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Znajek-Damour horizon boundary conditions with Born-Infeld electrodynamics
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In this work, the interaction of electromagnetic fields with a rotaiigrr) black hole is explored in the
context of the Born-InfeldBl) theory of electromagnetism instead of standard Maxwell theory and particularly
Bl theory versions of the four horizon boundary conditions of Znajek and Damour are derived. Naturally, an
issue to be addressed is then whether they would change from the ones given in the Maxwell theory context
and if they do, how. Interestingly enough, as long as one employs the same local null tetrad frame as the one
adopted in the works of Damour and of Znajek to read out physical values of electromagnetic fields and a
fictitious surface charge and currents on the horizon, it turns out that one ends up with exactly the same four
horizon boundary conditions despite the shift of the electrodynamics theory from a linear Maxwell one to a
highly nonlinear Bl one. Close inspection reveals that this curious and unexpected result can be attributed to
the fact that the concrete structure of Bl equations happens to be such that it is indistinglasitiadleorizon
to a local observer, say, in Damour’s local tetrad frame from that of standard Maxwell theory.
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I. INTRODUCTION were a voltage generator of an electric circuit driving current

out of the horizon’s equator, then up magnetic field lines to a

The idea of using rotating black holes as energy sourcelgirge distance, then through “plasma load” to other field
has a long history. To our knowledge, Salpefai and lines near the hole’s spin axis, then down those field lines
Zel'dovich [1] were the first to point out that gigantic black @nd into the horizon. Namely, the magnetic field were the
holes might serve as power engines for quasars or radio ga\{\_nres of the electric circuits, the plasma was the load that

axies. Realistic theoretical models to realize this type of enEXerts power from the circuit. And the two pictures, one

ergy extraction from rotating black holes also appeared af_schematlc and the other analytic, are just two different ways

terwards and they are due to Penro, Press and of describing the same phenomenon. This electric circuit de-
Teukolsky [2], Ruffini and Wilson[3], Damour[3], and scription was totally unexpected and thus curious enoug

. although it was resulted from a careful general relativistic
Blandford and Znaje{4]. Among these models, that of yeayment of the problem. Right after the post of this new

Blandford and Znajek is particularly interesting in its formu- echanism, Znajefs] and, independently, Damo{] suc-
lation and looks quite plausible in its operational mechanismeeeded in translating the careful general relativistic formula-
At first, puzzling over the possible explanation for the ob-tjon into a surprisingly simple nonrelativistic, flat spacetime
served twin jets pointing oppositely out of a black hole-electrodynamics language, the celebrated four horizon
accretion disk system, Blandford and Znajek conceived of &oundary conditions. And the assumption of central impor-
particular process in which the power going into the jetstance in this new picture is to endow the horizon with some
comes from the hole’s enormous rotational energy. Schefictitious surface charge and current as those previously
matically, their mechanism works as follows: suppose thaimagined by Hanni and Ruffidi7]. It is really amusing that
the rotating hole is threaded by magnetic field lines. As theone now has an option to view the situation in terms of flat
hole spins, it drags the field lines around, causing them t@pacetime electrodynamics alone at least for rough under-
fling surrounding plasma upward and downward to form twostanding.
jets. Then the jets shoot out along the hole’s spin axis and Speaking of the theory that governs the electromagnetism,
their direction is firmly fixed to the hole’s axis of rotation. however, it is interesting to note that historically, there has
The magnetic field lines, of course, come from the accretiobeen another classical theory that can be thought of as a
disk around the hole. Namely, it is the magnetic fields thalarger class of theory involving the standard Maxwell theory
extract the rotational energy of a black hole and then act tqust as its limiting case. It is the theory proposed in the 1930s
power the jets. According to their careful analysis, on theby Born and Infeld 9]. In spite of its long history, the Born-
other hand, as the energy is extracted, electric currents flowmfeld (BI) theory of electrodynamics has remained almost
into the horizon near the hole’s polés the form of posi- unnoticed and hence nearly uncovered in full detail. This
tively charged particles falling inwajdand currents flow out theory may be thought of as a highly nonlinear generaliza-
of the horizon near the equat@n the form of negatively- tion of or a nontrivial alternative to the standard Maxwell
charged particles falling inwaydIt was as though the hole theory of electromagnetism. It is known that Born and Infeld
had been led, when they first constructed this theory, by the
considerations such as finiteness of the energy in electrody-
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netic fields with a rotatingKerr) black hole but in the con- Poynting energy flux isnto the hole. Secondly, the Ohm’s

