the electromagnetic fields! generates when
it interferes with the surface resistivity. This is indeed
interesting and quite convincing alternative picture of vie
ing the interaction of external electromagnetic fields with
rotating black hole. Damour@6# also remarked that this resu
provides a clear confirmation of Carter’s assertion@10# that a
black hole is analogous to an ordinary object having fin
viscosity and electrical conductivity. Thirdly, if one follow
the formulation of Damour but in a slightly different way i
taking the local tetrad frame and projecting the Maxwell fie
tensor and the surface current 4-vector onto that chosen
rad frame, one also gets the relationEr̂54ps which may be
identified with the surface version of Gauss’ law. It says th
the fictitious surface charge density we assumed on the
rizon plays the role of terminating the normal components
all electric fields that pierce the horizon. Lastly, if we com
bine the radiative ingoing boundary condition at the horiz
that we obtained earlier,BW H5EW H3n̂ with the Ohm’s law
EW H54pkW , we end up with the fourth relationBW H54p(kW

3n̂) which can be viewed as the surface version of A
pere’s law. Again, consistently with our motivation for intro
ducing fictitious current density on the horizon, this relati
indicates that the current density we assumed plays the
of terminating any tangential components of all magne
fields penetrating the horizon. And actually these four ho
zon boundary conditions later on provided a strong moti
tion for the proposal of so-called ‘‘membrane paradig
@11#’’ of black holes by Thorne and his collaborators. As w
already mentioned, in the present work we would like
particularly derive BI theory versions of these four horiz
4-2
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boundary conditions to see if they would change from
ones given above and if they would, how. Interesting
enough, as far as we employ the same local null tetrad fra
as the one adopted in the works by Damour and by Znaje
turns out that we end up with exactly the same four horiz
boundary conditions despite the shift of the electrodynam
theory from a linear Maxwell one to a highly non-linear B
one. As we shall see shortly in the text, this curious a
unexpected result can be attributed to the fact that the na
of the BI theory or more precisely, the concrete structure
BI equations happens to be such that it is indistinguishablat
the horizonto a local observer, say, in Damour’s local tetr
frame from that of standard Maxwell theory. We find th
point indeed quite amusing on theoretical side.

II. CHOICE OF COORDINATE SYSTEM AND TETRAD
FRAME

As we stated in the Introduction above, we would like
derive Znajek-Damour-type boundary conditions at the h
zon of Kerr black hole in the context of BI theory of ele
tromagnetism. Generally speaking, all that is required of
‘‘correct’’ boundary conditions for electric and magnet
fields at the horizon can be stated as follows. The phys
field’s components in the neighborhood of an event horiz
should have ‘‘nonspecial’’ values. Or put another way,
physically well-behaved observer at the horizon should
the fields as having finite and nonzero values. And indeed
order to discuss electrodynamics in terms of thisphysical
field values, one should make relevant choice of coordin
system and proper choice and treatment of the assoc
tetrad frame@12# for the background Kerr black hole spac
time. It is well known that this can be achieved only wh
one takes the ingoing Kerr coordinates, the advanced
coordinates representing a reference frame of ‘‘free
falling’’ photons, and employs an associated null tetr
frame such as that of Damour@6# which is well-behaved on
the event horizon. Unlike the familiar Kinnersley’s null te
rad @15# or the well-known Hawking-Hartle tetrad@13,14#,
however, the Damour’s choice of tetrad is rather nonstand
and hence may not be so familiar. Even in the original wo
of Damour@6#, the connection of his tetrad choice to the
standard null tetrads is not discussed. Thus here in this
tion, we would like to briefly exhibit the derivation o
Damour’s tetrad so as to clarify this issue. We now start w
some basics. Among the choices of coordinates for K
spacetime, the best-known Boyer-Lindquist coordinatesxm

5(t,r ,u,f̃) @12# can be viewed as the generalization
Schwarzschild coordinates to the stationary, axisymme
case and the~ingoing! Kerr coordinatesx8m5(v,r ,u,f) @12#
can be thought of as the axisymmetric generalization
Eddington-Finkelstein~advanced! null coordinates. They are
related by the coordinate transformation given by@12#

dv5dt1
~r 21a2!

D
dr, df5df̃1

a

D
dr, ~1!

whereD5r 21a222Mr with M anda being the Arnowitt-
Deser-Misner~ADM ! mass and the angular momentum p
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unit mass of the hole respectively. Turning to the choice
tetrad frame, there are largely two types of tetrad fram
orthonormal tetradeA5$e05u,e1 ,e2 ,e3% and null tetrad
ZA5$ l ,n,m,m̄% which are related to each other by@12#

e05
1

A2
~ l 1n!, e15

1

A2
~ l 2n!,

~2!

e25
1

A2
~m1m̄!, e35

1

A2i
~m2m̄!,

with the null tetrad satisfying the orthogonality relation

2 l mnm515mmm̄m , ~3!

with all other contractions being zero. As is well known, t
Hawking-Hartle tetrad is well-behaved at the horizon a
can be constructed by performing an appropriate null ro
tion @13,14# on the Kinnersley’s null tetrad given in ingoin
Kerr coordinates. It is given by@13,14#

l HH
m 5S 1,

D

2~r 21a2!
, 0,

a

~r 21a2! D ,

nHH
m 5S 0,

2~r 21a2!