text of BI theory of electromagnetism instead of Maxwell |aw readsE, =4m«. It has been derived rigorously in the
theory. And our particular concern is to derive BI theory work by Damour{6] and pointed out in the work by Znajek
versions of the four horizon boundary conditions to see hows]. Clearly, this relation takes on the form of a nonrelativ-
they would change from the ones derived originally by Zna-istic Ohm'’s law for a conductor and hence implies that if we
jek and by Damour in the context of Maxwell theory. Now endow the horizon with some charge and current densities
the motivation for shifting the theory of electromagnetism which are to be determined by the surrounding external
from that of standard Maxwell to that of Bl to study the electromagnetic fieldF,, as we shall see in the texthen
physics of interaction between “test” electromagnetic field the horizon behaves as if it is a conductor with finite surface
and “background” rotating black hole geometry can be resistivity of p=4m~377(ohms). Actually these two rela-
stated as follows. The BI theory, although appeared as fons are the ones that have been explicitly derived in the
“classical” theory long before the advent of quantum elec-works by Znajek and by Damour and play the central role in
trodynamics(QED) theory, may be viewed as some kind of justifying that the introduction of fictitious charge and cur-
an effective low-energy theory of QED in that its highly rent densities on the horizon indeed provides a self-
nonlinear structure plays the role of eliminating the short-consistent picture. That is, one might wonder what would
distance divergences. Normally, the strong magnetic fieldhappen to the Joule heat generated when those surface cur-
believed to be anchored in the central black holes of typicatents work against the surface resistance and how it would be
gamma-ray bursters, is regarded as being originated, saselated to the electromagnetic energy going down the hole
from that of neutron stars that has collapsed to form thahrough the horizon. In their works, Znajek and Damour pro-
black hole. A number of various observations indicate that invided a simple and natural answer to this question. Namely,
young neutron stars, the surface magnetic field strengths atbey showed in an elegant manner that the total electromag-
of order 16*-10" (G) and in some extreme cases such agietic energy flux(i.e., the Poynting fluxinto the rotating
magnetars, magnetic field strengths are estimated to be &err hole through the horizon is indeed precisely the same as
large as=5x 10" (G) [8]. Then the magnetic field of this the amount of Joule he&Ohmic dissipation produced by
ultra strength, in turn, stimulates our curiosity and leads us téhe surface currents when they work against the surface re-
ask questions such as what would happen if we choose taistivity of 4. As a result, one may think of the rotating
employ the Bl theory that, as stated, can be thought of as anole as a conducting sphere that absorbs the incident electro-
effective theory of QED, instead of linear Maxwell theory, to magnetic energy flux as a form of Joule heat that the surface
study the physics in the vicinity of rotating hole’s horizon? current(driven by the electromagnetic fieldgenerates when
And in doing so, we anticipate that perhaps the highly nonit interferes with the surface resistivity. This is indeed an
linear nature of the BI theory may serve to uncover somenteresting and quite convincing alternative picture of view-
hidden interplay between the strong electromagnetic fieldng the interaction of external electromagnetic fields with a
and ultra strong gravity near the hole’s horizon. Since ourotating black hole. Damou®6] also remarked that this result
main concern is the derivation of the four horizon boundaryprovides a clear confirmation of Carter’s asserfib@| that a
conditions in Bl theory, we now recall some of the basicblack hole is analogous to an ordinary object having finite
ingredients of these boundary conditions obtained in the cornviscosity and electrical conductivity. Thirdly, if one follows
ventional Maxwell theory. the formulation of Damour but in a slightly different way in
The four “horizon boundary conditions” first derived in taking the local tetrad frame and projecting the Maxwell field
the works of Znajek5] and of Damouf6] and reformulated tensor and the surface current 4-vector onto that chosen tet-
later in the literature can be briefly described as follows.rad frame, one also gets the relatiép= 470 which may be
They may be called radiative ingoing boundary condition,identified with the surface version of Gauss’ law. It says that
Ohm'’s law, Gauss’ law and Ampere’s law, respectively. Andthe fictitious surface charge density we assumed on the ho-
in order to represent each boundary condition properly, waizon plays the role of terminating the normal components of
need to introduce in advance some quantities that will ball electric fields that pierce the horizon. Lastly, if we com-
derived carefully in the text shortly. They are electric andbine the radiative ingoing boundary condition at the horizon

magnetic fields at the horizorE(,,By) as seen by a local that we obtained earlieB,,=E,xn with the Ohm’s law
observer in a null tetrad frame which has been made to bg ,=47x, we end up with the fourth relatioB,, =4 (x
well behaved at the horizon by the amount of boost that, A) which can be viewed as the surface version of Am-

becomes suitably infinite at the horizon and tieitious o re:g Jaw. Again, consistently with our motivation for intro-
charge and current densities, ) that have been assigned ducing fictitious current density on the horizon, this relation
at the horizon in such a way that the sum of real currenindicates that the current density we assumed plays the role
4-vector outside the horizon and this fictitious currentof terminating any tangential components of all magnetic
4-vector on the horizon together is conserved. Firstly, thengields penetrating the horizon. And actually these four hori-
the radiative ingoing boundary condition first derived by zon boundary conditions later on provided a strong motiva-
Znajek[5] takes the fornB,=E, X n with n being the outer tion for the proposal of so-called “membrane paradigm
unit normal to the horizon. Evidently, it states that the elec{11]” of black holes by Thorne and his collaborators. As we
tric and magnetic fields tangential to the horizon are equal iralready mentioned, in the present work we would like to
magnitude and perpendicular in direction and hence theiparticularly derive Bl theory versions of these four horizon
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boundary conditions to see if they would change from theunit mass of the hole respectively. Turning to the choice of
ones given above and if they would, how. Interestinglytetrad frame, there are largely two types of tetrad frames;
enough, as far as we employ the same local null tetrad framerthonormal tetrade,={ey,=u,e;,e,,e;} and null tetrad

as the one adopted in the works by Damour and by Znajek, iz, ={| n,m,m} which are related to each other f§2]
turns out that we end up with exactly the same four horizon

boundary conditions despite the shift of the electrodynamics 1

theory from a linear Maxwell one to a highly non-linear Bl e=—=(+n), e;=—(I—n),

one. As we shall see shortly in the text, this curious and V2 V2

unexpected result can be attributed to the fact that the nature (2
of the BI theory or more precisely, the concrete structure of

_ 1 _
Bl equations happens to be such that it is indistinguishable €= E(m“L m), e3=ﬁ(m— m),
the horizonto a local observer, say, in Damour’s local tetrad
frame from that of standard Maxwell theory. We find this with the null tetrad satisfying the orthogonality relation
point indeed quite amusing on theoretical side.
—I#n,=1=m*m,, 3)
Il. CHOICE OF COORDINATE SYSTEM AND TETRAD
FRAME with all other contractions being zero. As is well known, the
) ) . Hawking-Hartle tetrad is well-behaved at the horizon and
As we stated in the Introduction above, we would like t0can be constructed by performing an appropriate null rota-

derive Znajek-Damour-type boundary conditions at the horijgp [13,14) on the Kinnersley’s null tetrad given in ingoing
zon of Kerr black hole in the context of Bl theory of elec- kerr coordinates. It is given bjL3,14]

tromagnetism. Generally speaking, all that is required of the

“correct” boundary conditions for electric and magnetic A a
fields at the horizon can be stated as follows. The physical lﬁH:(lv 2(r’+a?)’ 0, (r?+ad)
field’'s components in the neighborhood of an event horizon