S
, 0, 0D , ~4!

mHH
m 5

1

A2S1/2S ia sinu, 0, 1,
i

sinu D ,

where S5r 21a2cos2u. Now, it is interesting to note tha
generally one can ‘‘mix’’ half of the null tetradZA and half
of the orthonormal tetradeA to form a ‘‘quasiorthonormal’’
or ‘‘mixed’’ tetrad

$ l m,2nm,e2
m ,e3

m%, $2nm ,l m ,em
2 ,em

3 %. ~5!

And if we construct this half-null, half-orthonormal, mixe
tetrad from the above Hawking-Hartle null tetrad, it becom
Damour’s quasiorthonormal tetrad as we can see shortly.
fore we proceed, let us elaborate on the general construc
of this mixed tetrad. Using the relations between the ort
normal tetradeA and null tetradZA given in Eq.~2!,

ds25gmndxmdxn5hABem
Aen

Bdxmdxn

5~2 l mnn2nml n1mmm̄n1m̄mmn!dxmdxn ~6!

and hencegmn52 l mnn2nml n1mmm̄n1m̄mmn . However,
since the pair (e0 ,e1) is related only to (l ,n) while the pair
(e2 ,e3) is related only to (m,m̄), one can write, using
mmm̄n1m̄mmn5em

2 en
21em

3 en
3 ,

gmn52 l mnn2nml n1em
2 en

21em
3 en

3 . ~7!

This obviously implies that one may mix half of null tetra
and half of orthonormal tetrad to form a mixed tetrad
4-3
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given in Eq. ~5!. Therefore, we now construct this mixe
tetrad from the previous Hawking-Hartle tetrad as

e0
m[ l HH

m 5S 1,
D

2~r 21a2!
, 0,

a

~r 21a2! D ,

e1
m[2nHH

m 5S 0,
~r 21a2!

S
, 0, 0D ,

~8!

e2
m5

1

A2
~mHH

m 1m̄HH
m !5S 0, 0,

1

S1/2
, 0D ,

e3
m5

1

A2i
~mHH

m 2m̄HH
m !

5S a sinu

S1/2
, 0, 0,

1

S1/2sinu
D ,

and its dual is

em
0 [2nm

HH5S ~r 21a2!

S
, 0, 0,

2~r 21a2!

S
a sinu D ,

em
1 [ l m

HH

5S 2D

2~r 21a2!
,

S

~r 21a2!
, 0,

D

2~r 21a2!
a sin2u D ,

~9!

em
2 5

1

A2
~mm

HH1m̄m
HH!5~0, 0, S1/2, 0!,

em
3 5

1

A2i
~mm

HH2m̄m
HH!

5S 2a sinu

S1/2
, 0, 0,

~r 21a2!

S1/2
sinu D ,

which we renamed as

l m→e0
m , nm→2e1

m ,

l m→em
1 , nm→2em

0 ,

to go from the null tetrad’s orthogonality relations2 l mnm

515mmm̄m to the usual orthonormality conditioneA
mem

B

5dA
B , eA

men
A5dn

m . Note that this mixed tetrad precisely coin
cides with Damour’s choice of quasiorthonormal tetrad@6#.
And the tetrad metriceAB5eAB in

ds25eABeAeB

can be identified with
10402
eAB5eAB5S 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1
D . ~10!

Note that in all the calculations involved in this work to rea
off physical components of tensors such as Maxwell fi
tensor and current 4-vector, we shall strictly use this qua
orthonormal tetrad given in Eqs.~8! and~9! and nothing else.
In this sense, our choice of local tetrad frame is sligh
different from that in the original work of Damour@6# in
which he introduced, particularly on the 2-dimensional,v
5const section of the event horizon, some other orthonor
basis~slightly different from$e2

m ,e3
m% given above! specially

adapted to the ‘‘intrinsic geometry’’ of thev5const section
of the horizon and used them to project out physical com
nents of tensors.

Before closing our discussion, perhaps it might be wo
mentioning the relevance of the choice of this Damour’s t
rad over that of the usual zero angular momentum obse
~ZAMO! tetrad in studying the electrodynamics in the vici
ity of Kerr hole’s horizon. Among other things, note that th
4-velocity of a local observer in this Damour’s quas
orthonormal frame,e0

m ~in e05e0
m]m) becomes, at the hori

zon whereD50, the usual Killing vector normal to the ho
rizon,xm5(]/]v)m1VH(]/]f)m which has no pathologica
behavior whatsoever there. Thus we do not need anyad hoc
regularization prescription to begin with. Certainly, this is
contrast to the corresponding quantity~i.e., the 4-velocity of
a local observer! in ZAMO which becomes ill-defined as th
horizon is approached and hence requires a cumbers
regularization treatment@11#. Thus in the present work, we
choose to work with Damour’s quasiorthonormal tetrad
ingoing Kerr coordinates and try to read out physical co
ponents of all tensors involved by projecting them on
Damour’s tetrad frame.