should have “nonspecial” values. Or put another way, a

physically well-behaved observer at the horizon should see nﬁH:(o,
the fields as having finite and nonzero values. And indeed, in

order to discuss electrodynamics in terms of thigsical

field values, one should make relevant choice of coordinate 1 L i
system and proper choice and treatment of the associated TSy asing 0, 1, Fnb’)

tetrad framg12] for the background Kerr black hole space-

time. It is well known that this can be achieved only whenyhere s =12+ a2co£6. Now, it is interesting to note that
one takes the ingoing Kerr coordinates, the advanced ”Uﬁenerally one can “mix” half of the null tetrad, and half

coordinates representing a reference frame of "freelyt the orthonormal tetrad, to form a “quasiorthonormal”
falling” photons, and employs an associated null tetrad,, «mixed” tetrad

frame such as that of Damo[®] which is well-behaved on

the event horizon. Unlike the familiar Kinnersley’s null tet- {I*,—n# el el {—n, I, e* el (5)
rad [15] or the well-known Hawking-Hartle tetradL3,14], a -

however, the Damour’s choice of tetrad is rather nonstandardngd if we construct this half-null, half-orthonormal, mixed

and hence may not be so familiar. Even in the original worktetrad from the above Hawking-Hartle null tetrad, it becomes
of Damour[6], the connection of his tetrad choice to thesepamour's quasiorthonormal tetrad as we can see shortly. Be-
standard null tetrads is not discussed. Thus here in this seggre we proceed, let us elaborate on the general construction
tion, we would like to briefly exhibit the derivation of of this mixed tetrad. Using the relations between the ortho-

Damour’s tetrad so as to clarify this issue. We now start withhormal tetrade, and null tetradZ, given in Eq.(2),
some basics. Among the choices of coordinates for Kerr

4

—(r’+a?
T' 0, 0),

spacetime, the best-known Boyer-Lindquist coordinatés ds@:gﬂvdxudxvz nABeﬁGEdX"dXV
=(t,r,6,%) [12] can be viewed as the generalization of -
Schwarzschild coordinates to the stationary, axisymmetric =(=lun,—n,l,+m,m,+m,m,)dx“dx"  (6)

case and théngoing) Kerr coordinates’*=(v,r,6,¢) [12] o

can be thought of as the axisymmetric generalization ofind henceg,,=—1,n,—n,|,+m,m,+m,m,. However,
Eddington-Finkelsteitadvanceginull coordinates. They are since the pair €,,e;) is related only to ,n) while the pair
related by the coordinate transformation given[bg] (e,,e3) is related only to fn,m), one can write, using

2.2, .33
m,m,+m,m,=e‘e +e’e
(r2+az)d LU

uSv
dv=dt+ A

~ a
= + —
r, dp=d¢ Adr, 1) g’w:_|an_nﬂ|v+eiei+eie3. (7)

whereA=r?+a?—2Mr with M anda being the Arnowitt-  This obviously implies that one may mix half of null tetrad
Deser-MisnerfADM) mass and the angular momentum perand half of orthonormal tetrad to form a mixed tetrad as
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given in Eq.(5). Therefore, we now construct this mixed

tetrad from the previous Hawking-Hartle tetrad as

0~ HH " 2(r?+a%)’ 7 (r?+ad)

B B (r’+a?)
er=—ngu=|0, s 0, 0],
8
1 — 1
e§=—(mﬁH+mﬁH): O| O; Ty 0 ’
\/E 21/2
1 _
eg:E(mﬁH_mﬁH)
_ asing 0 0 1
21/2 ! ! ’EI/ZSine !
and its dual is
(r’+a?) —(r’+a?
0__ HH _
e,uz_n,u, - 2 ’ O, ' 2 asing ,
1_HH
eM=IM
(A > 0 26
\2(r’+a%)’ (r’+a®’ 2(r2+az)aSI ’
9
ezzi(mHH+E'*H)=(o 0, 32 0)
3_i HH_ —HH
€.= \/E(m# M, )
—asiné (r’+a?)
= 21/2 ! ! ’ 21/2 sing |,

which we renamed as
[*—ef, nt——ef,
_ A0
l,—€,, N,——€,,

to go from the null tetrad’s orthogonality relationsl*n,,
=1=m“m, to the usual orthonormality Conditioaﬁeﬁ

= 6%, ele’= 5" . Note that this mixed tetrad precisely coin-

cides with Damour’s choice of quasiorthonormal tetf&d
And the tetrad metrie,g=€*B in
d52= GABeAeB

can be identified with

PHYSICAL REVIEW D 63 104024

0 1 00
1 0 0O

eas=€®=[0 0 1 0 (10
0 0 01

Note that in all the calculations involved in this work to read
off physical components of tensors such as Maxwell field
tensor and current 4-vector, we shall strictly use this quasi-
orthonormal tetrad given in Eq&) and(9) and nothing else.

In this sense, our choice of local tetrad frame is slightly
different from that in the original work of Damoy6] in
which he introduced, particularly on the 2-dimensional,
=const section of the event horizon, some other orthonormal
basis(slightly different from{e4 ,e4} given above specially
adapted to the “intrinsic geometry” of the= const section

of the horizon and used them to project out physical compo-
nents of tensors.

Before closing our discussion, perhaps it might be worth
mentioning the relevance of the choice of this Damour’s tet-
rad over that of the usual zero angular momentum observer
(ZAMO) tetrad in studying the electrodynamics in the vicin-
ity of Kerr hole’s horizon. Among other things, note that the
4-velocity of a local observer in this Damour's quasi-
orthonormal frameegfy (in ey=e€4d,) becomes, at the hori-
zon whereA =0, the usual Killing vector normal to the ho-
rizon, x*=(dl dv)*+ Q (9l dp)* which has no pathological
behavior whatsoever there. Thus we do not needaahkioc
regularization prescription to begin with. Certainly, this is in
contrast to the corresponding quantite., the 4-velocity of
a local observerin ZAMO which becomes ill-defined as the
horizon is approached and hence requires a cumbersome
regularization treatmerjtL1]. Thus in the present work, we
choose to work with Damour’s quasiorthonormal tetrad in
ingoing Kerr coordinates and try to read out physical com-
ponents of all tensors involved by projecting them onto
Damour’s tetrad frame.