III. IDENTIFICATION OF ELECTRIC AND MAGNETIC
FIELDS ON THE HORIZON

In a sense, the BI electrodynamics can be thought of a
nonlinear generalization of the standard Maxwell theory
the BI field equation is a nonlinear differential equation th
reduces to the Maxwell field equation in an appropriate lim
As we shall see in a moment, however, the highly nonlin
BI equations can be made to take on a seemingly lin
structure similar to that of Maxwell equations. And to th
end, we need to introduce two species of field strength t
sors; the new oneGmn for the inhomogeneous BI field equa
tions and the usual oneFmn for the homogeneous Bianch
identity. Despite this added technical complexity, howev
the basic field quantities, namely the physical~finite and
nonzero! components of electric field and magnetic inducti
can still be extracted from the standard field strengthFmn .
And generally the typical procedure by which one can re
off physical components of electric field and magnetic indu
tion from Fmn involves taking the projection of componen
4-4
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of Fmn onto the orthonormal tetrad frame chosen,FAB

5Fmn(eA
meB

n ). SinceA,B are now tangent space indices
this locally-flat tetrad frame, the physical electric and ma
netic field components then can be read off in a stand
manner as

FAB5$Fi0 ,Fi j %,

where

Ei5Fi0 ,

~11!

Bi5
1

2
e i jkF jk5

1

2
e0i jkF jk5F̃0i52F̃ i0 .

A. Brief review of BI electrodynamics in curved spacetimes

Eventually for the exploration of boundary conditions f
BI electromagnetic fields at the horizon of Kerr hole, we no
briefly describe general formulation of BI theory in a give
curved spacetime. The BI theory of electromagnetism is,
spite its long history and physically interesting motivatio
behind it, not well known and hence might be rather un
miliar to relativists and workers in theoretical astrophys
community. Readers can find in the literature@16# some
other works which discuss interesting aspects of this
theory of electrodynamics from a modern perspective. In
discussion below, we are implicitly aimed at adapting t
theory to the formulation of electrodynamics in a rotati
-
rd

e-

-
s

I
r

e

uncharged black hole spacetime. Also at this point in see
worthy of mention that throughout, we will be assuming t
‘‘weak field limit.’’ To be a little more concrete, we conside
the dynamics of electromagnetic field governed by the
theory in the background of uncharged Kerr black ho
spacetime. And we assume that the strength of this exte
electromagnetic field is small enough not to have any siza
backreaction to the background geometry. Then this me
we are not considering phenomena described by solution
coupled full Einstein-BI theory but an environment whe
the test electromagnetic field possesses dynamics gove
by the BI theory rather than by the Maxwell theory. Als
note that this assumption can be further justified as long
we confine our concern to the electrodynamics around
‘‘uncharged’’ Kerr black hole. If, instead, one is interested
the same physics but in charged rotating black holes~which,
however, is rather uninteresting since it is less likely to ha
pen in realistic astrophysical environments where the bl
hole charge, if any, gets quickly neutralized by the surrou
ing plasma!, one would have to deal with the full Einstein-B
theory in which, unfortunately, the charged rotating bla
hole solution is not available.

Thus we consider here the action of~4-dimensional! BI
theory in a fixed background spacetime with metricgmn .
And to do so, some explanatory comments might be relev
Coupling the BI gauge theory to gravity is not so famili
and hence we start first with the BI theory action
4-dimensional flat spacetime:
entional

ard
with
S5E d4x
1

4p
b2F12A2detS hmn1

1

b
FmnD G

5E d4x
1

4p
b2F12A11

1

2b2 FmnFmn2
1

16b4 ~FmnF̃mn!2G
and then elevate it to its curved spacetime version by employing the minimal coupling scheme. This is really the conv
procedure and the result is

S5E d4xAgH 1

4p
b2F12A11

1

2b2 ~gmagnbFmnFab!2
1

16b4 ~gmagnbFmnF̃ab!2G1JmAmJ , ~12!

whereJm5reu
m1 j e

m is the electric source current for the vector potentialAm . Here, the generic parameter of the theory ‘‘b ’’
having the canonical dimension dim@b#5dim@Fmn#512, probes the degree of deviation of BI theory from the stand
Maxwell theory as the limitb→` obviously corresponds to the Maxwell theory action. Now extremizing this action
respect toAm yields the dynamical BI field equation

¹nF Fmn2
1

4b2 ~FabF̃ab!F̃mn

A11
1

2b2~FabFab!2
1

16b4 ~FabF̃ab!2
G54pJm, ~13!