IIl. IDENTIFICATION OF ELECTRIC AND MAGNETIC
FIELDS ON THE HORIZON

In a sense, the Bl electrodynamics can be thought of as a
nonlinear generalization of the standard Maxwell theory as
the BI field equation is a nonlinear differential equation that
reduces to the Maxwell field equation in an appropriate limit.
As we shall see in a moment, however, the highly nonlinear
Bl equations can be made to take on a seemingly linear
structure similar to that of Maxwell equations. And to this
end, we need to introduce two species of field strength ten-
sors; the new on& ,, for the inhomogeneous Bl field equa-
tions and the usual ong,,, for the homogeneous Bianchi
identity. Despite this added technical complexity, however,
the basic field quantities, namely the physi¢ahite and
nonzerg components of electric field and magnetic induction
can still be extracted from the standard field strerfggh .

And generally the typical procedure by which one can read
off physical components of electric field and magnetic induc-
tion from F,, involves taking the projection of components
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of F,, onto the orthonormal tetrad frame choséfn,gz  uncharged black hole spacetime. Also at this point in seems
=F,.(exep). SinceA,B are now tangent space indices in worthy of mention that throughout, we will be assuming the
this locally-flat tetrad frame, the physical electric and mag-‘weak field limit.” To be a little more concrete, we consider
netic field components then can be read off in a standarthe dynamics of electromagnetic field governed by the BI
manner as theory in the background of uncharged Kerr black hole
spacetime. And we assume that the strength of this external
Fas={Fio.Fij}, electromagnetic field is small enough not to have any sizable
backreaction to the background geometry. Then this means
we are not considering phenomena described by solutions in
Ei=Fio, coupled full Einstein-Bl theory but an environment where
(11) the test electromagnetic field possesses dynamics governed
1 _ o _ by the BI theory rather than by the Maxwell theory. Also
Bi= Eeiij’k=§6mijJk= Foi=—Fio. note that this assumption can be further justified as long as
we confine our concern to the electrodynamics around the
) ) o ) “uncharged” Kerr black hole. If, instead, one is interested in
A. Brief review of Bl electrodynamics in curved spacetimes the same physics but in charged rotating black holdsich,
Eventually for the exploration of boundary conditions for however, is rather uninteresting since it is less likely to hap-
BI electromagnetic fields at the horizon of Kerr hole, we nowpen in realistic astrophysical environments where the black
briefly describe general formulation of Bl theory in a given hole charge, if any, gets quickly neutralized by the surround-
curved spacetime. The Bl theory of electromagnetism is, deing plasma, one would have to deal with the full Einstein-BlI
spite its long history and physically interesting motivationstheory in which, unfortunately, the charged rotating black
behind it, not well known and hence might be rather unfa-hole solution is not available.
miliar to relativists and workers in theoretical astrophysics Thus we consider here the action @-dimensional Bl
community. Readers can find in the literatUre5] some theory in a fixed background spacetime with metig, .
other works which discuss interesting aspects of this BIAnd to do so, some explanatory comments might be relevant.
theory of electrodynamics from a modern perspective. In ouCoupling the Bl gauge theory to gravity is not so familiar
discussion below, we are implicitly aimed at adapting theand hence we start first with the Bl theory action in
theory to the formulation of electrodynamics in a rotating4-dimensional flat spacetime:

where

fd“ ﬁz[ \/ (n,w ,BF’”)

1 ~
J’ d4 ﬁ2|: \/ ZB FI-LV_ 1664(FMVFIMV)2

and then elevate it to its curved spacetime version by employing the minimal coupling scheme. This is really the conventional
procedure and the result is

1 1 1 ~
:f d‘%/ﬁ(ﬂﬁz{l— \/1+ Z—BZ(Q’Wg”ﬁFWFaﬁ)— 1634(9““9VBFuuFaﬁ)2 +J”Au}' (12

whereJ“=p.u*+j¢ is the electric source current for the vector poterdial Here, the generic parameter of the theogy
having the canonical dimension dig]=dim[F,, |]=+2, probes the degree of deviation of Bl theory from the standard
Maxwell theory as the limi{8— oo obviously corresponds to the Maxwell theory action. Now extremizing this action with
respect toA,, yields the dynamical Bl field equation

1 -
Frr— 4—'82(|=QBF“B)|=/”
\% =4I, (13

’ 1 1
a aBy2
\/1+2—ﬁ2(|=aﬂ|= By — ,84(':“3': By
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while the Bianchi identity, which is a supplementary equa-timelike geodesic orthogonal to spacelike hypersurfaces.
tion to this field equation is given by Then the inhomogeneous BI field equation now takes the
form

v, F*”‘( a,[\gF#1=0, (14 V.G =4mdt, (19

= 1 _vap . which relates the fielddX*,H*) as defined above to “free”
whereR""=3 e""*"F . is the Hodge dual oF ,,. Note that a6 ang current= p,u”+j~ . Despite this extra elabo-

this Bianchi identity is just a geometrical equatlon indepen, ration, the fundamental field quantities, namely the electric

dent of the detailed nature of a gauge theory action. Thus field and the magnetic induction still can be identified with
remains the same as that in Maxwell theory. For later use, we

also provide the energy-momentum tensor of this Bl theory, Eo— FaBuB,
(20)
:T Baz—%e"‘ﬁ“’uBsz—ﬁ“ﬁuﬁ,
,3 (1-R)9u» which again impliesu,E*=0=u,B“. Thus the homoge-
neous Bianchi identity equation
+§ FoaFs— zzﬁﬂF“ >FMCF';“H, (15 v, Eer=0 (21)