104024-5
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while the Bianchi identity, which is a supplementary equ
tion to this field equation is given by

¹nF̃mn5
1

Ag
]n@AgF̃mn#50, ~14!

whereF̃mn5 1
2 emnabFab is the Hodge dual ofFmn . Note that

this Bianchi identity is just a geometrical equation indepe
dent of the detailed nature of a gauge theory action. Thu
remains the same as that in Maxwell theory. For later use
also provide the energy-momentum tensor of this BI theo

Tmn5
2

Ag

dS

dgmn

5
1

4p H b2~12R!gmn

1
1

R FFmaFn
a2

1

4b2 ~FabF̃ab!FmaF̃n
aG J , ~15!

where R[@11(1/2b2)(FabFab)2(1/16b4)(FabF̃ab)2#1/2.
Now the first thing that one can readily notice in this rath
unfamiliar BI theory of electrodynamics might be the fa
that even in the absence of the source current, the dynam
BI field equation and the geometrical Bianchi identity clea
are not dual to each other underFmn→F̃mn and F̃mn

→2Fmn . Obviously, this is in contrast to what happens
the standard Maxwell theory and can be attributed to the
that when passing from the Maxwell to this highly nonline
BI theory, only the dynamical field equation undergoes n
trivial change~‘‘nonlinearization’’! and the geometrical Bi-
anchi identity, as pointed out above, remains unchang
Therefore in order to deal with this added complexity pro
erly and formulate the BI theory in curved backgrou
spacetime in a manner parallel to that for the standard M
well theory, we find it relevant to introduce another fie
strengthGmn which, however, is made up ofFmn and F̃mn .
To be more precise, consider introducing, for the inhomo
neous BI field equation,

Gmn5
1

R FFmn2
1

4b2 ~FabF̃ab!F̃mnG ~16!

and defining the associated fields on each spacelike hy
surfaces, (Da,Ha) as

Da5Gabub ,

~17!

Ha52
1

2
eablsubGls52G̃abub ,

which also implies their purely spatial nature

uaDa505uaHa. ~18!

Here, um is the 4-velocity of fiducial observer~FIDO! ~or
more precisely ZAMO for rotating Kerr geometry! having a
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Then the inhomogeneous BI field equation now takes
form

¹nGmn54pJm, ~19!

which relates the fields (Dm,Hm) as defined above to ‘‘free’’
charge and currentJm5reu

m1 j e
m . Despite this extra elabo

ration, the fundamental field quantities, namely the elec
field and the magnetic induction still can be identified wit

Ea5Fabub ,

~20!

Ba52
1

2
eablsubFls52F̃abub ,

which again impliesuaEa505uaBa. Thus the homoge-
neous Bianchi identity equation

¹nF̃mn50 ~21!

is expressible in terms of usual (Em,Bm) fields. Then in this
new representation of a set of BI equations, we now imag
their space-plus-time decomposition. Obviously, the dyna
cal BI field equation would split up into two inhomogeneo
equations involving (Dm,Hm) and the ‘‘free’’ source charge
and currentJm5reu

m1 j e
m whereas the geometrical Bianch

identity equation decomposes into two homogeneous eq
tions involving (Em,Bm). Incidentally, one can then realiz
that this indeed is reminiscent of Maxwell equations in
‘‘medium.’’ Namely, in this new representation, the B
theory of electrodynamics can be thought of as taking on
structure of ordinary Maxwell electrodynamics in a mediu
with nontrivial electric susceptibility and magnetic perm
ability. In this interpretation of the new representation of t
BI theory, then, it is evident that the system is of course
linear in that (Dm,Hm) and (Em,Bm) are related by

Dm5
1

R FEm1
1

b2 ~EaBa!BmG ,
Hm5

1

R FBm2
1

b2 ~EaBa!EmG , ~22!

with R5F12
1

b2 ~EaEa2BaBa!2
1

b4 ~EaBa!2G1/2

or inversely

Em5
1

R FDm2
1

b2 ~DaHa!HmG ,
Bm5

1

R FHm1
1

b2 ~DaHa!DmG , ~23!

with R5F12
1

b2 ~HaHa2DaDa!2
1

b4 ~DaHa!2G1/2

,

4-6
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where we used Eqs.~16!, ~17! and ~20! and uaua521,
FabFab522(EaEa2BaBa) and FabF̃ab54EaBa. It is
also noteworthy from the above expressions that

EaBa5DaHa. ~24!

Thus, from now on, we may callDm5(0,Di) as the ‘‘electric
displacement’’ 4-vector andHm5(0,Hi) as the ‘‘magnetic
field strength’’ 4-vector.

B. Electric field and magnetic induction on the horizon

In our treatment of electrodynamics in the context of
theory given in the previous subsection, we introduced a
of fields Dm5(0,Di5Di), Hm5(0,Hi5Hi) in addition to
Em5(0,Ei5Ei), Bm5(0,Bi5Bi). Thus we would have to
first evaluate (Di ,Hi) on the horizon and then from them
identify (Ei ,Bi) afterwards. With respect to Damour’s qu
siorthonormal tetrad, then, the physical components of e
tric displacementDi and magnetic field strengthHi can be
read off as

GAB5Gmn~eA
meB

n ! and

Di5Gi0 , Hi5
1

2
e i jkGjk52G̃i0 . ~25!

More concretely, since we are working in ingoing Kerr c
ordinates (v,r ,u,f), the components of electric displac
menton the horizoncan be read off as

Dr̂5D15G105Gmn~e1
me0

n!ur 1

5
~r 1

2 1a2!