where R=[1+ (1/282)(F BFaB)_(]_/lGﬁA)(F Br:ag)z]uz is expressible in terms of usugktf,B*) fields. Then in this
Now the first thing that one can readily notice in this rather?hev.v represer:tatlgn of da set of B.It'equrgfn.s, vvle rj[ﬁw(;magmg
unfamiliar Bl theory of electrodynamics might be the fact EIr Space-pius-ime decomposition Viously, the dynami-

that even in the absence of the source current, the dynamlcgﬁa‘I B{ field equlat|on V\Lolu_:(i splltdut[;] |nt(f) two |nhomog§neous
Bl field equation and the geometrical Bianchi identity clearlyequa ions involving ) and the “free” source charge
are not dual to each other undé E  and B and current)*=p,u*+j& whereas the geometrical Bianchi
pr " uy uy identi ion m into two homogen -
— —F,,. Obviously, this is in contrast to what happens in dentity equation decomposes into two homogeneous equa

. ions involving E*,B*). Incidentally, one can then realize
the standard M?‘X‘Ne” theory and can be "?‘tt”bmed o the fa t?1at this indeed is reminiscent of Maxwell equations in a
that when passing from the Maxwell to this highly nonlinear

Bl theory, only the dynamical field equation undergoes non- medium.” Namely, in this new representation, the Bl
Y, only y q 9 theory of electrodynamics can be thought of as taking on the
trivial change(*‘nonlinearization”) and the geometrical Bi-

- ” ; X tructure of ordinary Maxwell electrodynamics in a medium
anchi identity, as pointed out above, remains unchange y y

. . . : vith nontrivial electric susceptibility and magnetic perme-
Therefore in order to deal with this a_ldded complexity prOp'ability In this interpretation of the new representation of the
erly and formulate the BI theory in curved background

L Bl theory, then, it is evident that the system is of course not
spacetime in a manner parallel to that for the standard Maxlmear in that O#,H#) and (E*,B*) are related by

well theory, we find it relevant to introduce another field

strengthG,, which, however, is made up &f,, and F,w
To be more precise, consider introducing, for the inhomoge- D*=% ,32(E «BY)BH|,
neous Bl field equation,
Gomt|F e o (F, F8 E, 16 Hi= = B 2(E BYEX|, (22)
,U,V_ﬁ nv B ( af ) ( ) R ,8
and defining the associated fields on each spacelike hyper- . B 1 N w1 o2 vz
surfaces, D, H®) as with R= l—?(EaE -B,B )—F(EQB )
D*=G*ug, or inversely
17
a 1 afNo ~ap EM:E D#— (D Ha)HM
H :_56 UBG)\(,.:_G UB, R BZ
which also implies their purely spatial nature 1 1
B#= R H*+ F(DQHQ)D” , (23
u,D*=0=u,H*. (18
w . . . 1 1 1/2
Here, u is the 4-velocity of fIFiUCIa| observe(rFIDO) (or with Rz[l— —(H, H*—D D% — _4(DaHa)2} ,
more precisely ZAMO for rotating Kerr geomejriiaving a B B
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where we used Eq916), (17) and (29) and u Ua=—1., HF=H1=—€510= GB=Gy,
F.sF*?=-2(E,E*~B,B*) and F,zF**=4E,B*. It is
also noteworthy from the above expressions that

Gu(esey)l, = s, Sme[aS|n20va+Gg¢]
E.B*=D_H“ (24 - .
Hy=Hy=—G=G"=Ggy
Thus, from now on, we may cdl*= (Q,D‘) as the “electric o 21’2
displacement” 4-vector anti#=(0,H') as the “magnetic _D(ﬁ_(r2++‘f,12)sim9 du (27)

field strength” 4-vector.
Hy=Hz=— é30: G™=Gy,

B. Electric field and magnetic induction on the horizon
a

In our treatment of electrodynamics in the context of Bl =-Dy=—35/C0t 272G
theory given in the previous subsection, we introduced a set 7 (ri+a%
of fields D#=(0,D'=D;), H*=(0H'=H;) in addition to
E*=(0E'=E;), B*=(0,B'=B;). Thus we would have to
first evaluate D;,H;) on the horizon and then from them
identify (E;,B;) afterwards. With respect to Damour’s qua- ds2=2e%! + 6262+ e3e%= ¢, geeB
siorthonormal tetrad, then, the physical components of elec-
tric displacemenD; and magnetic field strengtH; can be to deduce

read off as

where we used the Damour’s quasi-orthonormal tetrad met-

G23: €2A€3BGAB: 623,
Gag=G,, (eheg) and
mv\=A™B
GSl: ESAElBGAB:G30,

G12: ElAEZBGAB: Goz.

1 . ~
Di=Go, HizieijkGJk: —Gio. (295 L . .
Thus it is interesting to note that on the horizép=D ; and
Hj=—Dj or in a vector notation in a tangent space to the
horizon,
More concretely, since we are working in ingoing Kerr co- R
ordinates ¢,r,6,¢), the components of electric displace- ﬁH:DHXﬁ, (28

menton the horizoncan be read off as L
wheren=r is the vector(outen normal to the horizon. This
relation indicates thafH, ,D,n} form a “triad” on the
D;=D1=Gp= G,w(e‘feS)Ir+ horizon and hence constitutes the so-called “radiative ingo-
ing (or, inward Poynting fluX’ boundary condition at hori-
zon as seen by a local observer at rest in the quasiorthonor-
mal tetrad frame. Here, however, it seems worthy of note
that although this relation is one of the horizon boundary
conditions eventually we are after, it hast been obtained
essentially from the horizon specifics. As a matter of fact, it
holds for anyr = const sections and indeed its emergence can
be attributed to the “half-null” €5=1#,e{'= —n*) structure
(26) of Damour’s quasiorthonormal tetrad. Given the observation
that the same type of relation as this “radiative ingoing
boundary condition” actually holds for any null surface, one
might wonder what then would be the distinctive nature of

(ri+a’
2

G,, + G
" (rd+a?)

Dj=D,=Gy=G,.(e5ep)]:,

Gyl

a
=Gt 22
SV T (ri+ad)

D;=D3=G3=G,, (e5ep)|, thg event horizor@amgng anI surface)ﬂhat actually endow;
this boundary condition with real physical meaning. Znajek
21+/2 [5] provided one possible answer to this question and it is the
7 5 Cgu following: the special feature of the event horizon over all
(re+a%)sing other null surfaces is that it is a “stationary” null surface

and there is a natural class of time coordinates associated

with the frame at infinity in which the black hole is at rest.
where2+—(r +a’cog6). Next, the components of mag- And the physical components of electric and magnetic fields
netic field strength again on the horizon can be read off asshould be evaluated, in a unique way, in a frame at rest on
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the horizon. At this point, we remark on another crucial thing 1V. (FICTITIOUS ) CHARGE AND CURRENT ON THE
happening at the horizon. Namely we note that at the hori- HORIZON

zon, . . . o
It is well appreciated that in any attempt to have an intui-

DaH“:gaﬁD“H'B:(eABeﬁeg)D“Hﬁ’: engD”HB tive picture of Blandford-Znajek process for the rotational
energy extraction from rotating black holes, the introduction

=D°H'+D*H%+D?H?+D°H® of surface charge and current density on ¢seetched ho-
—D2D3-D3D2=0, rizon proves to be quite convenient. For instance, the circuit
(29) analysi_s in the mem_brane paradigéi] cannot do without _
DaDazgaﬁD“D'Bz(eABeﬁeg)D“D'BZ eagD”DB the notion of the hor|z_on surface charge and current density.
01 1m0 oo s If one follows the original argument of Damo[6], one can
=D"D"+D'D"+D*D*+D"D justify their introduction as follows. Suppose the existence of
—D2D2+D3D3 a 4-currentd*(v,r, 6,¢) which is defined and conserved all
over the spacetime. Lat=r, be the location of an event
=H3H3+H?2H?2= eagH HB horizon, then obviously some charge and current can plunge

into the hole and disappear from the regionr, . Never-
theless, imagine that we do not want to consider what hap-

These relations also hold®t only at the horizon but on any Pens inside the black hole {r.) and just wish to keep the
r = const sections and again can be attributed to the half-nuffh@rge and current conserved in the regiorr . . Then we

nature of Damour's quasiorthonormal tetrad. One immediatd/ould have to endow the surfage=r ., with charge and
consequence of these relatiol3,H*=0 and D,D®  current densities in such a way that the real current outside

=H_H® everywhere is that practicalff*=D* and B#  the horizon and this fictitious current on the horizon together

=H* everywhere[due to Eqs(22) and (23] as seen by a can complete the circuit. Then the task of constructing the
local observer at rest in the quasiorthonormal tetrad frame. IRorizon surface current can be described as a mathematical
fact, the interpretation of this is straightforward. Sinceproblem as follows: “Given the bulk curre“(v,r,6, )
Damour’s quasiorthonormal tetrad is half-null in{r) sec-  such thatV ,J#=0, find a complementary boundafgur-

tor, an observer in this tetrad frame is actually a null observeface currentj* on the surface=r . such that “=[J*Y(r

who, as a result of his motion, would see the electromagnetie-r )+ j*] [where Y(r) is the Heaviside function defined
field around him as a “radiation field” all the way which, in by dY(r)=4&(r)dr] is conserved.” And in this problem, a
turn, turns the BI theory of electrodynamics effectively into crucial point to be noted is that the conservation of the bulk
the Maxwell theory. What is particularly remarkable con- currentJ* is ensured by the field equation. Obviously then,
cerning this study of electrodynamics in the background ofwhat changes from the ordinary Maxwell theory case to the
Kerr black hole in the context of Bl theory is that the naturepresent Bl theory case is that now the conservatiod*ois

of the theory or the concrete structure of Bl equations hapsecured by the inhomogeneous Bl field equation instead of
pens to be such that it is indistinguishable to a local observethe Maxwell equation, i.e.,

in Damour’s quasiorthonormal tetrad franiedeed to any

null observers from that of standard Maxwell theory. This

point is indeed quite amusing on theoretical side. From now vV, G*'=47J* (3D

on, then, whenever we deal with quantities involving physi-

cal components of fields as seen by this observer in

Damour's tetrad ~frame, we can freely replaceimpliesV ,J#=V ,V,G*"/4r=0 outside the horizon. Then

[D#(E*),H#(B*)] by [E#(D*),B#(H#)]. Thus the radia- the condition for the conservation of thetal current|#
tive ingoing boundary condition at the horizon obtainedregds

above can be given in terms of electric field and magnetic
induction as

=g, gHHP=H H".

B, E, xp. (30 0=V I1#=V [I*Y(r—r )+j*]

As pointed out earlier, this relation states that the electric and = %(VVG’“’)( X—“) o(r—r)+V,j*, (32
magnetic fields tangential to the horizon are equal in magni- ™ r

tude and perpendicular in direction and hence their Poynting

energy flux isinto the hole. This boundary condition as seen ,

by a local observer again in a null tetrad frarvehich has Where we usedV,G*"=4xJ%, v, J%=0 and J,Y
been made to be well-behaved at the horizon by the amount (/1) 8(r —r ). Obviously, this equation is solved by the
of boost that becomes suitably infinite at the horizbms ~ COMPlementary surface current given as

been derived first by Znajels] in the context of standard
Maxwell theory and here we just witnessed that precisely the 1 1
tsr?ergfyr?g;]?gxfa:g%;)éTlg boundary condition holds in the BI jf‘zﬂG’”(ayr)c?(r—u EEG“(S(T—H)- (33)
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Further, it is convenient to introduce a “Dirac distribution” V. OHM'S LAW, GAUSS’ LAW, AND AMPERE'’S LAW
Sy on the horizon normalized with respect to the time at

infinity v and the local proper arebA such that We now are in the position to demonstrate that, as results

of central significance, a set of three relations, at the horizon,
between the fieldsl{;=E; ,H;=B;) and the surface charge
f d*xv\g 5H5(v—v0)f(v,r,0,¢)=J dA f(vg,ry ,0,¢) and current densitieso(= «°,«') that can be thought of as
H Ohm’s law, Gauss’ law and Ampere’s law valid at the hori-