S1
FGrv1

a

~r 1
2 1a2!

GrfG ,
D û5D25G205Gmn~e2

me0
n!ur 1

5
1

S1
1/2FGuv1

a

~r 1
2 1a2!

GufG , ~26!

D f̂5D35G305Gmn~e3
me0

n!ur 1

5
S1

1/2

~r 1
2 1a2!sinu

Gfv ,

where S1[(r 1
2 1a2cos2u). Next, the components of mag

netic field strength again on the horizon can be read off
10402
I
et
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Hr̂5H152G̃105G235G23

5Gmn~e2
me3

n!ur 1
5

1

S1sinu
@a sin2uGuv1Guf#,

H û5H252G̃205G315G30

5D f̂5
S1

1/2

~r 1
2 1a2!sinu

Gfv , ~27!

H f̂5H352G̃305G125G02

52D û52
1

S1
1/2FGuv1

a

~r 1
2 1a2!

GufG ,
where we used the Damour’s quasi-orthonormal tetrad m
ric

ds252e0e11e2e21e3e35eABeAeB

to deduce

G235e2Ae3BGAB5G23,

G315e3Ae1BGAB5G30,

G125e1Ae2BGAB5G02.

Thus it is interesting to note that on the horizonH û5D f̂ and
H f̂52D û or in a vector notation in a tangent space to t
horizon,

HW H5DW H3n̂, ~28!

wheren̂5 r̂ is the vector~outer! normal to the horizon. This
relation indicates that$HW H ,DW H ,n̂% form a ‘‘triad’’ on the
horizon and hence constitutes the so-called ‘‘radiative in
ing ~or, inward Poynting flux!’’ boundary condition at hori-
zon as seen by a local observer at rest in the quasiortho
mal tetrad frame. Here, however, it seems worthy of n
that although this relation is one of the horizon bounda
conditions eventually we are after, it hasnot been obtained
essentially from the horizon specifics. As a matter of fact
holds for anyr 5const sections and indeed its emergence
be attributed to the ‘‘half-null’’ (e0

m5 l m,e1
m52nm) structure

of Damour’s quasiorthonormal tetrad. Given the observat
that the same type of relation as this ‘‘radiative ingoi
boundary condition’’ actually holds for any null surface, on
might wonder what then would be the distinctive nature
the event horizon~among null surfaces! that actually endows
this boundary condition with real physical meaning. Znaj
@5# provided one possible answer to this question and it is
following: the special feature of the event horizon over
other null surfaces is that it is a ‘‘stationary’’ null surfac
and there is a natural class of time coordinates associ
with the frame at infinity in which the black hole is at res
And the physical components of electric and magnetic fie
should be evaluated, in a unique way, in a frame at rest
4-7
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the horizon. At this point, we remark on another crucial thi
happening at the horizon. Namely we note that at the h
zon,

DaHa5gabDaHb5~eABea
Aeb

B!DaHb5eABDAHB

5D0H11D1H01D2H21D3H3

5D2D32D3D250,
~29!

DaDa5gabDaDb5~eABea
Aeb

B!DaDb5eABDADB

5D0D11D1D01D2D21D3D3

5D2D21D3D3

5H3H31H2H25eABHAHB

5gabHaHb5HaHa.

These relations also holdsnot only at the horizon but on any
r 5const sections and again can be attributed to the half-
nature of Damour’s quasiorthonormal tetrad. One immed
consequence of these relationsDaHa50 and DaDa

5HaHa everywhere is that practicallyEm5Dm and Bm

5Hm everywhere@due to Eqs.~22! and ~23!# as seen by a
local observer at rest in the quasiorthonormal tetrad frame
fact, the interpretation of this is straightforward. Sin
Damour’s quasiorthonormal tetrad is half-null in (v2r ) sec-
tor, an observer in this tetrad frame is actually a null obser
who, as a result of his motion, would see the electromagn
field around him as a ‘‘radiation field’’ all the way which, i
turn, turns the BI theory of electrodynamics effectively in
the Maxwell theory. What is particularly remarkable co
cerning this study of electrodynamics in the background
Kerr black hole in the context of BI theory is that the natu
of the theory or the concrete structure of BI equations h
pens to be such that it is indistinguishable to a local obse
in Damour’s quasiorthonormal tetrad frame~indeed to any
null observers! from that of standard Maxwell theory. Thi
point is indeed quite amusing on theoretical side. From n
on, then, whenever we deal with quantities involving phy
cal components of fields as seen by this observer
Damour’s tetrad frame, we can freely repla
@Dm(Em),Hm(Bm)# by @Em(Dm),Bm(Hm)#. Thus the radia-
tive ingoing boundary condition at the horizon obtain
above can be given in terms of electric field and magn
induction as

BW H5EW H3n̂. ~30!