(34 zon of a rotating Kerr black hole. First, notice that
which, then, yields p P
D;=4m«’, D;)=47TK¢. (38
(ri+a?
5H=E—5(f—r+), (35  These relations can be rewritten in a vector notation in a
+

tangent space to the horizon as

where we usedyg=3 sin# and dA=(r2 +a?)sin gdode. ) R R )
Finally, then, the complementary surface current 4-vector on Dy=4mk or Ey=4mk (39
the horizon can be written §¢ = «* & with
and hence can be interpreted as the “Ohm’s law.” Namely,
1 pI ur this relation precisely takes on the form of a nonrelativistic
K= me+ : (300 ohm's law for a conductor and hence implies that if we
" endow the horizon with some charge and current densities
As usual, what matters is the identification of “physical” Which are to be determined by the surrounding external elec-
(i.e., finite and nonzejocomponents of this current 4-vector tromagnetic field= ,,, then the horizon behaves as if it is a
(i.e., the horizon charge and current derisig seen by an conductor with finite surface resistivity of
observer in our quasiorthonormal tetrad frame. And they can
be computed, using the dual of Damour’s mixed tetrad given p=4m=377ohms. (40
in EQ. (9), in a straightforward manner as
The derivation of Ohm’s law and this value of surface resis-
tivity has been performed first by Damdu] and by Znajek
[5] independently in the context of standard Maxwell theory.
Thus what is indeed remarkable here is that the Ohm’s law
1 (ri +a?) a 1 abovg and the value of horizon’s surface resistivityr{4
=——|—<—G,+ v Gy|=7—D;, remain unchanged even when we replace the Maxwell theory
47| 3 2y 4m by the BI theory of electrodynamics. This result cannot be
. naturally anticipated but close inspection reveals that it can
Kr:Kl:K“e,lJu:O, be attributed to the peculiar structure of highly nonlinear
(377  inhomogeneous Bl field equation given in E¢K9) and(16)
1 23;’2 which, at the horizon, shows some magic such that there the
i (1) & (D,H) fields become exactly the same & B) as seen by a
+ local observer in Damour’s tetrad frame respectively as can
be checked from Eq$23) and(27) [or Eq.(29)]. As Damour

1 :
o=xk"= K”“eg|r+= E[Gﬁf—asmzﬁGfr]

o_ 2_ ma —
k’'=rK*=rle| =

1)1 1 [6] pointed out, this result constitutes a clear confirmation of
T Ax 2_m69v+ S22 4 a2) Goo| = EDH' Carter’'s assertiofi10] that a black hole is analogous to an
* o ordinary object having finite viscosity and electrical conduc-
b_ .3 3 tivity. Next, we also notice that
k?=kK>= K“E!’u|r+
1 s D;=4mo or E;=47o, (41
+
Am (r2 +a?) which evidently can be identified with the surface version of
_ or 2 o o Gauss’ law. It says that the fictitious surface charge density
X[—asindGy +(ri+a)singGy’] we assumed on the horizon plays the role of terminating the
normal components of all electric fields that pierce the hori-
1 Pl 1 zon just as we want it to. Lastly, if we combine the radiative
_ - "D, o " . .
yp. —(ri+a2)sin0 e ingoing boundary condition at the horizon that we obtained

earlier, Hy=Dyxn (or By=E,xn) and the Ohm's law

where the subscript 4" denotes the value at the horizon above,Dy=4m« (or Ey=47«), we end up with the third
r=r, and we compared these equations with E2p) to  relation

relate the surface charge and current densities to the compo- R o R o

nents of electric displacement on the horizon. Hy=4m(kXn) or By=4w(kXn), (42

104024-9
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which may be viewed as the surface version of Ampere’svheredQ denotes the heat dissipated in the hode charge
law. Again, consistently with our motivation for introducing (recall that we only consider hetschargeKerr black hole
fictitious current density on the horizon, this relation indi- with ,}H being the surface gravitjl7] of the hole, one gets
cates that the current density we assumed plays the role of

terminating any tangential components of all magnetic fields d_Q_ d_M _ % _f dA TH(E + Qi)
penetrating the horizon. To summarize, for the reason stated  dv  dv Hdo )4 v HY )X u

earlier, even the highly nonlinear Bl theory of electrodynam-

ics leads to the same horizon boundary conditions B3, =f dA Ty y (46)
(39), (41), and(42) as those in the standard Maxwell theory H va AR

and indeed this set of four curious boundary conditions on . .

the horizon actually have provided the motivation for thePerhaps a word of caution might be relevant here. As we

proposal of membrane paradigii] of black holes later on mentioned earlier, we are only interested in the “test” elec-
" tromagnetic field whose dynamics is governed particularly

by the BI theory in the “background” of uncharged Kerr
VI. JOULE'S LAW OR OHMIC DISSIPATION black hole spacetime which is a solution to the vacuum Ein-
AT THE HORIZON stein equation. Therefore, as long as we confine our concern
to the case withunchargedKerr black hole physics, the first
Perhaps one of the most intriguing consequences of agaw of black hole thermodynamics given above still remains
suming the existence of fictitious charge and current densito be valid. If, instead, one is interested in the case with
ties on the horizon would be that if we choose to do so, the&harged, rotating black hole physics, one would have to deal

horizon behaves as if it is a conductor with finite conductiv-With the full, coupled Einstein-BI theory context and then
ity as we stressed in the previous section. Since it is thdhere the associated first law should get modified to the ex-

surrounding external electromagnetic field that drives thdeénded version like the one given by Rashges] recently.
surface currents on the horizon, one might naturally wondeNOW: Since the “matter” for the case at hand is the Bl elec-
what would happen to the Joule heat generated when thodgpmagnetic field, we have at the horizon

currents work against the surface resistance and how irMXuth

would be related to the electromagnetic energy going down N

the hole through the horizon. Znajek and Damour also pro- ) "

vided a simple and natural answer to this question. Namely, ~ 2 B (1-R)x“Xa

they showed in a consistent and elegant manner that the total

electromagnetic energy fluk.e., the Poynting fluxinto the . 1 =ap a4y

rotating Kerr hole through the horizon is indeed precisely the R FruaFy= W(FQBF JF uaFux"x

same as the amount of Joule heat produced by the surface f+
currents when they work against the surface resistivity of 1