As pointed out earlier, this relation states that the electric
magnetic fields tangential to the horizon are equal in mag
tude and perpendicular in direction and hence their Poyn
energy flux isinto the hole. This boundary condition as se
by a local observer again in a null tetrad frame~which has
been made to be well-behaved at the horizon by the am
of boost that becomes suitably infinite at the horizon! has
been derived first by Znajek@5# in the context of standard
Maxwell theory and here we just witnessed that precisely
same radiative ingoing boundary condition holds in the
theory context as well.
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IV. „FICTITIOUS … CHARGE AND CURRENT ON THE
HORIZON

It is well appreciated that in any attempt to have an int
tive picture of Blandford-Znajek process for the rotation
energy extraction from rotating black holes, the introducti
of surface charge and current density on the~stretched! ho-
rizon proves to be quite convenient. For instance, the cir
analysis in the membrane paradigm@11# cannot do without
the notion of the horizon surface charge and current dens
If one follows the original argument of Damour@6#, one can
justify their introduction as follows. Suppose the existence
a 4-currentJm(v,r ,u,f) which is defined and conserved a
over the spacetime. Letr 5r 1 be the location of an even
horizon, then obviously some charge and current can plu
into the hole and disappear from the regionr .r 1 . Never-
theless, imagine that we do not want to consider what h
pens inside the black hole (r ,r 1) and just wish to keep the
charge and current conserved in the regionr .r 1 . Then we
would have to endow the surfacer 5r 1 with charge and
current densities in such a way that the real current outs
the horizon and this fictitious current on the horizon toget
can complete the circuit. Then the task of constructing
horizon surface current can be described as a mathema
problem as follows: ‘‘Given the bulk currentJm(v,r ,u,f)
such that¹mJm50, find a complementary boundary~sur-
face! current j m on the surfacer 5r 1 such thatI m[@JmY(r
2r 1)1 j m# @where Y(r ) is the Heaviside function define
by dY(r )5d(r )dr] is conserved.’’ And in this problem, a
crucial point to be noted is that the conservation of the b
currentJm is ensured by the field equation. Obviously the
what changes from the ordinary Maxwell theory case to
present BI theory case is that now the conservation ofJm is
secured by the inhomogeneous BI field equation instead
the Maxwell equation, i.e.,

¹nGmn54pJm ~31!

implies ¹mJm5¹m¹nGmn/4p50 outside the horizon. Then
the condition for the conservation of thetotal current I m

reads

05¹mI m5¹m@JmY~r 2r 1!1 j m#

5
1

4p
~¹nGmn!S xm

r D d~r 2r 1!1¹m j m, ~32!

where we used ¹nGmn54pJm, ¹mJm50 and ]mY
5(xm /r )d(r 2r 1). Obviously, this equation is solved by th
complementary surface current given as

j m5
1

4p
Gmn~]nr !d~r 2r 1![

1

4p
Gmrd~r 2r 1!. ~33!
4-8
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Further, it is convenient to introduce a ‘‘Dirac distribution
dH on the horizon normalized with respect to the time
infinity v and the local proper areadA such that

E d4xAg dHd~v2v0! f ~v,r ,u,f!5E
H

dA f~v0 ,r 1 ,u,f!

~34!

which, then, yields

dH5
~r 1

2 1a2!

S1
d~r 2r 1!, ~35!

where we usedAg5S sinu and dA5(r 1
2 1a2)sinududf.

Finally, then, the complementary surface current 4-vector
the horizon can be written asj m5kmdH with

km5
1

4p

S1

~r 1
2 1a2!

G1
mr . ~36!

As usual, what matters is the identification of ‘‘physica
~i.e., finite and nonzero! components of this current 4-vecto
~i.e., the horizon charge and current density! as seen by an
observer in our quasiorthonormal tetrad frame. And they
be computed, using the dual of Damour’s mixed tetrad giv
in Eq. ~9!, in a straightforward manner as

s5k05kmem
0 ur 1

5
1

4p
@G1

vr2a sin2uG1
fr #

5
1

4p F ~r 1
2 1a2!

S1
Grv1

a

S1
GrfG5

1

4p
Dr̂ ,

k r̂5k15kmem
1 ur 1

50,

~37!

kû5k25kmem
2 ur 1

5
1

4p

S1
3/2

~r 1
2 1a2!

G1
ur

5
1

4p F 1

S1
1/2

Guv1
a

S1
1/2~r 1

2 1a2!
GufG5

1

4p
D û ,

kf̂5k35kmem
3 ur 1

5
1

4p

S1
1/2

~r 1
2 1a2!

3@2a sinuG1
vr1~r 1

2 1a2!sinuG1
fr #

5
1

4p

S1
1/2

~r 1
2 1a2!sinu

Gfv5
1

4p
D f̂ ,

where the subscript ‘‘1 ’’ denotes the value at the horizo
r 5r 1 and we compared these equations with Eq.~26! to
relate the surface charge and current densities to the com
nents of electric displacement on the horizon.
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V. OHM’S LAW, GAUSS’ LAW, AND AMPERE’S LAW

We now are in the position to demonstrate that, as res
of central significance, a set of three relations, at the horiz
between the fields (Di5Ei ,Hi5Bi) and the surface charg
and current densities (s5k0,k i) that can be thought of a
Ohm’s law, Gauss’ law and Ampere’s law valid at the ho
zon of a rotating Kerr black hole. First, notice that

D û54pkû, D f̂54pkf̂. ~38!

These relations can be rewritten in a vector notation in
tangent space to the horizon as

DW H54pkW or EW H54pkW ~39!

and hence can be interpreted as the ‘‘Ohm’s law.’’ Name
this relation precisely takes on the form of a nonrelativis
Ohm’s law for a conductor and hence implies that if w
endow the horizon with some charge and current dens
which are to be determined by the surrounding external e
tromagnetic fieldFmn , then the horizon behaves as if it is
conductor with finite surface resistivity of

r54p.377~ohms!. ~40!

The derivation of Ohm’s law and this value of surface res
tivity has been performed first by Damour@6# and by Znajek
@5# independently in the context of standard Maxwell theo
Thus what is indeed remarkable here is that the Ohm’s
above and the value of horizon’s surface resistivity (4p)
remain unchanged even when we replace the Maxwell the
by the BI theory of electrodynamics. This result cannot
naturally anticipated but close inspection reveals that it
be attributed to the peculiar structure of highly nonline
inhomogeneous BI field equation given in Eqs.~19! and~16!
which, at the horizon, shows some magic such that there
(DW ,HW ) fields become exactly the same as (EW ,BW ) as seen by a
local observer in Damour’s tetrad frame respectively as
be checked from Eqs.~23! and~27! @or Eq.~29!#. As Damour
@6# pointed out, this result constitutes a clear confirmation
Carter’s assertion@10# that a black hole is analogous to a
ordinary object having finite viscosity and electrical condu
tivity. Next, we also notice that

Dr̂54ps or Er̂54ps, ~41!

which evidently can be identified with the surface version
Gauss’ law. It says that the fictitious surface charge den
we assumed on the horizon plays the role of terminating
normal components of all electric fields that pierce the ho
zon just as we want it to. Lastly, if we combine the radiati
ingoing boundary condition at the horizon that we obtain
earlier, HW H5DW H3n̂ ~or BW H5EW H3n̂) and the Ohm’s law
above,DW H54pkW ~or EW H54pkW ), we end up with the third
relation

HW H54p~kW 3n̂! or BW H54p~kW 3n̂!, ~42!
4-9
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which may be viewed as the surface version of Amper
law. Again, consistently with our motivation for introducin
fictitious current density on the horizon, this relation ind
cates that the current density we assumed plays the ro
terminating any tangential components of all magnetic fie
penetrating the horizon. To summarize, for the reason st
earlier, even the highly nonlinear BI theory of electrodyna
ics leads to the same horizon boundary conditions Eqs.~30!,
~39!, ~41!, and~42! as those in the standard Maxwell theo
and indeed this set of four curious boundary conditions
the horizon actually have provided the motivation for t
proposal of membrane paradigm@11# of black holes later on.

VI. JOULE’S LAW OR OHMIC DISSIPATION
AT THE HORIZON

Perhaps one of the most intriguing consequences of
suming the existence of fictitious charge and current de
ties on the horizon would be that if we choose to do so,
horizon behaves as if it is a conductor with finite conduct
ity as we stressed in the previous section. Since it is
surrounding external electromagnetic field that drives
surface currents on the horizon, one might naturally won
what would happen to the Joule heat generated when t
currents work against the surface resistance and how
would be related to the electromagnetic energy going do
the hole through the horizon. Znajek and Damour also p
vided a simple and natural answer to this question. Nam
they showed in a consistent and elegant manner that the
electromagnetic energy flux~i.e., the Poynting flux! into the
rotating Kerr hole through the horizon is indeed precisely
same as the amount of Joule heat produced by the su
currents when they work against the surface resistivity
4p. In the following, we shall demonstrate again along t
same line of formulation as Damour that indeed the sam
true even in the context of BI theory of electrodynamics. I
well-known that for a stationary, axisymmetric black ho
spacetime with the horizon-orthogonal Killing field

xm5~]/]v !m1VH~]/]f!m[jm1VHcm ~43!

the mass energy and the angular momentum flux into
hole through the horizon are given respectively by

dM

dv
5E

H
dA Tn

mjnxm5E
H

dA Tv
mxm ,

~44!
dJz

dv
52E

H
dA Tn

mcnxm52E
H

dA Tf
mxm ,

wheredA5(r 1
2 1a2)sinududf is again the area element o

the horizon andTn
m is the matter energy-momentum tensor

the horizon. Now, combining these with the first law of bla
hole thermodynamics@17#

dQ5
1

8p
k̂HdA5dM2VHdJz , ~45!
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wheredQ denotes the heat dissipated in the holenot charge
~recall that we only consider hereunchargeKerr black hole!
with k̂H being the surface gravity@17# of the hole, one gets

dQ

dv
5

dM

dv
2VH

dJz

dv
5E

H
dA Tn

m~jn1VHcn!xm

5E
H

dA Tn
mxnxm . ~46!