4. In the following, we shall demonstrate again along the = ;—(F..Fi)x"x"| (47

same line of formulation as Damour that indeed the same is r

true even in the context of Bl theory of electrodynamics. It is
well-known that for a stationary, axisymmetric black hole
spacetime with the horizon-orthogonal Killing field

+

whereR is as defined earlier and in the second line we used
that at the horizon wherg, sx“x*= x*x.=0,

F ,sF*=—-2(E,E*~B,B*)=—-2(D,D*—H,H%)=0,
x*=(3ldv)*+Qu(dldp)H=E*+ Qpyt (43
FogF“f=4E,B*=4D,H*=0, and hence
the mass energy and the angular momentum flux into the

. g . 1/2
hole through the horizon are given respectively by _ 1 aBy_ 1 Zapy2|
R 1+ zﬁZ(FaﬁF ) 16ﬁ4(Fa'BF ) 11
dMm
—= | dAT*&y,= | dA T x,, which also yields, at the horizog ,,=F ,,. Recall that in
d vS Xu v Xu o w
v H H the standard Maxwell theory,
(44) L
dJ - a_ ap
d_vZ:_fHdA T’;zp”XM:—fHdA ToX s Tuv 4 FuaFy 49#1/(':01,8': )} (48)

and thus at the horizon,
wheredA= (r2 +a?)sin 6déd¢ is again the area element on , N ,
the horizon and* is the matter energy-momentum tensor at TuxX"lr, = (UAm)(FLaF )X X
the horizon. Now, combining these with the first law of black

. hich is the same as its counterpart in Bl theory obtained
hole thermodynamicfl7] which Its counterpart | y obtai

above. This means that, at the horizon, the amount of total

electromagnetic energy flux into the hole turns out to be the

do= i;( dA=dM—0.dJ (45) same and hence indistinguishable between Maxwell theory
gm HEwz and BI theory. Further,
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1 context of Born-Infeld(Bl) theory of electromagnetism and
Tox*x'|e, = E(FWFﬁ)X”XV|r+ particularly we have derived Bl theory versions of the four
horizon boundary conditions of Znajek and Damour. Inter-
1 §1+/2 2 estingly enough, as far as we employ the same local null
=1\ 2 2 Fe tetrad frame as the one adopted in the works by Damour and
T L(ri+a%)sing by Znajek, we ended up with exactly the same four horizon

boundary conditions despite the shift of the electrodynamics

2
tl—G, + G theory from a linear Maxwell one to a highly nonlinear Bl
312 o SY2r2 +a?) 4 one. As we have seen in the text, this curious and unexpected
. . result could be attributed to the fact that the concrete struc-
=47 (k®)2+ (k2= 4m(k)?, (49)  ture of Bl equations happens to be such that it is indistin-

X guishable at the horizonto a local observer, say, in
where we useds,,,=F,, and «"=0 at the horizon. Thus, Damour’s local tetrad frame from that of standard Maxwell
finally we end up with theory. Finally, we have a word of caution to avoid a pos-

sible confusion the potential readers might have. Namely,
Q v -5 > - again we point out that in all the calculations involved in this
E_J'HdA Tunx®x _47TfHdA(K) _fHdA(EH'K)' work to read off physical components of tensors such as
(50) Maxwell field tensor and current 4-vector, we strictly used
the quasiorthonormal tetrad given in Ed8) and (9) and
where we used the Ohm’s la, =47 «, we obtained ear- Nothing else. In this sense, our choice of local tetrad frame
lier. As we promised to demonstrate, clearly this is theWas slightly different from that in the original work of
Joule’s law which is again precisely the same as its MaxwelPamour [6] in which he introduced, particularly on the
theory counterpart originally obtained by Znaje® and by ~ 2-dimensionalp =const section of the event horizon, some
Damour[6] and implies that the absorption of electromag-other orthonormal basigslightly different from {e% e}
netic energy by Kerr holes through the horizon can be transgiven in Eq.(8)] specially adapted to the “intrinsic geom-
lated into an equivalent picture in which the holes gain enetry” of the v =const section of the horizon and used them
ergy by absorbing Joule heafor Ohmic dissipation tO p_roj_ect out physical component'_s of'tensors. As sgch, any
generated when the surface currendriven by the electric deviation 'of ﬁhe results one may find in the expressions for
field E.. works against the surface resistivity ofrd And as the electrl_c_ field, magnetic field and surface charge and cur-
H Sag . y ofr rent densities appeared in the text of the present work from
before, what is remarkable is the fact that even if we replac

. ) heir counterparts in the original work of Damour can be
the Maxwell theory by the highly nonlinear Bl electrody- attributed to this slightly different choices of the local tetrad

namics, the physics of the horizon such as this horizon ther\'/ectors. This discrepancy, however, is insensitive to the

modynam;}cs as dwepl! %S the horlzqntbgundtary clc_JndrE[lrc])_nshre— hysical nature of this study of the horizon boundary condi-
main unchanged. And as we pointed out earlier, his Nagq,,q hat we try to deliver in the present work.

much to do with the nature of Damour’s quasiorthonormal
tetrad frame(i.e., its half-null structurgin ingoing Kerr co-
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