Perhaps a word of caution might be relevant here. As
mentioned earlier, we are only interested in the ‘‘test’’ ele
tromagnetic field whose dynamics is governed particula
by the BI theory in the ‘‘background’’ of uncharged Ke
black hole spacetime which is a solution to the vacuum E
stein equation. Therefore, as long as we confine our con
to the case withunchargedKerr black hole physics, the firs
law of black hole thermodynamics given above still rema
to be valid. If, instead, one is interested in the case w
charged, rotating black hole physics, one would have to d
with the full, coupled Einstein-BI theory context and the
there the associated first law should get modified to the
tended version like the one given by Rasheed@18# recently.
Now, since the ‘‘matter’’ for the case at hand is the BI ele
tromagnetic field, we have at the horizon

Tmnxmxnur 1

5
1

4p H b2~12R!xaxa

1
1

RFFmaFn
a2

1

4b2 ~FabF̃ab!FmaF̃n
axmxnG J U

r 1

5
1

4p
~FmaFn

a!xmxnU
r 1

, ~47!

whereR is as defined earlier and in the second line we u
that at the horizon wheregabxaxb5xaxa50,

FabFab522~EaEa2BaBa!522~DaDa2HaHa!50,

FabF̃ab54EaBa54DaHa50, and hence

R5F11
1

2b2 ~FabFab!2
1

16b4~FabF̃ab!2G1/2

51,

which also yields, at the horizon,Gmn5Fmn . Recall that in
the standard Maxwell theory,

Tmn5
1

4pFFmaFn
a2

1

4
gmn~FabFab!G ~48!

and thus at the horizon,

Tmnxmxnur 1
5~1/4p!~FmaFn

a!xmxnur 1
,

which is the same as its counterpart in BI theory obtain
above. This means that, at the horizon, the amount of t
electromagnetic energy flux into the hole turns out to be
same and hence indistinguishable between Maxwell the
and BI theory. Further,
4-10
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Tmnxmxnur 1
5

1

4p
~FmaFn

a!xmxnur 1

5
1

4p H F S1
1/2

~r 1
2 1a2!sinu

FfvG 2

1F 1

S1
1/2

Guv1
a

S1
1/2~r 1

2 1a2!
GufG 2J
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where we usedGmn5Fmn and k r̂50 at the horizon. Thus
finally we end up with
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where we used the Ohm’s lawEW H54pkW , we obtained ear-
lier. As we promised to demonstrate, clearly this is t
Joule’s law which is again precisely the same as its Maxw
theory counterpart originally obtained by Znajek@5# and by
Damour @6# and implies that the absorption of electroma
netic energy by Kerr holes through the horizon can be tra
lated into an equivalent picture in which the holes gain
ergy by absorbing Joule heat~or Ohmic dissipation!
generated when the surface currentkW driven by the electric
field EW H works against the surface resistivity of 4p. And as
before, what is remarkable is the fact that even if we repl
the Maxwell theory by the highly nonlinear BI electrod
namics, the physics of the horizon such as this horizon th
modynamics as well as the horizon boundary conditions
main unchanged. And as we pointed out earlier, this
much to do with the nature of Damour’s quasiorthonorm
tetrad frame~i.e., its half-null structure! in ingoing Kerr co-
ordinates.

VII. CONCLUDING REMARKS

In the present work, we have explored the interaction
electromagnetic fields with a rotating~Kerr! black hole in the
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context of Born-Infeld~BI! theory of electromagnetism an
particularly we have derived BI theory versions of the fo
horizon boundary conditions of Znajek and Damour. Int
estingly enough, as far as we employ the same local
tetrad frame as the one adopted in the works by Damour
by Znajek, we ended up with exactly the same four horiz
boundary conditions despite the shift of the electrodynam
theory from a linear Maxwell one to a highly nonlinear B
one. As we have seen in the text, this curious and unexpe
result could be attributed to the fact that the concrete str
ture of BI equations happens to be such that it is indis
guishable at the horizon to a local observer, say, in
Damour’s local tetrad frame from that of standard Maxw
theory. Finally, we have a word of caution to avoid a po
sible confusion the potential readers might have. Nam
again we point out that in all the calculations involved in th
work to read off physical components of tensors such
Maxwell field tensor and current 4-vector, we strictly us
the quasiorthonormal tetrad given in Eqs.~8! and ~9! and
nothing else. In this sense, our choice of local tetrad fra
was slightly different from that in the original work o
Damour @6# in which he introduced, particularly on th
2-dimensional,v5const section of the event horizon, som
other orthonormal basis@slightly different from $e2

m ,e3
m%

given in Eq.~8!# specially adapted to the ‘‘intrinsic geom
etry’’ of the v5const section of the horizon and used the
to project out physical components of tensors. As such,
deviation of the results one may find in the expressions
the electric field, magnetic field and surface charge and c
rent densities appeared in the text of the present work fr
their counterparts in the original work of Damour can
attributed to this slightly different choices of the local tetr
vectors. This discrepancy, however, is insensitive to
physical nature of this study of the horizon boundary con
tions that we try to deliver in the present work.
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